Integral Transforms of Certain Subclasses of Analytic Functions

Integral Transforms of Certain Subclasses of Analytic Functions

Journal of Mathematical Analysis and Applications 258, 466᎐489 Ž2001. doi:10.1006rjmaa.2000.7383, available online at http:rrwww.idealibrary.com on I...

151KB Sizes 11 Downloads 138 Views

Journal of Mathematical Analysis and Applications 258, 466᎐489 Ž2001. doi:10.1006rjmaa.2000.7383, available online at http:rrwww.idealibrary.com on

Integral Transforms of Certain Subclasses of Analytic Functions Yong Chan Kim1 Department of Mathematics, College of Education, Yeungnam Uni¨ ersity, Gyongsan 712-749, Korea E-mail: [email protected]

and Frode Rønning School of Teacher Education, Sør-Trøndelag College, N-7004 Trondheim, Norway E-mail: [email protected] Submitted by Stephan Ruscheweyh Received September 21, 1999

Let A be the class of normalized analytic functions in the unit disk ⌬ and define the class P␥ Ž ␤ . s  f g A < ᭚␸ g ⺢ < Re  e i ␸ Ž Ž 1 y ␥ . f Ž z . rz q ␥ f ⬘ Ž z . y ␤ . 4 ) 0, z g ⌬ 4 . For a function f g A we define the integral transform

V␭ Ž f .Ž z . s

H01␭Ž t .

f Ž tz . t

dt ,

where ␭ is a real-valued, nonnegative weight function with H01 ␭Ž t . dt s 1. For f g P␥ Ž ␤ . we will find conditions such that V␭Ž f . is starlike and also such that V␭Ž f . g P␥ Ž ␣ .. We also discuss how to write the integral transform as a convolution with a 2 F1 hypergeometric function. 䊚 2001 Academic Press Key Words: starlike functions; integral transforms. 1

The work of the first author was supported by KOSEF under Grant 981-0102-010-2. 466

0022-247Xr01 $35.00 Copyright 䊚 2001 by Academic Press All rights of reproduction in any form reserved.

467

INTEGRAL TRANSFORMS

1. INTRODUCTION Let A be the class of analytic functions in the unit disk ⌬ with the normalization f Ž0. s f ⬘Ž0. y 1 s 0. For f g A we define the integral transform

Ž 1.1.

V␭ Ž f . Ž z . s

1

H0 ␭Ž t .

f Ž tz . t

dt ,

where ␭ is a real-valued, nonnegative weight function normalized so that H01 ␭Ž t . dt s 1. For ␤ - 1 and 0 F ␥ F 1 we define the set P␥ Ž ␤ . s  f g A < ᭚␸ g ⺢ < Re  e i ␸ Ž Ž 1 y ␥ . f Ž z . rz q ␥ f ⬘ Ž z . y ␤ . 4 ) 0, z g ⌬4 . We shall mainly discuss the following problems. Ž1. For f g P␥ Ž ␤ ., find conditions such that V␭Ž f . g S*, where S* denotes the usual class of starlike functions. Ž2. For f g P␥ Ž ␤ ., find conditions such that V␭Ž f . g P␥ Ž ␣ .. To deal with these problems we shall use the duality theory for convolutions. Similar methods have earlier been used to discuss univalence and starlikeness Žalso of order ␣ ) 0. of V␭Ž f . in the case ␥ s 1, e.g., in the papers w4, 10, 12x. In w6x some aspects of the case ␥ - 1 are discussed, using other methods. Some special cases of ␭Ž t . are particularly interesting such as

␭ Ž t . s Ž 1 q c . t c , c ) y1, for which V␭ is known as the Bernardi operator, and ␦

1 Ž c q 1. c ␭Ž t . s t log ⌫Ž ␦ . t

ž /

␦ y1

, c ) y1, ␦ G 0,

which gives the Komatu operator w7x. We see that for ␦ s 1 the Komatu operator reduces to the Bernardi operator. We can also look at some of these integral operators as taking the convolution between the function f and a 2 F1 hypergeometric function. We use the notation 2 F1Ž a, b; c; z . for the usual Gaussian hypergeometric function, and define the convolution operator

Ž 1.2.

Ha, b , c Ž f . Ž z . [ z 2 F1 Ž a, b; c; z . ) f Ž z . ,

468

KIM AND RøNNING

where f Ž z . s Ý⬁ns 1 a n z n. We use the following basic facts about hypergeometric functions Žsee, e.g., w1x.. 2 F1 Ž a, b; c; z . s



⌫ Ž a q n.

Ž a. n s B Ž x, y . s

1

H0 Ž 1 y t .

Ž a. n Ž b . n

Ý ns0 Ž c . n n! ⌫ Ž a.

xy1 yy1

t

z n , < z < - 1,

,

⌫Ž x. ⌫Ž y.

dt s

⌫Ž x q y.

, x ) 0, y ) 0,

and ⬁

Ž a. n Ž b . n

Ý ns0 Ž c . n n!

s

⌫ Ž c. ⌫ Ž c y a y b.

, c ) b ) 0 and c ) a q b.

⌫ Ž c y a. ⌫ Ž c y b .

Then we can write Ha, b , c Ž f . Ž z . s s s



Ž a. n Ž b . n

Ý anq1 Ž c . n! n ns0

z nq1



⌫Ž c.

⌫ Ž a q n. ⌫ Ž b q n.

Ýa ⌫ Ž a . ⌫ Ž b . ns0 nq 1 ⌫ Ž c q n . ⌫ Ž n q 1 .

z nq 1

⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1. =



Ý



a nq 1 z nq1

ns0

Ž c y a. m Ž 1 y a. m

Ý ms0 Ž c y a y b q 1 . m m! 1 bqny1

=

H0 t

Ž1 y t .

cy aybqm

dt .

