Fungal Ecology xxx (2016) 1e10
Contents lists available at ScienceDirect
Fungal Ecology journal homepage: www.elsevier.com/locate/funeco
Interactions of arboreal yeast endophytes: an unexplored discipline Leandra Moller, Barbra Lerm, Alfred Botha* Department of Microbiology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
a r t i c l e i n f o
a b s t r a c t
Article history: Received 19 June 2015 Received in revised form 16 January 2016 Accepted 10 March 2016 Available online xxx
The value of healthy forest ecosystems is well known and trees in these systems form symbioses with a variety of living organisms. This review focuses on literature pertaining to the potential interactions of arboreal yeast endophytes with trees and their associated insects. Although very little is known about the symbioses of arboreal yeast endophytes, indications are that some of these unicellular fungi produce plant-growth promoting phytohormones, while others are antagonistic towards phytopathogens or are capable of producing pheromones that affect the behavior of insect herbivores. However, more research needs to be conducted to fully understand the role of arboreal yeast endophytes in ecosystem processes. © 2016 Elsevier Ltd and The British Mycological Society. All rights reserved.
Corresponding editor: Peter E. Mortimer Keywords: Ants Endophytic yeasts Fungi Phytohormones Symbiosis Trees
1. Introduction It is known that healthy forest ecosystems are invaluable to the planet and all of its inhabitants, including humans (Krieger, 2001; Farber et al., 2002). Such forests are described as complex (Bengtsson et al., 2000; Franklin et al., 2002) and may include a wide diversity of trees that may form symbioses with many different living organisms (Carroll, 1988). These associations may be classified as either ecto- or endophytic, depending on whether the symbionts occur on the plant surface (phylloplane and rhizoplane) or whether they are associated with the internal tissues of plants (Rodriguez et al., 2004, 2009). Endophytic microorganisms are viewed as those that refrain from causing disease in their host (Wilson, 1995; Porras-Alfaro and Bayman, 2011), while often playing a pivotal role in plant survival. Studies aimed at revealing the role of these microorganisms have mainly focused on bacteria and filamentous fungi, thus often neglecting a ubiquitous group of unicellular fungi e yeasts (Schulz et al., 1993; Wearn et al., 2012). Yeasts are a polyphyletic group of fungi that primarily proliferate via asexual budding or cell fission (Kurtzman and Fell, 1998). However, some yeasts are also able to reproduce sexually by forming meiospores that are carried either on a basidium or within
an ascus. These meiosporangia, in contrast to those of macrofungi, are never enclosed within fruiting bodies. The unicellular nature of yeasts is viewed as an adaptation to growth in aqueous environments, where yeasts may either reproduce in suspension or as part of a biofilm attached to various submersed surfaces, including the walls of xylem vessels, as depicted in Fig. 1 (Decho, 1990; Lachance nyik et al., 2004; Joubert et al., 2006; Gai and Starmer, 1998; Bra et al., 2009). It is well known that yeasts may associate with both the phylloplane and rhizoplane, where they interact with a variety of organisms and their physiochemical environment (Lindow and cio, 2006; Botha, 2011; Starmer and Brandl, 2003; Fonseca and Ina Lachance, 2011). However, little is known about the interactions and roles of endophytic yeasts, especially those associated with trees. Since knowledge of plant-microbe symbioses is an important prerequisite for sustainable management of terrestrial ecosystems (Requena et al., 2001; Finlay, 2008), the overall objective of this study was to review the current state of knowledge on the ecology of arboreal yeast endophytes. The role of these yeasts within their natural habitat will be explored, including some of their potential interactions with trees and arboreal insects. Furthermore, future directions in the field of arboreal endophytic yeast ecology will be discussed.
* Corresponding author. E-mail address:
[email protected] (A. Botha). http://dx.doi.org/10.1016/j.funeco.2016.03.003 1754-5048/© 2016 Elsevier Ltd and The British Mycological Society. All rights reserved.
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
2
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
Fig. 1. An illustration of yeasts colonizing xylem vessels. Some yeasts occurring in these vessels (Gai et al., 2009; Khan et al., 2012) can utilize a wide diversity of simple nutrients (Kurtzman and Fell, 1998), such as amino acids, nitrate, carbohydrates and organic acids, thereby potentially altering the chemical composition of xylem sap. Additionally, the yeasts might produce phytohormones, such as indole-3-acetic acid and polyamines (Reyes-Becerril et al., 2011; Waqas et al., 2012), which are subsequently secreted into the sap. Bar ¼ ca.10 mm.
2. Functional roles of arboreal yeast endophytes Yeasts are known for their ability to produce a variety of menez-Díaz, tabolites, for example vitamins (Ruiz-Barba and Jime 1995; Leathers and Gupta, 1997), enzymes (Table 1) and hormones (Table 2). These metabolites may play a pivotal role in the interactions of yeast endophytes (Fig. 2) with other organisms. Recently, the knowledge of the diversity of endophytic yeasts was extensively reviewed (Doty, 2013), and the vast untapped biotechnological potential of these unicellular fungi was emphasized. In addition, the author highlighted endophytic yeast diversity of tree aerial organs, which was found to represent a wide diversity of ascomycetous and basidiomycetous yeasts belonging to the genera Candida, Cryptococcus, Cystofilobasidium, Debaryomyces, Filobasidium, Guehomyces, Meyerozyma, Rhodotorula, Sporobolomyces and Sporidiobolus. In more recent literature (Scholtysik et al., 2013; Solis et al., 2015) the endophytic status of some yeast species was corroborated, while it was revealed that other yeast species can also exist as tree endophytes (Table 1). To date, arboreal yeast endophyte research has primarily focused on the assessment of diversity, with a dearth of information on the functional role of these unicellular fungi in their host's biology. In contrast, bacterial and filamentous fungal endophytes are more researched, with most knowledge on the functional roles of endophytes stemming from research conducted on filamentous fungal endophytes of grasses (Porras-Alfaro and Bayman, 2011) and €, 2011). Nevertheless, the funcbacterial root endophytes (Pirttila tional roles of bacterial and filamentous fungal endophytes in leaves and stems of trees have been elucidated in some studies €, 2011). Considering (Brooks et al., 1994; Taghavi et al., 2009; Pirttila the evidence for convergent evolution between bacteria and yeasts (Bork et al., 1993; Brazhnik and Tyson, 2006), as well as between filamentous fungi and yeasts (Berbee and Taylor, 1992), the potential roles of arboreal yeast endophytes (Table 2) can be inferred from literature on bacterial and filamentous fungal tree
endophytes. It is known that endophytes can positively benefit their hosts €, through production of plant-growth promoting hormones (Pirttila 2011) and through antagonism against phytopathogens (Mengoni et al., 2003). Bacterial endophytes can mediate tree growth through the production of phytohormones, such as giberellins, €, 2011). For example, Taghavi et al. cytokinins and auxins (Pirttila (2009) demonstrated that bacterial endophytes, originating from a poplar hybrid (Populus trichocarpa Populus deltoides) could improve the growth of another poplar hybrid (P. deltoides Populus nigra) and ascribed this to the production of the auxin, indoleacetic acid (IAA), by the bacteria. However, representatives of some yeast species are also able to produce IAA in vitro (Table 2), and it was demonstrated that plant growth was improved when some of these yeasts, i.e. Cryptococcus laurentii (Cloete et al., 2009, 2010) and Rhodotorula glutinis (El-Tarabily, 2004), were applied exogenously to the rhizosphere. Considering these aspects, it seems likely that some endophytic yeasts might be able to improve their host tree's growth. However, it must be noted that phytohormone production levels may differ among endophytic yeasts, since intraspecific variation exists among yeasts with regard to the production of IAA (Moller et al., unpublished). This phenomenon should, therefore, be taken into account when the effect of these yeasts on tree physiology is studied in future. As mentioned, endophytes may also positively benefit their host through biological control of phytopathogens (Mengoni et al., 2003). In the study conducted by Brooks et al. (1994), it was found that Ceratocystis fagacearum-related crown loss and deaths of Spanish oak (Quercus texana) were reduced when endophytic bacteria, originating from aboveground organs of live oak (Quercus fusiformis), were inoculated into