133
Journal of Molecular Structure, 293 (1993) 133-136 Elsevier Science Publishers B.V., Amsterdam
Intermolecular Interactions in Some Pyridaabium Ylides lolutions Dana Dorohoi and Viorel Holban Spectroscopy Department.University of Iasi,Romania The nature of intermolecular interactions in the solutions of the pyridazinium ylides has been ana1ysed.A relation for the calculation of the visible band frequencies has been established in function of the solvent parameters.
to the heterocycle
l.INTRODUCTION Pyridazinium ylides are amphionic compounds in which the carbonion is covalently bound to the pyridazinium heterocycle positively charged [l-33. The interactions of pyridazinium ylides with solvents are important because of the frequent use "in situul' of the former as starting products cycloaddition reactions for and for preparing some drugs. The electronic absorption spectra of pyridazinium ylides have [2),in the visible domain,a n-z* band with intramolecular charge transfer of the type Yj-Yi from the carbonion
[1,2] Al
T
This band disappears in the solutions containing free protons.It is very sensitive to the solvent nature. P.EXPERIMENTAL PART We have studied the type ylides with Yj pyridazinium radic 1s -RI,-R, and-R, the in Table 1. he values of the
Table 1 Yi pyridazinium ylides Nr.
Yj
‘Rl
1
YI
-C6H5
2
r,
3
y3
4
r,
122-2860/93/$06.00
-C5H4[-CH(CH3)2]P -C6H5
-C5H4[-CH(CH,),]P
‘R2 -COCgH4
‘R3 040,)
P
-H
-COC,H,(-NO,)p
-H
-COCgH5
'COCgH5
-COCgH5
-COCgH5
0 1993 Elsevier Science Publishers B.V. All rights reserved.
134
Table 2 The wave numbers ~(cx?-~>for Y+ ylides I
I
I
I
1.
benzene
19900
19800
19900
19920
2.
toluene
20040
20000
19900
19920
20150
1 19760
1 19690
3. 1 4.
trichloroethylene
1
trichloromethane
20030
dichloromethane
5. I
20010
!
f I
20170 I
Y,
20160
!
I
20160
I
1
20200
20200 I
Y3
Y,
Ylide
!
Y,
I
No.
I
20200 20200
I
6.
monochlorbenzene
20100
20060
19920
20180
7.
phenyl carbinol
20610
20570
21310
21260
8.
1
isobutyl alcohol
I
1
20680
I
1
20830
I
1
21250
I
1
21210
I
9.
methanol
21060
21110
21620
21710
10.
ethanol
20880
20990
21280
21300
11.
1
isoamyl acetate
1
20260
1
20200
1
20100
12.
n-propyl alcohol
20760
20820
21160
13.
n-amyl alcohol
20680
20830
21100
isopropyl alcohol
14. I
15. I
n-butyl alcohol
I
16.
1
20730 I 1
20720
I
methyl acetate
I
1
20850
I
20330
I
1
I 1
21230
I
20270
1
1
20120 21230
1
21160 21100
21080
20760 I 1
1
I 1
21210
I
20230
I
1
20160
I
17.
cyclohexanol
20510
20590
21110
21160
18.
n-butyl acetate
20410
20430
20210
20220
19.
1
ethyl acetate
1
20210
1 I
20310
1 I
20100
1 I
20120 20100
1-bromopropane
20190
20250
20080
21.
pyridine
20210
20190
20100
20260
22.
acetone
20310
20300
20260
20160
23.
acetonitrile 1
24.
1
25. 26.