This expression can be written as Ha, b , c Ž f . Ž z . s

⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1. =

1 by 2

H0

t

Ž1 y t .

cy ayb

2 F1

ž

c y a, 1 y a ; 1 y t f Ž tz . dt , cyaybq1

/

469

INTEGRAL TRANSFORMS

where we assume a ) 0, b ) 0 and c ) a q b y 1. This means that the convolution Ž1.2. is an integral operator of the form Ž1.1. with

␭Ž t . s

⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1. =Ž 1 y t .

cy ayb

2 F1

t by 1

c y a, 1 y a ; 1yt . cyaybq1

ž

/

Using the Euler integral representation Ž c ) b ) 0. 2 F1

Ž a, b; c; z . s

⌫Ž c.

1 by1

⌫ Ž b. ⌫ Ž c y b.

H0

t

Ž1 y t .

cyby1

Ž 1 y tz .

ya

dt

we see that with a s 1 we get H1, b , c Ž f . Ž z . s

⌫Ž c.

1 by1

H ⌫ Ž b. ⌫ Ž c y b. 0

t

Ž1 y t .

cy by1

f Ž tz . t

dt.

This integral operator is known as the Carlson᎐Shaffer operator Žsee w2x.. For the operator Ha, b, c , given a, b, c, and ␥ in a certain range, we get the sharp value of ␤ for problem Ž1.. However, it is likely that the range of a, b, c, and ␥ , for which the result holds, is larger than the one we have obtained. Some related results for Ha, b, c are obtained in w11x. 2. MAIN RESULTS We start with functions from P␥ Ž ␤ ., where ␥ may be any number in w0, 1x. For now we will assume ␥ ) 0. With ␭Ž t . given we define ⌳␥ Ž t . s

1

Ht

␭Ž s . s 1r␥

ds.

Further we let g␥ Ž t . be the solution of the initial value problem

Ž 2.1.

2 t 1r ␥y1

d

Ž t 1r␥ Ž 1 q g Ž t . . . s ␥ dt

Ž1 q t .

2

, g Ž 0 . s 1.

Before we proceed to state our results we need some more information about the function g␥ . Solving Ž2.1. we see that g␥ Ž t . can be expressed as g␥ Ž t . s

2



ty1 r␥

t

␶ 1r ␥y1

H0 Ž 1 q ␶ .

2

d␶ y 1.

470

KIM AND RøNNING

Then we get 2

g␥X Ž t . s y



␶ 1r ␥y1

t

ty1r␥y1 2

H0 Ž 1 q ␶ .

2

d␶ q

2

1

␥ t Ž1 q t .2

.

For 0 - t - 1 we have

␶ 1r ␥y1

t

H0 Ž 1 q ␶ .

2

d␶ )

1

t

Ž1 q t .

2

H0 ␶

1r ␥ y1

d␶ s ␥

t 1r ␥

Ž1 q t .

2

,

which implies that g␥X Ž t . - 0, so g␥ Ž t . is strictly decreasing on Ž0, 1.. For any weight function ␭Ž t . ) 0 with H01 ␭Ž t . dt s 1 we therefore have H01 ␭Ž t . g␥ Ž t . dt - 1. THEOREM 2.1.

Define ␤ - 1 by

␤ 1y␤

1

H0 ␭Ž t . g

sy



Ž t . dt ,

and let f g P␥ Ž ␤ ., ␥ ) 0. Assume that lim t ª 0q t 1r ␥⌳␥ Ž t . s 0. Then V␭Ž f . g S* if and only if

Ž 2.2.

Re

1 1r ␥ y1

H0

t

⌳␥ Ž t .

ž

h Ž tz . tz

y

1

Ž1 q t .

2

/

dt G 0, z g ⌬ ,

where

Ž 2.3.

hŽ z . s

z Ž1 q

⑀y 1 2

Ž1 y z.

z.

2

, < ⑀ < s 1.

Theorem 2.1 is not very useful directly because in order to find out whether V␭Ž f . g S* we have to check the condition Ž2.2., and this is often difficult. Therefore, to get some applicable results we will identify some situations where Ž2.2. holds. The first result of this type is one where we can compare an unknown situation to a known one with a condition that is reasonably easy to check. We introduce the notation L⌳ ␥ Ž h . s inf

1 1r ␥ y1

H zg⌬ 0

t

⌳␥ Ž t . Re

and formulate the following result.

ž

h Ž tz . tz

y

1

Ž1 q t .

2

/

dt

471

INTEGRAL TRANSFORMS

Assume ⌳␥ is integrable on w0, 1x and positi¨ e on Ž0, 1.. If

THEOREM 2.2.

⌳␥ Ž t . log 1t is decreasing on Ž0, 1. then for 1r2 F ␥ F 1 we ha¨ e L⌳ ␥Ž h. G 0, where hŽ z . is as in Ž2.3.. The next results describe what we are able to prove about some of the specific operators mentioned in the Introduction. The first result deals with the Komatu operator. THEOREM 2.3. Let 1r2 F ␥ F 1 and g␥ Ž t . be defined by Ž2.1.. Define ␤ s ␤ Ž c, ␦ , ␥ . by



Ž c q 1. sy 1y␤ ⌫Ž ␦ .

Ž 2.4.



1 c

H0

1

␦ y1

ž /

t log

t

g␥ Ž t . dt.

Then for f g P␥ Ž ␤ . and

Ž c q 1. Fc , ␦ Ž z . s ⌫Ž ␦ .

Ž 2.5.



1 cy 1

H0

t

1

␦ y1

ž / log

t

f Ž tz . dt

we ha¨ e Fc, ␦ g S* for y1 - c F 1r␥ y 1 and ␦ G 1. The ¨ alue of ␤ is sharp. We now turn to the operator Ha, b, c Ž f . for which we obtain the following result. THEOREM 2.4. Let 1r2 F ␥ F 1 and g␥ Ž t . be defined by Ž2.1.. Define ␤ s ␤ Ž a, b, c, ␥ . by

Ž 2.6.

␤ 1y␤

⌫Ž c.

sy

⌫ Ž b . ⌫ Ž c y b . ⌫ Ž c y a y b q 1.

=

1 by 1

H0

t

Ž1 y t .

cy ayb

2 F1

ž

c y a, 1 y a ; 1 y t g␥ Ž t . dt. cyaybq1

/

Then for f g P␥ Ž ␤ ., 0 - a F 1, 0 - b F 1r␥ , and c G a q b we ha¨ e Ha, b, c Ž f . g S*. The ¨ alue of ␤ is sharp. In the case a s 1 we have the Carlson᎐Shaffer operator which we denote by Lb , c Ž f . Ž z . s

⌫Ž c.