the stems of the trees. Furthermore, these authors demonstrated that the bacterial endophytes could inhibit growth of C. fagacearum in vitro, either through the production of antimicrobial compounds under nutrient-rich conditions or through the production of siderophore-like molecules under iron-limiting conditions. However, bacteria are not the only siderophore-producing microorganisms. It is well known that some yeast species belonging to the genera Rhodotorula and Sporobolomyces can produce the siderophore rhodotorulic acid (Table 2), which has been linked to their antagonistic relationship with various phytopathogens of crop plants and fruits (Calvente et al., 2001a, 2001b; Sansone et al., 2005). In addition, the antagonism of some yeasts towards bacteria, filamentous fungi and other yeast species has been ascribed to the production of killer toxins by these unicellular fungi (Polonelli and Morace, 1986). Interestingly, it was demonstrated that the killer toxin producing yeast Debaryomyces hansenii (Table 2) can inhibit the growth of Ophiostoma piceae and Ophiostoma piliferum on Pinus sylvestris timber (Payne and Bruce, 2001). Yet, the mode of antagonism was not elucidated by the authors. Considering these aspects, it seems plausible that arboreal yeast endophytes might benefit their host by inhibiting phytopathogen growth; various yeast species need to be tested in planta to determine whether this is a common occurrence. From the above it appears that arboreal yeast endophytes may play a vital role in the biology of their host trees, yet these interactions are not always confined to dual symbioses between yeasts and trees. In some instances multipartite interactions may occur, especially where insects are involved. 3. Potential multipartite interactions involving insects, trees and yeasts It is known that yeasts are associated with insects and a vast body of information exists on this topic (Reviewed by Suh and Blackwell, 2005; Vega and Dowd, 2005; Ganter, 2006). It is thus
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
3
Table 1 A list of arboreal yeast endophytes and their origin, as well as extracellular enzymes associated with each species.a Endophytic yeast species
Arboreal origin
Candida carpophila Candida conglobata Candida diddensiae Candida parapsilosis Candida railenensis Cryptococcus aerius Cryptococcus albidosimilis Cryptococcus albidus Cryptococcus diffluens Cryptococcus dimennae Cryptococcus flavescens Cryptococcus laurentii
Solanum cernuum S. cernuum S. cernuum Citrus sinensis Quercus rober Populus deltoides Ficus benjamina; Ficus elastica; Ficus religiosa F. benjamina; F. elastica; F. religiosa; Q. rober F. religiosa Fraxinus excelsior C. sinensis; S. cernuum C. sinensis; Malus domestica; S. cernuum
Cryptococcus magnus Cryptococcus rajasthanensis Cryptococcus stepposus Cystofilobasidium capitatum Debaryomyces hansenii
F. benjamina; F. elastica; F. religiosa S. cernuum F. elastica Q. rober M. domestica; Sequoia sempervirens
Filobasidium capsuligenum Filobasidium uniguttulatum Guehomyces pullulans Kwoniella mangroviensis Malassezia restricta Meyerozyma caribbica Meyerozyma guilliermondii Rhodotorula benthica Rhodotorula dairenensis Rhodotorula glutinis Rhodotorula graminis Rhodotorula lysiniphila Rhodotorula minuta Rhodotorula mucilaginosa
Eugenia bimarginata Unspecified S. sempervirens S. cernuum P. deltoides S. cernuum C. sinensis; S. cernuum F. benjamina; F. elastica C. sinensis Q. rober Populus trichocarpa F. benjamina; F. elastica F. benjamina; F. elastica; P. sylvestris C. sinensis; F. benjamina; F. elastica; F. religiosa; F. sylvatica; M. domestica; P. trichocarpa x deltoides Pinus tabulaeformis F. benjamina M. domestica M. domestica
Rhodotorula pinicola Rhodotorula slooffiae Sporobolomyces roseus Sporidiobolus pararoseus
Reference
Vieira et al., 2012 Vieira et al., 2012 Vieira et al., 2012 Gai et al., 2009 Isaeva et al., 2009 Gottel et al., 2011 Solis et al., 2015 Isaeva et al., 2009; Solis et al., 2015 Solis et al., 2015 Scholtysik et al., 2013 Gai et al., 2009; Vieira et al., 2012 Camatti-Sartori et al., 2005; Gai et al., 2009; Vieira et al., 2012 Solis et al., 2015 Vieira et al., 2012 Solis et al., 2015 Isaeva et al., 2009 Camatti-Sartori et al., 2005; Middelhoven, 2003 Vaz et al., 2012 Unterseher et al., 2007 Middelhoven, 2003 Vieira et al., 2012 Gottel et al., 2011 Vieira et al., 2012 Gai et al., 2009; Vieira et al., 2012 Solis et al., 2015 Gai et al., 2009 Isaeva et al., 2009 Xin et al., 2009 Solis et al., 2015 Pirttil€ a et al., 2003; Solis et al., 2015 Camatti-Sartori et al., 2005; Gai et al., 2009; Solis et al., 2015; Unterseher et al., 2013; Xin et al., 2009 Zhao et al., 2002 Solis et al., 2015 Camatti-Sartori et al., 2005 Camatti-Sartori et al., 2005
Extracellular enzyme productionb AMY
CEL
EST
LIP
PECc
PRT
XYL
NA V V V V þ V V
V NA V V NA NA þ V V
NA NA V V NA V NA þ V V
V V V þ þ V þ þ V V
V V V þ NA V V NA V V
V V V V V NA V þ V V
þ NA NA NA þ þ þ þ NA V V
V V
þ þ V V
þ NA V V V
þ þ V V V
V V V V
V þ V V
þ NA NA NA
þ NA V NA V NA V NA NA
NA þ NA V V NA V NA NA V
NA NA NA NA NA NA V NA NA V V NA V V
NA NA V þ V V NA V V NA V V
þ NA V V NA V V NA V V NA V
þ NA þ NA NA þ V NA V V NA V V
NA þ NA V NA V V NA NA NA V
V V NA
V V V NA
V V V NA
V V V V
NA NA
V
NA NA
a Extracellular enzyme data was taken from: Abranches et al., 1997; Amoresano et al., 2000; Arcuri et al., 2014; Bautista-Gallego et al., 2011; Birgisson et al., 2003; Braga ~o et al., 2011; Brizzio et al., 2007; Buzzini and Martini, 2002; Carvalho et al., 2013; Crognale et al., 2012; Da Silva et al., 2005; De Mot and Verachtert, 1985; et al., 1998; Branda ho-Kellermann et al., 2011; Herna ndez-Montiel et al., Fuentefria, 2004; García-Martos et al., 2001; Gildemacher et al., 2004; Goto et al., 1974; Gouliamova et al., 2012; Gue nez et al., 1991; Kathiresan et al., 2011; Keszthelyi et al., 2008; Laconi and Pompei, 2007; Landell, 2006; Lara et al., 2010; Hirimuthugoda et al., 2006; Hou, 1993; Jime rova et al., 2014; Nahvi et al., 2005; Nakamura et al., 2000; Notario et al., 1979; 2014; Loperena et al., 2012; Melo, 2014; Merin et al., 2014; Middelhoven, 1997; Molna mez et al., 2012; Saha and Bothast, 1996; Scorzetti et al., 2000; Singh et al., 2013; Smaniotto et al., Pavlova et al., 2002; Resende, 2014; Rodarte et al., 2011; Rodríguez-Go 2014; Song et al., 2010; Stevens and Payne, 1977; Strauss et al., 2001; Tan Gana et al., 2014; Trindade et al., 2002; Vaca et al., 2013; Wisniewski et al., 1991; Zullo and Ciafardini, 2008; Zullo et al., 2010, 2013. b PRT (protease); EST (esterase); CEL (cellulase); LIP (lipase); AMY (amylase); PEC (pectinase); XYL (xylanase); NA (data unavailable); V (variable); þ (positive); (negative). c Includes pectate lyases and polygalacturonases.
not surprising that most arboreal yeast endophytes listed in Table 2 were also isolated from exoskeletons, frass, guts, haemolymph, as well as fungal gardens, of different insects. Various roles were ascribed to yeast symbionts of insects, such as providers of digestive enzymes, suppliers of essential amino acids and vitamins, as well as detoxifiers of toxic plant metabolites (Vega and Dowd, 2005). These interactions are, however, not limited to the bipartite symbioses between insects and yeasts, but may also be extended to multipartite associations when additional microorganisms are involved. A potential multipartite symbiosis involving arboreal yeast endophytes is the interaction between trees, bark beetles (Coleoptera: Scolytidae: Scolytinae) and their associated blue stain fungi. The association between bark beetles and blue stain fungi, as well as the subsequent effect on trees, has been extensively researched (Reid et al., 1967; Ballard et al., 1984; Yousuf et al., 2014). This association is, however, multipartite as it also involves some yeasts not known to
be endophytic, such as Kuraishia capsulata and Ogataea pini, which produce semiochemicals that affect the aggregation of bark beetles (Reviewed by Davis, 2015). These yeasts may also interact positively or negatively with the filamentous fungi associated with bark beetles (See Davis, 2015). Yet, it seems probable that arboreal yeast endophytes may also partake in this multipartite interaction, based on the isolation of some yeast species, i.e. Candida diddensiae, Cryptococcus diffluens, C. laurentii, Cryptococcus magnus and Meyerozyma guilliermondii, from trees as well as bark beetles (Table 2). Since, the isolation of these yeasts (except M. guilliermondii) from bark beetles (Shifrine and Phaff, 1956; n et al., 1984; Giordano et al., 2013; Bridges et al., 1984; Leufve Lou et al., 2014) seems to be rare, it is tempting to speculate that the yeasts are not bark beetle symbionts, but that they originate from the host tree instead. Nevertheless, until yeast endophytes are isolated from coniferous trees, this theory remains uncorroborated. If yeasts, such as C. diddensiae, C. diffluens and C. magnus, are found
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
