Intensity ratios of emission lines from O V ions for temperature and density diagnostics, and recommended excitation rate coefficients

Intensity ratios of emission lines from O V ions for temperature and density diagnostics, and recommended excitation rate coefficients

ATOMIC DATA AND NUCLEAR DATA TABLES INTENSITY 44, 133- 187 ( 1990) RATIOS OF EMISSION LINES FROM 0 V IONS FOR TEMPERATURE AND DENSITY DIAGNOSTI...

2MB Sizes 1 Downloads 32 Views

ATOMIC

DATA AND NUCLEAR

DATA TABLES

INTENSITY

44, 133- 187 ( 1990)

RATIOS OF EMISSION

LINES FROM 0 V IONS

FOR TEMPERATURE AND DENSITY DIAGNOSTICS, AND RECOMMENDED EXCITATION RATE COEFFICIENTS T. KATO National

Institute for Fusion Science, Nagoya 464-O 1, Japan J. LANG

Space Science Department, Rutherford Appleton Laboratory Chilton, Didcot, Oxon OX1 1 OQX, United Kingdom and K. E. BERRINGTON Department of Applied Mathematics and Theoretical Physics The Queen’s University, Belfast, BT7 INN, Northern Ireland, United Kingdom

Intensity ratios of emission lines from 0 V ions are calculated for use in temperature and density diagnostics. The dependence on temperature and density of the intensity ratios is shown in graphs. The effective collision strengths among n = 2 and n = 3 levels, calculated by Berrington and Kingston by the R-matrix method including 26 states, are fitted to an analytical formula and the fitting parameters are tabulated. The rate coefficients derived therefrom are shown graphically. o 1990 Academic &ss, lnc.

0092-640X/90 $3.00 Copyright 0 1990 by Academic Press, Inc. All rights of reproduction in any form reserved.

133

Atcinic

Data and Nuclear

Data TaMes.

Vol. 44. No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

CONTENTS

INTRODUCTION .......................... Atomic Data ........................... Energy Levels ......................... Transition Probabilities ................. Electron Impact Excitation Rate Coefficients Ionization and Recombination ........... Population Density ...................... Line Intensity Ratios ..................... Conclusions ............................ EXPLANATION

OF TABLE

EXPLANATION

OF FIGURES

TABLE

.

. .

..................

134 134 134 134 134 137 137 138 140 142

.............................

I. Fit Parameters for the Recommended Strengths ...................................

143 Effective Collision 144

FIGURES I. Line Intensity Ratios vs Temperature ................ II. Line Intensity Ratios vs Density .................... III. Recommended Excitation Rate Coefficients ...........

149 15 1 155

INTRODUCTION Spectral line emissions of 0 V ions have been measured from the solar transition region’,2 and from laboratory plasmas such as those from tokamaks.3-6 Theoretical calculations have been done to interpret line intensities.7-9 We present here the calculation of the intensity ratios of emission lines using new data for electron impact excitation calculated by Berrington and Kingston1o by the R-matrix method including 26 states (2s2, 2 X 2s2p, 3 X 2p2, 2 X 2s3s, 2 X 2s3p, 2 X 2s3d, 2 X 2p3s, 6 X 2p3p, 6 X 2p3d). We include in our calculation ionization and recombination from/to excited levels which are important in a transient plasma.

levels for 0 IV12 (6 states) and 0 VII3 (2 states) ions are considered in our model. They are listed in Table A. For 0 IV and 0 V ions the fine-structure levels are combined for the calculation of the population densities as indicated in Table A by Arabic numerals. For 0 V, Fig. 1 shows the relevant part of the energy-level diagram. Transition

Probabilities

The data for transition probabilities among n = 2 and n = 3 levels are taken from Ref. 14 for 0 V. For 0 IV and 0 VI ions, the data from Ref. 15 and from Ref. 16, respectively, are used.

Atomic Data

Electron Impact Excitation

Energy Levels

Rate Coeficients

Effective collision strengths y have been calculated using the R-matrix method including 26 states by Berrington and Kingstoni in the electron temperature range

The levels of the 2s2, 2s2p, 2p2, 2s3s, 2s3p, and 2s3d configurations for 0 V” (20 levels) and the n = 2 134

Atomic

Data and Nuclear

Data Tables,

Vol. 44, No. 1, Janualy

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

TABLE A Energy Levels of 0 V Energy Level no.

Configuration

1

2s2 ‘S 2s2p jP

2 3 4

(cm-‘)

J 0 0

1

5

2s2p ‘P 2p2 ‘P

1

158797.1 213462.5

1

213618.2 213887.0 231721.4 287910.3

2 2

10

‘S

0

11 12 13 14 15 16 17 18 19

2~3s ‘S

1 0 1

2s3p ‘P 3P

580824.9 582806.4 582843.1 582920.3 600748.9 600758.9 600779.2

1 1

‘D

2 3 2

612615.6

Energy levels of 0 IV State no.

Configuration

J

1

2s22p 2P

1

2

2s2p2 4P

4 5

6

2s2p2 2D

2s2pz 2s 2s2pz 2P

2p3 4s

Energy (cm-‘) 0

z

385.9

2 2 2

4 3

Energy levels of 0 VI

2

I

I

J

Energy (cm-‘)

71755.5

i

126950.2

12

164366.4

5

180480.8 180724.2

2

231537.5

from3X104K
Configuration

71570.1

126936.3

2

State no.

7 1439.8

2

1

67.82 69.59 72.0 1 72.26 72.26 72.27 74.48 74.49 74.49 75.96

561276.4

0

2s3d ‘D

26.47 26.49 26.52 28.73 35.70

546912.7

2

20

0

10.16 10.18 10.21 19.69

0

‘D

‘S

0

81942.5 82078.6 82385.3

2

6 7 8 9

W)

1

2s 2s

2

2p 2P

1 2

I

0.0

2

96375.0

z

96907.5

where X is the energy of the incident electron in units of the transition energy, X = E/ AE. The effective collision strength is defined as

y=yey sccRe-Yx dX

(1)

1

135

Atomic

Data and Nuclear

Data Tables,

Vol. 44, No. 1. January

(2)

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

ov 'P

‘S

'D ' 2s3d I I I

13

l2

2~3s

'\

I 2s3p '\ , \

248 \ "72 \I

'

3S

\

I

3D

2o

is9

/, 2781

2s3d ,"'

bw

"\

' \

'220

\ \

'\i

'I

3P

215

'

/

271

I

\

‘193

\

I ’ lo 2p2

'\

I

\I

I ',

‘,

\

I I

\ '\ l

/'

9

2p2

I I

\ ',A+,

I\

'1 %&g$I

\

I I

4'+2s2p 23 ; 1218 4

I630 I I 1 . 2s2('S)

1

I

/760/

/

Figure 1. Schematic energy-level diagram for 0 V. The term designations are shown across the top of the figure; the level numbers are the same as those in Table A; the wavelengths are approximate values in A.

and can be written Y = Y((GlY

+

a3)

+

where TL = log T, and T, indicates the electron temperature in degrees Kelvin. The excitation rate coefficients can then be calculated using the formula (with T, here in eV units),

1 - Y)/2

a4t

+ eY&(y) (a2 -

Q3Y

+ &Y2/2 + us/Y)),

(3)

where

R = 8.01 X 10-8e-y~/(wiT~‘2) K(Y)

= s ym(e-‘/t)dt,

s-l.

(6)

The derived parameters Ui (i = l-5) and bi ( i = l4) are listed in Table I and the calculated rate coefficients are given in Fig. III. The evaluated values in Ref. 17 are plotted by dashed lines for comparison. The excitation rate coefficients for the 2s’ ‘S-2p2 3P, ‘D, ‘S transitions differ from those in Ref. 17 by 30%- 100%. The excitation rate coefficient for 2s2 ‘S-2.~3~ ‘P is larger by 40% at 20 eV compared to that calculated by Mann (as quoted in Ref. 17) using the distorted wave method but agrees well at temperatures higher than 80 eV. For the 2s2 ‘S-2~3s ‘S and 2s3d ‘D transitions, the new data are smaller by about 50% and 30%, respectively, as shown in Fig. III.

(4)

and y = AE/ T,. The parameter a5 in Eq. (1) is derived from the Bethe limit as u5 = 4WiJj/AE for the allowed transitions, where Wi is the statistical weight of the lower level i,Aj is the absorption oscillator strength from level i to j, and AE is the excitation energy in rydberg units. For fine-structure transitions where the transition energy is very small compared to the electron temperature, the effective collision strengths are fitted by the formula logy = b1 + b2/TL + b3/TL2 -I- b4/TL3,

cm3

(5)

136

Atomic

Data and Nuclear

Data Tables,

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

The validity range of the given rate coefficients is 104K
Emission Lines from 0 V

1

3X

/’

1OOeV

'I ,,i/'

li/

Ionization and Recombination

Iv

The ionization process from ground and metastable levels becomes important when the electron temperature T, is higher than the equilibrium temperature T, (Ref. 5). The ionization rate coefficients are calculated by the Lotz formula 9l9 dividing through by statistical weights as in Ref. 9. The recombination process is included in our calculation for excited levels as well as for the ground level. The data from Ref. 20 are used for the ground state and are extrapolated for excited levels. Actually, the recombination process has no effect in our calculation. Population

_-----_

c-

I / / 0'

--

s=o s=o

-----

s(lv-v)=o,s(v~vl)+o s(lv-v)=o,s(v~vl)+o

--A

n(ON)=O.O S(lv-v)sO,S(v-vl)+O n(ON)=n(OV) Keenen et al (1984) 27eV

.jlOOeV

9

I

I

I

1

/

I

10

11

12

13

14

15

Log

n, (cmm3)

Figure 2. Population density of the metastable level 2.~2~ 3P, for r, = 20 and 100 eV as a function of electron density. Solid, dashed, and dash-dotted curves indicate the results without ionization processes (7’, = 20 and 100 eV), with ionization from 0 V to 0 VI ions (r, = 100 eV) and with ionization from both 0 V to 0 VI and 0 IV to 0 V ions (T, = 100 eV), respectively. The values from Keenan et al8 for 27 eV are shown by triangles.