1 by2

H ⌫ Ž b. ⌫ Ž c y b. 0

t

Ž1 y t .

cy by1

f Ž tz . dt ,

472

KIM AND RøNNING

where 0 - b - c. We write the result for the Carlson᎐Shaffer operator explicitly. Let 1r2 F ␥ F 1 and g␥ Ž t . be defined by Ž2.1.. Define

COROLLARY 2.5. ␤ s ␤ Ž b, c, ␥ . by

␤ 1y␤

sy

⌫Ž c.

1 by1

H ⌫ Ž b. ⌫ Ž c y b. 0

t

Ž1 y t .

cy by1

g␥ Ž t . dt.

Then for f g P␥ Ž ␤ ., 0 - b F 1r␥ , and c G 1 q b we ha¨ e L b, c Ž f . g S*. The ¨ alue of ␤ is sharp. Another question that might be asked is the following. Let ␣ - 1 be given. Find the smallest ␤ s ␤ Ž ␣ . such that if f g P␥ Ž ␤ . we have V␭Ž f . g P␥ Ž ␣ .. We prove the following result, which holds for all ␥ g w0, 1x. Let ␣ - 1 and 0 F ␥ F 1 be gi¨ en, and define ␤ s ␤ Ž ␣ .

THEOREM 2.6. by

Ž 2.7.

␤ 1y␤

1

H0 ␭Ž t .

sy

1 y Ž 1 q ␣ . rŽ 1 y ␣ . t 1qt

dt.

If f g P␥ Ž ␤ . then V␭Ž f . g P␥ Ž ␣ .. The ¨ alue of ␤ is sharp. The last result we will present says something about the location of f Ž z .rz, given that f g P␥ Ž ␤ .. Hence, in this result there is no integral transform involved, except as a tool in the proof. THEOREM 2.7. ␤ Ž ␣ , ␥ . by

Ž 2.8.

␤ 1y␤

Let ␣ - 1 and 0 - ␥ F 1 be gi¨ en, and define ␤ s

sy

1

1 Ž1y ␥ .r ␥

H ␥ 0

t

1 y Ž 1 q ␣ . rŽ 1 y ␣ . t 1qt

dt.

If f g P␥ Ž ␤ . then for some ␸ g ⺢ we ha¨ e Re e i ␸

f z

žŽ. / z

y ␣ ) 0, z g ⌬ .

The ¨ alue of ␤ is sharp.

3. SOME EXAMPLES In this section we shall look at some examples where we see how our results improve earlier results. It should be said that in some of the

473

INTEGRAL TRANSFORMS

examples the results are not directly comparable, because the previous results deal mostly with the classes R␥ Ž ␤ . s  f g A < Re  Ž 1 y ␥ . f Ž z . rz q ␥ f ⬘ Ž z . y ␤ 4 ) 0, z g ⌬ 4 instead of the larger classes P␥ Ž ␤ .. 3.1. EXAMPLE. In w9x Ponnusamy investigated some problems that are similar to those discussed in this paper. The notation is somewhat different, but if we translate Theorem 5 in w9x to our notation we get the following. Let

␦ Ž␥ . s

1

H0

dt 1 q t␥

.

If g g R␥ Ž ␤ ., with

␤s

y␳ y Ž 1 y Ž 1r2␥ . . Ž 2 ␦ Ž ␥ . y 1 . 1 y Ž 1 y Ž 1r2␥ . . Ž 2 ␦ Ž ␥ . y 1 .

, ␥ G 1r2,

then G Ž z . s H01 g Ž tz . dtrt g S*. Here ␳ s 0.0573 . . . is a number that can be computed through a rather involved algorithm which we will not repeat. To compare, we use our Theorem 2.3 with c s 0 and ␦ s 1. Theorem 5 w9x

␥ 1r2 1

␤ s y␳ s y0.0573 ␤s

y␳ y log 2 q 1r2 1 y log 2 q 1r2

Theorem 2.3

␤s s y0.3104 . . .

␤s

4 log 2 y 3 4 log 2 y 2 1 y 2 log 2 2 y 2 log 2

s y0.294 . . . s y0.629 . . .

In the proof of Theorem 2.3 we see that the extremal function belongs to R␥ Ž ␤ ., so the result is sharp also in this class. 3.2. EXAMPLE. As far as we know, the class R␥ Ž ␤ . was introduced by Chichra w3x, where it was proved that if f g R␥ Ž0. for some ␥ with Re ␥ G 0, then Re f Ž z .rz ) 0 for z g ⌬. Using Theorem 2.7 we see that this result may be extended in the case ␥ ) 0. Indeed, for f g R␥ Ž ␤ . with ␤ - 0, we can conclude that for some ␸ g ⺢ we have Re e i ␸ f Ž z .rz ) 0. Explicitly, we get for ␥ s 1 that the smallest possible value of ␤ is Ž1 y 2 log 2.rŽ2 y 2 log 2. s y0.629 . . . and for ␥ s 1r2 we get ␤ s Ž4 log 2 y 3.rŽ4 log 2 y 2. s y0.294 . . . . Here we see that the results are not directly comparable, because we cannot actually conclude that Re f Ž z .rz ) 0 by our methods.

474

KIM AND RøNNING

3.3. EXAMPLE. In w8x Owa and Nunokawa improved Chichra’s result. They showed that if Re Ž 1 y ␥ .

gŽ z.

q ␥ g ⬘Ž z . ) ␤

z

then Re

gŽ z. z

)␣,

where ␣ s ␤ q Ž1 y ␤ .Ž2 ␦ Ž␥ . y 1., and ␦ Ž␥ . is as in Example 3.2. Solving this equation for ␤ we get ␥

␤s

Ž 3.1.

t ␣ y H01 11 y q t ␥ dt ␥

2H01 1 qt t ␥ dt

.

