Integrability conditions for a certain class of nonlinear evolution equations and Kähler geometry

Integrability conditions for a certain class of nonlinear evolution equations and Kähler geometry

Differential Geometry and its Applications 3 (1993) 203 203 North-Holland Errat urn Integrability conditions for a certain class of nonlinear ...

52KB Sizes 2 Downloads 22 Views

Differential

Geometry

and its Applications

3 (1993)

203

203

North-Holland

Errat urn

Integrability conditions for a certain class of nonlinear evolution equations and Kahler geometry Diff.

Geom.

Appl.

1 (1991)

327-344

E.M. Isaenko Department Received

of Applied 15 March

Mathematics,

Vladimir’s Polytechnic

Institute,

Vladimir,

Russia

1993

There is an error in the Corollary 3.2 in my paper “Integrability conditions for a certain class of nonlinear evolution equations and Kghler geometry,” Diff. Geom. Appl. 1 (1991) 327-344. The corollary holds in the following weaker form. Let (M,h)

be a connected

pseudo-ktihlerian

manifold

Corollary

3.2.

degenerate,

as a bilinear form, Ricci tensor R. If the Hamiltonian

a regular

zero

of constant metrics

representation sectional

R and h are equal.

(with natural

Correspondence street

curvature

holomorphic metrics

(1.4)

and (1.5))

Vladimir,

0926-2245/??/$06.00

@????

of Applied

equations

admit regular representations

Mathematics,

Vladimir’s

Polytechnic

Science

Publishers

B.V.

All rights

reserved

admits metric

connections

(0.1) for P?(c)

Russia. - Elsevier

(0.1)

then R is a pseudo-kiihlerian c # 0, and Levi-Civita

The Hamiltonian

to: Department

87, 600026

(3.3),

curvature

with a non

equation

of

and HF((c)

(3.3).

Institute,

Gorky