4
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
Table 2 The ability of yeast species, representing arboreal yeast endophytes, to produce the phytohormone indole-3-acetic acid (IAA) and siderophores, to exert killer activity and antagonism against phytopathogens, as well as their known association with insects. The data was obtained from literature.a Endophytic yeast IAA Antagonism against phytopathogens species productionb Candida carpophila Candida conglobata Candida diddensiae Candida parapsilosis Candida railenensis Cryptococcus aerius Cryptococcus albidosimilis Cryptococcus albidus Cryptococcus diffluens Cryptococcus dimennae Cryptococcus flavescens Cryptococcus laurentii
Cryptococcus magnus Cryptococcus rajasthanensis Cryptococcus stepposus Cystofilobasidium capitatum Debaryomyces hansenii
Filobasidium capsuligenum Filobasidium uniguttulatum Guehomyces pullulans Kwoniella mangroviensis Malassezia restricta Meyerozyma caribbica Meyerozyma guilliermondii
Rhodotorula benthica Rhodotorula dairenensis Rhodotorula glutinis Rhodotorula graminis
Siderophore Killer Insect association production activity
þ
NA
NA
V
þ
NA
NA
NA
NA
NA
NA
V
þ
Aspergillus flavus; Aspergillus parasiticus; Aspergillus sojae þ
V
NA
Ustilago maydis
NA
NA
Hypothenemus hampei guts, feces, cuticles and galleries; Ips typographus gut Apis mellifera gut; Atta laevigata exoskeleton; Apis mellifera nests; Drosophila melanogaster crop; Leptura rubra midgut; Solenopsis invicta haemolymph Aphaenogaster senilis and Pheidole pallidula exoskeletons
NA
NA
V
Atta sexdens fungal garden
NA
NA
NA
NA
V
NA
Fusarium oxysporum; Fusarium proliferatum; Phialocephala virens A. flavus; Botryodiplodia theobromae; Botrytis cinerea; Penicillium expansum NA
NA
A. sexdens fungal garden; A. mellifera, C. hemipterus and Cotinis nitida guts; Drosophila sp. crop Dendroctonus sp. and I. typographus guts
NA
NA
NA
Apis florea honey gut
þ
Colletotrichum graminicola; Escovopsis sp.; Fusarium graminearum; Gibberella zeae; Septoria nodorum Alternaria alternata; Aspergillus niger; B. cinerea; Fusarium sambucinum; Fusarium solani var. coeruleum; Monilinia fructicola; Penicillium digitatum; P. expansum; Penicillium italicum; Rhizopus stolonifer
NA
þ
B. cinerea; Colletotrichum gloeosporioides; Escovopsis sp.; M. fructicola; NA NA
NA
A. sexdens and Atta texana fungal gardens; A. sexdens male integument; O. nubilalis gut Atta bisphaerica, A. sexdens, A. texana, Mycocepurus goeldii and Trachymyrmex sp. fungal gardens; Atta capiguara and A. laevigata exoskeletons; A. sexdens male integument; Camponotus vicinus infrabuccal pocket; Dendroctonus frontalis larval gallery; I. typographus homogenate A. texana fungal garden; Dendroctonus valens and P. pallidula exoskeleton I. typographus gut A. sexdens male integument
NA
NA
NA
NA
NA
NA
B. cinerea
NA
V
NA
NA
NA B. theobromae; B. cinerea; Geotrichum candidum; Ophiostoma piceae; Ophiostoma piliferum; P. digitatum; P. italicum; Rhizopus microsporus
V
NA
B. cinerea
V
Aethina concolor, A. senilis, Crematogaster auberti, Drosophila floricola and Formica rufa exoskeletons; A. mellifera and C. nitida guts; A. sexdens fungal garden; A. sexdens male integument; C. vicinus nest and frass; S. invicta haemolymph NA
NA
B. cinerea
NA
V
NA
NA
A. alternata; B. cinerea; P. expansum
þ
V
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
þ
B. cinerea; R. stolonifer
NA
NA
þ
B. theobromae; B. cinerea; P. digitatum; P. italicum; Penicillium roqueforti
NA
þ
NA
NA
NA
NA
Neomida sp. and Triplax sp. guts; Xyleborus crassiusculus, Xyleborus ferrugineus and Xyleborus affinis mycangia Aedes aegypti crop; A. sexdens and M. goeldii fungal gardens; Brachypeplus glaber and Megalodacne sp. guts Acromyrmex sp. nest; A. aegypti, Dendroctonus brevicomis, Dendroctonus mexicanus, Dendroctonus pseudotsugae, Dendroctonus rufipennis and D. valens midguts; A. sexdens fungal garden; C. vicinus exoskeleton, frass, infrabuccal pocket and nest; Chauliodes cornutus exoskeleton and gut; Chauliodes rastricornis, Ips pini homogenate, O. nubulalis and Ululodes macleayanus guts; M. goeldii and Trachymyrmex sp. fungal gardens NA
þ
NA
þ
V
NA
þ
A. niger; A. alternaria; B. cinerea; P. digitatum; P. expansum; P. italicum; Pezicula malicorticis; R. stolonifer
þ
þ
þ
Monilinia vaccinii-corymbosi
þ
V
A. mellifera honey stomach and feces; A. laevigata fungal pellet, A. sexdens fungal garden, C. vicinus frass and nest; C. nitida gut; Helicoverpa armigera gut Apis dorsata and Xylocopa sp. honey stomachs
NA
þ
NA
V
Carpophilus hemipterus, Diabrotica virgifera virgifera and Ostrinia nubilalis guts; Xestobium plumbeum mycetome NA
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
5
Table 2 (continued ) Endophytic yeast IAA Antagonism against phytopathogens species productionb
Siderophore Killer Insect association production activity
Rhodotorula lysiniphila Rhodotorula minuta Rhodotorula mucilaginosa Rhodotorula pinicola Rhodotorula slooffiae Sporobolomyces roseus Sporidiobolus pararoseus
NA
NA
NA
NA
NA
C. gloeosporioides; P. digitatium; P. italicum
V
A. mellifera gut
þ
þ
V
A. mellifera and C. nitida guts; A. sexdens fungal garden; A. texana nest; C. hemipterus exoskeleton
NA
Arthrobacter globiformis; B. cinerea; Fusarium vasinfectum; P. digitatum; P. italicum; Verticillium alboatrum; Verticillium dahliae; NA
NA
NA
I. typographus gut
NA
B. cinerea
NA
NA
NA
NA
B. cinerea; C. graminicola; P. expansum
þ
þ
A. sexdens fungal garden; O. nubilalis gut
NA
B. cinerea; M. fructicola; P. italicum
NA
þ
C. vicinus nest soil
a Data on IAA production, phytopathogen antagonism, siderophore production, killer activity and insect associations of yeasts were taken from: Abranches et al., 1997; Afsah-Hejri, 2013; Akhtyamova and Sattarova, 2013; Arcuri et al., 2014; Arras et al., 1998, 1999; Atkin et al., 1970; Ba and Phillips, 1996; Bridges et al., 1984; Buck and Jeffers, 2004; Calvente et al., 1999, 2001; Campos Guzman, 2010; Carreiro et al., 1997, 2002; Chalutz and Wilson, 1990; Chand-Goyal and Spotts, 1996; Cline et al., 2014; Cook, 1997, 2002a, 2002b; De Camargo and Phaff, 1957; De Capdeville et al., 2007; De Vega et al., 2014; Droby et al., 1989, 1993, 1997; El-Tarabily, 2004; Elad et al., 1994; Filonow, 1999, 2001; Filonow et al., 1996; Fokkema and van der Meulen, 1976; Gilliam et al., 1974; Giordano et al., 2013; Golubev, 2006; Golubev and Bab'eva, 1972; Golubev et al., zquez et al., 2009; Gusm~ 1988; Guetsky et al., 2002; Guevara-Va ao et al., 2007, 2010; Hashem et al., 2014; Helbig, 2002; Hern andez-Montiel et al., 2010, 2012; Huang et al., 2012; Janisiewicz and Bors, 1995; Janisiewicz et al., 1994, 2010; Jiang et al., 2009; Jones et al., 1999; Jurzitza, 1959; Kalogiannis et al., 2006; Khan et al., 2004; Knoth et al., 2014; n and Nehls, 1986; Leufve n et al., 1984; Lim et al., 2005; Lima et al., 1998; Limtong and Kostovcik et al., 2015; Lachance et al., 2001; Langdon, 2009; Leibinger et al., 1997; Leufve r Koowadjanakul, 2012; Llorente et al., 1997; Lou et al., 2014; Maharshi et al., 2009; Mankowski and Morrell, 2004; Mashope, 2007; Melo, 2014; Miller and Mrak, 1953; Molna et al., 2008; Morace et al., 1984; Mushtaq et al., 2013; Nguyen et al., 2007; Niknejad et al., 2012; Nutaratat et al., 2014; Ortega, 2012; Pagnocca et al., 2008; Patino-Vera et al., rez et al., 2003; Petersson and Schnurer, 1995; Pirttila € et al., 2004; Prillinger et al., 1996; Qin and Tian, 2005; Qin et al., 2003, 2006; Rao et al., 2005; Payne and Bruce, 2001; Pe 2007; Redmond et al., 1987; Resende, 2014; Rivera et al., 2008, 2009; Roberts, 1990; Rodrigues et al., 2009; Saksinchai et al., 2012; Sandhu and Waraich, 1985; Sansone et al., 2005; Santos et al., 2004; Sanz Ferramola et al., 2013; Schisler et al., 1995; Shifrine and Phaff, 1956; Starmer et al., 1976; Sugiprihatini et al., 2011; Suh and Blackwell, 2004; Surussawadee et al., 2014; Sweet and Douglas, 1991; Taqarort et al., 2008; Tian et al., 2004, 2007; Trindade et al., 2002; Vega and Dowd, 2005; Vishniac and Johnson, 1990; Williamson and Fokkema, 1985; Wisniewski et al., 1991; Wszelaki and Mitcham, 2003; Xin et al., 2009; Yao et al., 2004; Yu et al., 2008; Zhang et al., 2003, 2004a, 2004b, 2005; Zhang et al., 2007a, 2007b; Zhang et al., 2007; Zhao et al., 2012; Zheng et al., 2005. b NA (Data unavailable); V (variable); þ (positive); (negative).
to be endophytes of conifers, they might play a role in the aggregation of beetles onto their host tree. This hypothesis is based on n et al. (1984), who isolated these yeast species the work of Leufve from the hindgut of the Eurasian spruce bark beetle (Ips typographus) and demonstrated that the yeasts could partly convert the
Fig. 2. Dark field light microscopy of a root cross section from the sclerophyll Agathosma betulina, stained with Lugol's iodine solution, revealed dark stained endophytic yeast cells within the cortex of the root. The yeast was identified as Meyerozyma guilliermondii using molecular techniques (Cloete et al., 2010). Bar ¼ 20 mm. (Photo was generously provided by Dr. K. J. Cloete).