The result of Owa and Nunokawa corresponds to our Theorem 2.7, but also here with the difference that we work with P␥ Ž ␤ . instead of R␥ Ž ␤ .. Solving equation Ž2.8. with respect to ␤ we get

Ž 3.2.

␤s

. r Ž1 y ␣ . t H01 t Ž1y ␥ .r ␥ 1 y Ž1 q1␣q dt t . Ž . Ž . 1 y 1 q ␣ r 1 y ␣ t H 1 t Ž1y ␥ .r ␥ dt y ␥

0

1q t

If we do the change of variables t s u␥ in Ž3.2. we see, after a little calculation, that the expressions Ž3.2. and Ž3.1. are equal. There is no comment in w8x that their value of ␤ is sharp. In the proof of Theorem 2.6 and Theorem 2.7 we see that the extremal function belongs to R␥ Ž ␤ ., and it has real coefficients. Therefore, this function will satisfy Re g Ž z .rz ) ␣ , so the result of Owa and Nunokawa is actually sharp. Their proof is based on a subordination theorem by Hallenbeck and Ruscheweyh w5x. 3.4. EXAMPLE. Let

␭Ž t . s ␭␦ Ž t . s ⌫ Ž ␦ .

y1

1

␦y1

, ␦ G 0,

ž / log

t

Žthe Komatu operator with c s 0. and F␦ Ž z . s V␭ Ž f .Ž z .. In w6x it is shown ␦ that if Re f ⬘Ž z . ) ␤ then Re F␦X Ž z . G 1 y Ž 1 y ␤ . Ž 1 y log 2 . 1 q

ž

1 2

␦ y1

/

[␣

475

INTEGRAL TRANSFORMS

for ␦ G 1. Comparing with the results we get from Theorem 2.6 we get the following table which for given ␦ and ␣ shows the values of ␤ that we get using Corollary 3.1 in w6x and our Theorem 2.6 respectively. The case ␣ s 0. Corollary 3.1 w6x

␦ 1 2

1 y 3 log 2 3 y 3 log 2 1 y 5 log 2 5 y 5 log 2

Theorem 2.6 6y␲2

s y1.172 . . .

12 y ␲ 2 2 y 3␨ Ž 3 .

s y1.607 . . .

4 y 3␨ Ž 3 .

s y1.816 . . . s y4.078 . . .

The case ␣ s 1r2. ␦ 1 2

Corollary 3.1 w6x 4 y 6 log 2 6 y 6 log 2 6 y 10 log 2

Theorem 2.6 9y␲2

s y0.086 . . .

10 y 10 log 2

s y0.303 . . .

12 y ␲ 2 3 y 3␨ Ž 3 . 4 y 3␨ Ž 3 .

s y0.408 . . . s y1.539 . . .

4. PROOFS 4.1. Proof of Theorem 2.1. Let f g P␥ Ž ␤ . and define GŽ z . s

Ž 1 y ␥ . f Žzz . q ␥ f ⬘ Ž z . y ␤ 1y␤

.

Then for some ␣ g ⺢ we have Re e i ␣ G Ž z . ) 0. With F Ž z . s V␭Ž f .Ž z ., we want to investigate starlikeness of F; i.e., we want to find conditions such that Re

zF⬘ Ž z . FŽ z.

) 0, z g ⌬ .

By the Duality Principle Žsee w10, 13x. we may restrict our attention to the function f g P␥ Ž ␤ . for which G Ž z . s Ž1 q xz .rŽ1 q yz ., < x < s < y < s 1. Further, it is well known from convolution theory w13, p. 94x that F g S* m

1 z

Ž F ) h . Ž z . / 0, z g ⌬ ,

476

KIM AND RøNNING

where ⑀y 1 2

z Ž1 q

hŽ z . s

Ž1 y z.

z.

, < ⑀ < s 1.

2

Hence, F g S* if and only if Ž␥ / 0. 0/ s

1

Ž F ) h. Ž z .

z

1

1

H0 ␭Ž t . 1 y tz dt )

s Ž1 y ␤ .

1

H0 ␭Ž t . 1

s Ž1 y ␤ .

␭Ž t .

H0

s Ž1 y ␤ .

H0 ␭Ž t .

ž ž

1

Ž1 y ␤ .

h Ž tz .

h Ž tz .

1

␥ z

1r ␥



q

tz

1

1y␤

z

/

H0

/

1

1

␥ z

1r ␥

z

H0

1 q yw

dt )

y g␥ Ž t . dt )

tz

w 1r␥y1 Ž 1 q xw .

1

1

␥ z 1r␥ 1

z

1

␥ z 1r␥

w 1r␥y1 h Ž tw . tw

z

H0

H0

dw q ␤ )

w 1r␥y1 Ž 1 q xw . 1 q yw

w 1r␥y1 Ž 1 q xw . 1 q yw

dw y g␥ Ž t . dt )

1 q xz 1 q yz

hŽ z . z dw

dw

.

Using another well-known result from convolution theory w13, p. 23x we conclude that this holds if and only if Re Ž 1 y ␤ .

1

H0

␭Ž t .

1

1

␥ z

1r ␥

z

H0

w 1r ␥y1 h Ž tw . tw

dw y g␥ Ž t . dt )

1 2

.

Inserting 1 s Ž1 y ␤ .H01␭Ž t .Ž1 y g␥ Ž t .. dt on the right-hand side we can rewrite this as 1

Re

H0

␭Ž t .

1 t 1r ␥

t 1r ␥

␥ z 1r␥

w 1r␥y1 h Ž tw .

z

H0

tw

dw y

t 1r␥ Ž 1 q g␥ Ž t . . 2

dt ) 0.

With the change of variables u s tw we now get Re

1

H0

␭Ž t .

1

t 1r ␥

␥ z 1r␥

1

tz

H0

u1r ␥y1 h Ž u . u

du y

t 1r␥ Ž 1 q g␥ Ž t . . 2

Integrating by parts we get that this is equivalent to Re

1 1r ␥ y1

H0

t

⌳␥ Ž t .

ž

h Ž tz . tz

y

1

Ž1 q t .

2

/

dt G 0.

dt ) 0.

