ATOMIC
DATA AND NUCLEAR
DATA TABLES
INTENSITY
44, 133- 187 ( 1990)
RATIOS OF EMISSION
LINES FROM 0 V IONS
FOR TEMPERATURE AND DENSITY DIAGNOSTICS, AND RECOMMENDED EXCITATION RATE COEFFICIENTS T. KATO National
Institute for Fusion Science, Nagoya 464-O 1, Japan J. LANG
Space Science Department, Rutherford Appleton Laboratory Chilton, Didcot, Oxon OX1 1 OQX, United Kingdom and K. E. BERRINGTON Department of Applied Mathematics and Theoretical Physics The Queen’s University, Belfast, BT7 INN, Northern Ireland, United Kingdom
Intensity ratios of emission lines from 0 V ions are calculated for use in temperature and density diagnostics. The dependence on temperature and density of the intensity ratios is shown in graphs. The effective collision strengths among n = 2 and n = 3 levels, calculated by Berrington and Kingston by the R-matrix method including 26 states, are fitted to an analytical formula and the fitting parameters are tabulated. The rate coefficients derived therefrom are shown graphically. o 1990 Academic &ss, lnc.
0092-640X/90 $3.00 Copyright 0 1990 by Academic Press, Inc. All rights of reproduction in any form reserved.
133
Atcinic
Data and Nuclear
Data TaMes.
Vol. 44. No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
CONTENTS
INTRODUCTION .......................... Atomic Data ........................... Energy Levels ......................... Transition Probabilities ................. Electron Impact Excitation Rate Coefficients Ionization and Recombination ........... Population Density ...................... Line Intensity Ratios ..................... Conclusions ............................ EXPLANATION
OF TABLE
EXPLANATION
OF FIGURES
TABLE
.
. .
..................
134 134 134 134 134 137 137 138 140 142
.............................
I. Fit Parameters for the Recommended Strengths ...................................
143 Effective Collision 144
FIGURES I. Line Intensity Ratios vs Temperature ................ II. Line Intensity Ratios vs Density .................... III. Recommended Excitation Rate Coefficients ...........
149 15 1 155
INTRODUCTION Spectral line emissions of 0 V ions have been measured from the solar transition region’,2 and from laboratory plasmas such as those from tokamaks.3-6 Theoretical calculations have been done to interpret line intensities.7-9 We present here the calculation of the intensity ratios of emission lines using new data for electron impact excitation calculated by Berrington and Kingston1o by the R-matrix method including 26 states (2s2, 2 X 2s2p, 3 X 2p2, 2 X 2s3s, 2 X 2s3p, 2 X 2s3d, 2 X 2p3s, 6 X 2p3p, 6 X 2p3d). We include in our calculation ionization and recombination from/to excited levels which are important in a transient plasma.
levels for 0 IV12 (6 states) and 0 VII3 (2 states) ions are considered in our model. They are listed in Table A. For 0 IV and 0 V ions the fine-structure levels are combined for the calculation of the population densities as indicated in Table A by Arabic numerals. For 0 V, Fig. 1 shows the relevant part of the energy-level diagram. Transition
Probabilities
The data for transition probabilities among n = 2 and n = 3 levels are taken from Ref. 14 for 0 V. For 0 IV and 0 VI ions, the data from Ref. 15 and from Ref. 16, respectively, are used.
Atomic Data
Electron Impact Excitation
Energy Levels
Rate Coeficients
Effective collision strengths y have been calculated using the R-matrix method including 26 states by Berrington and Kingstoni in the electron temperature range
The levels of the 2s2, 2s2p, 2p2, 2s3s, 2s3p, and 2s3d configurations for 0 V” (20 levels) and the n = 2 134
Atomic
Data and Nuclear
Data Tables,
Vol. 44, No. 1, Janualy
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
TABLE A Energy Levels of 0 V Energy Level no.
Configuration
1
2s2 ‘S 2s2p jP
2 3 4
(cm-‘)
J 0 0
1
5
2s2p ‘P 2p2 ‘P
1
158797.1 213462.5
1
213618.2 213887.0 231721.4 287910.3
2 2
10
‘S
0
11 12 13 14 15 16 17 18 19
2~3s ‘S
1 0 1
2s3p ‘P 3P
580824.9 582806.4 582843.1 582920.3 600748.9 600758.9 600779.2
1 1
‘D
2 3 2
612615.6
Energy levels of 0 IV State no.
Configuration
J
1
2s22p 2P
1
2
2s2p2 4P
4 5
6
2s2p2 2D
2s2pz 2s 2s2pz 2P
2p3 4s
Energy (cm-‘) 0
z
385.9
2 2 2
4 3
Energy levels of 0 VI
2
I
I
J
Energy (cm-‘)
71755.5
i
126950.2
12
164366.4
5
180480.8 180724.2
2
231537.5
from3X104K
Configuration
71570.1
126936.3
2
State no.
7 1439.8
2
1
67.82 69.59 72.0 1 72.26 72.26 72.27 74.48 74.49 74.49 75.96
561276.4
0
2s3d ‘D
26.47 26.49 26.52 28.73 35.70
546912.7
2
20
0
10.16 10.18 10.21 19.69
0
‘D
‘S
0
81942.5 82078.6 82385.3
2
6 7 8 9
W)
1
2s 2s
2
2p 2P
1 2
I
0.0
2
96375.0
z
96907.5
where X is the energy of the incident electron in units of the transition energy, X = E/ AE. The effective collision strength is defined as
y=yey sccRe-Yx dX
(1)
1
135
Atomic
Data and Nuclear
Data Tables,
Vol. 44, No. 1. January
(2)
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
ov 'P
‘S
'D ' 2s3d I I I
13
l2
2~3s
'\
I 2s3p '\ , \
248 \ "72 \I
'
3S
\
I
3D
2o
is9
/, 2781
2s3d ,"'
bw
"\
' \
'220
\ \
'\i
'I
3P
215
'
/
271
I
\
‘193
\
I ’ lo 2p2
'\
I
\I
I ',
‘,
\
I I
\ '\ l
/'
9
2p2
I I
\ ',A+,
I\
'1 %&g$I
\
I I
4'+2s2p 23 ; 1218 4
I630 I I 1 . 2s2('S)
1
I
/760/
/
Figure 1. Schematic energy-level diagram for 0 V. The term designations are shown across the top of the figure; the level numbers are the same as those in Table A; the wavelengths are approximate values in A.
and can be written Y = Y((GlY
+
a3)
+
where TL = log T, and T, indicates the electron temperature in degrees Kelvin. The excitation rate coefficients can then be calculated using the formula (with T, here in eV units),
1 - Y)/2
a4t
+ eY&(y) (a2 -
Q3Y
+ &Y2/2 + us/Y)),
(3)
where
R = 8.01 X 10-8e-y~/(wiT~‘2) K(Y)
= s ym(e-‘/t)dt,
s-l.
(6)
The derived parameters Ui (i = l-5) and bi ( i = l4) are listed in Table I and the calculated rate coefficients are given in Fig. III. The evaluated values in Ref. 17 are plotted by dashed lines for comparison. The excitation rate coefficients for the 2s’ ‘S-2p2 3P, ‘D, ‘S transitions differ from those in Ref. 17 by 30%- 100%. The excitation rate coefficient for 2s2 ‘S-2.~3~ ‘P is larger by 40% at 20 eV compared to that calculated by Mann (as quoted in Ref. 17) using the distorted wave method but agrees well at temperatures higher than 80 eV. For the 2s2 ‘S-2~3s ‘S and 2s3d ‘D transitions, the new data are smaller by about 50% and 30%, respectively, as shown in Fig. III.
(4)
and y = AE/ T,. The parameter a5 in Eq. (1) is derived from the Bethe limit as u5 = 4WiJj/AE for the allowed transitions, where Wi is the statistical weight of the lower level i,Aj is the absorption oscillator strength from level i to j, and AE is the excitation energy in rydberg units. For fine-structure transitions where the transition energy is very small compared to the electron temperature, the effective collision strengths are fitted by the formula logy = b1 + b2/TL + b3/TL2 -I- b4/TL3,
cm3
(5)
136
Atomic
Data and Nuclear
Data Tables,
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
The validity range of the given rate coefficients is 104K
Emission Lines from 0 V
1
3X
/’
1OOeV
'I ,,i/'
li/
Ionization and Recombination
Iv
The ionization process from ground and metastable levels becomes important when the electron temperature T, is higher than the equilibrium temperature T, (Ref. 5). The ionization rate coefficients are calculated by the Lotz formula 9l9 dividing through by statistical weights as in Ref. 9. The recombination process is included in our calculation for excited levels as well as for the ground level. The data from Ref. 20 are used for the ground state and are extrapolated for excited levels. Actually, the recombination process has no effect in our calculation. Population
_-----_
c-
I / / 0'
--
s=o s=o
-----
s(lv-v)=o,s(v~vl)+o s(lv-v)=o,s(v~vl)+o
--A
n(ON)=O.O S(lv-v)sO,S(v-vl)+O n(ON)=n(OV) Keenen et al (1984) 27eV
.jlOOeV
9
I
I
I
1
/
I
10
11
12
13
14
15
Log
n, (cmm3)
Figure 2. Population density of the metastable level 2.~2~ 3P, for r, = 20 and 100 eV as a function of electron density. Solid, dashed, and dash-dotted curves indicate the results without ionization processes (7’, = 20 and 100 eV), with ionization from 0 V to 0 VI ions (r, = 100 eV) and with ionization from both 0 V to 0 VI and 0 IV to 0 V ions (T, = 100 eV), respectively. The values from Keenan et al8 for 27 eV are shown by triangles.
