INTERNAL
FRICTION R.
W.
IN SOLID and
POWERS
SOLUTIONS
MARGARET
V.
OF TANTALUM* DOYLEt
The internal friction in tantalum arising from the diffusion of interstitial oxygen ca.n be described as the sum of two peaks. The peak at 137°C (applied frequency - 0.6 c.p.s.), whose height is directly proportional to the oxygen concentration, is interpreted as arising from the diffusion of free, non-interacting interstitial oxygen. On the other hand, that at 162”C, whose height is a quadratic function of the oxygen concentration, is believed to arise from the diffusion of oxygen atoms, each of which is interacting with anot)her oxygen atom in its neighborhood. In a very similar manner, t,he internal friction arising from the diffusion of nitrogen can also be described as the sum of two peaks, one at 334°C and the other at 362°C (Y - 0.6 c.P.s.). The peak at 362°C is shown to be a quadratic function of the nitrogen concentration. a peak appears at 175”C, whose height is With both oxygen and nitrogen present in tantalum, This peak is described as arising proportional to the product of the oxygen and nitrogen concentrations. from t,he diffusion of oxygen atoms, each of which is interacting with a nitrogen atom in its neighborhood. The act,ivation energy associated with the diffusion of free oxygen atoms was found to be less than those measured for the diffusion of oxygen interacting either with other oxygen atoms or with nitrogen. These interactions between interst,it,ial solute atoms in tantalum are believed to take place over short atomic distances.
FROTTEMEST
INTERNE
DANS
LES
SOLUTIONS
SOLIDES
DE
TANTALE
Lr frottement intorne du tantale di1 & la diffusion de l’oxyg&ne interstitiel est d&-it comme la somme de doux pits. Celui & 137” (frhquenre de 0,6 c.p.s,), dont la hauteur est proportionnelle B la concentration Par contre, celui & 162’, dent tn oxvg&ne, est explique par la diffusion des atomes interstiticls libres. la hautour est une fonct)ion quadratique de la concentration en oxyghne, est attribuG & la diffusion d’atomes d’oxyg&ne en interaction avec un autre atorne d’oxygkne situP dans le voisinagc. De la mSme manitire, le frottement interne dii B la diffusion de l’azote pout Btrc expliquG comme la somme de deux pits, l’un & 334”, l’autre k 362” (v de l’ordre de 0,6). Le pit B 362” est une fonction quadretique de la concentration en azot,e. &and l’oxpgitne et l’azot,e sont pr6sents simultan~ment dans le tant,ale, un pit apparait & 175O, dont la hautour est’ proportionnelle au produit des concentrations il est explique comme dO & la diffusion des atomos d’oxygPne cn intrrart,ion pn oxygene rt en azote; avec un atome d’azote situ& dans son roisinage. L’bnergie d’actiration associCe & la diffusion des atomes libres d’oxyg&ile est plus petite que celle mesurbe pour la diffusion de l‘oxygilne en interaction. tant aver l’oxyg&ne qu’avoc l’azotr. Ccs interactions entre atomes interstitiels dans le tantale seraient & courte distance.
i’Bl
DIE
ISNERE
REIBUNG
BE1
TAST_4L
MISCHKRISTALLER’
Die innere Reibung van Tantal, die durch die Diffusion van eingelagertem Sauerstoff hervorgerufcn w-ird, kann als die Summe zweier Maxima bcschrieben werden. Das Maximum bei 137°C (angewandtc -0.6 cm/s), dessen Hiihe direkt proportional der dauerstoffkonzentration ist, wird der DifFrequenz fusion van freiem, eingelagerten Sauerstoff zugeschrieben, der keinerlei Wechselwirkungen unterliogt. Auf der anderen Seite scheint das Maximum bei 162”C, dessen Hiihe eine quadratische Funkt,ion der Saue&offkonzentration ist, van der Diffusion ran solchen Sauer&offatornen herzuriihren, van denen ein jedes mit einem anderen aus seiner Nachbarschaft in Wechselbeziehung steht. In iihnlicher Weise kann die innere Keibung, die durch die Diffusion des Stick&offs hervorgerufen wird, ebrnfalls als die Summe zweier Maxima beschrieben werclen, van denen das eine bei 334°C und das andere bei 362°C liegt (v - 0.6 cm/s). Es wird gezeigt, dass das Maximum bei 362°C eine quadratische Funktion der Stickstoffkonzentration ist,. Bei Anwesenheit van Sauerstoff und Htickstoff in Tantal entsteht bei li.?‘C ein Maximum. dessen Hb;he proportional dem Produkt aus der Sauerstoff- und cler stickstoffkonzontration ist. Dieses Maximum wird der Diffusion van Sauerstoffatomen zugeschrieben, l-on dcnen tin jedes mit ~illem St,ickstoffatom aus seiner Xachbarschaft in Wechselwirkung steht. Die ,4ktivierungsenergie des Diffusionsvorganges van freien Sauerstoffatornm hat eiuen niedrigoren 1Vcrt als die des Diffusionsvorganges van Sauerstoff, der entweder mit Sauerstoffoder rnit Stickstoffatomen in Wechselwirkung steht. Die gegenseitige Beeinflussumg der eingelagerten, geliisten Atome in Tantal reicht anscheinend nur iiber kurze Atomabst&nde.