1
propane 1,2-diol
[
I
nitrobenzene I I
20420
dichloroethane
1
21000
1
I
19900 1 1
20470
I
1
20540
I 1
1
20370
I
1
20290
I
I
19880
1 21970 I 20140
1 21900 I 20200
20510
I t
I t
21030
20220
20220
135
frequencies V(cm-l) in the visible R-X* band maxima is presented in Table 2. 3.RESULT8
AND DISCUSSION8
The processing of the experimental data has been achieved based on a multiple linear regression calculation program [3] using the following solvent parameters: P,=(e-l)/(r+2); P2=MR; P3=kt&; P4= (n2-1)
/ (n2+2)
; Ps=P,-P,
(1)
In (1) E is the electrical permittivity,MR-is the molar refraction,8, represents the chemical shift of the NMR signal for the proton of the -OH group in the pure solvent,k is the number of the -OH groups in the molecules of the protic solvents and n represents the refractive index of solvents. The choice of PI, P2, P4 andP, parameters for the multiple regression has been suggested by the theories on the impact of solvents on the electronic absorption spectra.Taking into account the fact that the parameter P3 points to the uncovering degree of the -OH group proton,we have chosen it for describing the intensity
of the specific interactions between ylides and the protic solvents. A relation of type (2) was established: (2) Llc (cm-l)=co+cIPI+c2P2+c~P~ The relation (2) with the parameters Ci in Table 3, allows expressing with enough precision the frequency in the visible band maximum for the analysed Yj substances. The results of the statistic processing are presented in Table 4. From Table 4 it results that the multiple correlation coefficient R ,does not diminish under 0.9.For the control quantities [41 we obtained bigger values than the critical adequate ones. Out of [5,6] and the data presented in Table 3,it results that in the nonprotic solvents Y1 and Yz ylides take part in the dispersion,while Y, and Y4 participate in the orientation-inductioninteractions. The positive values ofC, coefficient in the case ofY, and Y4 ylides,show the diminution [5] of the electric dipole momentum as consequence
Table 3 The Ci coefficient in the relation (2) No.
II 1.
Ylide 1
c&AC,
I
~&AC,
I
c,+Ac2
r
c3+Ac3
Y,
1 20580+200
-17.4k7.5
103223
2.
Y,
20640+170
-19.7k6.5
114+19
3.
Y,
19870+130
683+351
176+27
4.
Yd
19890+180
406_+277
182+22
136
Table 4
of the intermolecular charge transfer. The sign minus of the C2 coefficient shows the increase of the polarizability of the molecules by and Y2 Y, excitation. For all the solutions of the Y. ylides in the protic the fourth term in solve&s relation (2) is different from zero,which shows the presence of the proton donor-acceptor specific interactions. C3 coefficient is always positive for all pyridazinium ylides.It supports the assertion that the binding energy of the proton donor-acceptor complex between the molecules of protic solvent and those of pyridazinium ylides is bigger in the ground state of complex comparatively with the excited state [7]. This assertion can also be motivated if one accepts the mechanism Yj-Yj'for light absorption [1,2] and the procharge intermolecular tonic transfer being localised on the ylide carbonion [3]. Q.CONCLUSIONS In the solutions of the pyridazinium ylides with nonprotic solvents in function of
the structure of their carbonion,either orientation-inducinteracdispersion tion,or tions appear.There appear specific interactions of the type proton donor-acceptor in the protic solvents. REFERENCES l.I.Zugrsvescu,M.Petrovanu,N Ylid Chemistry Academic London Press, McGraw Hill, (1976). 2.D.Dorohoi,M.Rotariuc,E. Lupu,M.Petrovanu,Mai Van Tri, An.Qt.Univ Iasi Ib,22,p.35,41, 45 (1976). 3.G.Surpsteanu, Alain LaCombier Heterocycles blache 22, 2079, (1984). $.G.Henrion,
A.Henrion,R.
Henrion, Beispiele zur Datenanalyse mit BASIC Programmen, Berlin p.264-282 (1988). Chem.Soc Bull 5.T.Abe. Japan 38,1314 (1965) 39,939 (1966). 6.H.G.BakhshievSpectrospiia mejmoleculiarnXh vzaimodeistvii, Izd.Nauka, Leningrad P* 162, (1976). 7.G.C.Pimente1,A.L. McClellan, The Hydrogen Bond L.Pauling editor, San Francisco,London,chap.4.1.5, (1960).