Density
The population densities are calculated for the 20 levels shown in Table A under the assumption that the plasma is optically thin for all transitions considered. All the possible ionization and recombination processes from and/or to other ionic levels are taken into account. The rate equations for the population densities including ionization and recombination processes are described in Ref. 9. Be-like 0 V ions have metastable levels 2x2~ 3P0,,,2 for which the population density is comparable to the ground level for an electron density n, greater than 10” cme3, as shown in Fig. 2. The populations of these levels relative to that of the ground level tend to be constant for ~1,> lOI cme3 because of the small value ofthe transition probability from the 2s2p 3P to the 2s2 ‘S ground level. The calculated values of the populations at 20 eV agree well (within 10%) with those calculated by Keenan et al.* Ionization processes from 0 V 2s2p 3P to 0 VI 2s or 2p decrease the population of 2s2p 3P, whereas those from 0 IV 2s22p to 0 V 2s2p 3P and from 0 IV 2s2p2 to 0 V 2s2p 3P increase it. Ionization from 0 IV 2s22p also populates the ground level of 0 V 2s’ ‘S. Ionization rate coefficients are compared to excitation rate coefficients in Fig. 3. It is shown that for 2s2p 3Pthe ionization rate coefficient exceeds the excitation rate coefficient when the temperature range is above 100 eV. This effect is not important in an ionization equilibrium plasma where the electron temperature is as low as 20-30 eV. In an ionizing plasma at higher temperature such as in a tokamak or a
solar flare, this effect becomes important. The population of 2s2p 3P, relative to 2s2 ‘S is decreased by about 60% by the inclusion of the ionization process from 0 V, as shown in Fig. 2 for T, = 100 eV by the dashed curve. Further taking into account the ionization from 0 IV ions to all the levels of 0 V ions assuming n(0 IV) = n(0 V), where n(0 IV) represents the density of 0 IV ions, the relative population of 2s2p 3P, increases by 50% for T, = 100 eV; this is shown in Fig. 2 by a dash-dotted curve. The recombination process is not important for plasmas of T, > 5 eV but would be effective in a strongly recombining plasma at low temperatures. Since the excitation rate coefficients from the 2s2 ‘S ground level to the triplet levels are small, for n, > 10” cmm3, where the populations of the metastable levels 2s2p 3P are comparable to that of the ground level, the higherlying triplet levels are mainly populated from these metastable levels. At densities 10” < 12,< lo’* cmP3, the pop137
Atcmic
Data and Nuclear
Data Tables,
Vol. 44, No. I, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
I
I
and n, = lo9 cme3. However, the changes are within 10% for 12,> 10’ ’ cmm3 and negligibly small for it, > 1012 cmm3. At temperatures lower than 50 eV the changes are also within 10%.
1 . . . ..yy-2S2P(‘I ” ._., -...,_
. . . . .. . ..
Line Intensity Ratios
‘..._,
zs2p("P)-zpy3P)
~'A._,_
We present in this section the line intensity ratios of 0 V ions for density and temperature diagnostics. The spectral lines emitted from 0 V ions related to our calculations are listed in Table B (taken from Ref. 11); the visible and near-UV wavelengths listed are those in air. As we have discussed in the previous section, the populations of the metastable 2s2p 3P levels and other triplet levels vary with electron density and this is utilized for density diagnostics by the line ratio method. The most commonly used line ratio (wavelengths in A) for density diagnostics is Z(760.45, 760.23, 762.00, 761.13, 758.68,
F
- \__ _, 2s2p?P)-2s2p('P)
\;,,;s
'. \
1
2s2('S)-2s3pC'P)
I
10
10' T,
Emission Lines from 0 V
,&.
1 10'
(eW
1
Figure 3. Rate coefficients for excitation, recombination (a), and ionization (S) processes. The dotted portions extending the solid lines represent values extrapolated from Ref. 10.
----1(760)/1(630)
2 .g 0.1 2
ulation densities of such levels are approximately proportional to nz, while at higher densities, where the populations of the metastable levels are determined only by collisional processes, this changes to a linear dependence. Thus, the ratio of the intensity of a line excited from the metastable levels to a line excited from the ground level is density dependent for 10” < n, < lOI cmP3. The temperature dependence of the excitation rate coefficients to n = 3 levels from the ground or metastable levels is different from those to n = 2 levels because of the difference in the excitation energies. This result is used for temperature diagnostics. We have included proton excitation which is comparable to the electron excitation between fine-structure transitions for 2s2p 3P and 2p2 3P levels,21 because its effect on the populations is found to be large in hightemperature and lowdensity regions; for example, the population of 2s2p 3P2decreases by 35% at T, = 100 eV
s=o ---
-\
f
\
20eV 1OOeV
...-.. Finkenthal(l967)
----Doyle(l993)22eV
O.Ol-
1
I
9
,
10
1
I
11
12 Log
n,
I
13
I
14
I
15
I
16
(cm-?
Figure 4. Densitydependent line ratios for 1(760)/1(630), Z( 1218)/1(630) without ionization processes for T, = 20 (solid line) and 100 eV (dashed line). The calculated results from Ref. 1 (dotted line) and Ref. 3 (dash-dotted line) for 22 eV are also shown.
138
Atomic
Data and Nuclear
Data Tables.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
lines (see Fig. 5); their values are smaller than ours by 50% and 70% for 1(192.90)/1(248.46) and 1(192.80)/ l(220.35) at n, = IO9 cmm3, although the rate coefficients used in their calculation are not much different from ours. However, at densities higher than IO” cmM3, the agreement is good, within lo%, as shown in Fig. 5. The calculations by Huang et a1.4 agree with our calculations to within 30%. Our calculations including ionization and recombination processes are presented in Figs. I and II. The line intensities for multiplets are summed for the triplet system, except when the wavelength is written to the full precision of its value in Table B, in which case it is calculated only for one line. The ratios of lines from levels excited from the same level are a sensitive function of temperature when the difference in their excitation energy is greater than the
JjYyz3 -.A,/ /' ,,/’ _---
_*'
-
20eV
------
I O"
9
10
Emission Lines from 0 V
11
12 Log
1OOeV Widing 17eV 13 14
etal(1982) 15
16
ne (cme3)
TABLE B Figure 5. Density-dependent line ratios for 1(192.90)/1(248.46), 1(215.25)/1(220.35) and I( 192.80)/1(220.35) for r, = 20 eV (solid line) and 100 eV (dashed line) without ionization processes. Dashdotted lines are results from Ref. 2 for r, = 17 eV.
Prominent Emission Lines from 0 V Ions Wavelength” 172.17 192.8 192.9 215.245 215.103 215.040 220.35 248.46 270.98 286.45
759.44 2.~2~ 3P- 2p2 3P)/Z(629.73 2s2 ‘S- 2s2p ‘P). This intensity ratio is plotted in Fig. 4 as a function of electron density for T, = 20 and 100 eV. The intensity ratio I( I2 18 2s2 ‘S - 2s2p 3P)/Z(629.73) is also plotted in Fig. 4. The density-dependent intensity ratios I( 192.90 2s2p 3P2 - 2s3d 3D2.3)/1(248.46 2s2p ‘P - 2~3s ‘S), I(2 15.25 2s2p 3P2 - 2~3s 3S,)/ I (220.35 2s2p ‘P - 2s3d ‘D), l(192.80 2s2p 3Po.l - 2s3d 3D,,2)/Z(220.35) are shown in Fig. 5. The above calculations do not include any ionization processes to allow a comparison of our calculations with others that do not include ionization processes. In Fig. 4, the intensity ratio for 1(760)/1(630) is compared with those by Doyle et al.’ and by Finkenthal et a1.3The results in Ref. 3 give agreement to within 10% but those of Ref. 1 are smaller by more than 40% at n, = lOi cme3. Both works used R-matrix calculations for electron excitation rate coefficients.7,8 We have also found differences between our calculations and those by Widing et al.= for triplet
Transition 2s' 2s2p 2s2.v 2s2p 2s2p 2s2p 2s2p 2s2p 2p= 2~'
‘S 3Po,,‘Pz ‘P2 ‘P, ‘PO ‘P, ‘P ‘P2 ‘D -
2s3p’P 2s3d’D,.z 2s3d’Dz,J 2s3s3S, 2s3s3S, 2s3s3S, 2s3d’D2 2s3s’S 2s3p3Pz 2s3p’P
629.73 760.45 760.23 762.00 761.13 758.68 759.44 774.52 1218.34 1371.29
2s= 2s2p 2s2p 2s2p 2s2p 2s2p 2s2p 2s2p 2s2 2s2p
!S 3P2 3P, 3P2 3P, 3P, ‘PO ‘P ‘S ‘P
-
2s2p’P 2p2 ‘P2 2p= ‘P, 2p= 3P, 2p= 3P. 2p2 3P2 2p2 JP, 2p2 ‘S 2s2p3P, 2p= ‘D
278 I .O1 (air) 2786.99 (air) 2789.85 (air) 5 I 14.07 (air) 5597.91-5607.41 (air)
2s3ssS, 2~3s ‘S, 2~3s ?T, 2~3s ‘S 2s3p ‘P
-
2s3p3P2 2s3p3P, 2s3p3Po 2s3p’P 2s38D
’ In A, from Ref. I 1.
139
Atomic
Data and Nuclear
Data Tables,
Vol 44. No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
electron temperature. In Fig. I, the ratios of Z( 172)/1(630), Z( 193)/1(760), and Z(220)/1(248) are shown for n, = lo9 (solid line), 10” (dash-dotted line), and 1013cme3 (dashed line) as a function of electron temperature for n(0 IV) = 0.0. The dotted line shows the results for n, = lOi cme3 assuming n(0 IV) = n(0 V). The contribution of the ionization from 0 IV ions is negligible in this case. When the cross sections have different energy dependences even though the excitation energies are nearly the same, the line ratio is also sensitive to the electron temperature. In this case the ratio is density dependent as well, as shown in Fig. I for Z(2 15)/1(220), Z(2 15)/Z( 193), and Z( 193)/ Z(220). The intensity ratios in the singlet system such as Z(22O)/Z( 172) and 1(220)/1(248) exhibit small density and temperature dependence, as shown in Fig. II. The intensity ratios for T, = 20 eV (solid line), 40 eV (dash-dotted line), and 100 eV (dashed line) are shown as a function of the electron density assuming n(0 IV) = 0.0. For the case of n(0 IV) = n(0 V) for T, = 100 eV, the ratios are plotted as dotted lines. These ratios can be used to cross check the spectrometer sensitivity calibration. (It can be noted that on the scale of these figures, the dashed and the dotted lines nearly coincide.) Density-dependent line ratios involving the triplet system are also shown in Fig. II. Plots are given for the following: Z(760)/1(630), Z( 1218)/1(630), Z( 193)/1(248), Z( 193)/1(220), Z(2 15)/1(220), Z( 193/Z( 172) Z(2 15)/ Z(193), 1(271)/1(215), 1(2781.01)/1(193), Z(2781.01)/ Z(2 15) 1(760.45)/1(630), and Z(270.98)/1(2 15). As indicated by the truncations of the wavelength values, the intensities are those of the summed multiplets for the triplet transitions except for the last four sets, where particular single lines are being represented.