aggregation pheromone cis-verbenol (Sun et al., 2006) to the aggregation pheromone trans-verbenol and the anti-aggregation n and pheromone verbenone, in vitro. In addition, Leufve Birgersson (1987) estimated that yeasts present in the galleries of I. typographus were responsible for the production of verbenone. Therefore, volatile production by C. diddensiae, C. diffluens and C. magnus can potentially affect the aggregation of I. typographus n et al., 1984) on its host, Norway spruce (Picea abies; (Leufve Christiansen and Bakke, 1988). Ultimately, the yeast endophytes might gain from such a multipartite interaction by being dispersed to new habitats by emerging adult beetles. M. guilliermondii, however, might be a symbiont of bark beetles, since this yeast is associated with the guts of a wide range of beetles (Suh and Blackwell, 2005; Suh et al., 2005), including that of different Dendroctonus beetles (Lim et al., 2005; Rivera et al., 2008, 2009; Cardoza et al., 2009; Campos Guzman, 2010). Interestingly, M. guilliermondii was found to transform a-pinene to cis-verbenol (Campos Guzman, 2010) in vitro, thus if this yeast is found to be a conifer endophyte, it might assist in the attraction of bark beetles to their host trees. It is thus evident that the isolation of yeast endophytes from healthy tree hosts of bark beetles are imperative in the future, as these unicellular fungi may ultimately be found to play a role in bark beetle ecology, which inevitably impacts silviculture. Another potential multipartite association that may ultimately be found to impact trees, and consequently forestry, is that between leaf-cutter ants (Acromyrmex and Atta), their fungal symbionts and other microorganisms occurring within the ants' fungal gardens. Within the fungal gardens, leaf-cutter ants cultivate their sole food source, the basidiomycetous fungus Leucoagaricus gongylopharus (Pagnocca et al., 2008; Schultz and Brady, 2008; Rodrigues et al., 2009, 2014; Ward et al., 2015), by continually supplying it with fresh leaf material for growth. These fungal gardens are, however, not limited to the mutualistic fungus and were
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
6
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
found also to harbour bacteria, yeasts and other filamentous fungi (Craven et al., 1970; Bacci et al., 1995; Pagnocca et al., 1996; Carreiro et al., 1997, 2002; Rodrigues et al., 2008, 2014). Moreover, bacteria belonging to the genus Pseudonocardia, associated with leaf-cutter ants (Currie et al., 1999b; Cafaro and Currie, 2005), were also demonstrated to be antagonistic to the main fungal pathogen of leaf-cutter ant fungal gardens, i.e. Escovopsis (Currie et al., 1999a). In addition, various roles were proposed for yeasts involved in this multipartite interaction, i.e. assistance with the breakdown of plant polysaccharides (Carreiro et al., 2002; Arcuri et al., 2014), detoxification of built up metabolic compounds (Mendes et al., 2012), regulation of fungal populations in the gardens (Arcuri et al., 2014), and protection of the gardens against fungal pathogens (Rodrigues et al., 2009). Considering that the arboreal yeast endophytes listed in Table 2 were regularly isolated from leaf-cutter ants, it seems that yeast endophytes might gain more from their ant hosts than just nutrition. Ants are known to carry yeasts on their exoskeleton (De Vega and Herrera, 2012) and it is thus likely that leaf-cutter ants may facilitate the dispersal of yeasts present in their fungal gardens to new trees during foraging. In addition, leaf-cutter ants may potentially inoculate tree leaves with these yeasts, which in turn may become endophytic when entering the tree's vascular system. Since several yeasts associated with leaf-cutter ants may produce IAA, siderophores or even inhibit phytopathogens (Table 2) research on the interactions between these yeasts, leaf-cutter ants and trees would be expedient. 4. Conclusion During the past decade, most research on arboreal endophytic yeasts consisted of identifying these unicellular fungi without much emphasis being placed on their function in the ecosystem. In the relatively few cases where interactions of these yeasts were studied, in vitro experiments were conducted on non-endophytic strains in unrelated research fields. Nevertheless, a wide diversity of complex interactions might occur between arboreal yeasts and biotic factors. This review highlighted these interactions and summarized some known and potential functions of endophytic yeasts that were isolated from trees (Table 2). Clear indications exist that arboreal endophytic yeasts may exert a positive effect on tree health; however, no research to date has been directed at highlighting the functional role of these yeasts within trees. Future studies should, therefore, focus on determining the effect of individual yeast strains on tree performance with regard to growth, physiology, yield, and resistance towards phytopathogens. In future, the challenge will, however, be to determine the actual contribution of endophytic yeasts to ecosystem processes relative to that of endophytic filamentous fungi and bacteria. Additionally, complex interactions such as those between these yeasts, trees and arboreal insects should be studied to fully understand the role of endophytic yeasts in arboreal ecosystems. Ideally, such knowledge gained from experiments should be conducted under field conditions. Technological advances in DNA sequence analyses of total community DNA (Hunt et al., 2004; Zachow et al., 2008), especially next-generation sequencing technologies (Shokralla et al., 2012; Lindahl et al., 2013) may be used in conjunction with culturing techniques for this purpose. However, these studies should be conducted taking into account the limitations of both culturing and modern molecular analyses (Ellis et al., 2003; Spiegelman et al., 2005; Lindahl et al., 2013), including the selectivity of culture media and the bias of screening only for selected taxonomic informative gene sequences with molecular techniques. In addition, € et al., fluorescence in situ hybridization (Spear et al., 1999; Pirttila 2000) may be used to visualize yeasts while growing within plant tissues. A full understanding of the role of arboreal yeast endophytes
in ecosystem processes may be an important prerequisite for sustainable management of arboreal ecosystems, such as forests, plantations and nurseries. It is, therefore, important that the largely unknown interactions of these yeasts be studied in more detail. References Abranches, J., Morais, P.B., Rosa, C.A., Mendonça-Hagler, L.C., Hagler, A.N., 1997. The incidence of killer activity and extracellular proteases in tropical yeast communities. Can. J. Microbiol. 43, 328e336. Afsah-Hejri, L., 2013. Saprophytic yeasts: effective biocontrol agents against Aspergillus flavus. Int. Food Res. J. 20, 3403e3409. Akhtyamova, N., Sattarova, R.K., 2013. Endophytic yeast Rhodotorula rubra strain TG1: antagonistic and plant protection activities. Biochem. Physiol. 2, 1e5. Amoresano, A., Andolfo, A., Corsaro, M.M., Zocchi, I., Petrescu, I., Gerday, C., Marino, G., 2000. Structural characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology 10, 451e458. ~o Melo, W.G., Nagamoto, N.S., Komura, D.L., Arcuri, S.L., Pagnocca, F.C., Da Paixa Rodrigues, A., 2014. Yeasts found on an ephemeral reproductive caste of the leaf-cutting ant Atta sexdens rubropilosa. Antonie Leeuwenhoek 106, 475e487. Arras, G., De Cicco, V., Arru, S., Lima, G., 1998. Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. J. Hortic. Sci. Biotechnol. 73, 413e418. Arras, G., DessI, R., Sanna, P., Arru, S., 1999. Inhibitory activity of yeasts isolated from fig fruits against Penicillium digitatum. Acta Hortic. 485, 37e46. Atkin, C.L., Neilands, J.B., Phaff, H.J., 1970. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103, 722e733. Ba, A.S., Phillips, S.A., 1996. Yeast biota of the red imported fire ant. Mycol. Res. 100, 740e746. Bacci, M., Ribeiro, S.B., Casarotto, M.E.F., Pagnocca, F.C., 1995. Biopolymer-degrading bacteria from nests of the leaf-cutting ant Atta sexdens rubropilosa. Braz. J. Med. Biol. Res. 28, 79e82. Ballard, R.G., Walsh, M.A., Cole, W.E., 1984. The penetration and growth of bluestain fungi in the sapwood of lodgepole pine attacked by mountain pine beetle. Can. J. Bot. 62, 1724e1729. mez, F., Barrio, E., Querol, A., GarridoBautista-Gallego, J., Rodríguez-Go Fern andez, A., Arroyo-Lopez, F.N., 2011. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int. J. Food Microbiol. 147, 89e96. Bengtsson, J., Nilsson, S.G., Franc, A., Menozzi, P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 132, 39e50. Berbee, M.L., Taylor, J.W., 1992. Detecting morphological convergence in true fungi, using 18S rRNA gene sequence data. Biosystems 28, 117e125. Birgisson, H., Delgado, O., Arroyo, L.G., Hatti-Kaul, R., Mattiasson, B., 2003. Coldadapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7, 185e193. Bork, P., Sander, C., Valencia, A., 1993. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci. 2, 31e40. Botha, A., 2011. The importance and ecology of yeasts in soil. Soil Biol. Biochem. 43, 1e8. Braga, A.A., De Morais, P.B., Linardi, V.R., 1998. Screening of yeasts from Brazilian Amazon rain forest for extracellular proteinases production. Syst. Appl. Microbiol. 21, 353e359. ~o, L.R., Libkind, D., Vaz, A.B.M., Espírito Santo, L.C., Moline , M., De García, V., Branda Van Broock, M., Rosa, C.A., 2011. Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol. Ecol. 76, 1e13. nyik, T., Vicente, A.A., Kuncov lek, P., Teixeira, J.A., 2004. Bra a, G., Podrazký, O., Dosta Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation. Biotechnol. Prog. 20, 1733e1740. Brazhnik, P., Tyson, J.J., 2006. Cell cycle control in bacteria and yeast: a case of convergent evolution? Cell Cycle 5, 522e529. Bridges, J.R., Marler, J.E., McSparrin, B.H., 1984. A quantitative study of the yeasts and bacteria associated with laboratory-reared Dendroctonus frontalis Zimm. (Coleopt., Scolytidae). J. Appl. Entomol. 97, 261e267. Brizzio, S., Turchetti, B., De García, V., Libkind, D., Buzzini, P., Van Broock, M., 2007. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can. J. Microbiol. 53, 519e525. Brooks, D.S., Gonzalez, C.F., Appel, D.N., Filer, T.H., 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control 4, 373e381. Buck, J.W., Jeffers, S.N., 2004. Effect of pathogen aggressiveness and vinclozolin on efficacy of Rhodotorula glutinis PM4 against Botrytis cinerea on geranium leaf disks and seedlings. Plant Dis. 88, 1262e1268. Buzzini, P., Martini, A., 2002. Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J. Appl. Microbiol. 93, 1020e1025.
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
L. Moller et al. / Fungal Ecology xxx (2016) 1e10 Cafaro, M.J., Currie, C.R., 2005. Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can. J. Microbiol. 51, 441e446. Calvente, V., Benuzzi, D., De Tosetti, M.I.S., 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int. Biodeterior. Biodegrad. 43, 167e172. Calvente, V., De Orellano, M.E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M.I., 2001a. A simple agar plate assay for screening siderophore producer yeasts. J. Microbiol. Methods 47, 273e279. Calvente, V., De Orellano, M.E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M.I., 2001b. Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. J. Ind. Microbiol. Biotechnol. 26, 226e229. Camatti-Sartori, V., Da Silva-Ribeiro, R.T., Valdebenito-Sanhueza, R.M., Pagnocca, F.C., Echeverrigaray, S., Azevedo, J.L., 2005. Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. J. Basic Microbiol. 45, 397e402. Campos Guzman, E., 2010. Expresion del gen CYP52 (codificante de un citocromo P450) y biotransformacion del alfa-pineno por Pichia guilliermondii, aislada del cnico Naciomesenteron de Dendroctonus valens (dissertation). Instituto Polite nal, Mexico. Cardoza, Y.J., Vasanthakumar, A., Suazo, A., Raffa, K.F., 2009. Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol. Exp. Appl 131, 138e147. Carreiro, S.C., Pagnocca, F.C., Bacci, M., Bueno, O.C., Hebling, M.J.A., Middelhoven, W.J., 2002. Occurrence of killer yeasts in leaf-cutting ant nests. Folia Microbiol. 47, 259e262. Carreiro, S.C., Pagnocca, F.C., Bueno, O.C., Bacci, M.J., Hebling, M.J.A., Da Silva, O.A., 1997. Yeasts associated with nests of the leaf-cutting ant Atta sexdens rubropilosa. Antonie Leeuwenhoek 71, 243e248. Carroll, G., 1988. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2e9. ~es-Guedes, K.T., Dias, D.R., Silva, C.F., Carvalho, F.P., De Souza, A.C., Magalha Schwan, R.F., 2013. Yeasts diversity in Brazilian Cerrado soils: study of the enzymatic activities. Afr. J. Microbiol. Res. 7, 4176e4190. Chalutz, E., Wilson, C.L., 1990. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis. 74, 134e137. Chand-Goyal, T., Spotts, R.A., 1996. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with a low dosage of thiabendazole. Postharvest Biol. Technol. 7, 51e64. Christiansen, E., Bakke, A., 1988. The spruce bark beetle of eurasia. In: Berryman, A. (Ed.), Dynamics of Forest Insect Populations. Springer US, pp. 479e503. Cline, A.R., Skelley, P.E., Kinnee, S.A., Rooney-Latham, S., Winterton, S.L., Borkent, C.J., Audisio, P., 2014. Interactions between a sap beetle, sabal palm, scale insect, filamentous fungi and yeast, with discovery of potential antifungal compounds. PLoS One 9, e89295. Cloete, K.J., Przybylowicz, W.J., Mesjasz-Przybylowicz, J., Barnabas, A.D., Valentine, A.J., Botha, A., 2010. Micro-particle-induced X-ray emission mapping of elemental distribution in roots of a Mediterranean-type sclerophyll, Agathosma betulina (Berg.) Pillans, colonized by Cryptococcus laurentii. Plant Cell Environ. 33, 1005e1015. Cloete, K.J., Valentine, A.J., Stander, M.A., Blomerus, L.M., Botha, A., 2009. Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microb. Ecol. 57, 624e632. Cook, D.W.M., 2002a. A laboratory simulation for vectoring of trichosporon pullulans by conidia of Botrytis cinerea. Phytopathology 92, 1293e1299. Cook, D.W.M., 2002b. Effect of formulated yeast in suppressing the liberation of Botrytis cinerea conidia. Plant Dis. 86, 1265e1270. Cook, D.W.M., 1997. Isolation and Assessment of Attachment Bacteria and Yeasts for the Biological Control of Botrytis Cinerea (disseration). Massey University, Palmerston North. Craven, S.E., Dix, M.W., Michaels, G.E., 1970. Attine fungus gardens contain yeasts. Science 169, 184e186. Crognale, S., Pesciaroli, L., Petruccioli, M., D'Annibale, A., 2012. Phenoloxidaseproducing halotolerant fungi from olive brine wastewater. Process Biochem. 47, 1433e1437. Currie, C.R., Mueller, U.G., Malloch, D., 1999a. The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. 96, 7998e8002. Currie, C.R., Scott, J.A., Summerbell, R.C., Malloch, D., 1999b. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398, 701e704. tima Borges, M., Medina, C., Piccoli, R.H., Schwan, R.F., 2005. Da Silva, E.G., De Fa Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res. 5, 859e865. Davis, T.S., 2015. The ecology of yeasts in the bark beetle holobiont: a century of research revisited. Microb. Ecol. 69, 723e732. De Camargo, R., Phaff, H.J., 1957. Yeasts occurring in Drosophila flies and in fermenting tomato fruits in Northern California. J. Food Sci. 4, 367e372. De Capdeville, G., Souza, M.T., Santos, J.R.P., Miranda, S. de P., Caetano, A.R., Torres, F.A.G., 2007. Selection and testing of epiphytic yeasts to control anthacnose in post-harvest of papaya fruit. Sci. Hortic. 111, 179e185. De Mot, R., Verachtert, H., 1985. Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl. Environ. Microbiol. 50, 1474e1482. De Vega, C., Herrera, C.M., 2012. Relationships among nectar-dwelling yeasts,
7
flowers and ants: patterns and incidence on nectar traits. Oikos 121, 1878e1888. €tterl, S., 2014. Floral volatiles play a key role in De Vega, C., Herrera, C.M., Do specialized ant pollination. Perspect. Plant Ecol. Evol. Syst. 16, 32e42. Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 73e153. Doty, S.L., 2013. Endophytic yeasts: biology and applications. In: Aroca, R. (Ed.), Symbiotic Endophytes. Springer-Verlag, Berlin, pp. 335e344. Droby, S., Chalutz, E., Wilson, C.L., Wisniewski, M., 1989. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can. J. Microbiol. 35, 794e800. Droby, S., Hofstein, R., Wilson, C.L., Wisniewski, M., Fridlender, B., Cohen, L., Weiss, B., Daus, A., Timar, D., Chalutz, E., 1993. Pilot testing of Pichia guilliermondii: a biocontrol agent of postharvest diseases of citrus fruit. Biol. Control 3, 47e52. Droby, S., Wisniewski, M.E., Cohen, L., Weiss, B., Touitou, D., Eilam, Y., Chalutz, E., 1997. Influence of CaCl(2) on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guilliermondii. Phytopathology 87, 310e315. El-Tarabily, K.A., 2004. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J. Appl. Microbiol. 96, 69e75. €hl, J., Fokkema, N., 1994. Control of infection and sporulation of Botrytis Elad, Y., Ko cinerea on bean and tomato by saprophitic yeasts. Phytopathology 84, 1193e1200. Ellis, R.J., Morgan, P., Weightman, A.J., Fry, J.C., 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metalcontaminated soil. Appl. Environ. Microbiol. 69, 3223e3230. Farber, S.C., Costanza, R., Wilson, M.A., 2002. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375e392. Filonow, A.B., 2001. Butyl acetate and yeasts interact in adhesion and germination of Botrytis cinerea conidia in vitro and in fungal decay of golden delicious apple. J. Chem. Ecol. 27, 831e844. Filonow, A.B., 1999. Yeasts reduce the stimulatory effect of acetate esters from apple on the germination of Botrytis cinerea conidia. J. Chem. Ecol. 25, 1555e1565. Filonow, A.B., Vishniac, H.S., Anderson, J.A., Janisiewicz, W.J., 1996. Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biol. Control 7, 212e220. Finlay, R.D., 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 59, 1115e1126. Fokkema, N.J., Van der Meulen, F., 1976. Antagonism of yeastlike phyllosphere fungi against Septoria nodorum on wheat leaves. Neth. J. Plant Pathol. 82, 13e16. Ina cio, J., 2006. Phylloplane yeasts. In: Rosa, C., Ga bor, P. (Eds.), BiodiFonseca, A., versity and Ecophysiology of Yeasts. Springer-Verlag, Berlin, pp. 263e301. Franklin, J.F., Spies, T.A., van Pelt, R., Carey, A.B., Thornburgh, D.A., Lindenmayer, D.B., Thornburgh, D. a, Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 155, 399e423. ~o e avalaiç~ gico de Fuentefria, A.M., 2004. Identificaça ao do potencail biotecnolo leveduras e fungos semelhantes a leveduras isolados de filoplano do Hibiscus rosa-sinensis (dissertation). Universidade Federal do Rio Grande do Sul, Porto Alegre. Gai, C.S., Lacava, P.T., Maccheroni, W., Glienke, C., Araújo, W.L., Miller, T.A., Azevedo, J.L., 2009. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. J. Basic Microbiol. 49, 441e451. bor, P. (Eds.), Ganter, P.F., 2006. Yeast and invertebrate associations. In: Rosa, C., Ga Biodiversity and Ecophysiology of Yeasts. Springer-Verlag, Berlin, pp. 303e370. ndez-Molina, J.M., García-Agudo, L., Aoufi, S., García-Martos, P., Marín, P., Herna Mira, J., 2001. Extracellular enzymatic activity in 11 Cryptococcus species. Mycopathologia 150, 1e4. Gildemacher, P.R., Heijne, B., Houbraken, J., Vromans, T., Hoekstra, E.S., Boekhout, T., 2004. Can phyllosphere yeasts explain the effect of scab fungicides on russeting of Elstar apples? Eur. J. Plant Pathol. 110, 929e937. Gilliam, M., Wickerham, L.J., Howard, L.M., Martin, R.D., 1974. Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics. J. Invertebr. Pathol. 24, 349e356. Giordano, L., Garbelotto, M., Nicolotti, G., Gonthier, P., 2013. Characterization of fungal communities associated with the bark beetle Ips typographus varies depending on detection method, location, and beetle population levels. Mycol. Prog. 12, 127e140. Golubev, V.I., Bab'eva, I., 1972. Debaryomyces formicarius sp. and Debaryomyces cantarellii associated with the ants of the group Formica rufa L. J. General Appl. Microbiol. 18, 249e254. bor, P. Golubev, W.I., 2006. Antagonistic interactions among yeasts. In: Rosa, C.A., Ga (Eds.), Biodiversity and Ecophysiology of Yeasts. Springer-Verlag, Berlin, pp. 197e219. Golubev, W.I., Tsiomenko, A.B., Tikbomirova, L.P., 1988. Plasmid-free killer strains of the yeast Sporidiobolus pararoseus. Microbiologiya 57, 805e809. Goto, S., Yamasato, K., Iizuka, H., 1974. Identification of yeasts isolated from the Pacific Ocean. J. General Appl. Microbiol. 20, 309e316. Gottel, N.R., Castro, H.F., Kerley, M., Yang, Z., Pelletier, D.A., Podar, M., Karpinets, T., Uberbacher, E.D., Tuskan, G.A., Vilgalys, R., Doktycz, M.J., Schadt, C.W., 2011. Distinct microbial communities within the endosphere and rhizosphere of
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
8
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934e5944. Gouliamova, D.E., Stoilova-Disheva, M.M., Dimitrov, R.A., Gushterova, A.G., VasilevaTonkova, E.S., Paskaleva, D.A., Stoyanova, P.E., 2012. Preliminary characterization of yeasts and actinomycetes isolated from mammalian feces. Biotechnol. Biotechnol. Equip. 26, 1e4. ho-Kellermann, E., Batra, R., Boekhout, T., 2011. Malassezia Baillon (1889). In: Gue Kurtzman, C.P., Fell, J.W., Boekhout, T. (Eds.), The Yeasts. Elsevier, London, pp. 1807e1832. Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E., Dinoor, A., 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92, 976e985. Guevara-V azquez, E., Valadez-Moctezuma, E., Acosta-Ramos, M., Espinosan de levaduras asociadas Solares, T., Villanueva-Verduzco, C., 2009. Identificacio al huitlacoche. Rev. Chapingo Ser. Hortic. 15, 225e230. ~o, D.S., Santos, A.V., Marini, D.C., Bacci, M., Berbert-Molina, M.A., Lemos, F.J.A., Gusma 2010. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 115, 275e281. ~o, D.S., Santos, A.V., Marini, D.C., de Souza Russo, E., Dias Peixoto, A.M., Gusma Bacci, M., Berbert-Molina, M.A., Lemos, F.J.A., 2007. First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new rias do Inst. Oswaldo Cruz perspectives for an insect-bacteria association. Memo 102, 919e924. Hashem, M., Alamri, S.A., Hesham, A.E., Al-Qahtani, F.M.H., Kilany, M., 2014. Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol Sci. Technol. 24, 1137e1152. Helbig, J., 2002. Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. BioControl 47, 85e99. ndez-Montiel, L.G., Holguín-Pen ~ a, R.J., Larralde-Corona, C.P., ZuluetaHerna Rodríguez, R., Rueda-Puente, E., Moreno-Legorreta, M., 2012. Effect of inoculum size of yeast Debaryomyces hansenii to control Penicillium italicum on Mexican lime (Citrus aurantiifolia) during storage. CyTA J. Food 10, 235e242. ndez-Montiel, L.G., Larralde-Corona, C.P., Vero, S., Lo pez-Aburto, M.G., Herna n de levaduras Debaryomyces Ochoa, J.L., Ascencio-Valle, F., 2010. Caracterizacio gico de la podredumbre azul del limo n mexicano. hansenii para el control biolo CyTA J. Food 8, 49e56. Hirimuthugoda, N.Y., Chi, Z., Li, X., Wang, L., Wu, L., 2006. Diversity of phytaseproducing marine yeasts. Ciencias Mar. 32, 673e682. Hou, C.T., 1993. Screening of microbial esterases for asymmetric hydrolysis of 2ethylhexyl butyrate. J. Ind. Microbiol. 11, 73e81. Huang, R., Che, H.J., Zhang, J., Yang, L., Jiang, D.H., Li, G.Q., 2012. Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Botrytis cinerea on post-harvest strawberry fruits. Biol. Control 62, 53e63. Hunt, J., Boddy, L., Randerson, P.F., Rogers, H.J., 2004. An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microb. Ecol. 47, 385e395. Isaeva, O.V., Glushakova, A.M., Yurkov, A.M., Chernov, I.Y., 2009. The yeast Candida railenensis in the fruits of English oak (Quercus robur L.). Microbiology 78, 355e359. Janisiewicz, W.J., Bors, B., 1995. Development of microbial community of bacterial and yeasts antagonists to control wound-invading postharvest pathogens of fruits. Appl. Environ. Microbiol. 61, 3261e3267. Janisiewicz, W.J., Kurtzman, C.P., Buyer, J.S., 2010. Yeasts associated with nectarines and their potential for biological control of brown rot. Yeast 27, 389e398. Janisiewicz, W.J., Peterson, D.L., Bors, R., 1994. Control of storage decay of apples with Sporobolomyces roseus. Plant Dis. 78, 466e470. Jiang, F., Zheng, X., Chen, J., 2009. Microarray analysis of gene expression profile induced by the biocontrol yeast Cryptococcus laurentii in cherry tomato fruit. Gene 430, 12e16. nez, M., Gonza lez, A.E., Martínez, M.J., Martínez, A.T., Dale, B.E., 1991. Screening Jime of yeasts isolated from decayed wood for lignocellulose-degrading enzyme activities. Mycol. Res. 95, 1299e1302. Jones, K.G., Dowd, P.F., Blackwell, M., 1999. Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycol. Res. 103, 542e546. Joubert, L.-M., Wolfaardt, G.M., Botha, A., 2006. Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb. Ecol. 52, 187e197. Jurzitza, G., 1959. Physiologische Untersuchungen an Cerambycidensymbionten. Arch. Mikrobiol. 33, 305e332. Kalogiannis, S., Tjamos, S.E., Stergiou, A., Antoniou, P.P., Ziogas, B.N., Tjamos, E.C., 2006. Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. Eur. J. Plant Pathol. 116, 69e76. Kathiresan, K., Saravanakumar, K., Anburaj, R., Gomathi, V., Abirami, G., Sahu, S.K., Anandhan, S., 2011. Microbial enzyme activity in decomposing leaves of mangroves. Int. J. Adv. Biotechnol. Res. 2, 382e389. gvo €lgyi, C., Kucsera, J., 2008. Comparison of Keszthelyi, A., Hamari, Z., Pfeiffer, I., Va killer toxin-producing and non-producing strains of Filobasidium capsuligenum: proposal for two varieties. Microbiol. Res. 163, 267e276. Khan, N.I., Schisler, D.A., Boehm, M.J., Lipps, P.E., Slininger, P.J., 2004. Field testing of antagonists of Fusarium head blight incited by Gibberella zeae. Biol. Control 29, 245e255. Khan, Z., Guelich, G., Phan, H., Redman, R., Doty, S., 2012. Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses.