Density

The population densities are calculated for the 20 levels shown in Table A under the assumption that the plasma is optically thin for all transitions considered. All the possible ionization and recombination processes from and/or to other ionic levels are taken into account. The rate equations for the population densities including ionization and recombination processes are described in Ref. 9. Be-like 0 V ions have metastable levels 2x2~ 3P0,,,2 for which the population density is comparable to the ground level for an electron density n, greater than 10” cme3, as shown in Fig. 2. The populations of these levels relative to that of the ground level tend to be constant for ~1,> lOI cme3 because of the small value ofthe transition probability from the 2s2p 3P to the 2s2 ‘S ground level. The calculated values of the populations at 20 eV agree well (within 10%) with those calculated by Keenan et al.* Ionization processes from 0 V 2s2p 3P to 0 VI 2s or 2p decrease the population of 2s2p 3P, whereas those from 0 IV 2s22p to 0 V 2s2p 3P and from 0 IV 2s2p2 to 0 V 2s2p 3P increase it. Ionization from 0 IV 2s22p also populates the ground level of 0 V 2s’ ‘S. Ionization rate coefficients are compared to excitation rate coefficients in Fig. 3. It is shown that for 2s2p 3Pthe ionization rate coefficient exceeds the excitation rate coefficient when the temperature range is above 100 eV. This effect is not important in an ionization equilibrium plasma where the electron temperature is as low as 20-30 eV. In an ionizing plasma at higher temperature such as in a tokamak or a

solar flare, this effect becomes important. The population of 2s2p 3P, relative to 2s2 ‘S is decreased by about 60% by the inclusion of the ionization process from 0 V, as shown in Fig. 2 for T, = 100 eV by the dashed curve. Further taking into account the ionization from 0 IV ions to all the levels of 0 V ions assuming n(0 IV) = n(0 V), where n(0 IV) represents the density of 0 IV ions, the relative population of 2s2p 3P, increases by 50% for T, = 100 eV; this is shown in Fig. 2 by a dash-dotted curve. The recombination process is not important for plasmas of T, > 5 eV but would be effective in a strongly recombining plasma at low temperatures. Since the excitation rate coefficients from the 2s2 ‘S ground level to the triplet levels are small, for n, > 10” cmm3, where the populations of the metastable levels 2s2p 3P are comparable to that of the ground level, the higherlying triplet levels are mainly populated from these metastable levels. At densities 10” < 12,< lo’* cmP3, the pop137

Atcmic

Data and Nuclear

Data Tables,

Vol. 44, No. I, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

I

I

and n, = lo9 cme3. However, the changes are within 10% for 12,> 10’ ’ cmm3 and negligibly small for it, > 1012 cmm3. At temperatures lower than 50 eV the changes are also within 10%.

1 . . . ..yy-2S2P(‘I ” ._., -...,_

. . . . .. . ..

Line Intensity Ratios

‘..._,

zs2p("P)-zpy3P)

~'A._,_

We present in this section the line intensity ratios of 0 V ions for density and temperature diagnostics. The spectral lines emitted from 0 V ions related to our calculations are listed in Table B (taken from Ref. 11); the visible and near-UV wavelengths listed are those in air. As we have discussed in the previous section, the populations of the metastable 2s2p 3P levels and other triplet levels vary with electron density and this is utilized for density diagnostics by the line ratio method. The most commonly used line ratio (wavelengths in A) for density diagnostics is Z(760.45, 760.23, 762.00, 761.13, 758.68,

F

- \__ _, 2s2p?P)-2s2p('P)

\;,,;s

'. \

1

2s2('S)-2s3pC'P)

I

10

10' T,

Emission Lines from 0 V

,&.

1 10'

(eW

1

Figure 3. Rate coefficients for excitation, recombination (a), and ionization (S) processes. The dotted portions extending the solid lines represent values extrapolated from Ref. 10.

----1(760)/1(630)

2 .g 0.1 2

ulation densities of such levels are approximately proportional to nz, while at higher densities, where the populations of the metastable levels are determined only by collisional processes, this changes to a linear dependence. Thus, the ratio of the intensity of a line excited from the metastable levels to a line excited from the ground level is density dependent for 10” < n, < lOI cmP3. The temperature dependence of the excitation rate coefficients to n = 3 levels from the ground or metastable levels is different from those to n = 2 levels because of the difference in the excitation energies. This result is used for temperature diagnostics. We have included proton excitation which is comparable to the electron excitation between fine-structure transitions for 2s2p 3P and 2p2 3P levels,21 because its effect on the populations is found to be large in hightemperature and lowdensity regions; for example, the population of 2s2p 3P2decreases by 35% at T, = 100 eV

s=o ---

-\

f

\

20eV 1OOeV

...-.. Finkenthal(l967)

----Doyle(l993)22eV

O.Ol-

1

I

9

,

10

1

I

11

12 Log

n,

I

13

I

14

I

15

I

16

(cm-?

Figure 4. Densitydependent line ratios for 1(760)/1(630), Z( 1218)/1(630) without ionization processes for T, = 20 (solid line) and 100 eV (dashed line). The calculated results from Ref. 1 (dotted line) and Ref. 3 (dash-dotted line) for 22 eV are also shown.

138

Atomic

Data and Nuclear

Data Tables.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

lines (see Fig. 5); their values are smaller than ours by 50% and 70% for 1(192.90)/1(248.46) and 1(192.80)/ l(220.35) at n, = IO9 cmm3, although the rate coefficients used in their calculation are not much different from ours. However, at densities higher than IO” cmM3, the agreement is good, within lo%, as shown in Fig. 5. The calculations by Huang et a1.4 agree with our calculations to within 30%. Our calculations including ionization and recombination processes are presented in Figs. I and II. The line intensities for multiplets are summed for the triplet system, except when the wavelength is written to the full precision of its value in Table B, in which case it is calculated only for one line. The ratios of lines from levels excited from the same level are a sensitive function of temperature when the difference in their excitation energy is greater than the

JjYyz3 -.A,/ /' ,,/’ _---

_*'

-

20eV

------

I O"

9

10

Emission Lines from 0 V

11

12 Log

1OOeV Widing 17eV 13 14

etal(1982) 15

16

ne (cme3)

TABLE B Figure 5. Density-dependent line ratios for 1(192.90)/1(248.46), 1(215.25)/1(220.35) and I( 192.80)/1(220.35) for r, = 20 eV (solid line) and 100 eV (dashed line) without ionization processes. Dashdotted lines are results from Ref. 2 for r, = 17 eV.

Prominent Emission Lines from 0 V Ions Wavelength” 172.17 192.8 192.9 215.245 215.103 215.040 220.35 248.46 270.98 286.45

759.44 2.~2~ 3P- 2p2 3P)/Z(629.73 2s2 ‘S- 2s2p ‘P). This intensity ratio is plotted in Fig. 4 as a function of electron density for T, = 20 and 100 eV. The intensity ratio I( I2 18 2s2 ‘S - 2s2p 3P)/Z(629.73) is also plotted in Fig. 4. The density-dependent intensity ratios I( 192.90 2s2p 3P2 - 2s3d 3D2.3)/1(248.46 2s2p ‘P - 2~3s ‘S), I(2 15.25 2s2p 3P2 - 2~3s 3S,)/ I (220.35 2s2p ‘P - 2s3d ‘D), l(192.80 2s2p 3Po.l - 2s3d 3D,,2)/Z(220.35) are shown in Fig. 5. The above calculations do not include any ionization processes to allow a comparison of our calculations with others that do not include ionization processes. In Fig. 4, the intensity ratio for 1(760)/1(630) is compared with those by Doyle et al.’ and by Finkenthal et a1.3The results in Ref. 3 give agreement to within 10% but those of Ref. 1 are smaller by more than 40% at n, = lOi cme3. Both works used R-matrix calculations for electron excitation rate coefficients.7,8 We have also found differences between our calculations and those by Widing et al.= for triplet

Transition 2s' 2s2p 2s2.v 2s2p 2s2p 2s2p 2s2p 2s2p 2p= 2~'

‘S 3Po,,‘Pz ‘P2 ‘P, ‘PO ‘P, ‘P ‘P2 ‘D -

2s3p’P 2s3d’D,.z 2s3d’Dz,J 2s3s3S, 2s3s3S, 2s3s3S, 2s3d’D2 2s3s’S 2s3p3Pz 2s3p’P

629.73 760.45 760.23 762.00 761.13 758.68 759.44 774.52 1218.34 1371.29

2s= 2s2p 2s2p 2s2p 2s2p 2s2p 2s2p 2s2p 2s2 2s2p

!S 3P2 3P, 3P2 3P, 3P, ‘PO ‘P ‘S ‘P

-

2s2p’P 2p2 ‘P2 2p= ‘P, 2p= 3P, 2p= 3P. 2p2 3P2 2p2 JP, 2p2 ‘S 2s2p3P, 2p= ‘D

278 I .O1 (air) 2786.99 (air) 2789.85 (air) 5 I 14.07 (air) 5597.91-5607.41 (air)

2s3ssS, 2~3s ‘S, 2~3s ?T, 2~3s ‘S 2s3p ‘P

-

2s3p3P2 2s3p3P, 2s3p3Po 2s3p’P 2s38D

’ In A, from Ref. I 1.

139

Atomic

Data and Nuclear

Data Tables,

Vol 44. No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

electron temperature. In Fig. I, the ratios of Z( 172)/1(630), Z( 193)/1(760), and Z(220)/1(248) are shown for n, = lo9 (solid line), 10” (dash-dotted line), and 1013cme3 (dashed line) as a function of electron temperature for n(0 IV) = 0.0. The dotted line shows the results for n, = lOi cme3 assuming n(0 IV) = n(0 V). The contribution of the ionization from 0 IV ions is negligible in this case. When the cross sections have different energy dependences even though the excitation energies are nearly the same, the line ratio is also sensitive to the electron temperature. In this case the ratio is density dependent as well, as shown in Fig. I for Z(2 15)/1(220), Z(2 15)/Z( 193), and Z( 193)/ Z(220). The intensity ratios in the singlet system such as Z(22O)/Z( 172) and 1(220)/1(248) exhibit small density and temperature dependence, as shown in Fig. II. The intensity ratios for T, = 20 eV (solid line), 40 eV (dash-dotted line), and 100 eV (dashed line) are shown as a function of the electron density assuming n(0 IV) = 0.0. For the case of n(0 IV) = n(0 V) for T, = 100 eV, the ratios are plotted as dotted lines. These ratios can be used to cross check the spectrometer sensitivity calibration. (It can be noted that on the scale of these figures, the dashed and the dotted lines nearly coincide.) Density-dependent line ratios involving the triplet system are also shown in Fig. II. Plots are given for the following: Z(760)/1(630), Z( 1218)/1(630), Z( 193)/1(248), Z( 193)/1(220), Z(2 15)/1(220), Z( 193/Z( 172) Z(2 15)/ Z(193), 1(271)/1(215), 1(2781.01)/1(193), Z(2781.01)/ Z(2 15) 1(760.45)/1(630), and Z(270.98)/1(2 15). As indicated by the truncations of the wavelength values, the intensities are those of the summed multiplets for the triplet transitions except for the last four sets, where particular single lines are being represented.