Acknowledgments
The authors thank Mr. N. Yamada for making graphs and tables of rate coefficients and Dr. K. Masai for useful comments.
References
1. J. G. Doyle, P. L. Dufton, F. P. Keenan, and A. E. Kingston, Sol. Phys. 89,243 (1983) 2. K. G. Widing, J. G. Doyle, P. L. Dufton, and A. E. Kingston, Astrophys. J. 257, 9 13 (1982) 3. M. Finkenthal, T. L. Yu, S. Lippmann, L. K. Huang, H. W. Moos, B. C. Stratton, A. K. Bhatia, R. D. Bengston, W. L. Hodge, P. E. Philips, J. L. Porter, T. R. Price, T. L. Rhodes, B. Richards, C. P. Ritz, and W. L. Rowan, Astrophys. J. 313,920 (1987) 4. L. K. Huang, S. Lippmann, B. C. Stratton, H. W. Moos, Phys. Rev. A 37,3927 (1988)
and
5. T. Kato, K. Masai, and K. Sato, Phys. Lett. A 108, 259 (1985) 6. Y. Ogawa, K. Masai, T. Watari, R. Akiyama, R. Ando, J. Fujita, Y. Hamada, S. Hirokura, K. Ida, K. Kadota, E. Kako, 0. Kaneko, K. Kawahata, Y. Kawasumi, S. Kitagawa, T. Kuroda, K. Matsuoka, A. Mohri, S. Morita, A. Nishizawa, N. Noda, I. Ogawa, K. Ohkubo, Y. Oka, S. Okajima, T. Ozaki, M. Sasao, K. Sato, K. N. Sato, S. Tanahashi, Y. Taniguchi, K. Toi, and H. Yamada, IPPJ-903 (1989) Nucl. Fusion, 29, 1873 (1989) 7. P. L. Dufton, K. A. Berrington, P. G. Burke, and A. E. Kingston, Astron. Astrophys. 62, 111 (1978) 8. F. P. Keenan, K. A. Berrington, P. G. Burke, A. E. Kingston, and P. L. Dufton, Mon. Not. R. Astron. Sot. 207,459 (1984)
Conclusions The ionization
Emission Lines from 0 V
process from the metastable 0 V
2s2p 3P state to the 0 VI 2s and 2p states decreases its
9. T. Kato, K. Masai, and J. Mizuno, J. Phys. Sot. Jpn. 52, 3019 (1983); Errata, 54, 3203 (1985)
population relative to that of the ground state as the temperature increases; the ratio n(2s2p ‘P)/n(2s2 ‘S) decreases by lo%, 40%, and 60% at T, = 50, 80, and 100 eV, respectively. On the other hand, the ionization from 0 IV ions to 0 V 2s2p 3P increases the relative population of the metastable state by lo%, 30%, and 50% at T, = 50, 80, and 100 eV for ion density n(0 IV) = n(0 V). The changes in population caused by the inclusion of ionization processes can thus be substantial and are important in an ionizing plasma such as a tokamak where the temperature is comparatively higher than that for ionization equilibrium. Proton excitation is also important for hightemperature and low-density plasmas. The detailed analysis of measurements obtained from the tokamaks will be published in a separate paper.
10. K. A. Berrington and A. E. Kingston, in preparation 11. C. E. Moore, NSRDS-NBS
3, Sect. 9 (1980)
12. C. E. Moore, NSRDS-NBS
3, Sect. 10 (1982)
13. C. E. Moore, NSRDS-NBS
3, Sect. 8 (1979)
14. A. Hibbert, J. Phys. B 13, 1721 (1980) 15. D. R. Flower and H. Nussbaumer, Astron. Astrophys. 45, 145 (1975) 16. W. L. Wiese, M. W. Smith, and B. M. Glennon, NSRDS-NBS 4, Vol. 1 (1966); G. A. Martin, W. L. Wiese, J. Phys. Chem. Ref. Data 5, 537 (1976) 140
Atomic
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO,
J. LANG,
and K. E. BERRINGTON
17. Y. Itikawa, S. Hara, T. Kato, S. Nakazaki, M. S. Pindzola, and D. H. Crandall, ATOMIC DATA AND NUCLEARDATATABLES 33, 149(1985) 18. T. Kato and S. Nakazaki, ATOMIC DATA CLEAR DATA TABLES 42, 3 13 ( 1989)
AND
Emission
Lines
from
0 V
19. W. Lotz, Astrophys. J. Suppl. 14, 207 (1967) 20. S. M. V. Aldrovandi and D. Pequignot, trophys. 251, 137 (1973)
Nu-
Astron. As-
21. J. G. Doyle, A. E. Kingston, and R. H. Reid, Astron. Astrophys. 90, 97 (1980)
141
Atomic
Data
and
Nuchxw
Data
Tables,
Vol.
44,
NO.
1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
EXPLANATION rABLE
Emission Lines from 0 V
OF TABLE
I. Fit parameters for the Recommended
Effective Collision
Strengths
Fit parameters are tabulated for each excitation process of 0 V. Transitions between energy terms are listed first, followed by transition between the triplet fine-structure levels. Transitions between fine-structure levels which belong to the same term (AE = 0) are given last. The notation 2s2 ‘S - 2s2p 3P for example, means excitation from the lower level 2s’ ‘S to the upper t&let term 2s2p 3P, while 2s2p 3Po- 2p2 3P2indicates a transition between fine-structure levels. AE Excitation energy in eV Fit parameters in Eq. (3) (AE # 0) al, a2, a3, a4, a5 Fit parameters in Eq. (5) for transitions between fine-strucbl, b2, b3, b4 ture levels belonging to the same term (AE = 0) The excitation rate coefficients can be calculated by using Eq. (6).
142
Atomic
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
EXPLANATION FIGURE
I.
Emission Lines from 0 V
OF FIGURES
Line Intensity Ratios vs Temperature Ionization processes are included in the line intensity calculations. The curves shown are for electron densities n, = lo9 cmp3 (solid line), 10” cmm3 (dash-dotted line), and lOI cme3 (dashed line) for n(O IV) = 0 and 1013 cme3 assuming n(0 IV) = n(0 V) (dotted line). Plots are given for Z( 172)/ Z(630), Z( 193)/1(760), 1(220)/1(248), 1(215)/1(220), Z(2 15)/Z( 193) and Z( 193)/ Z(220).
FIGURE
II.
Line Intensity Ratios vs Density Ionization processes are included in the line intensity calculations. The curves shown are for electron temperatures T, = 20 eV (solid line), 40 eV (dash-dotted line), and 100 eV (dashed line) for n(0 IV) = 0 and 100 eV assuming n(0 IV) = n(0 V) (dotted line). Plots are given for Z(22O)/Z( 172) and 1(220)/1(248) in the singlet system and for the following cases involving the triplet system: 1(760)/1(630), Z( 1218)/1(630), Z( 193)/1(248), Z( 193)/1(220), Z(2 15)/1(220), Z( 193)/Z( 172), Z(2 15)/Z( 193), Z(27 l)/Z(2 15) Z(278 1.Ol)/Z( 193) Z(278 1.01)/1(2 15) Z(760.45)/1(630), and Z(270.98)/Z(2 15). Ordinate
Abscissa FIGURE
III.
Line intensity ratio for the lines indicated at the top of the graph. Wavelengths (in & refer to transitions as indicated in Fig. 1 and Table B in the text. In the case of transitions involving triplets, truncation of the decimal in the wavelength indicates that line intensities for multiplets are summed. Electron temperature, T, (in eV), or the electron density, n, (in cme3).
Recommended
Excitation
Rate Coefficients
Excitation rate coefficients (cm3 SC’) are plotted against electron temperature T, (eV). Transitions between energy terms are shown first, followed by transitions between the triplet fine-structure levels. Transitions between fine-structure levels which belong to the same term (AE = 0) are given last. Dashed lines indicate values from Ref. 17. The initial and final states are given at the top of each figure using the same notation as that in Table I.
143
Atomic
Data
and
Nuclear
Data
Tables,
Vol.
44,
NO.