477

INTEGRAL TRANSFORMS

4.2. Proof of Theorem 2.2. We shall omit some details here because there are many similarities between this proof and the proof of Theorem 1 in w4x. With hŽ z . s z Ž1 q Ž ⑀ y 1. zr2.rŽ1 y z . 2 , < ⑀ < s 1, we want to prove that 1 1r ␥ y1

Ž 4.1.

⌳␥ Ž t . Re

t

H0

ž

h Ž tz . tz

y

1

Ž1 q t .

/

2

dt G 0

for z g ⌬. Using the same argument as in w4x we see that it is enough to prove Ž4.1. for < z < s 1. Let ⑀ in the expression of h be ⑀ s e i ␪ and minimize Re hŽ tz .rtz with respect to ␪ . Then we see that Ž4.1. follows if 2 y tz

1 1r ␥ y1

H0

⌳␥ Ž t . Re

t

Ž 1 y tz .

2

y

t <1 y tz < 2

y

2

Ž1 q t .

2

G 0,

< z < s 1, z / 1. Further calculation gives the equivalent condition H

Ž␥ .

1 1r ␥

Ž y. s H t 0

⌳␥ Ž t .

3 y 4 Ž 1 q y . t q 2 Ž 4 y y 1. t 2 q 4 Ž y y 1. t 3 y t 4 2

Ž 1 q t 2 y 2 yt . Ž 1 q t . 2

G 0, where y s Re z. A series expansion of H Ž ␥ . Ž y . gives H Ž␥ . Ž y . s



Ý HkŽ␥ . Ž 1 q y . k ,

<1 q y < - 2,

ks0

where HkŽ ␥ . can be seen to be a positive multiple of

˜hŽk␥ . s H1 t 1r␥y1⌳␥ Ž t . sk Ž t . dt , 0

where sk Ž t . s

t kq 1

Ž1 q t .

2 kq4

ž

1 y 2t q

ky1 kq3

t2 .

/

We can see that sk Ž t . has one and only one zero in Ž0, 1.. We denote this zero by t k , and then we see that sk Ž t . ) 0 if 0 F t - t k and sk Ž t . - 0 if t k - t - 1. Let hŽk␥ . s

1 1r ␥ y1

H0

t

1 log sk Ž t . dt , t

478

KIM AND RøNNING

and ⌳␥ Ž t k .

˜ ␥ Ž t . s ⌳␥ Ž t . y ⌳

log Ž 1rt k .

log

1 t

.

˜ ␥ Ž t . sk Ž t . The assumption that ⌳␥ Ž t .rlogŽ1rt . is decreasing implies that ⌳ ) 0 and therefore 0F

⌳␥ Ž t k .

1 1r ␥ y1

H0

t

˜ ␥ Ž t . sk Ž t . dt s ˜hŽk␥ . y ⌳

log Ž 1rt k .

hŽk␥ . .

If we can prove that hŽk␥ . G 0 it follows that ˜ hŽk␥ . G 0 and further L⌳ ␥Ž h. G Ž1r2. 0, as desired. In Lemma 5.1 we show that h k G 0, and we will now show that for 1r2 F ␥ F 1 we have hŽk␥ . G hŽ1r2. . This implies that L⌳ ␥Ž h. G 0 k for 1r2 F ␥ F 1. We can write hŽk␥ . s

1

1

H0

t

2y1r ␥

1 t log sk Ž t . dt. t

With t k as above, set MkŽ ␥ . [ 1rt k2y 1r␥ G 1. Then 1

tk

I1Ž ␥ . [

H0

I2Ž ␥ . [

Ht

t

2y1r ␥

t

2y1r ␥

1

1

k

1 t log sk Ž t . dt G MkŽ ␥ . t

1 t log sk Ž t . dt [ MkŽ ␥ . I1 t

tk

H0

1 t log sk Ž t . dt F MkŽ ␥ . t

1

Ht

k

1 t log sk Ž t . dt [ MkŽ ␥ . I2 . t

Hence, hŽk␥ . s I1Ž ␥ . y I2Ž ␥ . G MkŽ ␥ . Ž I1 y I2 . s hŽ1r2. G 0. k 4.3. Proof of Theorem 2.3. Let 1r2 F ␥ F 1 and assume c F 1r␥ y 1, ␦ G 1. Then ␦

␭Ž t . s

1 Ž c q 1. c t log ⌫Ž ␦ . t

␦ y1

ž /

and ⌳␥ Ž t . s

Ž c q 1. ⌫Ž ␦ .



1 cy 1r ␥

Ht

s

1

ž / log

s

␦ y1

ds.

479

INTEGRAL TRANSFORMS

It is easily verified that t 1r ␥⌳␥ Ž t . ª 0 when t ª 0q. Using Theorems 2.1 and 2.2 the result follows if we can prove that the function g Ž t . s ⌳␥ Ž t .rlog 1t is decreasing on Ž0, 1.. Differentiating we get

Ž c q 1. g ⬘Ž t . s ⌫Ž ␦ .

␦ 1 t

Ht1 s cy1r␥ Ž log 1s .

␦y1

ds y t cy1r␥ Ž log 1t .

Ž log 1t .

2



.

If we can prove that 1 cy 1r ␥

Ž 4.2.

Ht

s

1

␦y1

ds y t

ž / log

cq1y1r ␥

s



1

F0

ž / log

t

we have g ⬘Ž t . F 0, and we are done. We see that for t s 1 we have equality in Ž4.2., so the inequality holds if the left-hand side is increasing. Differentiating the left-hand side with respect to t we get yt cy 1r␥ log

1

␦y1

q Ž 1r␥ y 1 y c . t cy1r␥ log

ž / ž / t

s t cy 1r␥ log

1

1



ž / t

q ␦ t cy1r␥ log

␦ y1

ž /

␦y1

␦ y 1 q Ž 1r␥ y 1 y c . log

t

1

1 t

t

,

which clearly is greater than or equal to zero when ␦ G 1 and c F 1r␥ y 1. To prove sharpness, let f g P␥ Ž ␤ . be the function for which

Ž1 y ␥ .

f Ž z. z

q ␥ f ⬘Ž z . y ␤ s Ž 1 y ␤ .