Int. Sch. Res. Notices Agron. 2012, 1e11. Knoth, J.L., Kim, S.H., Ettl, G.J., Doty, S.L., 2014. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol. 201, 599e609. Kostovcik, M., Bateman, C.C., Kolarik, M., Stelinski, L.L., Jordal, B.H., Hulcr, J., 2015. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J. 9, 126e138. Krieger, D.J., 2001. The Economic Value of Forest Ecosystem Services: a Review. A Wilderness Society Analysis. Kurtzman, C.P., Fell, J.W., 1998. Definition, classification and nomenclature of the yeasts. In: Kurtzman, C.P., Fell, J.W. (Eds.), The Yeasts. Elsevier, Amsterdam, pp. 3e5. Lachance, M., Starmer, W.T., 1998. Ecology and yeasts. In: Kurtzman, C.P., Fell, J.W. (Eds.), The Yeasts. Elsevier, Amsterdam, pp. 21e30. Lachance, M., Starmer, W.T., Rosa, C.A., Bowles, J.M., Barker, J.S., Janzen, D.H., 2001. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res. 1, 1e8. Laconi, S., Pompei, R., 2007. Study and characterization of intestinal yeasts of mullet (Mugil spp.) for potential probiotic use. J. Food Agric. Environ. 5, 475e480. gico de leveduras e fungos Landell, M.F., 2006. Biodiversidade e potencial biotecnolo lias do parquet de itapu~ leveduriformes associados ao fiiloplano de brome aviam~ ao/rs (dissertation). Universidade Federal do Rio Grande do Sul, Porto Alegre. Langdon, D., 2009. Blights in Lowbush Blueberries (dissertation). University of Guelph, Ontario. Lara, C.A., Santos, R.O., Cadete, R.M., Ferreira, C., Marques, S., Girio, F., Oliveira, E.S., Rosa, C.A., Fonseca, C., 2014. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie Leeuwenhoek 105, 1107e1119. Leathers, T.D., Gupta, S.C., 1997. Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii. Appl. Microbiol. Biotechnol. 47, 58e61. Leibinger, W., Breuker, B., Hahn, M., Mendgen, K., 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87, 1103e1110. n, A., Bergstro €m, G., Falsen, E., 1984. Interconversion of verbenols and verLeufve benone by identified yeasts isolated from the spruce bark beetle Ips typographus. J. Chem. Ecol. 10, 1349e1361. n, A., Birgersson, G., 1987. Quantitative variation of different monoterpenes Leufve around galleries of Ips typographus (Colleoptera: Scolytidae) attacking Norway spruce. Can. J. Bot. 65, 1038e1044. n, A., Nehls, L., 1986. Quantification of different yeasts associated with the Leufve bark beetle, Ips typographus, during its attack on a spruce tree. Microb. Ecol. 12, 237e243. Lim, Y.W., Kim, J.J., Lu, M., Breuil, C., 2005. Determining fungal diversity on Dendroctonus ponderosae and Ips pini affecting lodgepole pine using cultural and molecular methods. Fungal Divers. 19, 79e94. Lima, G., De Curtis, F., Castoria, R., De Cicco, V., 1998. Activity of the yeasts Cryptococcus laurentii and Rhodotorula glutinis against post-harvest rots on different fruits. Biocontrol Sci. Technol. 8, 257e267. Limtong, S., Koowadjanakul, N., 2012. Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 28, 3323e3335. Lindahl, B.D., Nilsson, R.H., Tedersoo, L., Abarenkov, K., Carlsen, T., Kjøller, R., ~ljalg, U., Pennanen, T., Rosendahl, S., Stenlid, J., Kauserud, H., 2013. Fungal Ko community analysis by high-throughput sequencing of amplified markers e a user's guide. New Phytol. 199, 288e299. Lindow, S.E., Brandl, M.T., 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875e1883. Llorente, P., Marquina, D., Santos, A., Peinado, J.M., Spencer-Martins, I., 1997. Effect of salt on the killer phenotype of yeasts from olive brines. Appl. Environ. Microbiol. 63, 1165e1167. Loperena, L., Soria, V., Varela, H., Lupo, S., Bergalli, A., Guigou, M., Pellegrino, A., ~ o, A., Rivas, F., Batista, S., 2012. Extracellular enzymes proBernardo, A., Calvin duced by microorganisms isolated from maritime Antarctica. World J. Microbiol. Biotechnol. 28, 2249e2256. Lou, Q.-Z., Lu, M., Sun, J.-H., 2014. Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods. Microb. Ecol. 68, 397e415. Maharshi, R.P., Sharma, R.N., Gaur, R.B., 2009. Eco-friendly management of blue mould rot (Penicillium italicum) of kinnow (Citrus deliciosa) fruits using biocontrol agents including an unrecorded yeast (Sporidiobolus pararoseus) from Rajasthan, India. Acta Hortic. 824, 381e388. Mankowski, M.E., Morrell, J.J., 2004. Yeasts associated with the infrabuccal pocket and colonies of the carpenter ant Camponotus vicinus. Mycologia 96, 226e231. Mashope, B.K., 2007. Characterization of Cactus Pear Germplasm in South Africa (dissertation). Bloemfontein: Univeristy of the Free State. Melo, W.G. da P., 2014. Leveduras isoladas de ninhos de Acromyrmex balzani (Hymenoptera: Formicidade) de areas de cerrado do estado do tocantins (dissertation). Universidade Estadual Paulista, S~ ao Paulo. Mendes, T.D., Rodrigues, A., Dayo-Owoyemi, I., Marson, F.A.L., Pagnocca, F.C., 2012. Generation of nutrients and detoxification: possible roles of yeasts in leafcutting ant nests. Insects 3, 228e245. Mengoni, A., Mocali, S., Surico, G., Tegli, S., Fani, R., 2003. Fluctuation of endophytic bacteria and phytoplasmosis in elm trees. Microbiol. Res. 158, 363e369. Merin, M.G., Mendoza, L.M., Morata de Ambrosini, V.I., 2014. Pectinolytic yeasts from viticultural and enological environments: novel finding of Filobasidium
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
L. Moller et al. / Fungal Ecology xxx (2016) 1e10 capsuligenum producing pectinases. J. Basic Microbiol. 54, 835e842. Middelhoven, W.J., 2003. The yeast flora of the coast redwood, Sequoia sempervirens. Folia Microbiol. 48, 361e362. Middelhoven, W.J., 1997. Identity and biodegradative abilities of yeasts isolated from plants growing in an arid climate. Antonie Leeuwenhoek 72, 81e89. Miller, M.W., Mrak, E.M., 1953. Yeasts associated with dried-fruit beetles in figs. Appl. Microbiol. 1, 174e178. Moln ar, O., Wuczkowski, M., Prillinger, H., 2008. Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol. Prog. 7, 111e123. , R., Stratilova , E., 2014. Extracellular enzymatic activities Moln arov a, J., Vadkertiova and physiological profiles of yeasts colonizing fruit trees. J. Basic Microbiol. 54, 74e84. Morace, G., Archibusacci, C., Sestito, M., Polonelli, L., 1984. Strain differentiation of pathogenic yeasts by the killer system. Mycopathologia 84, 81e85. Mushtaq, M., Nahar, S., Hashmi, M.H., 2013. Screening of killer-sensitive pattern (ksp) for biotyping yeast strains isolated from dairy products. Pak. J. Bot. 45, 1039e1044. Nahvi, I., Shafiei, R.S., Hareghi, B., 2005. Isolation and characterization of an amylase producing yeast and its application in carotenoid production using dual culture. Water Wastewater 16, 33e42. Nakamura, Y., Fukuhara, H., Sano, K., 2000. Secreted phytase activities of yeasts. Biosci. Biotechnol. Biochem. 64, 841e844. Nguyen, N.H., Suh, S.-O., Blackwell, M., 2007. Five novel Candida species in insectassociated yeast clades isolated from Neuroptera and other insects. Mycologia 99, 842e858. Niknejad, F., Zaini, F., Faramarzi, M.A., Amini, M., Kordbacheh, P., Mahmoudi, M., Safara, M., 2012. Candida parapsilosis as a potent biocontrol agent against growth and aflatoxin production by Aspergillus species. Iran. J. Public Health 41, 72e80. Notario, V., Villa, T.G., Villanueva, J.R., 1979. Cell wall associated 1,4,-b-d-xylanase in Cryptococcus albidus var. aerius: in situ characterization of the activity. J. General Microbiol. 114, 415e422. Nutaratat, P., Srisuk, N., Stadler, M., 2014. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 118, 683e694. Ortega, M. del P.L., 2012. Control Biologico de Botrytis sp. mediante levaduras filosfericas en rosas de corte tipo exportacion (dissertation). Universidad . Nacional de Colombia, Bogota Pagnocca, F.C., Carreiro, S.C., Bueno, O.C., Hebling, M.J., Da Silva, O.A., 1996. Microbiological changes in the nests of leaf-cutting ants fed on sesame leaves. J. Appl. Entomol. 120, 317e320. Pagnocca, F.C., Rodrigues, A., Nagamoto, N.S., Bacci, M.J., 2008. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Leeuwenhoek 94, 517e526. Patino-Vera, M., Jimenez, B., Balderas, K., Ortiz, M., Allende, R., Carrillo, A., Galindo, E., 2005. Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. J. Appl. Microbiol. 99, 540e550. Pavlova, K., Angelova, G., Savova, I., Grigorova, D., Kupenov, L., 2002. Studies of Antarctic yeast for b-glucosidase production. World J. Microbiol. Biotechnol. 18, 569e573. Payne, C., Bruce, A., 2001. The yeast Debaryomyces hansenii as a short-term biological control agent against fungal spoilage of sawn Pinus sylvestris timber. Biol. Control 22, 22e28. rez, J., Infante, F., Vega, F.E., Holguín, F., Macías, J., Valle, J., Nieto, G., Pe Peterson, S.W., Kurtzman, C.P., O'Donnell, K., 2003. Mycobiota associated with the coffee berry borer (Hypothenemus hampei) in Mexico. Mycol. Res. 107, 879e887. Petersson, S., Schnurer, J., 1995. Biocontrol of mold growth in high-moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 61, 1027e1032. Pirttil€ a, A.M., 2011. Endophytic bacteriáin tree shoot tissues and their effects on ́ of Forest Trees: Biology and host. ́In: Pirttil€ a, A.M., Frank, A.C. (Eds.), Endophytes Applications. Springer Netherlands, Dordrecht, pp. 139e150. Pirttil€ a, A.M., Joensuu, P., Pospiech, H., Jalonen, J., Hohtola, A., 2004. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plant. 121, 305e312. €, R., Hohtola, A., 2000. Detection of Pirttil€ a, A.M., Laukkanen, H., Pospiech, H., Myllyla intracellular bacteria in the buds of Scots Pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol. 66, 3073e3077. €, R., Hohtola, A., 2003. Two Pirttil€ a, A.M., Pospiech, H., Laukkanen, H., Myllyla endophytic fungi in different tissues of scots pine buds (Pinus sylvestris L.). Microb. Ecol. 45, 53e62. Polonelli, L., Morace, G., 1986. Reevaluation of the yeast killer phenomenon. J. Clin. Microbiol. 24, 866e869. Porras-Alfaro, A., Bayman, P., 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49, 291e315. €nig, H., Bauer, R., Lopandic, K., Molnar, O., Dangel, P., Prillinger, H., Messner, R., Ko Weigang, F., Kirisits, T., Nakase, T., Sigler, L., 1996. Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco- and basidiomycetes. Syst. Appl. Microbiol. 19, 265e283. Qin, G.Z., Tian, S.P., 2005. Enhancement of biocontrol activity of Cryptococcus
9
laurentii by silicon and the possible mechanisms involved. Phytopathology 95, 69e75. Qin, G.Z., Tian, S.P., Xu, Y., Chan, Z.L., Li, B.Q., 2006. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit. J. Appl. Microbiol. 100, 508e515. Qin, G.Z., Tian, S.P., Xu, Y., Wan, Y.K., 2003. Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol. Mol. Plant Pathol. 62, 147e154. Rao, R.S., Bhadra, B., Shivaji, S., 2007. Isolation and characterization of xylitolproducing yeasts from the gut of colleopteran insects. Curr. Microbiol. 55, 441e446. Redmond, J.C., Marois, J.J., MacDonald, J.D., 1987. Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Dis. 71, 799e802. Reid, R.W., Whitney, H.S., Watson, J.A., 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45, 1115e1126. n-Aguilar, C., Jeffries, P., Barea, J.-M., 2001. ManRequena, N., Perez-Solis, E., Azco agement of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl. Environ. Microbiol. 67, 495e498. Resende, A.A., 2014. Leveduras associadas a frutos da macaúba (Acrocomia aculeata ~o quanto a produç~ (Jaq.) Lodd. Ex Mart): Diversidade e caracterizaça ao exoenzimas e fatores de crescimento (dissertation). Universidade Federal de Minas Gerais, Belo Horizonte. Tovar-Ramírez, D., Ascencio-Valle, F., 2011. PolyReyes-Becerril, M., Esteban, M.A., amine determination in different strains of the yeast Debaryomyces hansenii by high pressure liquid chromatography. Food Chem. 127, 1862e1865. ndez-Rodríguez, C., Zún ~ iga, G., 2008. Genetic diRivera, F.N., Cisneros, R., Herna versity and population structure of Pichia guilliermondii over 400 generations of experimental microevolution. Biol. J. Linn. Soc. 93, 475e486. lez, E., Go mez, Z., Lo pez, N., Herna ndez-Rodríguez, C., Berkov, A., Rivera, F.N., Gonza ~ iga, G., 2009. Gut-associated yeast in bark beetles of the genus Dendroctonus Zún Erichson (Coleoptera: Curculionidae: Scolytinae). Biol. J. Linn. Soc. 98, 325e342. Roberts, R.G., 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80, 526e530. Rodarte, M.P., Dias, D.R., Vilela, D.M., Schwan, R.F., 2011. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Maringa 33, 457e464. Rodrigues, A., Bacci, M.J., Mueller, U.G., Ortiz, A., Pagnocca, F.C., 2008. Microfungal “weeds” in the leafcutter ant symbiosis. Microb. Ecol. 56, 604e614. Rodrigues, A., Cable, R.N., Mueller, U.G., Bacci, M.J., Pagnocca, F.C., 2009. Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Leeuwenhoek 96, 331e342. Rodrigues, A., Passarini, M.R.Z., Ferro, M., Nagamoto, N.S., Forti, L.C., Bacci, M., Sette, L.D., Pagnocca, F.C., 2014. Fungal communities in the garden chamber soils of leaf-cutting ants. J. Basic Microbiol. 54, 1186e1196. Rodriguez, R.J., Redman, R.S., Henson, J.M., 2004. The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Change 9, 261e272. Rodriguez, R.J., White, J.F., Arnold, A.E., Redman, R.S., 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314e330. mez, F., Romero-Gil, V., Bautista-Gallego, J., Garrido-Fern Rodríguez-Go andez, A., pez, F.N., 2012. Multivariate analysis to discriminate yeast strains Arroyo-Lo with technological applications in table olive processing. World J. Microbiol. Biotechnol. 28, 1761e1770. nez-Díaz, R., 1995. Availability of essential B-group vitamins to Ruiz-Barba, J.L., Jime Lactobacillus plantarum in green olive fermentation brines. Appl. Environ. Microbiol. 61, 1294e1297. Saha, B.C., Bothast, R.J., 1996. Glucose tolerant and thermophilic b-glucosidases from yeasts. Biotechnol. Lett. 18, 155e158. Saksinchai, S., Suzuki, M., Chantawannakul, P., Ohkuma, M., Lumyong, S., 2012. A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Divers. 52, 123e139. Sandhu, D.K., Waraich, M.K., 1985. Yeasts associated with pollinating bees and flower nectar. Microb. Ecol. 11, 51e58. Sansone, G., Rezza, I., Calvente, V., Benuzzi, D., Sanz de Tosetti, M.I., 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol. Technol. 35, 245e251. nchez, A., Marquina, D., 2004. Yeasts as biological agents to control Santos, A., Sa Botrytis cinerea. Microbiol. Res. 159, 331e338. Sanz Ferramola, M.I., Benuzzi, D., Calvente, V., Calvo, J., Sansone, G., Cerutti, S., Raba, J., 2013. The use of siderophores for improving the control of postharvest ndez-Vilas, A. (Ed.), Microbial diseases in stored fruits and vegetables. In: Me Pathogens and Strategies for Combating Them: Science. Technology and Education. Formatex Research Center, Spain, pp. 1385e1394. Schisler, D., Kurtzman, C., Bothast, R., Slininger, P., 1995. Evaluation of yeasts for biological control of Fusarium dry rot of potatoes. Am. Potato J. 72, 339e353. Scholtysik, A., Unterseher, M., Otto, P., Wirth, C., 2013. Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol. Prog. 12, 291e304. Schultz, T.R., Brady, S.G., 2008. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435e5440. Schulz, B., Wanke, U., Draeger, S., Aust, H.-J., 1993. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res. 97, 1447e1450.