1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
TABLE
Emission Lines from 0 V
I. Fit Parameters for the Recommended See page 142 for Explanation
2sz
‘s
-
2s2p
3p
1.02E’Ol
2s2
‘s
-
2s2p
‘P
2.06E+Ol
2sz
‘s
-
2pz
3P
2.66E+Ol
2s’
‘S
-
2~’
‘D
2.96E+Ol
2sz
‘s
-
2p*
‘s
3.69E+Ol
2s’
‘S
-
2~3s
‘5
6.78E+Ol
2s’
‘S
-
2~3s
‘S
6.96E+Ol
2s’
‘S
-
2s3p
‘P
7.2OE+Ol
2s*
‘s
-
2s3p
3p
7.22E+Ol
l.O8E-03
3.55E-02
2s’
‘S
-
2s3d
b
7.46E+Ol
2.50E-03
3.10E-02
2s’
‘S
-
2s3d
‘D
7.64E+Ol
4.51E-01
1 .OLE+Ol
l.O4E-02 2.55EtOl
2.07E+OO
Strengths
-3.71E+OO
2.49E+OO
6.65E-01
2.75E-01
0.0
1.44E-02
4.82E-02
-5.63E-02
4.25E-01
-4.85E-01
-6.91E-04
9.27E-02
-6.46E-03
-8.79E-03
1.73E-01
-5.98E-01
5.58E-01
0.0
1.32E+OO
-2.87E+OO
1.75EtOO
0.0
1.7lE-01
0.0
1.66EtOO -8.40E-05 l.O6E-02
3.12E-02 -2.08E-01
l.l9E-01
-4.31E-01 3.87E+OO
-7.44E-02 l.O8E-01 2.59E-02
-6.44E-02
1.30E-01 -8.69E-03
1.40E+OO 0.0 0.0 0.0
2.95E-01 0.0 0.0
6.76E-02
0.0
4.23E+OO
0.0
3P -
2s2p
2s2p
3P -
2p’
3P
1.64E+Ol
2s2p
‘P
-
2p*
‘D
l.SLE+Ol
-4.21E-02
2.39E+OO
2s2p
JP -
2p2
‘s
2.67E+Ol
-l.l4E-03
2.60E-02
5.92E-01
-5.87E-01
252~
‘P
-
253s
?S
5.76E+Ol
1,37E+OO
4.72E+O4
-4.72E+04
0.0
2s2p
‘P
-
253s
‘S
5.94iz+01
7.8lE-03
3.05E-01
- 1.62E+OO
1.74E+OO
0.0
2s2p
‘P
-
2~3~
‘P
6.19E+Ol
-2.42E-02
6.73E-01
-2.06E+OO
1.89E+OO
0.0
2s2p
‘P
-
2s3p
‘P
6.20E+Ol
-6.99E-01
1.71E+Ol
-3.74E+Ol
2.4OE+Ol
0.0
2s2p
‘P
-
2s3d
‘0
6.44E+Ol
2s2p
‘P
-
2s3d
‘D
6.62E+Ol
-l.OlE-03
l.l2E-01
-1.30E-01
5.01E-01
0.0
2s2p
‘P
-
2p2
3P
6.04E+OO
-5.62E-02
3.91E+OO
-l.OSE+Ol
8.77E+OO
0.0
2s2p
‘P
-
2p*
‘D
6.96E+OO
9.62E+OO
-l.OOE+Ol
9.38EtOO
0.0
1.94E+OO
252p
‘P
-
2p2
‘s
1.63E+Ol
4.61EtOO
-5.66E+OO
3.70EtOO
0.0
2.06E-01
2s2p
‘P
-
2~3s
‘S
4.73E+Ol
2.59E-01
-1.07EtOO
1.24E+OO
2s2p
‘P
-
2~3s
‘S
4.90E+Ol
1.3lE-02
0.0
2s2p
‘P
-
2s3p
‘P
5.15E+O
2.02E+OO
-5.34E+OO
3.95E+OO
0.0
2s2p
‘P
-
2s3p
‘P
5.16E+ol
-2.54E-04
2.13E-01
-7.59E-01
1.08E+O0
0.0
252~
‘P
-
2s3d
‘D
S.LOE+Ol
-4,02E-03
5.46E-01
-1.42EtOO
1.65E+OO
0.0
2s2p
‘P
-
2s3d
‘D
5.58E’Ol
2.37EiOO
-3.34E+OO
6.16E-02
1.99E+Ol
-6.37E+Ol
-3.9lE+Ol
B.llE+OO
-1.24E+Ol
-1,06E-02 1 .BOE-01 1
4.60E-02
-l.O6E-02
-1.73E+Ol
0.0
-2.85E+OO
8.74E-01
0.0
7.63EtOO
0.0
2.04E+OO
0.0
0.0 4.6lE-02
5.38E-01
0.0 4.7lE-02
5.4lE-01 0.0
- 1.61 E+OO
5.52E-01
0.0
1.60E-01
-8.63E-01
l.l7E+OO
0.0
8.44E-02
-4.5lE-01
5.44E-01
0.0
2~’
‘D
2.94E+OO
2p’
3P -
2pz
‘s
l.O3E+Ol
-2.12E-02
1.20E+OO
2pz
3P -
2.53s
as
4.12E+Ol
-4.04E-03
2p’
‘P
2~3s
‘S
4.30E+Ol
-2.45E-03
144
4.37E+Ol
_ 5.16E+Ol
-
-
-6.OOE+OO
1.54E-01
0.0
2s2p
2P 2 ‘P
‘P
-2.52E-02
Effective Collision of Table
Atomic
Data and Nuclear
Data Tables,
Vol. 44. No. 1, Janualy
1990
KATO, J. LANG, and K. E. BERRINGTON
T.
TABLE I. Fit Parameters for the Recommended
Emission Lines from 0 V
Effective Collision
Strengths
See page 142 for Explanation of Table
2P : 3P -
2s3p
?P
4.%E+Ol
-2.75E-02
9.65E-01
-4.07E+OO
4.05E+OO
0.0
2P ’ ‘P
-
2s3p
‘P
4.56E+ol
-8,76E-02
Z.OOE+OO
-8.27E+OO
8.87EtOO
0.0
2P ’ ‘P
-
2s3d
‘D
4.80E+Ol
3.56E-01
-5,OBE+OO
7.16E+OO
0.0
2P ’ ‘P
-
2s3d
‘D
4.97EtOl
4.20E-01
-1.82E+OO
1.99E+OO
0.0
1.33E-02
0.0
2p2
1D -
2pz
‘s
7.36E+oo
1.98E-01 -1.74E-02 3.92E-01
-1.%X-01
!i.OOE-02
2P ’ ‘D
-
2~3s
‘S
3.83EtOl
-7.35E-03
2.56E-01
-1.30E+OO
l.f?lE+OO
0.0
2P ’ ‘D
-
253s
‘S
4.00E+Ol
-l.l3E-04
6.19E-01
-2.51E+OO
2.49E+OO
0.0
2P 2 ‘0
-
2s3p
‘P
4.2%+01
2s3p
3P
4.27EtOl
-1.44E-02
4.80E-01
-2.32E+OO
‘2.74E+OO
0.0
-2,06E-02
6.31E-01
-3,OOE+OO
3.46EtOO
0.0
-B.L$E-03
- 1.21E+OO
2.18E+OO
0.0
2.)3E-02
-1.68E-01
3.1OE-01
0.0
2.35E-02
-2.27E-02
l.O3E-01
0.0
2P 2 ‘D
6.64E-01
-2.55E+OO
2.70E+OO
0.0
2.30E-02
2P ’ ‘0
-
2s3d
b
4.50EtOl
33’
‘D
-
‘2s3d
‘D
C.GBE+Ol
2P ’ ‘S
-
2~3s
‘5
3.09E+Ol
2P 2 ‘s
-
253s
‘s
3.27EtOl
1.25E-03
2P 2 ‘s
-
2s3p
‘P
3.51E+Ol
1.55E-01
2P ? ‘s
-
2s3p
3P
3.53E+Ol
-4.76E-03
1.59E-01
-7.33E-01
8.54E-01
0.0
2p2
‘S
-
2s3d
‘D
3.77E+Ol
-3.13E-03
l.O6E-01
-5.13E-01
6.59E-01
0.0
2P’
‘S
-
2s3d
‘D
3.94E+Ol
5.&Z-02
8.49E-02
-3.65E-01
4.97E-01
0.0
2.98E-02
8.25E-02
5,45E+OO
-3.94E+OO
0.0
-2,33E+OO
2.78EtOO
0.0
0.0
2.24E-01 -1.73E-04
-8.50E-01
9.99E-01
0.0
1.1 lE-02
2~3s
‘5
-
2.~3s
‘S
1.77E+OO
2s3s
3s
-
2s3p
‘P
4.22EtOO
2~3s
‘S
-
2~3~
?
4.39Etoo
B.lBE+Ol
-4.96E+Ol
7,07E+Ol
2~3s
as
-
2s3d
‘0
6.76EtOO
6.64E+OO
-6.92E+OO
1.20E+Ol
253s
‘S
-
2534
‘D
&53E+OO
3.54E-03
2s3s
‘s
-
2s3p
‘P
2.45E+OO
1,17E+Ol
2~3s
‘S
-
2s3p
‘P
2.63E+OO
‘253s
‘S
-
2s3d
‘D
1.99EtOO
1.95E-02
253s
‘S
-
2s3d
‘D
6.76E+OO
1.80E+OO
2s3p
‘P
-
2s3p
?J
1.77E-01
2.30E-01
3.36E+Ol
253~
‘P
-
2s3d
‘D
2.54E+OO
2.51E-02
3.17E+OO
2s3p
‘P
- 2s3d
‘D
4.31E+OO
3.75E+Ol
-7,87E+Ol
7.47E+01
0.0
2.27E+OO
2s3p
‘P
-
2s3d
=D
2.37E+OO
1.90E+02
-&90E+02
7.81E+O2
0.0
2.37E+OO
2s3p
‘P
- 2s3d
‘D
4.14E+OO
-4.546-03
2.54E+OO
2s?d
‘D
-
‘D
1.77E+OO
-1.52E-02
1.92E+Ol
252p
JP,
-
2p’
P,
1 .fxE+Ol
6.65E-02
-3.53E-01
2s2p
3P,
-
2p2
3P,
1 .GLE+Ol
l.l4E+OO
-1.44.E-01
2s3d
-l.O3E-02
l.lBE+OO
6.17E-01
-T.Z9E-01
-3.78E+Ol
5.23E+Ol
-5.96E-03
1.32E+OO 7.83E-01 -l.l2E+OO
145
-2.5lE-01 3.89E-01 1.13E+OO -6.41E’Ol 537E+OO
2.56E+OO
1.63E+Ol
-5.69E+OO
0.0
1.59E-01
0.0
0.0
4.59EtOO
-3.41E-01
0.0
-5.31E-01
0.0
0.0
1.61E-02
1.43E+Ol
0.0
-6.95E+OO
0.0
-3.48E+OO
0.0
-8.95E+OO
0.0
6.91E-01
-3.93E-01
0.0
3.97E-01
0.0
5.96E-01
-1.06E’Ol
Atomic Data and Nuclear
Data Tables.