Acknowledgments

The authors thank Mr. N. Yamada for making graphs and tables of rate coefficients and Dr. K. Masai for useful comments.

References

1. J. G. Doyle, P. L. Dufton, F. P. Keenan, and A. E. Kingston, Sol. Phys. 89,243 (1983) 2. K. G. Widing, J. G. Doyle, P. L. Dufton, and A. E. Kingston, Astrophys. J. 257, 9 13 (1982) 3. M. Finkenthal, T. L. Yu, S. Lippmann, L. K. Huang, H. W. Moos, B. C. Stratton, A. K. Bhatia, R. D. Bengston, W. L. Hodge, P. E. Philips, J. L. Porter, T. R. Price, T. L. Rhodes, B. Richards, C. P. Ritz, and W. L. Rowan, Astrophys. J. 313,920 (1987) 4. L. K. Huang, S. Lippmann, B. C. Stratton, H. W. Moos, Phys. Rev. A 37,3927 (1988)

and

5. T. Kato, K. Masai, and K. Sato, Phys. Lett. A 108, 259 (1985) 6. Y. Ogawa, K. Masai, T. Watari, R. Akiyama, R. Ando, J. Fujita, Y. Hamada, S. Hirokura, K. Ida, K. Kadota, E. Kako, 0. Kaneko, K. Kawahata, Y. Kawasumi, S. Kitagawa, T. Kuroda, K. Matsuoka, A. Mohri, S. Morita, A. Nishizawa, N. Noda, I. Ogawa, K. Ohkubo, Y. Oka, S. Okajima, T. Ozaki, M. Sasao, K. Sato, K. N. Sato, S. Tanahashi, Y. Taniguchi, K. Toi, and H. Yamada, IPPJ-903 (1989) Nucl. Fusion, 29, 1873 (1989) 7. P. L. Dufton, K. A. Berrington, P. G. Burke, and A. E. Kingston, Astron. Astrophys. 62, 111 (1978) 8. F. P. Keenan, K. A. Berrington, P. G. Burke, A. E. Kingston, and P. L. Dufton, Mon. Not. R. Astron. Sot. 207,459 (1984)

Conclusions The ionization

Emission Lines from 0 V

process from the metastable 0 V

2s2p 3P state to the 0 VI 2s and 2p states decreases its

9. T. Kato, K. Masai, and J. Mizuno, J. Phys. Sot. Jpn. 52, 3019 (1983); Errata, 54, 3203 (1985)

population relative to that of the ground state as the temperature increases; the ratio n(2s2p ‘P)/n(2s2 ‘S) decreases by lo%, 40%, and 60% at T, = 50, 80, and 100 eV, respectively. On the other hand, the ionization from 0 IV ions to 0 V 2s2p 3P increases the relative population of the metastable state by lo%, 30%, and 50% at T, = 50, 80, and 100 eV for ion density n(0 IV) = n(0 V). The changes in population caused by the inclusion of ionization processes can thus be substantial and are important in an ionizing plasma such as a tokamak where the temperature is comparatively higher than that for ionization equilibrium. Proton excitation is also important for hightemperature and low-density plasmas. The detailed analysis of measurements obtained from the tokamaks will be published in a separate paper.

10. K. A. Berrington and A. E. Kingston, in preparation 11. C. E. Moore, NSRDS-NBS

3, Sect. 9 (1980)

12. C. E. Moore, NSRDS-NBS

3, Sect. 10 (1982)

13. C. E. Moore, NSRDS-NBS

3, Sect. 8 (1979)

14. A. Hibbert, J. Phys. B 13, 1721 (1980) 15. D. R. Flower and H. Nussbaumer, Astron. Astrophys. 45, 145 (1975) 16. W. L. Wiese, M. W. Smith, and B. M. Glennon, NSRDS-NBS 4, Vol. 1 (1966); G. A. Martin, W. L. Wiese, J. Phys. Chem. Ref. Data 5, 537 (1976) 140

Atomic

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO,

J. LANG,

and K. E. BERRINGTON

17. Y. Itikawa, S. Hara, T. Kato, S. Nakazaki, M. S. Pindzola, and D. H. Crandall, ATOMIC DATA AND NUCLEARDATATABLES 33, 149(1985) 18. T. Kato and S. Nakazaki, ATOMIC DATA CLEAR DATA TABLES 42, 3 13 ( 1989)

AND

Emission

Lines

from

0 V

19. W. Lotz, Astrophys. J. Suppl. 14, 207 (1967) 20. S. M. V. Aldrovandi and D. Pequignot, trophys. 251, 137 (1973)

Nu-

Astron. As-

21. J. G. Doyle, A. E. Kingston, and R. H. Reid, Astron. Astrophys. 90, 97 (1980)

141

Atomic

Data

and

Nuchxw

Data

Tables,

Vol.

44,

NO.

1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

EXPLANATION rABLE

Emission Lines from 0 V

OF TABLE

I. Fit parameters for the Recommended

Effective Collision

Strengths

Fit parameters are tabulated for each excitation process of 0 V. Transitions between energy terms are listed first, followed by transition between the triplet fine-structure levels. Transitions between fine-structure levels which belong to the same term (AE = 0) are given last. The notation 2s2 ‘S - 2s2p 3P for example, means excitation from the lower level 2s’ ‘S to the upper t&let term 2s2p 3P, while 2s2p 3Po- 2p2 3P2indicates a transition between fine-structure levels. AE Excitation energy in eV Fit parameters in Eq. (3) (AE # 0) al, a2, a3, a4, a5 Fit parameters in Eq. (5) for transitions between fine-strucbl, b2, b3, b4 ture levels belonging to the same term (AE = 0) The excitation rate coefficients can be calculated by using Eq. (6).

142

Atomic

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

EXPLANATION FIGURE

I.

Emission Lines from 0 V

OF FIGURES

Line Intensity Ratios vs Temperature Ionization processes are included in the line intensity calculations. The curves shown are for electron densities n, = lo9 cmp3 (solid line), 10” cmm3 (dash-dotted line), and lOI cme3 (dashed line) for n(O IV) = 0 and 1013 cme3 assuming n(0 IV) = n(0 V) (dotted line). Plots are given for Z( 172)/ Z(630), Z( 193)/1(760), 1(220)/1(248), 1(215)/1(220), Z(2 15)/Z( 193) and Z( 193)/ Z(220).

FIGURE

II.

Line Intensity Ratios vs Density Ionization processes are included in the line intensity calculations. The curves shown are for electron temperatures T, = 20 eV (solid line), 40 eV (dash-dotted line), and 100 eV (dashed line) for n(0 IV) = 0 and 100 eV assuming n(0 IV) = n(0 V) (dotted line). Plots are given for Z(22O)/Z( 172) and 1(220)/1(248) in the singlet system and for the following cases involving the triplet system: 1(760)/1(630), Z( 1218)/1(630), Z( 193)/1(248), Z( 193)/1(220), Z(2 15)/1(220), Z( 193)/Z( 172), Z(2 15)/Z( 193), Z(27 l)/Z(2 15) Z(278 1.Ol)/Z( 193) Z(278 1.01)/1(2 15) Z(760.45)/1(630), and Z(270.98)/Z(2 15). Ordinate

Abscissa FIGURE

III.

Line intensity ratio for the lines indicated at the top of the graph. Wavelengths (in & refer to transitions as indicated in Fig. 1 and Table B in the text. In the case of transitions involving triplets, truncation of the decimal in the wavelength indicates that line intensities for multiplets are summed. Electron temperature, T, (in eV), or the electron density, n, (in cme3).

Recommended

Excitation

Rate Coefficients

Excitation rate coefficients (cm3 SC’) are plotted against electron temperature T, (eV). Transitions between energy terms are shown first, followed by transitions between the triplet fine-structure levels. Transitions between fine-structure levels which belong to the same term (AE = 0) are given last. Dashed lines indicate values from Ref. 17. The initial and final states are given at the top of each figure using the same notation as that in Table I.

143

Atomic

Data

and

Nuclear

Data

Tables,

Vol.

44,

NO.

1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

TABLE

Emission Lines from 0 V

I. Fit Parameters for the Recommended See page 142 for Explanation

2sz

‘s

-

2s2p

3p

1.02E’Ol

2s2

‘s

-

2s2p

‘P

2.06E+Ol

2sz

‘s

-

2pz

3P

2.66E+Ol

2s’

‘S

-

2~’

‘D

2.96E+Ol

2sz

‘s

-

2p*

‘s

3.69E+Ol

2s’

‘S

-

2~3s

‘5

6.78E+Ol

2s’

‘S

-

2~3s

‘S

6.96E+Ol

2s’

‘S

-

2s3p

‘P

7.2OE+Ol

2s*

‘s

-

2s3p

3p

7.22E+Ol

l.O8E-03

3.55E-02

2s’

‘S

-

2s3d

b

7.46E+Ol

2.50E-03

3.10E-02

2s’

‘S

-

2s3d

‘D

7.64E+Ol

4.51E-01

1 .OLE+Ol

l.O4E-02 2.55EtOl

2.07E+OO

Strengths

-3.71E+OO

2.49E+OO

6.65E-01

2.75E-01

0.0

1.44E-02

4.82E-02

-5.63E-02

4.25E-01

-4.85E-01

-6.91E-04

9.27E-02

-6.46E-03

-8.79E-03

1.73E-01

-5.98E-01

5.58E-01

0.0

1.32E+OO

-2.87E+OO

1.75EtOO

0.0

1.7lE-01

0.0

1.66EtOO -8.40E-05 l.O6E-02

3.12E-02 -2.08E-01

l.l9E-01

-4.31E-01 3.87E+OO

-7.44E-02 l.O8E-01 2.59E-02

-6.44E-02

1.30E-01 -8.69E-03

1.40E+OO 0.0 0.0 0.0

2.95E-01 0.0 0.0

6.76E-02

0.0

4.23E+OO

0.0

3P -

2s2p

2s2p

3P -

2p’