1qz 1yz

.

Using a series expansion we see that we can write f Ž z . s z q 2Ž 1 y ␤ .



zk

Ý

1 y ␥ q ␥k

ks2

.

Further, using

Ž 4.3.

1 cq ky1

H0

t

1

ž / log

t

␦y1

dt s

⌫Ž ␦ .

Ž c q k.



we get from Ž2.5. that ␦ Ž 4.4. Fc , ␦ Ž z . s z q 2 Ž 1 y ␤ . Ž 1 q c .



Ý ks2

zk ␦

Ž c q k. Ž1 y ␥ q ␥ k.

480

KIM AND RøNNING

and

Ž 4.5.

zFcX, ␦ Ž z . s z q 2 Ž 1 y ␤ . Ž 1 q c .





kz k

Ý ks2



Ž c q k. Ž1 y ␥ q ␥ k.

.

Expanding g␥ Ž t . in Ž2.1. in a power series, we obtain g␥ Ž t . s 1 q 2

Ž 4.6.

k



Ž y1. Ž 1 q k .

Ý

1 q ␥k

ks1

tk

which, when inserted into Ž2.4. and using Ž4.3., gives

␤ 1y␤

s y1 q 2 Ž 1 q c .





Ž y1.

Ý

kq 1

Ž k q 1. ␦

Ž c q k q 1. Ž 1 q ␥ k .

ks1

from which we get 1

Ž 4.7.

1y␤

s 2Ž 1 q c .





Ž y1.

Ý ks1

kq 1

Ž k q 1. ␦

Ž c q k q 1. Ž 1 q ␥ k .

.

Substituting z s y1 into Ž4.5. the right-hand side becomes, after a shift in the indices, y1 q 2 Ž 1 y ␤ . Ž 1 q c .





Ý ks1

Ž k q 1 . Ž y1.

kq 1



Ž c q k q 1. Ž 1 q ␥ k .

.

Using Ž4.7. we see that this is zero, and since Fc, ␦ Žy1. / 0, this shows that the result is sharp. 4.4. Proof of Theorem 2.4. Let 1r2 F ␥ F 1. We introduce the notation FA , B , C Ž 1 y t . s2 F1 Ž A, B; C ; 1 y t . . With A s c y a, B s 1 y a, and C s c y a y b q 1 we can write

␭Ž t . s

⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1.

t by1 Ž 1 y t .

cy ayb

FA , B , C Ž 1 y t . ,

and we get ⌳␥ Ž t . s

⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1. =

1 by1y1r ␥

Ht

s

Ž1 y s.

cy ayb

FA , B , C Ž 1 y s . ds.

481

INTEGRAL TRANSFORMS

Again it is easily verified that t 1r ␥⌳␥ Ž t . ª 0 when t ª 0q. Define ⌳␥ Ž t .

gŽ t. s

log 1t

.

As in the proof of Theorem 2.3 we want to prove that g ⬘Ž t . - 0 on Ž0, 1.. Differentiating we get g ⬘Ž t . s

⌫Ž c.

h Ž t . rt

⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1.

Ž log 1t .

2

,

where hŽ t . s

1 by1y1r ␥

s

Ht

Ž1 y s.

cy ayb

y log Ž 1rt . t by1r␥ Ž 1 y t .

FA , B , C Ž 1 y s . ds cy ayb

FA , B , C Ž 1 y t . .

Then hŽ1. s 0 and it is enough to show that h⬘Ž t . G 0 on Ž0, 1.. Using d dt 2

F1

ž

c y a, 1 y a ; 1yt cyaybq1

Ž c y a. Ž 1 y a.

sy

cyaybq1

/

2 F1

ž

c y a q 1, 2 y a ; 1yt cyaybq2

/

we get h⬘ Ž t . s ylog Ž 1rt . t by1y1r␥ Ž 1 y t . =

žž

1



qayc tqby

yt Ž 1 y t .

/

cy ayby1

1



/

Ž c y a. Ž 1 y a. cyaybq1

FA , B , C Ž 1 y t . FAq 1, Bq1, Cq1 Ž 1 y t . .

If we assume that 0 - a F 1, 0 - b F 1r␥ and c G a q b we see that the inequality below holds for t g Ž0, 1. since the left-hand side will be positive and the right-hand side will be negative. c y a, 1 y a ; 1yt cyaybq1 c y a q 1, 2 y a ; 1yt 2 F1 cyaybq2 2 F1

ž

/

ž

Gy

Ž c y a. Ž 1 y a.

/ t Ž1 y t .

c y a y b q 1 Ž c y a y 1r␥ . t q 1r␥ y b

.

482

KIM AND RøNNING

This clearly implies h⬘Ž t . G 0 for t g Ž0, 1.. The proof of sharpness follows much the same track as in the proof of Theorem 2.3. As extremal function we again have f Ž z . s z q 2Ž 1 y ␤ .



zk

Ý

1 y ␥ q ␥k

ks2

.

Let ⌸k [

1 bq ky2

H0

t

Ž1 y t .

cy ayb

2 F1

ž

c y a, 1 y a ; 1 y t dt. cyaybq1

/

Then we can write F Ž z . [ Ha, b , c Ž f . Ž z . ⬁

⌫Ž c.

s z q 2Ž 1 y ␤ .

⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1.

Ý ks2

⌸k zk 1 y ␥ q ␥k

and

Ž 4.8.

zF⬘ Ž z . s z q 2 Ž 1 y ␤ . =



⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1.

k⌸ k z k

Ý

1 y ␥ q ␥k

ks2

.

With g␥ as in Ž4.6. we get from Ž2.6.

Ž 4.9.

1 1y␤

s2

⌫Ž c. ⌫ Ž a. ⌫ Ž b . ⌫ Ž c y a y b q 1.

=



Ý ks2

Ž y1.

kq 1

Ž k q 1 . ⌸ kq 1

1 q ␥k

.