Vol. 44. NO. 1. .hnuary
1990
T. KATO, J. LANG, and K. E. BERRINGTON
rABLE
Emission Lines from 0 V
I. Fit Parameters for the Recommended Effective Collision Strengths See page 142 for Explanation of Table AE(eV)
2s2p
3P, -
2p2
2s2p
3P, -
2s3p
2s2p
3P, -
2s2p
‘P,
2s2p
3P,
al
a2
aa
l.O5E-01
-5.OBE-01
3P,
6.20E+Ol
9.12E-02
3.42E-01
-&llE-01
5.15E-01
0.0
2s3p
‘P,
6.20E+Ol
&77E-02
-2.76E-01
2.66E-01
0.0
-
2s3p
‘P,
6.20EtOl
2.94E-01
-8.31E-01
6.31E-01
0.0
‘P,
-
2s3d
“D,
6.44E+Ol
l.l6E+OO
-4.96E-01
2s2p
‘P,
-
2s3d
‘D,
6.44E+Ol
1.52E-02
-6.61E-03
-2.55E-02
2s2p
‘P,
-
2s3d
‘D3
6.44E+Ol
3.85E-02
-7.45E-02
5.94E-02
2s2p
3P,
-
2p2
3Pa
1.64E+Ol
2.25EtOO
-2.46EtOO
1.66EtOO
0.0
l.Q9E-01
2s2p
3P,
-
2p2
3P,
1.64E+Ol
1.69E+OO
-1.57E+OO
1.05EtOO
0.0
1.49E-01
2s2p
3P,
-
2pz
3P,
1.64E+Ol
2.84E+OO
-2.95E+OO
1.99E+OO
0.0
2.48E-01
252~
‘P,
-
2s3p
‘P,
6.20EtOl
2s2p
‘P,
-
2s3p
‘P,
6.20E+Ol
2s2p
‘P,
-
2s3p
3P,
2s2p
3P,
-
2s3d
2s2p
3P,
-
2s2p
3P,
2s2p
3P,
2.23E-03 -4.22E-01
-5.64E-04
-5.77E-01
0.0
1.64E+Ol
-2.78E-03
9.97E-01
a4
0.0
5.38E-01
6.47E-02
0.0
3.1 LE-02
0.0
6.62E-02
-2.28E-01
2.37E-01
0.0
1.27E-01
2.25E+OO
-4.96EtOO
3.1 SE+00
0.0
6.20E+Ol
1.23E-02
7.55E-01
-2.26E+OO
l.BOE+OO
0.0
3D,
6.44E+Ol
4.21E-01
-5.42E-01
3.99E-01
0.0
1.35E-01
2536
3D,
6.44E+Ol
1.20E+OO
-1.39E+OO
KlQE-01
0.0
4.03E-01
-
2s3d
3D,
6.44E+Ol
3.04E-02
1.94E-01
-4.65E-01
-
2pz
3P,
1.64E+Ol
l.OlE-01
-4.67E-01
8.93E-01
2s2p
3P, -
2p2
3P,
1.64E+ol
3.23E+OO
-3.89E+OO
2s2p
3P,
-
2p2
3P,
1.64E+Ol
9.61E+OO
-l.l8E+Dl
2s2p
‘P,
-
2s3p
3P,
6.20E+Ol
-2.82E-03
2.53E-01
-6.79E-01
5.22E-01
0.0
2s2p
‘P,
-
2s3p
3P,
6.20E+Ol
523E-03
7.47E-01
-2.19EtOO
1.75E+OO
0.0
2s2p
$P, -
2s3p
3P,
6.20E+Ol
-5.OQE-02
5.83E+OO
-1.26E+Ol
7.99E+OO
0.0
2s2p
‘P,
-
2s3d
‘D,
6.44E+Ol
1.23E-01
-2.76E-01
2.93E-01
0.0
5.36E-03
2s2p
‘P,
-
2s3d
‘D,
6.44E+Ol
6.46E-01
-l.O2E+OO
7.89E-01
0.0
8.05E-02
252~
‘P,
-
2s3d
‘D,
6.44EtOl
2.38E+OO
-2.31E+OO
1.22EtOO
0.0
L.SlE-01
4.55E-01
-2.03E+OO
2.80E+OO
2~’
‘P,
-
2s3p
‘P,
4.56EtOl
2p*
‘P,
-
2s3p
‘P,
4.56E+Ol
-3.60E-03
1 .OLE-01
2P’ ‘P,
-
2s3p
‘P,
4.56E+Ol
-3.49E-03
2~’
‘P,
-
2s3d
3D,
4.80E+Ol
3P,
-
2s3d
‘D,
2P ’ 3P,
-
2s3d
2P ’ 3P,
-
?D*
+,
2p”
?,
2P
’
4.46E-01
0.0
-5.06E-01
0.0
2.58E+OO
0.0
1.49E-01
7.89E+OO
0.0
4.64E-01
-1.20E+OO
0.0
-3.99E-01
4.21E-01
0.0
l.O7E-01
-4.65E-01
4.91E-01
0.0
-1.36E-03
4.42E-02
-1.86E-01
2.32E-01
0.0
4.130E+Ol
-2.BBE-03
7.04E-02
-2.78E-01
3.21E-01
0.0
3D,
4.80E+Ol
-1.46E-03
3.83E-02
-2.06E-01
2.56E-01
0.0
2s3p
‘P,
4.56E+Ol
-2.50E-03
9.75E-02
-3.88E-01
4.16E-01
0.0
-
2.~3~
‘P,
4.56E’Ol
-6.QOE-03
1.66E01
-7.67E-01
8.78E-01
0.0
-
2s3p
3P,
4.56E+Ol
-7.28E+OO
0.0
2.74E+OO
146
-1.27E+Ol
1.77E+Ol
Atomic Data and Nuclear
Data Tables.
Vol. 44. NO. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
TABLE I. Fit Parameters for the Recommended Effective Collision Seepage 142 for Explanation of Table
Strengths
AE(eV1
2p’
33 ,
-
2s3d
3D,
4.aoE+ol
-S.SlE-04
9.05E-02
-4.34E-01
5.57E-01
0.0
2~’
‘P,
-
2s3d
‘0,
4.80E+Ol
-6.16E-03
1.69E-01
-7.1’2E-01
&65E-01
0.0
2p2
3P,
-
2s3d
‘D,
4.80E+Ol
-4.95E-03
1.24E-01
-6.51E-01
8.55E-01
0.0
2~’
‘P,
-
2s3p
‘P,
4.56E+Ol
-2.40E+OO
0.0
2~’
‘Pz
-
2s3p
“P,
4.56E+Ol
-2.52E-03
1.57E-01
-9.53E-01
1.22E+OO
0.0
2p2
3P, -
2s3p
3P,
4.56E+Ol
-1.77E-01
6.17E+OO
-2.65EtOO
2.86E+OO
0.0
1.13EtOO
-4.66E+DO
6.26EtOO
2P ’ ‘P,
-
2s3d
‘D,
4.80E+Ol
-1.37E-03
6.42E-02
-4.02E-01
5.47E-01
0.0
2~’
‘P?
-
2s3d
‘D,
4.80E+Ol
-3.05E-03
1.4OE-01
-7.93E-01
1 .OBE+OO
0.0
2p2
3P,
-
2s3d
‘D,
4.8OE’Ol
-5.lLE-03
1.26E-01
-9.24E-01
1.56E+DO
0.0
253~
‘P,
-
2s3d
‘0,
2.37E+OO
2.50E+Ol
253~
‘P,
-
2s3d
‘0,
2.37E+OO
3.57Et02
-2.34E+02
0.0
2.52E-01
-1.46E+OO
0.0
2s3p
‘P,
-
2s3d
‘D,
2.37E+OO
2.29E-01
-8.61E-01
5.56EtOO
-5.26E+OO
0.0
2s3p
3P, -
2s3d
3D,
2.37E+OO
1.91E+Ol
-1.23E+02
2.63E+02
-1.86E+02
0.0
2s3p
3P,
-
2s3d
‘D,
2.37EtOO
4.35E+Ol
-1.49E+02
1.36Ei02
2s3p
‘P,
-
2s3d
‘D,
2.37E*OO
1.55E+OO
-1.52E+Ol
5.20E+Ol
253~
‘I’,
-
2s3d
‘D,
2.37E+OO
1.38E+OO
-3.92E+OO
5.33E+OO
2s3p
‘P,
-
2s3d
‘D,
2.37E+OO
1.66E+Ol
-5.70E+Ol
5.48E+O
2s3p
‘P,
- 2s3d
‘D,
2.37E+OO
7 70E+Ol
-2.41Ec02
2.18Ec02
-l.l7E-02
-1.57E+02 l.ZLE+OO
147
0.0
1.77E+OO
-4.03E+Ol
1
0.0
0.0
3.86E-02
0.0
3.50E-01
0.0
1.98E+OO
Atomic Data and NucWr
Data Tables.
Vol. 44. No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
TABLE I. Fit Parameters for the Recommended See page 142 for Explanation AE(eV)
bt
Emission Lines from 0 V
Effective Collision
Strengths
of Table
b,
b,
b,
2s2p
3P,
- 2s2p
3P,
O.OOE+OO
-6,47E+OO
2s2p
3P,
- 2s2p
OP,
O.OOE+OO
-2.23E+OO
2s2p
3P, -
OP,
O.OOE+OO
-1.42E+Ol
1.63E+02
-7.65E+02
l.O7E+03
2s2p
6.52E+Ol -1.29E+Ol
-2.07Ec02 2.46Et02
1.94E+02 -6.49E+02
2pz
3P,
-
2p2
3P,
O.OOE+OO
-2.13E+Ol
3.09E+02
- 1.53Et03
2.53E+03
2pz
3P,
-
2p2
3P,
O.OOE+OO
- 1.56E+Ol
2.23E+02
-1
1.60E+03
2p2
3P,
-
2p2
3P,
O.OOE+OO
-2.96E+Ol
4.47E+02
-2.25Et03
3.75E+03
lOE+03
2.~3~
‘P,
-
2s3p
“P,
O.OOE+OO
-l.LlE+Ol
1.56E+02
-5.84Et02
7.36E+02
2s3p
‘P,
- 253~
‘P1
O.OOE+OO
- 1.20E+ol
1.54E+02
-6.46Et02
9.06E+02
2s3p
‘PI
-
2s3p
‘P,
O.OOE+OO
-9.74E+OO
1.21 E+02
-4.56Et02
576E+02
2s3d
‘D,
-
2s3d
‘D,
O.OOE+OO
-1.96E+Ol
2.64E+02
-1.16Ei03
1.69E+03
2534
‘D,
-
2s3d
‘Da
O.OOE+OO
-9.71E+OO
9.16E+Ol
-2.17E+02
2.46E+Ol
2s3d
‘D,
-
2s3d
‘D,
O.OOE+OO
- l.BSE+Ol
2.49E+02
-l.O6E+03
lS6E+03
148
Atomic
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO,
J. LANG,
Emission
and K. E. BERRINGTON
Lines
from
0 V
FIGURE I. Line Intensity Ratios vs Temperature See page 143 for Explanation of Figures I(1721 / I(630)
I(1931
/ I(7601
1 o”
0 Y 2 10“ x Y VI c 0 Y c
10
-2 10'
lo2
Te(eV)
lo3
Te(eV)
I(220) / I(2481
I(2151 / I(2201
10’
0 Y cz 1 o” x Y v) c a + c
I
1 o-’
I
I
IllIll
10'
I
1 o2
I
I
Ill11
1 o-2 1 o3
I
I
I
I
III//1
10'
I
lo2
TeCeVl
I
ll/ll
lo3
Te(eV1
149
Atomic
Data and Nudear
Data Tables,
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE I. Line Intensity Ratios vs Temperature Seepage143for Explanation of Figures I(2151 / I(1931 10’
I
I I II/II;
I(193) I I(220)
I
I
I
I
I
lllll(
Illll
-l
I
/ 0 -+ c2 1 o” * Y 111 :Y c
10“
I
I
I111111
1o2
lo3
Te(eV1
Te(eV)
150
Attic
Data and NutWar
Data Tables.