3P

1.64E+Ol

2s2p

‘P

-

2p*

‘D

l.SLE+Ol

-4.21E-02

2.39E+OO

2s2p

JP -

2p2

‘s

2.67E+Ol

-l.l4E-03

2.60E-02

5.92E-01

-5.87E-01

252~

‘P

-

253s

?S

5.76E+Ol

1,37E+OO

4.72E+O4

-4.72E+04

0.0

2s2p

‘P

-

253s

‘S

5.94iz+01

7.8lE-03

3.05E-01

- 1.62E+OO

1.74E+OO

0.0

2s2p

‘P

-

2~3~

‘P

6.19E+Ol

-2.42E-02

6.73E-01

-2.06E+OO

1.89E+OO

0.0

2s2p

‘P

-

2s3p

‘P

6.20E+Ol

-6.99E-01

1.71E+Ol

-3.74E+Ol

2.4OE+Ol

0.0

2s2p

‘P

-

2s3d

‘0

6.44E+Ol

2s2p

‘P

-

2s3d

‘D

6.62E+Ol

-l.OlE-03

l.l2E-01

-1.30E-01

5.01E-01

0.0

2s2p

‘P

-

2p2

3P

6.04E+OO

-5.62E-02

3.91E+OO

-l.OSE+Ol

8.77E+OO

0.0

2s2p

‘P

-

2p*

‘D

6.96E+OO

9.62E+OO

-l.OOE+Ol

9.38EtOO

0.0

1.94E+OO

252p

‘P

-

2p2

‘s

1.63E+Ol

4.61EtOO

-5.66E+OO

3.70EtOO

0.0

2.06E-01

2s2p

‘P

-

2~3s

‘S

4.73E+Ol

2.59E-01

-1.07EtOO

1.24E+OO

2s2p

‘P

-

2~3s

‘S

4.90E+Ol

1.3lE-02

0.0

2s2p

‘P

-

2s3p

‘P

5.15E+O

2.02E+OO

-5.34E+OO

3.95E+OO

0.0

2s2p

‘P

-

2s3p

‘P

5.16E+ol

-2.54E-04

2.13E-01

-7.59E-01

1.08E+O0

0.0

252~

‘P

-

2s3d

‘D

S.LOE+Ol

-4,02E-03

5.46E-01

-1.42EtOO

1.65E+OO

0.0

2s2p

‘P

-

2s3d

‘D

5.58E’Ol

2.37EiOO

-3.34E+OO

6.16E-02

1.99E+Ol

-6.37E+Ol

-3.9lE+Ol

B.llE+OO

-1.24E+Ol

-1,06E-02 1 .BOE-01 1

4.60E-02

-l.O6E-02

-1.73E+Ol

0.0

-2.85E+OO

8.74E-01

0.0

7.63EtOO

0.0

2.04E+OO

0.0

0.0 4.6lE-02

5.38E-01

0.0 4.7lE-02

5.4lE-01 0.0

- 1.61 E+OO

5.52E-01

0.0

1.60E-01

-8.63E-01

l.l7E+OO

0.0

8.44E-02

-4.5lE-01

5.44E-01

0.0

2~’

‘D

2.94E+OO

2p’

3P -

2pz

‘s

l.O3E+Ol

-2.12E-02

1.20E+OO

2pz

3P -

2.53s

as

4.12E+Ol

-4.04E-03

2p’

‘P

2~3s

‘S

4.30E+Ol

-2.45E-03

144

4.37E+Ol

_ 5.16E+Ol

-

-

-6.OOE+OO

1.54E-01

0.0

2s2p

2P 2 ‘P

‘P

-2.52E-02

Effective Collision of Table

Atomic

Data and Nuclear

Data Tables,

Vol. 44. No. 1, Janualy

1990

KATO, J. LANG, and K. E. BERRINGTON

T.

TABLE I. Fit Parameters for the Recommended

Emission Lines from 0 V

Effective Collision

Strengths

See page 142 for Explanation of Table

2P : 3P -

2s3p

?P

4.%E+Ol

-2.75E-02

9.65E-01

-4.07E+OO

4.05E+OO

0.0

2P ’ ‘P

-

2s3p

‘P

4.56E+ol

-8,76E-02

Z.OOE+OO

-8.27E+OO

8.87EtOO

0.0

2P ’ ‘P

-

2s3d

‘D

4.80E+Ol

3.56E-01

-5,OBE+OO

7.16E+OO

0.0

2P ’ ‘P

-

2s3d

‘D

4.97EtOl

4.20E-01

-1.82E+OO

1.99E+OO

0.0

1.33E-02

0.0

2p2

1D -

2pz

‘s

7.36E+oo

1.98E-01 -1.74E-02 3.92E-01

-1.%X-01

!i.OOE-02

2P ’ ‘D

-

2~3s

‘S

3.83EtOl

-7.35E-03

2.56E-01

-1.30E+OO

l.f?lE+OO

0.0

2P ’ ‘D

-

253s

‘S

4.00E+Ol

-l.l3E-04

6.19E-01

-2.51E+OO

2.49E+OO

0.0

2P 2 ‘0

-

2s3p

‘P

4.2%+01

2s3p

3P

4.27EtOl

-1.44E-02

4.80E-01

-2.32E+OO

‘2.74E+OO

0.0

-2,06E-02

6.31E-01

-3,OOE+OO

3.46EtOO

0.0

-B.L$E-03

- 1.21E+OO

2.18E+OO

0.0

2.)3E-02

-1.68E-01

3.1OE-01

0.0

2.35E-02

-2.27E-02

l.O3E-01

0.0

2P 2 ‘D

6.64E-01

-2.55E+OO

2.70E+OO

0.0

2.30E-02

2P ’ ‘0

-

2s3d

b

4.50EtOl

33’

‘D

-

‘2s3d

‘D

C.GBE+Ol

2P ’ ‘S

-

2~3s

‘5

3.09E+Ol

2P 2 ‘s

-

253s

‘s

3.27EtOl

1.25E-03

2P 2 ‘s

-

2s3p

‘P

3.51E+Ol

1.55E-01

2P ? ‘s

-

2s3p

3P

3.53E+Ol

-4.76E-03

1.59E-01

-7.33E-01

8.54E-01

0.0

2p2

‘S

-

2s3d

‘D

3.77E+Ol

-3.13E-03

l.O6E-01

-5.13E-01

6.59E-01

0.0

2P’

‘S

-

2s3d

‘D

3.94E+Ol

5.&Z-02

8.49E-02

-3.65E-01

4.97E-01

0.0

2.98E-02

8.25E-02

5,45E+OO

-3.94E+OO

0.0

-2,33E+OO

2.78EtOO

0.0

0.0

2.24E-01 -1.73E-04

-8.50E-01

9.99E-01

0.0

1.1 lE-02

2~3s

‘5

-

2.~3s

‘S

1.77E+OO

2s3s

3s

-

2s3p

‘P

4.22EtOO

2~3s

‘S

-

2~3~

?

4.39Etoo

B.lBE+Ol

-4.96E+Ol

7,07E+Ol

2~3s

as

-

2s3d

‘0

6.76EtOO

6.64E+OO

-6.92E+OO

1.20E+Ol

253s

‘S

-

2534

‘D

&53E+OO

3.54E-03

2s3s

‘s

-

2s3p

‘P

2.45E+OO

1,17E+Ol

2~3s

‘S

-

2s3p

‘P

2.63E+OO

‘253s

‘S

-

2s3d

‘D

1.99EtOO

1.95E-02

253s

‘S

-

2s3d

‘D

6.76E+OO

1.80E+OO

2s3p

‘P

-

2s3p

?J

1.77E-01

2.30E-01

3.36E+Ol

253~

‘P

-

2s3d

‘D

2.54E+OO

2.51E-02

3.17E+OO

2s3p

‘P

- 2s3d

‘D

4.31E+OO

3.75E+Ol

-7,87E+Ol

7.47E+01

0.0

2.27E+OO

2s3p

‘P

-

2s3d

=D

2.37E+OO

1.90E+02

-&90E+02

7.81E+O2

0.0

2.37E+OO

2s3p

‘P

- 2s3d

‘D

4.14E+OO

-4.546-03

2.54E+OO

2s?d

‘D

-

‘D

1.77E+OO

-1.52E-02

1.92E+Ol

252p

JP,

-

2p’

P,

1 .fxE+Ol

6.65E-02

-3.53E-01

2s2p

3P,

-

2p2

3P,

1 .GLE+Ol

l.l4E+OO

-1.44.E-01

2s3d

-l.O3E-02

l.lBE+OO

6.17E-01

-T.Z9E-01

-3.78E+Ol

5.23E+Ol

-5.96E-03

1.32E+OO 7.83E-01 -l.l2E+OO

145

-2.5lE-01 3.89E-01 1.13E+OO -6.41E’Ol 537E+OO

2.56E+OO

1.63E+Ol

-5.69E+OO

0.0

1.59E-01

0.0

0.0

4.59EtOO

-3.41E-01

0.0

-5.31E-01

0.0

0.0

1.61E-02

1.43E+Ol

0.0

-6.95E+OO

0.0

-3.48E+OO

0.0

-8.95E+OO

0.0

6.91E-01

-3.93E-01

0.0

3.97E-01

0.0

5.96E-01

-1.06E’Ol

Atomic Data and Nuclear

Data Tables.