Substituting z s y1 into Ž4.8. and using Ž4.9. we see, after a shift in the indices, that the right-hand side of Ž4.8. becomes zero. Clearly F Žy1. / 0, so this shows that the result is sharp. 4.5. Proof of Theorem 2.6. The idea of the proof is similar to the one used to prove Theorem 2 in w4x. Let F Ž z . s H01 ␭Ž t . f Ž ttz . dt. Then we can write F⬘Ž z . s H01␭Ž t . f ⬘Ž tz . dt s f ⬘Ž z .)H01␭Ž t . dtrŽ1 y tz .. The assumption that f g P␥ Ž ␤ . means that with

Ž 4.10.

gŽ z. s

Ž 1 y ␥ . f Ž z . rz q ␥ f ⬘ Ž z . y ␤ 1y␤

483

INTEGRAL TRANSFORMS

it is so that for some ␸ g ⺢ we have Re e i ␸ g Ž z . ) 0. Assume first that ␥ / 0. Then we get from Ž4.10. f ⬘Ž z . s

1



Ž ␤ q Ž1 y ␤ . g Ž z. . y

1 y ␥ f Ž z.



z

,

which leads to F⬘ Ž z . s

1

␥ y

s

1



␭Ž t .

1

Ž ␤ q Ž 1 y ␤ . g Ž z . . )H

0

1 y ␥ f Ž z.



)

1

H0

z

␭Ž t . 1 y tz

g Ž z.) ␤ q Ž1 y ␤ .

1

H0

dt

1 y tz

dt

␭Ž t . 1 y tz

dt y

1 y ␥ FŽ z.



z

and further

Ž 4.11.

Ž1 y ␥ .

FŽ z. z

␭Ž t .

1

q ␥ F⬘ Ž z . s g Ž z . ) ␤ q Ž 1 y ␤ .

H0

1 y tz

dt .

In the case ␥ s 0 we just write f Ž z. z

s Ž1 y ␤ . g Ž z. q ␤

from which we get FŽ z. z

s g Ž z.) ␤ q Ž1 y ␤ .

1

H0

␭Ž t . 1 y tz

dt ,

which is Ž4.11. with ␥ s 0. Clearly F g P␥ Ž ␣ . m G Ž z . [ Ž F Ž z . y ␣ z .r Ž1 y ␣ . g P␥ Ž0.. With this function G the equality Ž4.11. can be written

Ž1 y ␥ .

GŽ z. z

q ␥ G⬘ Ž z . s g Ž z . )

␤y␣ 1y␣

q

1y␤

1

H 1y␣ 0

␭Ž t . 1 y tz

Since Re e i ␸ g Ž z . ) 0 for some ␸ g ⺢ it follows by duality that

Ž1 y ␥ .

GŽ z. z

q ␥ G⬘ Ž z . / 0

dt .

484

KIM AND RøNNING

if and only if

Ž 4.12.

Re

␤y␣ 1y␣

1y␤

q

␭Ž t .

1

H 1y␣ 0

1

dt )

1 y tz

2

, z g ⌬.

Using Re 1rŽ1 y tz . ) 1rŽ1 q t . we get that the left-hand side of Ž4.12. is greater than 1y␤ ␤y␣

q

1y␣ 1y␤

␭Ž t .

1

H0

dt .

1qt

Using the definition of ␤rŽ1 y ␤ . in Ž2.7. we get after some computation

␤ y Ž 1 q ␣ . r2 1y␤

1

sy

H0

␭Ž t . 1qt

dt

from which we get

␤y␣ 1y␤

q

1

H0

␭Ž t . 1qt

dt s

1 1y␣ 2 1y␤

,

which shows that Ž4.12. holds. Further, if Ž4.12. holds we deduce, using duality, that Ž1 y ␥ .G Ž z .rz q ␥ G⬘Ž z . is contained in a half plane not containing the origin, which means that G g P␥ Ž0., and hence F g P␥ Ž ␣ .. To prove sharpness we take, as in the proof of Theorem 2.3, f Ž z . s z q 2Ž 1 y ␤ .



zk

Ý

1 y ␥ q ␥k

ks2

.

Then we can write

␮k z k



F Ž z . s V␭ Ž f . Ž z . s z q 2 Ž 1 y ␤ .

Ý ks2

1 y ␥ q ␥k

,

where ␮ k s H01 ␭Ž t . t ky 1 dt. With this notation we get from Ž2.7. that 1 1y␤

y1s

␤ 1y␤

s y1 q

1

H0 ␭Ž t .

sy 1

H0 ␭Ž t .

ž

1q

ž

1y

1q␣ 1y␣

1q␣ 1y␣

/

t dtr Ž 1 q t .

/

t dtr Ž 1 q t .

485

INTEGRAL TRANSFORMS

and 1 1y␤

s s

2

1

H 1y␣ 0

␭Ž t . t dt 1qt



2 1y␣

Ý Ž y1. k ␮k . ks2

We see that

Ž1 y ␥ .

FŽ z. z

q ␥ F⬘ Ž z . s 1 q 2 Ž 1 y ␤ .



Ý ␮ k z ky 1 , ks2

which for z s y1 takes the value 1 y 2Ž 1 y ␤ .

1y␣



Ý Ž y1. k ␮ k s 1 y 2 Ž 1 y ␤ . 2 Ž 1 y ␤ .

s ␣.

ks2

This shows that the result is sharp. 4.6. Proof of Theorem 2.7. With ␦ s 1 and c s Ž1 y ␥ .r␥ we see, using Ž4.3., that the Komatu operator applied to the function f Ž z . s z q Ý⬁ks 2 a k z k can be written FŽ z. s z q



Ý ks2

ak z k 1 y ␥ q k␥

,

which gives

Ž1 y ␥ .

FŽ z. z

q ␥ F⬘ Ž z . s 1 q



Ý ak z ky 1 s ks2

The result now follows directly from Theorem 2.6.

5. A TECHNICAL LEMMA LEMMA 5.1.

Let hk s

1

H0

1 t log sk Ž t . dt , t

f Ž z. z

.

486

KIM AND RøNNING

where sk Ž t . s

t kq 1

Ž1 q t .

ž

2 kq4

1 y 2t q

ky1 kq3

t2 .

/

Then h k G 0 for k s 1, 2, . . . . Proof. With JnŽ k .

s

1

H0

log

t kq n

Ž1 q t .