Vol. 44, No. 1, January
1990
T. ICATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE II. Line Intensity Ratios vs Density Seepage143 for Explanation of Figures 1(220)/1(248)
im
10’
10’
0
0
-<.
d CL
d (L
1o” x +. 01 c 0) .4c
ul
10-l -3 1
ne(cm
-3 neCcm
1(76O)/I(630)
I
I(1218) / I(630)
10'
0
“1 o” [L
x
51 o-’ c al
12
1o13
,o14
1o15
1ol6
1
-3
ne
(cm
I
ne(cm
151
Atomic
Data and Nucbar
I
Data Tables.
Vol. 44, NO. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE II. Line Intensity Ratios vs Density Seepage143for Explanation of Figures 1(193)/1(248)
loo _.-- -
x Y ul c a! Y c -1 -1 1n
lo9
1o'O
10"
1o12
lOI -3
ne(cm
lOI
1015
1o16
'"
lo9
1o'O
10"
lo'*
1o13
lo'&
lOI
1o16
lo'&
lOI
1016
-3 1
ne(cm
I(215) / I(220)
I
I(193) / I(172)
+ d
a
I”
lo9
1o'O
10"
lo'* ne(cm
1013 -3
1014
1o15
1o16
lo9
1o'O
10"
lOI2
lOI -3
ne(cm
1
152
Atomic
Data and Nudear
I
Data Tat&s.
Vol. 44. NO. 1, January
1990
J. LANG, and K. E. BERRINGTON
T. KATO,
FIGURE
Emission Lines from 0 V
II. Line Intensity Ratios vs Density
See page 143 for Explanation
of Figures
I(2151 / I(1931
1 o”
I(2711 / I(2151
C’“““‘1’ ’“““/ ’ “““‘l ’ “““‘/ ’ ’“““/ ’ “““‘i ’ “‘1
0 Y
d lY
, I
-1
10
I /lllllll
I I
I llllllli
I I
I llllllll
I IIlllll~
I
I Illlllll
, I
I lIlllI/~
I I
I II
1A -2
I I lllllll
/ I
I I lllllli
,
I I lilllll
/ /
I I l/llll~
I I lllllll
-3 ne(cm
I(2781.01)
,
/
! I lllllll
I I III
-3 I
ne(cm
/ I(193)
I(2781.01)
I
/ I(2151
loo
ne(cm
-3
I
-3 ne(cm
153
AtOmic Data and Nuclear
I
Data Tab%
Vol. 44, No. 1. Jamaw
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE II. Line Intensity Ratios vs Density Seepage143for Explanation of Figures U760.45) / I(630) 1on
.I IIIIlIl~
I lllllll~
I lllllll; I
I llllill~ I I
I(270.98)
I lllllll~ ,
/I(219
I /Ill I
1ox Y -
x c
YI c al Y c
VI c a + c
ne(cm
t
t
-3
-3 I
neCcm
154
Atomic
Data and Nuckdar
>
Data Tables,
Vol. 44. NO. 1, Jmualy
1990
Emission Lines from 0 V
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
See page 143 for Explanation 2s
2
1
s
-
2s2p
2s
3P
2
I
s
-
2s2p
‘P
c-
m ‘0
Rate Coefficients
of Figures
-
X-
‘0 -
=
I II/Ill;
I I llllll~
IIIIIII~
I
I I lllltq -
-
‘0
2 I !IO !
1o”
llllllli
10’
1 o2
T.
2s
2
I
s
-
1 o3
10'
(eV)
2p2
1 o2
T.
3P
2s
2
1
5
-
1 o3
CeV)
2p2
‘0
a.
‘0
” ‘0
2 ‘0
z!
2
‘0
‘0
1 o”
T.
10’
(eV)
T.
155
Atomic
1 o2
1 o3
(eV)
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2
2s
I
s
-
2p2
Emission Lines from 0 V
III. Recommended Excitation Rate Coefficients See page 143 for Explanation of Figures 's
2s
2
1
S
-
2~3s
%i
01
IO
I
I ll/lll~
I
I lllIIl~
I I /
I I I I
j I
I I I
I
I III
!
II!/
” IO
‘0
N ‘0
I
2 ‘0
I
I
!
II/II:
loo
I
IIIIIIII
10'
2s
2
I
S
lo2
T.
(eV)
-
2~3s
I
I
lo3
lIlll/ll
loo
'5
2
T.
1
(eV1
-
2s3p
S
I
lo2
T.
I IllIll;
Ilill
lo3
'P
i / I / I I
-
lo2
/I/Ill/1
10'
2s m ‘0
10'
I
/ /
-
lo3
(eV)
T.
156
Atomic
(eV1
Data and Nudear
Data Tables.
Vol. 44. No. 1, Jammy
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 2s
2
I
s
-
2s3p
3P
2s
2
I
S
-
2s3d
%
c-
10'
lo2
T.
2s
2
I
s
1o”
1 o3
10’
(eV)
-
2s3d
1 o2 CeV)
-I-.
'0
2s2p
3P
1 o3
-
2s2p
‘P
m ‘0
-
fE ’ ’ ’ ““‘1
’ ’ “““I
’ ’ ’ “‘El
u
!
I
-
: f-3 w + 0 05
= ‘0 -
N ‘0
tOI T.
1 o2
I
!lllllli
- TO0
lo3
(eV)
10’ T.
157
Atomic
/ll!llll
1 o2
II
I III]I
lo3
CeV)
Date and Nuclear
Data Tables.
Vd. 44. No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 2s2p
3P
-
2p2
3P
2s2p
r
-
2p2
‘0
P
‘0
‘0
m ‘0
0 IO
u. ‘0
‘0
z ‘0
I
I I IIIII;
I
I
/l/ill’
I
I I III
” ‘0
2 ‘0
IO
10’
1 o2
2s2p
3P
1 o3
1 o”
10’
(eV)
T.
d cr
3P
-
2p2
1 o2
T.
‘s
2s2p
3P
1 o3
(eV)
-
2~3s
3S
+
-
;f ‘0
1 o” T.
10’
(eV1
T.
158
Atomic
1 o2
1 o3
CeV)
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2s2p
3P
-
2~3s
Emission Lines from 0 V
III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures ‘S
2s2p
3P
-
2~3~
‘P
z
”
E 0 ” + c al .a 0 .4
a, 0
1 o”
T.
2s2p
m
/Y (0 \ E ”
3P
10’
(eV)
-
2~3~
1 o*
T.
3P
2s2p
3P
1 o3
CeV)
-
2s3d
3O
m
e. ‘0 -
2
e
-
: 0 (u + d LT
” ‘0 -
2 ‘0 -
10’ T.
1 o2
1 o3
(eV)
159
Atomic
Data and Nuclear
Data Tables.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 2s2p
+
-
2s3d
'0
2s2p
z
'P
-
2p2
3P
m I
‘0 -
I Illltf
I I llill;
I
I
Illlll~
I
I
I illtl
/
loo
10'
lo*
'P
-
2p2
lo2
10'
(eV1
T.
2s2p
lo3
(eV1
T.
'0
2s2p
'P
lo3
-
2p2
's
m -
-
1 I
I
I
‘0
loo
-
/
lIlll!ll
I
!llllll~ !llillli
10' T.
I
lo2
IllIll llIrll~
10'
lo3
(eV)
T.
160
Atomic
lo2
lo3
CeV)
Data and Nuclear
Data Tab&.
Vol. 44, No. 1, Jmualy
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2s2p
‘P
-
2~3s
Emission Lines from 0 V
III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures ‘S
2s2p
P
‘P
-
2~3s
‘S
D\ m
v, E 0
”
Iu + d CY
‘0 -
= ~-------I----~---l-
I
‘0
/
lIlllll~
I
1 o”
2s2p
‘P
-
2~3~
IIIIIIII
10’
(eV)
T.
I
’
2s2p
u.
‘P
/lI!lll
1 o2
1 o3
(eV)
T.
‘P
I
-
2s3p
?P
0. .-T v) \
\ ”
m E 0
E 0
E
” Y c al .4 0 .d Lc
a, +J
d DL
2
(u +
(0
-
d rY
2 I
(0
1 o”
I
I
~llllli
/11/l/11
10’ T.
I
1 o2
I Illlll~
1 o3
1 o”
10’
CeVI
T.
161
Atomic
Data
and
1 o2
1 o3
(.eV)
Nuclear
Data
Tables,
Vol.
44,
NO.
1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0
Excitation
V
Rate Coefficients
See page 143 for Explanation of Figures 2s2p
‘I’
-
2s3d
%
2s2p
u. ‘0 -
0
-
2s3d
‘0
a T-
I
I llllll; I I IIll;
I
I /lllll; //1111;
I
, / /
I
(0 -
l/II I IlIE -
I I I
I IllIll;
.= -
I
o. ‘0 -
=
I
illlll~
I I /
-
-
‘P
IlllIE
-
/ /
_----------L= -
I I 1
n/i ,1,/1,11, I/,,,, lj l ll,,,j / I
”
I
‘0
I I
II/l/
I
/llllll1
10’
1 o”
2? 2
3P
I
1 o2
T.
(eV)
-
2p2
I
lIIl/l
1 o3
1 o”
10’
2P *
‘II
3P
1 o*
T.