Vol. 44. NO. 1. .hnuary

1990

T. KATO, J. LANG, and K. E. BERRINGTON

rABLE

Emission Lines from 0 V

I. Fit Parameters for the Recommended Effective Collision Strengths See page 142 for Explanation of Table AE(eV)

2s2p

3P, -

2p2

2s2p

3P, -

2s3p

2s2p

3P, -

2s2p

‘P,

2s2p

3P,

al

a2

aa

l.O5E-01

-5.OBE-01

3P,

6.20E+Ol

9.12E-02

3.42E-01

-&llE-01

5.15E-01

0.0

2s3p

‘P,

6.20E+Ol

&77E-02

-2.76E-01

2.66E-01

0.0

-

2s3p

‘P,

6.20EtOl

2.94E-01

-8.31E-01

6.31E-01

0.0

‘P,

-

2s3d

“D,

6.44E+Ol

l.l6E+OO

-4.96E-01

2s2p

‘P,

-

2s3d

‘D,

6.44E+Ol

1.52E-02

-6.61E-03

-2.55E-02

2s2p

‘P,

-

2s3d

‘D3

6.44E+Ol

3.85E-02

-7.45E-02

5.94E-02

2s2p

3P,

-

2p2

3Pa

1.64E+Ol

2.25EtOO

-2.46EtOO

1.66EtOO

0.0

l.Q9E-01

2s2p

3P,

-

2p2

3P,

1.64E+Ol

1.69E+OO

-1.57E+OO

1.05EtOO

0.0

1.49E-01

2s2p

3P,

-

2pz

3P,

1.64E+Ol

2.84E+OO

-2.95E+OO

1.99E+OO

0.0

2.48E-01

252~

‘P,

-

2s3p

‘P,

6.20EtOl

2s2p

‘P,

-

2s3p

‘P,

6.20E+Ol

2s2p

‘P,

-

2s3p

3P,

2s2p

3P,

-

2s3d

2s2p

3P,

-

2s2p

3P,

2s2p

3P,

2.23E-03 -4.22E-01

-5.64E-04

-5.77E-01

0.0

1.64E+Ol

-2.78E-03

9.97E-01

a4

0.0

5.38E-01

6.47E-02

0.0

3.1 LE-02

0.0

6.62E-02

-2.28E-01

2.37E-01

0.0

1.27E-01

2.25E+OO

-4.96EtOO

3.1 SE+00

0.0

6.20E+Ol

1.23E-02

7.55E-01

-2.26E+OO

l.BOE+OO

0.0

3D,

6.44E+Ol

4.21E-01

-5.42E-01

3.99E-01

0.0

1.35E-01

2536

3D,

6.44E+Ol

1.20E+OO

-1.39E+OO

KlQE-01

0.0

4.03E-01

-

2s3d

3D,

6.44E+Ol

3.04E-02

1.94E-01

-4.65E-01

-

2pz

3P,

1.64E+Ol

l.OlE-01

-4.67E-01

8.93E-01

2s2p

3P, -

2p2

3P,

1.64E+ol

3.23E+OO

-3.89E+OO

2s2p

3P,

-

2p2

3P,

1.64E+Ol

9.61E+OO

-l.l8E+Dl

2s2p

‘P,

-

2s3p

3P,

6.20E+Ol

-2.82E-03

2.53E-01

-6.79E-01

5.22E-01

0.0

2s2p

‘P,

-

2s3p

3P,

6.20E+Ol

523E-03

7.47E-01

-2.19EtOO

1.75E+OO

0.0

2s2p

$P, -

2s3p

3P,

6.20E+Ol

-5.OQE-02

5.83E+OO

-1.26E+Ol

7.99E+OO

0.0

2s2p

‘P,

-

2s3d

‘D,

6.44E+Ol

1.23E-01

-2.76E-01

2.93E-01

0.0

5.36E-03

2s2p

‘P,

-

2s3d

‘D,

6.44E+Ol

6.46E-01

-l.O2E+OO

7.89E-01

0.0

8.05E-02

252~

‘P,

-

2s3d

‘D,

6.44EtOl

2.38E+OO

-2.31E+OO

1.22EtOO

0.0

L.SlE-01

4.55E-01

-2.03E+OO

2.80E+OO

2~’

‘P,

-

2s3p

‘P,

4.56EtOl

2p*

‘P,

-

2s3p

‘P,

4.56E+Ol

-3.60E-03

1 .OLE-01

2P’ ‘P,

-

2s3p

‘P,

4.56E+Ol

-3.49E-03

2~’

‘P,

-

2s3d

3D,

4.80E+Ol

3P,

-

2s3d

‘D,

2P ’ 3P,

-

2s3d

2P ’ 3P,

-

?D*

+,

2p”

?,

2P



4.46E-01

0.0

-5.06E-01

0.0

2.58E+OO

0.0

1.49E-01

7.89E+OO

0.0

4.64E-01

-1.20E+OO

0.0

-3.99E-01

4.21E-01

0.0

l.O7E-01

-4.65E-01

4.91E-01

0.0

-1.36E-03

4.42E-02

-1.86E-01

2.32E-01

0.0

4.130E+Ol

-2.BBE-03

7.04E-02

-2.78E-01

3.21E-01

0.0

3D,

4.80E+Ol

-1.46E-03

3.83E-02

-2.06E-01

2.56E-01

0.0

2s3p

‘P,

4.56E+Ol

-2.50E-03

9.75E-02

-3.88E-01

4.16E-01

0.0

-

2.~3~

‘P,

4.56E’Ol

-6.QOE-03

1.66E01

-7.67E-01

8.78E-01

0.0

-

2s3p

3P,

4.56E+Ol

-7.28E+OO

0.0

2.74E+OO

146

-1.27E+Ol

1.77E+Ol

Atomic Data and Nuclear

Data Tables.

Vol. 44. NO. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

TABLE I. Fit Parameters for the Recommended Effective Collision Seepage 142 for Explanation of Table

Strengths

AE(eV1

2p’

33 ,

-

2s3d

3D,

4.aoE+ol

-S.SlE-04

9.05E-02

-4.34E-01

5.57E-01

0.0

2~’

‘P,

-

2s3d

‘0,

4.80E+Ol

-6.16E-03

1.69E-01

-7.1’2E-01

&65E-01

0.0

2p2

3P,

-

2s3d

‘D,

4.80E+Ol

-4.95E-03

1.24E-01

-6.51E-01

8.55E-01

0.0

2~’

‘P,

-

2s3p

‘P,

4.56E+Ol

-2.40E+OO

0.0

2~’

‘Pz

-

2s3p

“P,

4.56E+Ol

-2.52E-03

1.57E-01

-9.53E-01

1.22E+OO

0.0

2p2

3P, -

2s3p

3P,

4.56E+Ol

-1.77E-01

6.17E+OO

-2.65EtOO

2.86E+OO

0.0

1.13EtOO

-4.66E+DO

6.26EtOO

2P ’ ‘P,

-

2s3d

‘D,

4.80E+Ol

-1.37E-03

6.42E-02

-4.02E-01

5.47E-01

0.0

2~’

‘P?

-

2s3d

‘D,

4.80E+Ol

-3.05E-03

1.4OE-01

-7.93E-01

1 .OBE+OO

0.0

2p2

3P,

-

2s3d

‘D,

4.8OE’Ol

-5.lLE-03

1.26E-01

-9.24E-01

1.56E+DO

0.0

253~

‘P,

-

2s3d

‘0,

2.37E+OO

2.50E+Ol

253~

‘P,

-

2s3d

‘0,

2.37E+OO

3.57Et02

-2.34E+02

0.0

2.52E-01

-1.46E+OO

0.0

2s3p

‘P,

-

2s3d

‘D,

2.37E+OO

2.29E-01

-8.61E-01

5.56EtOO

-5.26E+OO

0.0

2s3p

3P, -

2s3d

3D,

2.37E+OO

1.91E+Ol

-1.23E+02

2.63E+02

-1.86E+02

0.0

2s3p

3P,

-

2s3d

‘D,

2.37EtOO

4.35E+Ol

-1.49E+02

1.36Ei02

2s3p

‘P,

-

2s3d

‘D,

2.37E*OO

1.55E+OO

-1.52E+Ol

5.20E+Ol

253~

‘I’,

-

2s3d

‘D,

2.37E+OO

1.38E+OO

-3.92E+OO

5.33E+OO

2s3p

‘P,

-

2s3d

‘D,

2.37E+OO

1.66E+Ol

-5.70E+Ol

5.48E+O

2s3p

‘P,

- 2s3d

‘D,

2.37E+OO

7 70E+Ol

-2.41Ec02

2.18Ec02

-l.l7E-02

-1.57E+02 l.ZLE+OO

147

0.0

1.77E+OO

-4.03E+Ol

1

0.0

0.0

3.86E-02

0.0

3.50E-01

0.0

1.98E+OO

Atomic Data and NucWr

Data Tables.

Vol. 44. No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

TABLE I. Fit Parameters for the Recommended See page 142 for Explanation AE(eV)

bt

Emission Lines from 0 V

Effective Collision

Strengths

of Table

b,

b,

b,

2s2p

3P,

- 2s2p

3P,

O.OOE+OO

-6,47E+OO

2s2p

3P,

- 2s2p

OP,

O.OOE+OO

-2.23E+OO

2s2p

3P, -

OP,

O.OOE+OO

-1.42E+Ol

1.63E+02

-7.65E+02

l.O7E+03

2s2p

6.52E+Ol -1.29E+Ol

-2.07Ec02 2.46Et02

1.94E+02 -6.49E+02

2pz

3P,

-

2p2

3P,

O.OOE+OO

-2.13E+Ol

3.09E+02

- 1.53Et03

2.53E+03

2pz

3P,

-

2p2

3P,

O.OOE+OO

- 1.56E+Ol

2.23E+02

-1

1.60E+03

2p2

3P,

-

2p2

3P,

O.OOE+OO

-2.96E+Ol

4.47E+02

-2.25Et03

3.75E+03

lOE+03

2.~3~

‘P,

-

2s3p

“P,

O.OOE+OO

-l.LlE+Ol

1.56E+02

-5.84Et02

7.36E+02

2s3p

‘P,

- 253~

‘P1

O.OOE+OO

- 1.20E+ol

1.54E+02

-6.46Et02

9.06E+02

2s3p

‘PI

-

2s3p

‘P,

O.OOE+OO

-9.74E+OO

1.21 E+02

-4.56Et02

576E+02

2s3d

‘D,

-

2s3d

‘D,

O.OOE+OO

-1.96E+Ol

2.64E+02

-1.16Ei03

1.69E+03

2534

‘D,

-

2s3d

‘Da

O.OOE+OO

-9.71E+OO

9.16E+Ol

-2.17E+02

2.46E+Ol

2s3d

‘D,

-

2s3d

‘D,

O.OOE+OO

- l.BSE+Ol

2.49E+02

-l.O6E+03

lS6E+03

148

Atomic

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO,

J. LANG,

Emission

and K. E. BERRINGTON

Lines

from

0 V

FIGURE I. Line Intensity Ratios vs Temperature See page 143 for Explanation of Figures I(1721 / I(630)

I(1931

/ I(7601

1 o”

0 Y 2 10“ x Y VI c 0 Y c

10

-2 10'

lo2

Te(eV)

lo3

Te(eV)

I(220) / I(2481

I(2151 / I(2201

10’

0 Y cz 1 o” x Y v) c a + c

I

1 o-’

I

I

IllIll

10'

I

1 o2

I

I

Ill11

1 o-2 1 o3

I

I

I

I

III//1

10'

I

lo2

TeCeVl

I

ll/ll

lo3

Te(eV1

149

Atomic

Data and Nudear

Data Tables,

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE I. Line Intensity Ratios vs Temperature Seepage143for Explanation of Figures I(2151 / I(1931 10’

I

I I II/II;

I(193) I I(220)

I

I

I

I

I

lllll(

Illll

-l

I

/ 0 -+ c2 1 o” * Y 111 :Y c

10“

I

I

I111111

1o2

lo3

Te(eV1

Te(eV)

150

Attic

Data and NutWar

Data Tables.

