C32
L CO
HC=CC
R=H,
L
‘R
I/
=’
I/ TCTy-’
//O
OCH3
w
H
~C+7~H L
L
COR (II:
(I)
R = H
;
III : R = OCH3 1
co2
\
(1)
70 bar L I/ ON-W-O--C 04
co
//”
‘H L
(IV) L = P(O-i-pr13
the IR, NMR and mass spectroscopic data, and the presence of a for-mate ligand is confirmed by characteristic ‘H and 13C NMR resonances [lo]. I also reacts with a variety of organic carbonyl compounds, and further studies are currently underway in our laboratory. Acknowledgements The authors are grateful to the Deutsche Forschungsgemeinschaft der Chemischen Industrie (West Germany) for financial support.
and the Fonds
References 1 2 3 4
H.D. Kaesz and B. Saillant, Chem. Rev., 72 (1972) 231. B.E. Bursten and M.G. Gatter, J. Am. Chem. Sot., 106 (1984) 2554. H. Berke and P. Kundel, Z. Naturforsch. B, 41 (1986) 527. II and III were prepared by treating pentane solutions of I at room temperature with a slight excess of the appropriate acetylene derivative. Yellow crystals were obtbined upon cooling the solutions to - 7ooc. 5 Selected analytical data: 6 9.62 ppm (t, II: IR v(m), u(N=O) (n-pentane): 1958s, 1627m cm- ‘. ‘H NMR (CD,COCD3): J(P-H) 1.1 Hz, CHO), 6.88 ppm (t, d, J(P-H) 3.4 Hz, J(H-H) 1.3 Hz, W-CZf=CH), 6.85 ppm (t, d, .T(P-H) 2.4 Hz, J(H-II) 1.3 Hz, W-CH=CH), 4.68-4,55 ppm (m, P-0-CH), 1.29 ppm (d, (qDs): 211.1 ppm (t, J(P-C) 10.3 Hz, CO), 204.31 ppm J(H-H) 6.1 Hz, CH,). r3C{‘H)NMR (s, CHO), 178.81 ppm (t, J(P-C) 16.2 Hz, W-C=C-), 151.07 ppm (t, J(P-C) 5.8 Hz, W-C%-), (GD,): 127.64 ppm (s). MS: 69.65 ppm (s, P-O-C), 24.22 ppm (s, CH,); 3’P(‘H}NMR m/e = 741 (Ml+, m/e=713 [M-CO]+, m/e=685 [M-ZCO]+, m/e=655 [M-ZCO, -CHzO]+, m/e=.630 [M-ZCO, -C3H30]+.
c33 III: IR v(C+O), v(N=O) (n-pentane): 196Os, 17OOw, 1626m cm-‘. ‘H NMR (C,D,): 8 7.69 ppm (t, d, J(P-H) 3.23 Hz, J(H-II) 5 Hz, W-CH==CH), 6.27 ppm (t, d, J(P-I-I) 2.9 Hz, J(H-H) 5 Hz, W-CH=CH), 4.98-4.61 ppm (m, P-OCH), 3.58 ppm (s, COOCH,), 1.28 ppm (d, J(H-H) 6.1 Hz, CH,). 13C(‘H} NMR (C,D,): 210.61 ppm (t. J(P-C) 10.3 Hz, CO), 177.72 ppm (s, COOR), 167.12 ppm (t. J(P-C) 15.5 Hz, W-C=C), 138.71 ppm (t, J(P-C) 5.9 Hz, W-C=C), 69.59 ppm (s, P-O-C), 50.44 ppm (s, OCH,) 24.11 ppm (s, CH,). “P{‘H}NMR (GD,): S 129.08 ppm (s). MS: m/e=771[M]+,743[M-CO]+,715[M-2CO]+,684[M-2CO,-OCH3]+,630[M2CO,-C,O,H,]+. Satisfactory elemental analyses were obtained. 6 A.J. Leusink and H.A. Budding, J. Organomet. Chem., 11(1%8) 533; H.G. Kuivila, Synthesis, (1970) 499. 7 D.J. Darensbourg and R.A. Kudaroski, Adv. Organomet. Chem., 22 (1983) 129; I.S. Kolomnikov and M.Kh. Grigoryan, Russ. Chem. Rev., 47 (1978) 334; S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Sot., 107 (1985) 6278. 8 See also the reaction of W(CO),(NO)[PPh,],H with C,O,, G.L. Hillhouse, J. Am. Chem. Sot., 107 (1985) 7772. 9 I was sealed with dry ice in a laboratory autoclave. After two days at room temperature (70 bar CO, pressure) the pressure was released and IV was obtained as yellow crystals by recrystallization from pentane. 10 Selected analytical data: IV: IR v(CkO, v(N&) (n-pentane): 2052w, 1961s, 1629s cm-‘. ‘H NMR (GD,): S 8.30 ppm (t, J(P-H) 1.5 Hz, OCOH), 4.5-4.6 ppm (m, P-0-CH), 1.25 ppm (d, J(H-H) 6.1 Hz, CH,). t’C{t H)NMR (C,D,): S 299.16 ppm (t, J(P-C) 10.3 Hz, CO), 166.43 ppm (s, OCO), 69.98 ppm (s, P-O-C), 24.19 ppm (s, CH,). MS: m/e = 703 [M -CO]+, 675 [M - 2CO]+, 644 [M - CO, -OC3H7]+, 616 [M-2C0, -OC3H,]+, 573 [M-2C0, -OC,H,, -C3H7]+, 485 [M-2C0, -2C,H,, -CO,H]+. -OC,H,, Satisfactory elemental analyses were obtained.