(eV)
-
2p2
1 o3
‘s
m
(u + d LT
10’ T.
1 o*
” ‘0 -
1 o3
(eV)
T.
162
Atomic
CeV)
Data and Nudear
Data Tables,
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
ZP ’
3P
-
253s
Emission Lines from 0 V
III. Recommended Excitation Rate Coefficients See page 143 for Explanation of Figures 3S
2P2
3P
-
2~3s
T.
(eV1
-
2~3~
‘S
2 ‘0
1
2P ’ ” ‘0_
I
T.
(eV)
-
2s3p 2~3~
3P
I llI//l’
I
I
1 o"
Illlllll
/
1 Illltp
3P
3P
-
I I /
I
llllllll
10' T.
2P ’
I /I/l/I’
/ , / ‘0
‘P
I
1 o2
IIllllL
1 o3
1 o”
10’
feV1
T.
163
Atomic
1 o2
1 o3
CeVI
Data and Nuclear
Data Tables.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2P ' OI ‘0
-
III. Recommended
Excitation Rate Coefficients Seepage143for Explanation of Figures
2s3d
?I
2P '
%
-
2s3d
'II
0 L
I IIl/ll~
.-
-
?'
Emission Lines from 0 V
I
IIIIIII~
I
I ,
I , I /
I Illltt
IO
-
--
‘0 -
-1
-
2 ‘0 -
bl l ,I’,,,l;l lIll,,,,I ,,,,l] ‘0.
-
I
I
l/!llll/
I
loo
lIllliii
T.
2P2
?I
-
*
IllllllI
10'
lo*
I
llllltt
I
IIIIII
-
‘0
1 o3
-7 .-I .--I
, I
I
III/I,
loo
's
2P2
164
l1ll//1!1
10'
(eV)
2p2
I /1llll;
--
N ‘0 -
-
I
-
=
r
I IllIll;
Atomic
'0
lo2
T.
(eV)
-
2~3s
T.
(eV)
Data and Nuclear
lo3
3S
Data Tables,
Vol. 44. NO. 1, January
1990
Emission Lines from 0 V
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
Rate Coefficients
Seepage143for Explanation of Figures 2P2
‘0
-
2~3s
‘S
2
2P
Q
0.
‘0 ‘0
L
‘0
-
I I Ilill;
2s3p
I
I
‘P
IllIll’
I / /
-----------i------~~---c---------
1 / I I
I
IIII~I I’
1 o”
2P2‘D
-
2~3~
3P
‘0
L
I
I
T.
(eV)
-
2s3d
‘0
I l//ll/~
I
I
I /I!‘1
1 o2
I
1 o3
%
I llll/l~
/ / / / I
T.
I/Ill/l
10’
2P2 m
-
I
2
(eV)
I lllkj -
1 I /
-
T.
I
I I
, N lo
I
I
I llllte
I I I
(eV)
165
Atomic
Data and Nudear
Data Tables.
Vol. 44, No. 1, Janwq
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures
2P2
‘0
-
2s3d
2P2 ‘S
‘D
-
2~3s
%
P IO -
= -
Illll;
!
I l~llll’ I~IIII’
I
I
IllItIllltf
I
-
-.
I
-
2 ‘0
I
I loIll:
10’
I
I I!lllL
1 o2
‘0
1 o3
I
llll11111~
1 o”
-
2~3s
2P2 ‘S
‘S
I
IllIll
10’
!I:!111
1 o2
T.
0. IO -
I
(eV1
T.
2P2 ‘S
-.-
/ ,
1 o3
(eV)
-
2~3~
‘P
m =-
I llllll~
I
I1111111~ IllIll;
I
IO
I Ii/l IllltC
I
,
I IllIll;
-
I
I llll/l~
I
I
I’ / / I -
I
I IIIIII~
I
11111111
/
-
‘0
I
l
flllIll~
1 o”
T.
10’
T.
(eV)
166
Atomic
1 o2
1 o3
CeV)
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE III. Recommended Excitation Rate Coefficients Seepage143for Explanation of Figures
2P2 ‘s
-
2s3p
3P
2P2
‘s
-
2s3d
%
0.
10’
2P2
‘S
1 o2
T.
(eV)
-
2s3d
1 o3
1 o2
10’ T.
‘0
2~3s
3S
1 o3
(eV)
-
2~3s
‘S
P lllllll; I5 ’I 1”““;
I/Illll~ ’I ““‘I’:
I
IIlllw ’I ““‘El
r\ In \ ”
E 0 ”
al -w d L11
N ‘0 -
al -w
d cf
I I I
‘0 -
I I /
-
.-
-
CI
I
I
-loo
I Illllll
I
I I II/II!
1 o2
10’ T.
I
I Illll
‘0
-
I
/llllll1
I
ll1llll1
I
lll!ll~
1 o3
(eV)
T.
167
Atomic
CeV)
Data and Nuclear
Data TaMes.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 293s
%i
-
2s3p
‘P
2~3s
L =
3S
-
I I //Ill’
2s3p
I
I I Illli~
I I I I
-
2~3s
=
3S
-
I III/II;
-
(eV)
i/llll1ll!I Ill1ll~ / /
3D
II ,, I
2~3s
I
IIllllklIlliU
‘0 -
---1
=-
I I IIlK’ -
/
1 o2
3S
-
I I Ilill;
1 o3
CeV)
T.
2s3d
I I
0' T.
3P
2s3d
I
I l/l/ll’
‘0
I
/ llllq
-
OI
‘0
r----------
z C----------d-----------!
1 l IJ / /,,J / ,j 1 o”
10’
T.
1 o*
3
1 o3
CeVYJ
T.
168
Atmic
(eV1
Data and Nuckr
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 2~3s
'S
-
2s3p
'P
2~3s
'S
-
2s3p
3P
r I IllIll;
I
I III’II;
I
i IIll
-
I
llll/ll~
I
Iillllil
10'
1 o2
‘5
ll1llll
‘0
1 o3
1 o"
10'
(eV)
T.
2~3s
I
-
lo2 (eV)
T.
2s3d
2~3s
%
P '0
m
~
'S
I I Illll;
-
2s3d
I
= ‘0 -L ”
II/ //I ----------;-----------;----------
‘0
‘0
10'
T.
1 o2
I
I I IlIt
I
I I lllll
I I I /
I ‘0
j
-----------c----------~-----------
1, ,111,,1~ I 1111,,1~ I l,lllj 1 o"
'0
I IllIll;
I I I I I
-va, cz
1 o3
1o3
t
I
1 II
1 o"
WlI~
I , I I I / / /
1
I llllll1
10'
CeV)
T.
169
I I I I , I I I
Atomic
1 o2
1 o3
CeV)
Data and Nuclear
Data Tables.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 2s3p
‘P
-
2s3p
2~3~
3P
‘P
-
2s3d
%
P
P
‘0
-
I /l1lll~
I
lllllll~
I
llllltf
I
111111~
m IO
0. ‘0
2 ‘0
I
-
I
IO
I Il/Illl
1 o”
I
Illllll
10’
1 o2 (eV)
T.
2~3~
‘P
1 o3
-
2s3d
(eV)
T.
2~3~
‘0
3P
-
2s3d
3D
w IO
c‘0
m ‘0
0. iO
” ‘0
1 o” T.
CeV)
T.
170
Attic
CeV)
Data and Nuclear
Data T&s.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2s3p
%
-
2s3d
Emission Lines from 0 V
III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures ‘0
2s3d
3D
-
2s3d
10' T.
2s2p
3Po
(eV)
-
2p2
T.
3Po
2szp
3Po
‘D
1 o2
1 o3
(eV)
-
2p2
3P1
r-
m E ” ” -P c al .0 .4
‘0 -
:
-
0 a, -6. d LT
-= -
”
-loo
10’
T.
CeV)
T.
171
Atomic
1 o2
1 o3
CeV)
Data and Nuclear
Data Tables.
Vol. 44. No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
-
0
Emission Lines from 0 V
III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures
2p2
3Pz
2s2p
3Po
-
2~3~
3Po
P
‘c
-
0‘-
f&q -l-~--------+-------~--
IO'
1 o2 (eV)
T.
2sZp
1 o3
3Po
-
eV
T.
2s3p
3P,
2sZp
3Po
-
2s3p
3P2
II ‘0
-
-
‘0 -
I Ililll’
I
I I /Ill”
II
I
I Illltf
-
z-
N IO
--
2 ‘0
P ‘0
x
, ---~--c--------~-c-------.---
-
,
I / I III:
I
I /111111
10’ T.
-
I I / I I I
lo2
I lllll~
lo3
(eV)
T.
172
Atomic
CeV)
Data and Nuclear
Data Tab!es, Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
Rate Coefficients
See page 143 for Explanation of Figures 2s2p
'PO
-
2s3d
10' T.
2s2p
%o
2s2p
%,
lo2
3Po
T.
2s3d
2s3d
%z
1 o3
CeV)
-
-
%3
2szp
lo r_ -
‘0
CeV
3P,
I I HIi;
-
I
2p2
I llllll~
3po
I
I IIll -
----
‘0 -
10' T.
1 o2
----
103
(eV)
T.
173
Atomic
(eV)
Data end Nuclear
Data Tat&s.
Vol. 44. No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
Emission Lines from 0 V
Rate Coefficients
See page 143 for Explanation of Figures 2s2p
3P,
-
2p2
2s2p
+I
3P1
-
2p2
%
m. lo
+2
+---------I
------
4
-E
I’
0
‘0 -
-
lo -
II f---------/ 4 I
;-------
_-= r -
I I
I
?lt
T.
2s2p
3P,
(eV1
-
2s3p
T.
2~2~
3Po
3P,
(eV)
-
2s3p
3P~
0
(u -w d c
T.
174
Atomic
CeV)
Data and Nuclear
Data Tables,
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
See page 143 for Explanation 1
Rate Coefficients
of Figures zszp
2
3P,
-
2s3d
3D,
;“’
‘0 -
‘0
N
‘0
m
, I
IO
10’ T.
zszp
3P,
1 o2
1 o3
Ill
I I II
1 o”
10’
(eV)
-
I Ill//II
2~2~
3D2
Illli’l
1 o2
T.