Vol. 44, No. 1, January

1990

T. ICATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE II. Line Intensity Ratios vs Density Seepage143 for Explanation of Figures 1(220)/1(248)

im

10’

10’

0

0

-<.

d CL

d (L

1o” x +. 01 c 0) .4c

ul

10-l -3 1

ne(cm

-3 neCcm

1(76O)/I(630)

I

I(1218) / I(630)

10'

0

“1 o” [L

x

51 o-’ c al

12

1o13

,o14

1o15

1ol6

1

-3

ne

(cm

I

ne(cm

151

Atomic

Data and Nucbar

I

Data Tables.

Vol. 44, NO. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE II. Line Intensity Ratios vs Density Seepage143for Explanation of Figures 1(193)/1(248)

loo _.-- -

x Y ul c a! Y c -1 -1 1n

lo9

1o'O

10"

1o12

lOI -3

ne(cm

lOI

1015

1o16

'"

lo9

1o'O

10"

lo'*

1o13

lo'&

lOI

1o16

lo'&

lOI

1016

-3 1

ne(cm

I(215) / I(220)

I

I(193) / I(172)

+ d

a

I”

lo9

1o'O

10"

lo'* ne(cm

1013 -3

1014

1o15

1o16

lo9

1o'O

10"

lOI2

lOI -3

ne(cm

1

152

Atomic

Data and Nudear

I

Data Tat&s.

Vol. 44. NO. 1, January

1990

J. LANG, and K. E. BERRINGTON

T. KATO,

FIGURE

Emission Lines from 0 V

II. Line Intensity Ratios vs Density

See page 143 for Explanation

of Figures

I(2151 / I(1931

1 o”

I(2711 / I(2151

C’“““‘1’ ’“““/ ’ “““‘l ’ “““‘/ ’ ’“““/ ’ “““‘i ’ “‘1

0 Y

d lY

, I

-1

10

I /lllllll

I I

I llllllli

I I

I llllllll

I IIlllll~

I

I Illlllll

, I

I lIlllI/~

I I

I II

1A -2

I I lllllll

/ I

I I lllllli

,

I I lilllll

/ /

I I l/llll~

I I lllllll

-3 ne(cm

I(2781.01)

,

/

! I lllllll

I I III

-3 I

ne(cm

/ I(193)

I(2781.01)

I

/ I(2151

loo

ne(cm

-3

I

-3 ne(cm

153

AtOmic Data and Nuclear

I

Data Tab%

Vol. 44, No. 1. Jamaw

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE II. Line Intensity Ratios vs Density Seepage143for Explanation of Figures U760.45) / I(630) 1on

.I IIIIlIl~

I lllllll~

I lllllll; I

I llllill~ I I

I(270.98)

I lllllll~ ,

/I(219

I /Ill I

1ox Y -

x c

YI c al Y c

VI c a + c

ne(cm

t

t

-3

-3 I

neCcm

154

Atomic

Data and Nuckdar

>

Data Tables,

Vol. 44. NO. 1, Jmualy

1990

Emission Lines from 0 V

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

See page 143 for Explanation 2s

2

1

s

-

2s2p

2s

3P

2

I

s

-

2s2p

‘P

c-

m ‘0

Rate Coefficients

of Figures

-

X-

‘0 -

=

I II/Ill;

I I llllll~

IIIIIII~

I

I I lllltq -

-

‘0

2 I !IO !

1o”

llllllli

10’

1 o2

T.

2s

2

I

s

-

1 o3

10'

(eV)

2p2

1 o2

T.

3P

2s

2

1

5

-

1 o3

CeV)

2p2

‘0

a.

‘0

” ‘0

2 ‘0

z!

2

‘0

‘0

1 o”

T.

10’

(eV)

T.

155

Atomic

1 o2

1 o3

(eV)

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2

2s

I

s

-

2p2

Emission Lines from 0 V

III. Recommended Excitation Rate Coefficients See page 143 for Explanation of Figures 's

2s

2

1

S

-

2~3s

%i

01

IO

I

I ll/lll~

I

I lllIIl~

I I /

I I I I

j I

I I I

I

I III

!

II!/

” IO

‘0

N ‘0

I

2 ‘0

I

I

!

II/II:

loo

I

IIIIIIII

10'

2s

2

I

S

lo2

T.

(eV)

-

2~3s

I

I

lo3

lIlll/ll

loo

'5

2

T.

1

(eV1

-

2s3p

S

I

lo2

T.

I IllIll;

Ilill

lo3

'P

i / I / I I

-

lo2

/I/Ill/1

10'

2s m ‘0

10'

I

/ /

-

lo3

(eV)

T.

156

Atomic

(eV1

Data and Nudear

Data Tables.

Vol. 44. No. 1, Jammy

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 2s

2

I

s

-

2s3p

3P

2s

2

I

S

-

2s3d

%

c-

10'

lo2

T.

2s

2

I

s

1o”

1 o3

10’

(eV)

-

2s3d

1 o2 CeV)

-I-.

'0

2s2p

3P

1 o3

-

2s2p

‘P

m ‘0

-

fE ’ ’ ’ ““‘1

’ ’ “““I

’ ’ ’ “‘El

u

!

I

-

: f-3 w + 0 05

= ‘0 -

N ‘0

tOI T.

1 o2

I

!lllllli

- TO0

lo3

(eV)

10’ T.

157

Atomic

/ll!llll

1 o2

II

I III]I

lo3

CeV)

Date and Nuclear

Data Tables.

Vd. 44. No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 2s2p

3P

-

2p2

3P

2s2p

r

-

2p2

‘0

P

‘0

‘0

m ‘0

0 IO

u. ‘0

‘0

z ‘0

I

I I IIIII;

I

I

/l/ill’

I

I I III

” ‘0

2 ‘0

IO

10’

1 o2

2s2p

3P

1 o3

1 o”

10’

(eV)

T.

d cr

3P

-

2p2

1 o2

T.

‘s

2s2p

3P

1 o3

(eV)

-

2~3s

3S

+

-

;f ‘0

1 o” T.

10’

(eV1

T.

158

Atomic

1 o2

1 o3

CeV)

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2s2p

3P

-

2~3s

Emission Lines from 0 V

III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures ‘S

2s2p

3P

-

2~3~

‘P

z



E 0 ” + c al .a 0 .4

a, 0

1 o”

T.

2s2p

m

/Y (0 \ E ”

3P

10’

(eV)

-

2~3~

1 o*

T.

3P

2s2p

3P

1 o3

CeV)

-

2s3d

3O

m

e. ‘0 -

2

e

-

: 0 (u + d LT

” ‘0 -

2 ‘0 -

10’ T.

1 o2

1 o3

(eV)

159

Atomic

Data and Nuclear

Data Tables.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 2s2p

+

-

2s3d

'0

2s2p

z

'P

-

2p2

3P

m I

‘0 -

I Illltf

I I llill;

I

I

Illlll~

I

I

I illtl

/

loo

10'

lo*

'P

-

2p2

lo2

10'

(eV1

T.

2s2p

lo3

(eV1

T.

'0

2s2p

'P

lo3

-

2p2

's

m -

-

1 I

I

I

‘0

loo

-

/

lIlll!ll

I

!llllll~ !llillli

10' T.

I

lo2

IllIll llIrll~

10'

lo3

(eV)

T.

160

Atomic

lo2

lo3

CeV)

Data and Nuclear

Data Tab&.

Vol. 44, No. 1, Jmualy

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2s2p

‘P

-

2~3s

Emission Lines from 0 V

III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures ‘S

2s2p

P

‘P

-

2~3s

‘S

D\ m

v, E 0



Iu + d CY

‘0 -

= ~-------I----~---l-

I

‘0

/

lIlllll~

I

1 o”

2s2p

‘P

-

2~3~

IIIIIIII

10’

(eV)

T.

I



2s2p

u.

‘P

/lI!lll

1 o2

1 o3

(eV)

T.

‘P

I

-

2s3p

?P

0. .-T v) \

\ ”

m E 0

E 0

E

” Y c al .4 0 .d Lc

a, +J

d DL

2

(u +

(0

-

d rY

2 I

(0

1 o”

I

I

~llllli

/11/l/11

10’ T.

I

1 o2

I Illlll~

1 o3

1 o”

10’

CeVI

T.

161

Atomic

Data

and

1 o2

1 o3

(.eV)

Nuclear

Data

Tables,

Vol.

44,

NO.

1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0

Excitation

V

Rate Coefficients

See page 143 for Explanation of Figures 2s2p

‘I’

-

2s3d

%

2s2p

u. ‘0 -

0

-

2s3d

‘0

a T-

I

I llllll; I I IIll;

I

I /lllll; //1111;

I

, / /

I

(0 -

l/II I IlIE -

I I I

I IllIll;

.= -

I

o. ‘0 -

=

I

illlll~

I I /

-

-

‘P

IlllIE

-

/ /

_----------L= -

I I 1

n/i ,1,/1,11, I/,,,, lj l ll,,,j / I



I

‘0

I I

II/l/

I

/llllll1

10’

1 o”

2? 2

3P

I

1 o2

T.