2 kq4

dt

we can write ky1

h k s J 2Ž k . y 2 J 3Ž k . q

kq3

J4Ž k . .

From w12x we have the recursion formula

Ž 5.1.

JnŽ k . s

kqn kq3yn

Žk. Jny1 y

1 kq3yn

Žk. Iny1 , k q 3 ) n,

where InŽ k . s

t kq n

1

H0

Ž1 q t .

2 kq3

dt.

In w12x we also find a recursion formula for InŽ k .,

Ž 5.2.

InŽ k . s

y1

Ž k q 2 y n. 2

2 kq2

kqn

q

kq2yn

Žk. Iny1 , k q 2 ) n.

Using Ž5.1. and Ž5.2. we get, after some calculation, that for k G 2, hk s

k 4 q 4 k 3 q 11k 2 q 22 k q 6 2

Ž k y 1 . k 2 Ž k q 1 . Ž k q 3 . 2 2 kq2 q

2 k 3 y 22 k y 4

Ž k y 1. k Ž k q 1. Ž k q 3. 2

I0Ž k . y

2 k

J 0Ž k . .

487

INTEGRAL TRANSFORMS

To complete the proof we apply the same technique as in w12x. With the change of variable tu s 1 we can write hk s

k 4 q 4 k 3 q 11k 2 q 22 k q 6 2

Ž k y 1 . k 2 Ž k q 1 . Ž k q 3 . 2 2 kq2 q y

2 k 3 y 22 k y 4

H1

Ž k y 1. k 2 Ž k q 1. Ž k q 3. 2 k



H1

Ž log u . u kq 2 Ž 1 q u.

2 kq4

u kq 1



Ž 1 q u.

2 kq3

du

du.

The second integral above can be written Žwe omit some details since the calculations are very similar to those in w12x.: ⬁

H1

Ž log u . u kq2 2 kq4

Ž 1 q u.

du s



H1

s

Ž log u . u 1

H1

kq2

d y

ž

2k q 3

u kq 1



2k q 3 q

Ž 1 q u . y 2 kq3 Ž

kq 2

Ž 1 q u. ⬁

H 2k q 3 1

2 kq3

/

du

Ž log u . u kq 1 Ž 1 q u.

.

2 kq3

du

s L3 q L4 . Writing h k s L1 q L2 y 2k Ž L3 q L4 . we get L2 y

2 k

L3 s

ž

2 k 3 y 22 k y 4

Ž k y 1. k Ž k q 1. Ž k q 3. 2

=

u kq 1



H1

s

Ž 1 q u.

2 kq3

y

k Ž 2 k q 3.

/

du

2 k 4 y 42 k 2 y 68 k y 12

Ž k y 1. k 2

2

u kq 1



H Ž k q 1. Ž k q 3. Ž 2 k q 3. 1

Ž 1 q u.

2 kq3

du.

The polynomial 2 k 4 y 42 k 2 y 68 k y 12 is seen to be positive for k G 6. In w12x it is shown that L4 s

kq2



H 2k q 3 1

Ž log u . u kq 1 Ž 1 q u.

2 kq3

du -

2 Ž k q 2. 2

Ž 2 k q 3. 2

1 2 kq3

,

488

KIM AND RøNNING

which means that L1 y

2 k

L4 )

k 2 q 4 k 3 q 11k 2 q 22 k q 6 2

Ž k y 1. k Ž k q 1. Ž k q 3. 2 2

2 kq2

y

2 Ž k q 2.

1 2

k Ž 2 k q 3. 2

2 kq2

.

From this we find, after some computation, that L1 y 2k L4 ) 0 if and only if 2 k 6 q 16 k 5 q 81k 4 q 256k 3 q 409k 2 q 282 k q 54 ) 0. Hence, L1 y 2k L4 ) 0 for all k. We have now proved that h k ) 0 for k G 6, and by direct computation we find h1 s h2 s h3 s h4 s h5 s

233 960

y

667 100800

7 log 2 20 y

2669 2903040

log 2

y

12457 82790400

s 0.00010682 . . .

105

s 0.0000156618 . . .

log 2 756

y

597941 22140518400

s 0.000002519 . . .

log 2 4620 y

s 0.0000004324 . . .

log 2 25740

s 0.00000007784 . . . .

REFERENCES 1. G. E. Andrews, R. Askey, and R. Roy, ‘‘Special Functions,’’ Cambridge Univ. Press, Cambridge, UK, 1999. 2. B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 Ž1984., 737᎐745. 3. P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62, No. 1 Ž1977., 37᎐43. 4. R. Fourier and St. Ruscheweyh, On two extremal problems related to univalent functions, Rocky Mountain J. Math. 24, No. 2 Ž1994., 529᎐538. 5. D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52, No. 1 Ž1975., 191᎐195. 6. Y. C. Kim and A. Lecko, Univalence of certain integral operators and differential subordination, Mathematica Ž Cluj . 1 Ž2001.. 7. Y. Komatu, On analytic prolongation of a family of operators, Mathematica Ž Cluj . 32, No. 55 Ž1990., 141᎐145. 8. S. Owa and M. Nunokawa, Application of a subordination theorem, J. Math. Anal. Appl. 188 Ž1994., 219᎐226.

INTEGRAL TRANSFORMS

489

9. S. Ponnusamy, Differential subordination and starlike functions, Complex Variables 19 Ž1992., 185᎐194. 10. S. Ponnusamy and F. Rønning, Duality for Hadamard products applied to certain integral transforms, Complex Variables 32 Ž1997., 263᎐287. 11. S. Ponnusamy and F. Rønning, Geometric properties for convolutions of hypergeometric functions and functions with the derivative in a halfplane, Integral Transforms Special Funct. 8, Nos. 1᎐2 Ž1999., 121᎐138. 12. S. Ponnusamy and F. Rønning, Integral transforms of functions with the derivative in a halfplane, Israel J. Math. 114 Ž1999., 177᎐188. 13. St. Ruscheweyh, ‘‘Convolutions in Geometric Function Theory,’’ Les Presses de l’Universite ´ de Montreal, ´ Montreal, ´ 1982.