2s3d
1
1 o3
(eV
3P,
-
2s3d
303
P
‘0
yr "
\
"
E 0
” ‘0
IO
v(u 0 v Ill +
2 ‘0
d fY
s ‘0
10’ T.
1 o2
1 o3
I
I I Ilhrl:
1 o”
I
10’
(eV)
T.
175
I I l/II/;
Atomic
I
1 o2
I I II!llj
1 o3
(eV)
Data and Nuclear
Data Tables.
Vol. 44. No. 1, January
1990
T. KATO,
J. LANG,
FIGURE
III. Recommended
Excitation
See page 143 for Explanation 2s2p Ei Ei ‘0 '0
3P2
-
2pz
Emission Lines from 0 V
and K. E. BERRINGTON
Rate Coefficients
of Figures
3Po
2s2p
3P2
-
2p2
?'
m
LL
I I ll1ll~
I
I I IIlil\ HiI;
I
I IIIIEJ
I
lllllll_
I I I 1 ----L----------I / I I I I I I ----I----------, / I / I
P IO
-
/ --m-;--------m-, I I I I I I
I I , I
.I
I IIIIII~ llllll~
loo
I
Illlllli
10' T.
2s2p
3P*
1 o2
1 o3
10' T.
(eV)
-
2p2
2s2p
3P2
1 o3
(eV1
2s3p
-
3Po
z
P
r\ v) \
3P2
1 o2
‘0 -
” ”
E 0
m ‘0
Y c al .A
T.
(eV)
T.
176
Atomic
CeVI
Data and Nuclear
Data Tables.
“d. 44, NO. I, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
Emission Lines from 0 V
Rate Coefficients
Seepage 143for Explanation of Figures 2~2~
3Pz
-
2s3p
3P~
2sZp
3Pz
-
2s3p
3Pz
0
T.
252~
3Pz
(eV)
-
2s3d
10’ T.
CeV)
T.
3D,
1 o2
25.2~
1 o3
3Pz
-
10’
CeV)
T.
177
Atomic
2s3d
3oz
1 o2 (eV)
Data and Nuclear
Data Tables,
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE III. Recommended Excitation Rate Coefficients Seepage143for Explanation of Figures 252~
3Pz
-
2s3d
3D3
2p
2
3
PO
-
2s3p
3Po
01
‘0
z IO
‘0
” ‘0
2 ‘0
1 o"
10'
1 o2
2
3
PO
10'
-
2s3p
1 o2
2p
3P1
2
3
PO
1 o3
(eV)
T.
-
2s3p
3P2
”
D1
IO -
c\ v) \
. 1 o"
(eV)
T.
2p
1 o3
‘0
”
E 0 ”
f2 IO
‘0
-4.J c ar .d 0 .2 Lc
-+ul 0 0 al u d [31
;
” 0 -
‘0
” 7
N ‘0 -
2 I
(0
1 o"
I lllllrll
I
I I lllll~
10' T.
I
1 o2
0
2 IO
I I Ill111
1 o3
I
lIlIlIIli
1 o"
I
10'
(eV)
T.
178
I III/III
Atomic
!
1 o2
Illlli~
1o3
CeV)
Data and Nuclear
Data Tabies.
Vol. 44. NO. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2p
2
3
PO
-
2s3d
Emission Lines from 0 V
III. Recommended
Excitation Rate Coefficients Seepage143for Explanation of Figures
k
-
3Po
2P2
2s3d
%2
"
aJ 0 0 w +. d C
CeV)
T.
2p
2
3
PO
-
2s3d
2p
303
2
3
PI
-
2s3p
3P0
0 ‘0 -
=
///
,‘, I,qlI,
l,Il/,l!
al +
2 ‘0
d
-
2 I
‘0
1 o"
l1llllII
I
I lllllll
10’ T.
I
1 o2
I lllllll
‘0
1 o3
10'
(eV)
T.
179
Atomic
1 o2
1 o3
CeV)
Data and Nuclear
Data Tab&
Vol. 44, NO. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
Emission Lines from 0 V
Rate Coefficients
See page 143 for Explanation of Figures 2p
2
3
PI
-
2s3p
2p
3P1
2
3
PI
-
2~3~
3P2
” ‘0
tL
-
‘0
N IO
I,
/ ,,/I,! I, IllIll!
,
I
I
I / ,,I111
I /lllll!
I,
I
, ,,,tf I, IIIIW
-
.I z .-
m ‘0
1 / / 1
1
-
-
2 ‘0
,
2
3
PI
-
2s3d
(eV)
T.
(eV)
T.
2p
, ,,I,,,
2p
301
2
3
PI
-
2s3d
302
z IO
I
I IllIll;
I
I
Illlll~
I
I
I llltf -
‘0
2 ‘0
2 IO
2 IO
loo
10' T.
1 o2
lo3
T.
(eV)
180
Atcmic
(eV)
Data and Nucbw
Data Tables,
Vol. 44. No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Emission Lines from 0 V
Excitation
See page 143 for Explanation Zp
2
3
PI
-
T.
2p
2
3
P2
2s3d
Rate Coefficients
of Figures
303
2p
2
3 P2
(eV)
-
2~3~
-
2p
”
2
3
Pz
3Po
(eV1
T.
+I
2s3p
-
2~3~
3P2
m
IO
\ m
n E 0
” Y c aI 0 .a
2 ‘0
2 ‘0 -
10’
T.
(eV)
T.
181
Atomic
1 o2
1 o3
CeV)
Data and Nuclear
Data Tables,
Vol. 44. NO. 7. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
Emission Lines from 0 V
Rate Coefficients
See page 143 for Explanation of Figures 2p
2
3
Pz
-
2s3d
2p
3D1
2
3
P2
2s3d
-
3D2
z ‘0
I
IIIIIII;
I
/I/llll~
I
t‘0 -
N ‘0 -
2 1. _
Illlltq
-
_-= _-= z _-XI -
2
1 o" (eV)
T.
2p
2
3
P2
10'
-
2s3d
T.
~~3~
303
182
3Po
1 o2
1 o3
CeV)
-
Atomic Data and Nuclear
2s3d
Data Tables.
3b
Vol. 44, No. 1, January
1990
Emission Lines from 0 V
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2~3~
%o
-
2s3d
2s3p
%,
3b
1 o2
10’ T.
III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures 2s3p
1 o3
T.
2s3d
-
2s3d
10’
(eV)
-
3Po
3D,
2~3~
3P,
303
lo2 (eV)
-
2s3d
30z
0 ‘0
10’ T.
lo2
lo3
10’
(eV)
-I-.
183
Atomic
lo2
lo3
CeV)
Data and Nuclear
Data TaMes.
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
-” zsxp
m IO
e ‘0
0 ‘0
FIGURE III. Recommended Excitation Rate Coefficients Seepage143for Explanation of Figures 3P,
-
2s3d
%a
----c----------c---------I
2s3p
3Pz
-
2s3d
%
4
~----------+---------I
‘0
Emission Lines from 0 V
4
” ‘0 -
loo
10'
T.
zsJp
3P2
T.
1 o2
lo3
10'
(eV)
-
2s3d
T.
3Dz
2~3~
(eV)
3Pz
T.
184
Atcmk
lo*
lo3
(eV)
-
2s3d
3D3
(eV)
Data and Nuchr
Data Tables,
Vol. 44. No. 1, January
1990
Emission Lines from 0 V
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
2szp
3Po
-
III. Recommended Excitation Rate Coefficients See page 143 for Explanation of Figures
2s2p
3P’
2s2p
P
\
3Po
-
2s2p
3Pz
r
VI
m E ” ” -Ic w .A ” .d
w 0 0 w +
/ ‘0 -
-
~.
Ls
.-
‘0
I / // ~
Illlllll I Illllll
I
lI//llil I Illllil
-
I
1 o2
1 o” T.
2s2p
3P,
I IIIII’ lllll!..
1 o3
T.
(eV)
-
2s2p
3P2
zp
r\ v, \ m ”
E 0
-w c w .4 0 ..a Y Lc w 0 u w -P d [1I
m ‘0 -
/
2
3
PO
, I,,,,,
CeV)
2
-
3
2p
,
/
Pl
.-
8 / /
I,[/‘1
-
/ I r~-----~---+-~--~----~I
“‘I
5! IO -
= IO -
I
T.
1 o2
I I Illlil
1 o”
1 o3
I
T.
185
Atomic
I=
, I /
I I I11111
10’
(eV1
-
/ I /
-
/ I
‘0
10’
--
u. ‘0
” 1 o”
, I
I
1 o2
I I Ill!1
1 o3
CeV)
Data and Nudear
Data Tabtes,
Vol. 44, No. 1. January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
Emission Lines from 0 V
FIGURE III. Recommended Excitation Rate Coefficients Seepage143 for Explanation of Figures 2p
2
3
PO
-
2p
2
2p
3 p2
2
3
PI
-
2p
2
3 P2
m
m
-. -I
rl ‘0
10’ T.
2s3p
3Po
(eV)
-
2s3p
1 o2 CeV)
T.
3P,
2s3p
m
\
1 o3
3Po
-
2s3p
3P2
L
P
‘0
,
E I
‘0
I I I/l/II
1 o” T.
I
10’
(eV)
T.
186
I Illllll
Atomic
I
1 o2
I I IIll
1 o3
(eV1
Data and Nuclear
Data Tables,
Vol. 44, No. 1, January
1990
T. KATO, J. LANG, and K. E. BERRINGTON
FIGURE
III. Recommended
Excitation
See page 143 for Explanation 2s3p
3P,
-
2s3p
Emission Lines from 0 V
Rate Coefficients
of Figures
3P2
2s3d
3D,
-
2s3d
3&
ll’/ll~
I
2s3d
31&
In ‘0
I
I IllIll;
I
;
I lllll~
I
-
I illlc? -.
I , 1
-
I llllll!
I
I
‘III1
-
m
0.
I I ‘0
I
lllllll1
-loo
l/‘~ll,
10’ T.
2s3d
%,
. I
I
1 o2
‘IllIll
1 o3
(eV)
-
T.
2s3d
2s3d
3D3
1o”
3D2
-
10'
T.
187
(eV1
Atcmic
1 o2
1 o3
(eV)
Data and Nuclear
Data Tables.
Vol. 44, No. I, January
1990