(eV)

-

2p2

I

lIIl/l

1 o3

1 o”

10’

2P *

‘II

3P

1 o*

T.

(eV)

-

2p2

1 o3

‘s

m

(u + d LT

10’ T.

1 o*

” ‘0 -

1 o3

(eV)

T.

162

Atomic

CeV)

Data and Nudear

Data Tables,

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

ZP ’

3P

-

253s

Emission Lines from 0 V

III. Recommended Excitation Rate Coefficients See page 143 for Explanation of Figures 3S

2P2

3P

-

2~3s

T.

(eV1

-

2~3~

‘S

2 ‘0

1

2P ’ ” ‘0_

I

T.

(eV)

-

2s3p 2~3~

3P

I llI//l’

I

I

1 o"

Illlllll

/

1 Illltp

3P

3P

-

I I /

I

llllllll

10' T.

2P ’

I /I/l/I’

/ , / ‘0

‘P

I

1 o2

IIllllL

1 o3

1 o”

10’

feV1

T.

163

Atomic

1 o2

1 o3

CeVI

Data and Nuclear

Data Tables.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2P ' OI ‘0

-

III. Recommended

Excitation Rate Coefficients Seepage143for Explanation of Figures

2s3d

?I

2P '

%

-

2s3d

'II

0 L

I IIl/ll~

.-

-

?'

Emission Lines from 0 V

I

IIIIIII~

I

I ,

I , I /

I Illltt

IO

-

--

‘0 -

-1

-

2 ‘0 -

bl l ,I’,,,l;l lIll,,,,I ,,,,l] ‘0.

-

I

I

l/!llll/

I

loo

lIllliii

T.

2P2

?I

-

*

IllllllI

10'

lo*

I

llllltt

I

IIIIII

-

‘0

1 o3

-7 .-I .--I

, I

I

III/I,

loo

's

2P2

164

l1ll//1!1

10'

(eV)

2p2

I /1llll;

--

N ‘0 -

-

I

-

=

r

I IllIll;

Atomic

'0

lo2

T.

(eV)

-

2~3s

T.

(eV)

Data and Nuclear

lo3

3S

Data Tables,

Vol. 44. NO. 1, January

1990

Emission Lines from 0 V

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

Rate Coefficients

Seepage143for Explanation of Figures 2P2

‘0

-

2~3s

‘S

2

2P

Q

0.

‘0 ‘0

L

‘0

-

I I Ilill;

2s3p

I

I

‘P

IllIll’

I / /

-----------i------~~---c---------

1 / I I

I

IIII~I I’

1 o”

2P2‘D

-

2~3~

3P

‘0

L

I

I

T.

(eV)

-

2s3d

‘0

I l//ll/~

I

I

I /I!‘1

1 o2

I

1 o3

%

I llll/l~

/ / / / I

T.

I/Ill/l

10’

2P2 m

-

I

2

(eV)

I lllkj -

1 I /

-

T.

I

I I

, N lo

I

I

I llllte

I I I

(eV)

165

Atomic

Data and Nudear

Data Tables.

Vol. 44, No. 1, Janwq

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures

2P2

‘0

-

2s3d

2P2 ‘S

‘D

-

2~3s

%

P IO -

= -

Illll;

!

I l~llll’ I~IIII’

I

I

IllItIllltf

I

-

-.

I

-

2 ‘0

I

I loIll:

10’

I

I I!lllL

1 o2

‘0

1 o3

I

llll11111~

1 o”

-

2~3s

2P2 ‘S

‘S

I

IllIll

10’

!I:!111

1 o2

T.

0. IO -

I

(eV1

T.

2P2 ‘S

-.-

/ ,

1 o3

(eV)

-

2~3~

‘P

m =-

I llllll~

I

I1111111~ IllIll;

I

IO

I Ii/l IllltC

I

,

I IllIll;

-

I

I llll/l~

I

I

I’ / / I -

I

I IIIIII~

I

11111111

/

-

‘0

I

l

flllIll~

1 o”

T.

10’

T.

(eV)

166

Atomic

1 o2

1 o3

CeV)

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE III. Recommended Excitation Rate Coefficients Seepage143for Explanation of Figures

2P2 ‘s

-

2s3p

3P

2P2

‘s

-

2s3d

%

0.

10’

2P2

‘S

1 o2

T.

(eV)

-

2s3d

1 o3

1 o2

10’ T.

‘0

2~3s

3S

1 o3

(eV)

-

2~3s

‘S

P lllllll; I5 ’I 1”““;

I/Illll~ ’I ““‘I’:

I

IIlllw ’I ““‘El

r\ In \ ”

E 0 ”

al -w d L11

N ‘0 -

al -w

d cf

I I I

‘0 -

I I /

-

.-

-

CI

I

I

-loo

I Illllll

I

I I II/II!

1 o2

10’ T.

I

I Illll

‘0

-

I

/llllll1

I

ll1llll1

I

lll!ll~

1 o3

(eV)

T.

167

Atomic

CeV)

Data and Nuclear

Data TaMes.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 293s

%i

-

2s3p

‘P

2~3s

L =

3S

-

I I //Ill’

2s3p

I

I I Illli~

I I I I

-

2~3s

=

3S

-

I III/II;

-

(eV)

i/llll1ll!I Ill1ll~ / /

3D

II ,, I

2~3s

I

IIllllklIlliU

‘0 -

---1

=-

I I IIlK’ -

/

1 o2

3S

-

I I Ilill;

1 o3

CeV)

T.

2s3d

I I

0' T.

3P

2s3d

I

I l/l/ll’

‘0

I

/ llllq

-

OI

‘0

r----------

z C----------d-----------!

1 l IJ / /,,J / ,j 1 o”

10’

T.

1 o*

3

1 o3

CeVYJ

T.

168

Atmic

(eV1

Data and Nuckr

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 2~3s

'S

-

2s3p

'P

2~3s

'S

-

2s3p

3P

r I IllIll;

I

I III’II;

I

i IIll

-

I

llll/ll~

I

Iillllil

10'

1 o2

‘5

ll1llll

‘0

1 o3

1 o"

10'

(eV)

T.

2~3s

I

-

lo2 (eV)

T.

2s3d

2~3s

%

P '0

m

~

'S

I I Illll;

-

2s3d

I

= ‘0 -L ”

II/ //I ----------;-----------;----------

‘0

‘0

10'

T.

1 o2

I

I I IlIt

I

I I lllll

I I I /

I ‘0

j

-----------c----------~-----------

1, ,111,,1~ I 1111,,1~ I l,lllj 1 o"

'0

I IllIll;

I I I I I

-va, cz

1 o3

1o3

t

I

1 II

1 o"

WlI~

I , I I I / / /

1

I llllll1

10'

CeV)

T.

169

I I I I , I I I

Atomic

1 o2

1 o3

CeV)

Data and Nuclear

Data Tables.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 2s3p

‘P

-

2s3p

2~3~

3P

‘P

-

2s3d

%

P

P

‘0

-

I /l1lll~

I

lllllll~

I

llllltf

I

111111~

m IO

0. ‘0

2 ‘0

I

-

I

IO

I Il/Illl

1 o”

I

Illllll

10’

1 o2 (eV)

T.

2~3~

‘P

1 o3

-

2s3d

(eV)

T.

2~3~

‘0

3P

-

2s3d

3D

w IO

c‘0

m ‘0

0. iO

” ‘0

1 o” T.

CeV)

T.

170

Attic

CeV)

Data and Nuclear

Data T&s.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2s3p

%

-

2s3d

Emission Lines from 0 V

III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures ‘0

2s3d

3D

-

2s3d

10' T.

2s2p

3Po

(eV)

-

2p2

T.

3Po

2szp

3Po

‘D

1 o2

1 o3

(eV)

-

2p2

3P1

r-

m E ” ” -P c al .0 .4

‘0 -

:

-

0 a, -6. d LT

-= -



-loo

10’

T.

CeV)

T.

171

Atomic

1 o2

1 o3

CeV)

Data and Nuclear

Data Tables.

Vol. 44. No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

-

0

Emission Lines from 0 V

III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures

2p2

3Pz

2s2p

3Po

-

2~3~

3Po

P

‘c

-

0‘-

f&q -l-~--------+-------~--

IO'

1 o2 (eV)

T.

2sZp

1 o3

3Po

-

eV

T.

2s3p

3P,

2sZp

3Po

-

2s3p

3P2

II ‘0

-

-

‘0 -

I Ililll’

I

I I /Ill”

II

I

I Illltf

-

z-

N IO

--

2 ‘0

P ‘0

x

, ---~--c--------~-c-------.---

-

,

I / I III:

I

I /111111

10’ T.

-

I I / I I I

lo2

I lllll~

lo3

(eV)

T.

172

Atomic

CeV)

Data and Nuclear

Data Tab!es, Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

Rate Coefficients

See page 143 for Explanation of Figures 2s2p

'PO

-

2s3d

10' T.

2s2p

%o

2s2p

%,

lo2

3Po

T.

2s3d

2s3d

%z

1 o3

CeV)

-

-

%3

2szp

lo r_ -

‘0

CeV

3P,

I I HIi;

-

I

2p2

I llllll~

3po

I

I IIll -

----

‘0 -

10' T.

1 o2

----

103

(eV)

T.

173

Atomic

(eV)

Data end Nuclear

Data Tat&s.

Vol. 44. No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

Emission Lines from 0 V

Rate Coefficients

See page 143 for Explanation of Figures 2s2p

3P,

-

2p2

2s2p

+I

3P1

-

2p2

%

m. lo

+2

+---------I

------

4

-E

I’

0

‘0 -

-

lo -

II f---------/ 4 I

;-------

_-= r -

I I

I

?lt

T.

2s2p

3P,

(eV1

-

2s3p

T.

2~2~

3Po

3P,

(eV)

-

2s3p

3P~

0

(u -w d c

T.

174

Atomic

CeV)

Data and Nuclear

Data Tables,

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

See page 143 for Explanation 1

Rate Coefficients

of Figures zszp

2

3P,

-

2s3d

3D,

;“’

‘0 -

‘0

N

‘0

m

, I

IO

10’ T.

zszp

3P,

1 o2

1 o3

Ill

I I II

1 o”

10’

(eV)

-

I Ill//II

2~2~

3D2

Illli’l

1 o2

T.