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003
10
L. Moller et al. / Fungal Ecology xxx (2016) 1e10
Scorzetti, G., Petrescu, I., Yarrow, D., Fell, J.W., 2000. Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie Leeuwenhoek 77, 153e157. Shifrine, M., Phaff, H.J., 1956. The association of yeasts with certain bark beetles. Mycologia 48, 41e55. Shokralla, S., Spall, J.L., Gibson, J.F., Hajibabaei, M., 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794e1805. Singh, P., Tsuji, M., Singh, S.M., Roy, U., Hoshino, T., 2013. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts nbreen glacier, Svalbard, Arctic. Cryobiology 66, from ice cores of Midre Love 167e175. Smaniotto, A., Skovronski, A., Rigo, E., Tsai, S.M., Durrer, A., Foltran, L.L., Paroul, N., Di Luccio, M., Oliveira, J.V., de Oliveira, D., Treichel, H., 2014. Concentration, characterization and application of lipases from Sporidiobolus pararoseus strain. Braz. J. Microbiol. 45, 294e302. Solis, M.J.L., Yurkov, A., Dela Cruz, T.E., Unterseher, M., 2015. Leaf-inhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol. Prog. 14, 1e10. Song, W.-Y., Choi, K.S., Kim, D.Y., Geisler, M., Park, J., Vincenzetti, V., Schellenberg, M., Kim, S.H., Lim, Y.P., Noh, E.W., Lee, Y., Martinoia, E., 2010. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and longdistance zinc transport. Plant Cell 22, 2237e2252. Spear, R.N., Li, S., Nordheim, E.V., Andrews, J.H., 1999. Quantitative imaging and statistical analysis of fluorescence in situ hybridization (FISH) of Aureobasidium pullulans. J. Microbiol. Methods 35, 101e110. Spiegelman, D., Whissell, G., Greer, C.W., 2005. A survey of the methods for the characterization of microbial consortia and communities. Can. J. Microbiol. 51, 355e386. Starmer, W.T., Heed, W.B., Miranda, M., Miller, M.W., Phaff, H.J., 1976. The ecology of yeast flora associated with cactophilic Drosophila and their host plants in the Sonoran desert. Microb. Ecol. 3, 11e30. Starmer, W.T., Lachance, M.-A., 2011. Yeast ecology. In: Kurtzman, C.P., Fell, J.W., Boekhout, T. (Eds.), The Yeasts. Elsevier, London, pp. 65e83. Stevens, B.J.H., Payne, J., 1977. Cellulase and xylanase production by yeasts of the genus Trichosporon. J. General Microbiol. 100, 381e393. Strauss, M.L.A., Jolly, N.P., Lambrechts, M.G., Van Rensburg, P., 2001. Screening for the production of extracellular hydrolytic enzymes by non- Saccharomyces wine yeasts. J. Appl. Microbiol. 91, 182e190. Sugiprihatini, D., Wiyono, S., Widodo, W., 2011. Selection of yeasts antagonists as biocontrol agent of mango fruit rot caused by Botryodiplodia theobromae. Microbiol. Indones. 5, 154e159. Suh, S.-O., Blackwell, M., 2005. The beetle gut as a habitat for new species of yeasts. In: Vega, F.E., Blackwell, M. (Eds.), Insectefungal Associations: Ecology and Evolution. Oxford University Press, New York, pp. 244e256. Suh, S.-O., McHugh, J.V., Pollock, D.D., Blackwell, M., 2005. The beetle gut: a hyperdiverse source of novel yeasts. Mycol. Res. 109, 261e265. Suh, S.O., Blackwell, M., 2004. Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res. 5, 87e95. Sun, X., Yang, Q., Sweeney, J.D., Gao, C., 2006. A review: chemical ecology of Ips typographus (Coleoptera, Scolytidae). J. For. Res. 17, 65e70. Surussawadee, J., Khunnamwong, P., Srisuk, N., Limtong, S., 2014. Papiliotrema siamense f.a., sp. nov., a yeast species isolated from plant leaves. Int. J. Syst. Evol. Microbiol. 64, 3058e3062. Sweet, S.P., Douglas, L.J., 1991. Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans. FEMS Microbiol. Lett. 80, 87e91. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J., Van Der Lelie, D.D., 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75, 748e757. Tan Gana, N.H., Mendoza, B.C., Monsalud, R.G., 2014. Yeasts with amylolytic, lipolytic and proteolytic activities isolated from mango (Mangifera indica L.) fruits. Asia Life Sci. 23, 243e253. Taqarort, N., Echairi, A., Chaussod, R., Nouaim, R., Boubaker, H., Benaoumar, A., Boudyach, E., 2008. Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits. World J. Microbiol. Biotechnol. 24, 3031e3038. Tian, S., Qin, G., Xu, Y., 2004. Survival of antagonistic yeasts under field conditions and their biocontrol ability against postharvest diseases of sweet cherry. Postharvest Biol. Technol. 33, 327e331. Tian, S.P., Yao, H.J., Deng, X., Xu, X.B., Qin, G.Z., Chan, Z.L., 2007. Characterization and expression of beta-1,3-Glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology 97, 260e268. Trindade, R.C., Resende, M.A., Silva, C.M., Rosa, C.A., 2002. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits. Syst. Appl. Microbiol. 25, 294e300. Unterseher, M., Persoh, D., Schnittler, M., 2013. Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Divers. 60, 43e54. Unterseher, M., Reiher, A., Finstermeier, K., Otto, P., Morawetz, W., 2007. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol. Prog. 6, 201e212. ndez, V., Acosta, F., Levica n, G., Vaca, I., Faúndez, C., Maza, F., Paillavil, B., Herna
vez, R., 2013. Cultivable psychrotolerant yeasts associated with Martínez, C., Cha Antarctic marine sponges. World J. Microbiol. Biotechnol. 29, 183e189. Vaz, A.B.M., Brand~ ao, L.R., Vieira, M.L.A., Pimenta, R.S., De Morais, P.B., Sobral, M.E.G., Rosa, L.H., Rosa, C.A., 2012. Diversity and antimicrobial activity of fungal endophyte communities associated with plants of Brazilian savanna ecosystems. Afr. J. Microbiol. Res. 6, 3173e3185. Vega, F.E., Dowd, P.F., 2005. The role of yeasts as insect endosymbionts. In: Vega, F.E., Blackwell, M. (Eds.), Insectefungal Associations: Ecology and Evolution. Oxford University Press, New York, pp. 211e243. Vieira, M.L.A., Hughes, A.F.S., Gil, V.B., Vaz, A.B.M., Alves, T.M.A., Zani, C.L., Rosa, C.A., Rosa, L.H., 2012. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can. J. Microbiol. 58, 54e66. Vishniac, H.S., Johnson, D.T., 1990. Development of a yeast flora in the adult green june beetle (Cotinis nitida, Scarabaeidae). Mycologia 82, 471e479. Waqas, M., Khan, A.L., Kamran, M., Hamayun, M., Kang, S.M., Kim, Y.H., Lee, I.J., 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17, 10754e10773. Ward, P.S., Brady, S.G., Fisher, B.L., Schultz, T.E.D.R., 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61e81. Wearn, J.A., Sutton, B.C., Morley, N.J., Gange, A.C., 2012. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J. Ecol. 100, 1085e1092. Williamson, M.A., Fokkema, N.J., 1985. Phyllosphere yeasts antagonize penetration from appressoria and subsequent infection of maize leaves by Colletotrichum graminicola. Neth. J. Plant Pathol. 91, 265e276. Wilson, D., 1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274e276. Wisniewski, M., Biles, C., Droby, S., McLaughlint, R., Wilsont, C., Chalutz, E., 1991. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiol. Mol. Plant Pathol. 39, 245e258. Wszelaki, A.L., Mitcham, E.J., 2003. Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biol. Technol. 27, 255e264. Xin, G., Glawe, D., Doty, S.L., 2009. Characterization of three endophytic, indole-3acetic acid-producing yeasts occurring in Populus trees. Mycol. Res. 113, 973e980. Yao, H., Tian, S., Wang, Y., 2004. Sodium bicarbonate enhances biocontrol efficacy of yeasts on fungal spoilage of pears. Int. J. Food Microbiol. 93, 297e304. Yousuf, F., Gurr, G.M., Carnegie, A.J., Bedding, R.A., Bashford, R., Gitau, C.W., 2014. Biology of the bark beetle Ips grandicollis Eichhoff (Coleoptera: Scolytinae) and its arthropod, nematode and microbial associates: a review of management opportunities for Australia. Austral Entomol. 53, 298e316. Yu, T., Zhang, H., Li, X., Zheng, X., 2008. Biocontrol of Botrytis cinerea in apple fruit by Cryptococcus laurentii and indole-3-acetic acid. Biol. Control 46, 171e177. Zachow, C., Berg, C., Muller, H., Meincke, R., Komon-Zelazowska, M., Druzhinina, I.S., Kubicek, C.P., Berg, G., 2008. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J. 3, 79e92. Zhang, H., Fu, C., Zheng, X., Xi, Y., Jiang, W., Wang, Y., 2004a. Control of postharvest Rhizopus rot of peach by microwave treatment and yeast antagonist. Eur. Food Res. Technol. 218, 568e572. Zhang, H., Fu, C.-X., Zheng, X.-D., He, D., Shan, L.-J., Zhan, X., 2004b. Effects of Cryptococcus laurentii (Kufferath) Skinner in combination with sodium bicarbonate on biocontrol of postharvest green mold decay of citrus fruit. Botanical Bull. Acad. Sinica 45, 159e164. Zhang, H., Zheng, X., Fu, C., Xi, Y., 2005. Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biol. Technol. 35, 79e86. Zhang, H., Zheng, X., Wang, L., Li, S., Liu, R., 2007a. Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. J. Food Eng. 78, 281e287. Zhang, H., Zheng, X., Yu, T., 2007b. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18, 287e291. Zhang, N., Suh, S.-O., Blackwell, M., 2003. Microorganisms in the gut of beetles: evidence from molecular cloning. J. Invertebr. Pathol. 84, 226e233. Zhang, S., Schisler, D.A., Boehm, M.J., Slininger, P.J., 2007. Utilization of chemical inducers of resistance and Cryptococcus flavescens OH 182.9 to reduce Fusarium head blight under greenhouse conditions. Biol. Control 42, 308e315. Zhao, J., Bai, F., Guo, L., Jia, J., 2002. Rhodotorula pinicola sp. nov., a basidiomycetous yeast species isolated from xylem of pine twigs. FEMS Yeast Res. 2, 159e163. Zhao, L., Zhang, H., Li, J., Cui, J., Zhang, X., Ren, X., 2012. Enhancement of biocontrol efficacy of Pichia carribbica to postharvest diseases of strawberries by addition of trehalose to the growth medium. Int. J. Mol. Sci. 13, 3916e3932. Zheng, X., Zhang, H., Sun, P., 2005. Biological control of postharvest green mold decay of oranges by Rhodotorula glutinis. Eur. Food Res. Technol. 220, 353e357. Zullo, B.A., Cioccia, G., Ciafardini, G., 2013. Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage. Food Microbiol. 36, 70e78. Zullo, B.A., Cioccia, G., Ciafardini, G., 2010. Distribution of dimorphic yeast species in commercial extra virgin olive oil. Food Microbiol. 27, 1035e1042. Zullo, B.A., Ciafardini, G., 2008. Lipolytic yeasts distribution in commercial extra virgin olive oil. Food Microbiol. 25, 970e977.
Please cite this article in press as: Moller, L., et al., Interactions of arboreal yeast endophytes: an unexplored discipline, Fungal Ecology (2016), http://dx.doi.org/10.1016/j.funeco.2016.03.003