2s3d

1

1 o3

(eV

3P,

-

2s3d

303

P

‘0

yr "

\

"

E 0

” ‘0

IO

v(u 0 v Ill +

2 ‘0

d fY

s ‘0

10’ T.

1 o2

1 o3

I

I I Ilhrl:

1 o”

I

10’

(eV)

T.

175

I I l/II/;

Atomic

I

1 o2

I I II!llj

1 o3

(eV)

Data and Nuclear

Data Tables.

Vol. 44. No. 1, January

1990

T. KATO,

J. LANG,

FIGURE

III. Recommended

Excitation

See page 143 for Explanation 2s2p Ei Ei ‘0 '0

3P2

-

2pz

Emission Lines from 0 V

and K. E. BERRINGTON

Rate Coefficients

of Figures

3Po

2s2p

3P2

-

2p2

?'

m

LL

I I ll1ll~

I

I I IIlil\ HiI;

I

I IIIIEJ

I

lllllll_

I I I 1 ----L----------I / I I I I I I ----I----------, / I / I

P IO

-

/ --m-;--------m-, I I I I I I

I I , I

.I

I IIIIII~ llllll~

loo

I

Illlllli

10' T.

2s2p

3P*

1 o2

1 o3

10' T.

(eV)

-

2p2

2s2p

3P2

1 o3

(eV1

2s3p

-

3Po

z

P

r\ v) \

3P2

1 o2

‘0 -

” ”

E 0

m ‘0

Y c al .A

T.

(eV)

T.

176

Atomic

CeVI

Data and Nuclear

Data Tables.

“d. 44, NO. I, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

Emission Lines from 0 V

Rate Coefficients

Seepage 143for Explanation of Figures 2~2~

3Pz

-

2s3p

3P~

2sZp

3Pz

-

2s3p

3Pz

0

T.

252~

3Pz

(eV)

-

2s3d

10’ T.

CeV)

T.

3D,

1 o2

25.2~

1 o3

3Pz

-

10’

CeV)

T.

177

Atomic

2s3d

3oz

1 o2 (eV)

Data and Nuclear

Data Tables,

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE III. Recommended Excitation Rate Coefficients Seepage143for Explanation of Figures 252~

3Pz

-

2s3d

3D3

2p

2

3

PO

-

2s3p

3Po

01

‘0

z IO

‘0

” ‘0

2 ‘0

1 o"

10'

1 o2

2

3

PO

10'

-

2s3p

1 o2

2p

3P1

2

3

PO

1 o3

(eV)

T.

-

2s3p

3P2



D1

IO -

c\ v) \

. 1 o"

(eV)

T.

2p

1 o3

‘0



E 0 ”

f2 IO

‘0

-4.J c ar .d 0 .2 Lc

-+ul 0 0 al u d [31

;

” 0 -

‘0

” 7

N ‘0 -

2 I

(0

1 o"

I lllllrll

I

I I lllll~

10' T.

I

1 o2

0

2 IO

I I Ill111

1 o3

I

lIlIlIIli

1 o"

I

10'

(eV)

T.

178

I III/III

Atomic

!

1 o2

Illlli~

1o3

CeV)

Data and Nuclear

Data Tabies.

Vol. 44. NO. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2p

2

3

PO

-

2s3d

Emission Lines from 0 V

III. Recommended

Excitation Rate Coefficients Seepage143for Explanation of Figures

k

-

3Po

2P2

2s3d

%2

"

aJ 0 0 w +. d C

CeV)

T.

2p

2

3

PO

-

2s3d

2p

303

2

3

PI

-

2s3p

3P0

0 ‘0 -

=

///

,‘, I,qlI,

l,Il/,l!

al +

2 ‘0

d

-

2 I

‘0

1 o"

l1llllII

I

I lllllll

10’ T.

I

1 o2

I lllllll

‘0

1 o3

10'

(eV)

T.

179

Atomic

1 o2

1 o3

CeV)

Data and Nuclear

Data Tab&

Vol. 44, NO. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

Emission Lines from 0 V

Rate Coefficients

See page 143 for Explanation of Figures 2p

2

3

PI

-

2s3p

2p

3P1

2

3

PI

-

2~3~

3P2

” ‘0

tL

-

‘0

N IO

I,

/ ,,/I,! I, IllIll!

,

I

I

I / ,,I111

I /lllll!

I,

I

, ,,,tf I, IIIIW

-

.I z .-

m ‘0

1 / / 1

1

-

-

2 ‘0

,

2

3

PI

-

2s3d

(eV)

T.

(eV)

T.

2p

, ,,I,,,

2p

301

2

3

PI

-

2s3d

302

z IO

I

I IllIll;

I

I

Illlll~

I

I

I llltf -

‘0

2 ‘0

2 IO

2 IO

loo

10' T.

1 o2

lo3

T.

(eV)

180

Atcmic

(eV)

Data and Nucbw

Data Tables,

Vol. 44. No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Emission Lines from 0 V

Excitation

See page 143 for Explanation Zp

2

3

PI

-

T.

2p

2

3

P2

2s3d

Rate Coefficients

of Figures

303

2p

2

3 P2

(eV)

-

2~3~

-

2p



2

3

Pz

3Po

(eV1

T.

+I

2s3p

-

2~3~

3P2

m

IO

\ m

n E 0

” Y c aI 0 .a

2 ‘0

2 ‘0 -

10’

T.

(eV)

T.

181

Atomic

1 o2

1 o3

CeV)

Data and Nuclear

Data Tables,

Vol. 44. NO. 7. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

Emission Lines from 0 V

Rate Coefficients

See page 143 for Explanation of Figures 2p

2

3

Pz

-

2s3d

2p

3D1

2

3

P2

2s3d

-

3D2

z ‘0

I

IIIIIII;

I

/I/llll~

I

t‘0 -

N ‘0 -

2 1. _

Illlltq

-

_-= _-= z _-XI -

2

1 o" (eV)

T.

2p

2

3

P2

10'

-

2s3d

T.

~~3~

303

182

3Po

1 o2

1 o3

CeV)

-

Atomic Data and Nuclear

2s3d

Data Tables.

3b

Vol. 44, No. 1, January

1990

Emission Lines from 0 V

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2~3~

%o

-

2s3d

2s3p

%,

3b

1 o2

10’ T.

III. Recommended Excitation Rate Coefficients Seepage 143 for Explanation of Figures 2s3p

1 o3

T.

2s3d

-

2s3d

10’

(eV)

-

3Po

3D,

2~3~

3P,

303

lo2 (eV)

-

2s3d

30z

0 ‘0

10’ T.

lo2

lo3

10’

(eV)

-I-.

183

Atomic

lo2

lo3

CeV)

Data and Nuclear

Data TaMes.

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

-” zsxp

m IO

e ‘0

0 ‘0

FIGURE III. Recommended Excitation Rate Coefficients Seepage143for Explanation of Figures 3P,

-

2s3d

%a

----c----------c---------I

2s3p

3Pz

-

2s3d

%

4

~----------+---------I

‘0

Emission Lines from 0 V

4

” ‘0 -

loo

10'

T.

zsJp

3P2

T.

1 o2

lo3

10'

(eV)

-

2s3d

T.

3Dz

2~3~

(eV)

3Pz

T.

184

Atcmk

lo*

lo3

(eV)

-

2s3d

3D3

(eV)

Data and Nuchr

Data Tables,

Vol. 44. No. 1, January

1990

Emission Lines from 0 V

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

2szp

3Po

-

III. Recommended Excitation Rate Coefficients See page 143 for Explanation of Figures

2s2p

3P’

2s2p

P

\

3Po

-

2s2p

3Pz

r

VI

m E ” ” -Ic w .A ” .d

w 0 0 w +

/ ‘0 -

-

~.

Ls

.-

‘0

I / // ~

Illlllll I Illllll

I

lI//llil I Illllil

-

I

1 o2

1 o” T.

2s2p

3P,

I IIIII’ lllll!..

1 o3

T.

(eV)

-

2s2p

3P2

zp

r\ v, \ m ”

E 0

-w c w .4 0 ..a Y Lc w 0 u w -P d [1I

m ‘0 -

/

2

3

PO

, I,,,,,

CeV)

2

-

3

2p

,

/

Pl

.-

8 / /

I,[/‘1

-

/ I r~-----~---+-~--~----~I

“‘I

5! IO -

= IO -

I

T.

1 o2

I I Illlil

1 o”

1 o3

I

T.

185

Atomic

I=

, I /

I I I11111

10’

(eV1

-

/ I /

-

/ I

‘0

10’

--

u. ‘0

” 1 o”

, I

I

1 o2

I I Ill!1

1 o3

CeV)

Data and Nudear

Data Tabtes,

Vol. 44, No. 1. January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

Emission Lines from 0 V

FIGURE III. Recommended Excitation Rate Coefficients Seepage143 for Explanation of Figures 2p

2

3

PO

-

2p

2

2p

3 p2

2

3

PI

-

2p

2

3 P2

m

m

-. -I

rl ‘0

10’ T.

2s3p

3Po

(eV)

-

2s3p

1 o2 CeV)

T.

3P,

2s3p

m

\

1 o3

3Po

-

2s3p

3P2

L

P

‘0

,

E I

‘0

I I I/l/II

1 o” T.

I

10’

(eV)

T.

186

I Illllll

Atomic

I

1 o2

I I IIll

1 o3

(eV1

Data and Nuclear

Data Tables,

Vol. 44, No. 1, January

1990

T. KATO, J. LANG, and K. E. BERRINGTON

FIGURE

III. Recommended

Excitation

See page 143 for Explanation 2s3p

3P,

-

2s3p

Emission Lines from 0 V

Rate Coefficients

of Figures

3P2

2s3d

3D,

-

2s3d

3&

ll’/ll~

I

2s3d

31&

In ‘0

I

I IllIll;

I

;

I lllll~

I

-

I illlc? -.

I , 1

-

I llllll!

I

I

‘III1

-

m

0.

I I ‘0

I

lllllll1

-loo

l/‘~ll,

10’ T.

2s3d

%,

. I

I

1 o2

‘IllIll

1 o3

(eV)

-

T.

2s3d

2s3d

3D3

1o”

3D2

-

10'

T.

187

(eV1

Atcmic

1 o2

1 o3

(eV)

Data and Nuclear

Data Tables.

Vol. 44, No. I, January

1990