* Received Julv 20, 1955. t General Electric Research iZCTA
METBLLURGICB,
Laboratory,
VOL.
4, MAY
Schenectady, 1956
New
York. 233
ACTA
234
METALLURGICA,
VOL.
4,
ID,76
0.9 0.8 0.7 0.6 0.5 -
0.3 :: iE _e &J 0.2 t-
‘l/J I
al -
TO SPECIMENWT. PERCENT
0.09 -
0.07 1 0.06 /f 1 f 460 440 420 400
1’
I
I 1
360
380 I I
RECIPROCAL
diffusion of i~lterstitially dissolved time.(l)
However,
t,he experimentally (Q-i
vs. l/T)
oxygen at. low con-
at higher oxygen
concentrat’ions,
internal friction
broadened
considerably time.
280
I
II
1.7
26 0 L I’.*
1.8
f103/Tt”Kfl
kind is not, confined
curve
and skewed,
At
with
tantalum,
to solid solutions
but, is found
solid solutions
in all oxygen
of the five-B
element,s.
of oxygen
in
and nitrogen Part of the
evidence for this general behavior is illustrat’ed by the influence
of nitrogen
concentration
on the shape of
t,he int’ernal friction peak associated with the diffusion of nitrogen in tantalum.
higher on t#he high-
temperat,ure side of the peak than that computed a single relaxation
1I
TEMPERATURE
with a single relaxation
determined
becomes
the int,ernal friction
I
300
1. Sorrnalizod internal friction peaks of nitrogen in tantalum.
in t,antalum arising from the
can be described
\Y 320
1.6
INTRODUCTION
centrations
t (“Cl 340
II
I
I.5
1.4 Fx.
The internal friction
0 1% 85 28f72 45155
NONE OB38 0.076 0.114
0.08 -
0.05
CALC’O USING I?-
for
least one additional,
longer relaxation time is needed to represent> the data at these higher concentrations. In this report we present additional ~xperimelltal evidence t,hat concentration broadening in oxygentantalum solutions is brought about by an interaction between interst’itial oxygen atoms. Moreover, there are indications that concentration broadening of this
THE
TANTALUM-NITROGEN FRICTION PEAK
INTERNAL
In order to reveal the influence of nit’rogen concemration upon the shape of the internal friction peak, we measured the damping in four specimens, containing different quantities of nitrogen, as a, function of temperature in a low-frequency torsional pendulum. The internal friction in t’hese specimens, as well as that in all others discussed in this report,, was strictly
POR’ERS
AND
independent
DOYLE:
INTERNAL
of the strain-amplitude
at least 2 . 10m4. The samples manner analogous
solutions.(l)
of nitrogen
to loading
was about
normalized
damping
They
arc similar
oxygen width
solutions. of
measured nitrogen
t’o those
nitrogen
prior
per cent.
previously
peak,
r 004
t
The
in Fig.
reported
in terms
or nitrogen
the internal
1. for
of
A(l/!P)
corresponding
peak height.
At
frict,ion for small amounts
can be described
with
a single
to a peak at 334°C.
of
relaxation At’ higher
a second relaxation time corresponding
t’o a second peak at 362°C is needed to fit the experimen-
n
“0
tal data. The solid lines in Fig. 1 have been computed for various combinations
of the 334” and 362” peaks.
The ratio of the height, of the 362” peak to that of the 334’ peak is indicated
on t’he graph.
0.1 n-eight’ per cent nitrogen, experimental
dat’a using combinations
However,
for a specimen
containing relaxation
concentrations.
of curve fitting, an activation
to fit the
of only
two about
the fit is imperfect,,
the presence of additional
at’ very high nitrogen
times
For purposes
The nitrogen internal frict,ion peak is not as stable If a specimen is aged above 45O”C,
t,he int~ernnl friction
arising
nit’rogen declines noticeably.
from
the
diffusion
Similar observations
of
have
been made bv Ke.c2) Because of this inst’ability, which it, seems reasonable
I 0.03
I
I 0.01
002
WEIGHT
PERCENT
OXYGEN
I 0.05
I
004
IN
TANTALUM
3. The height of the normal tantalum-oxygen damping peak as a function of oxygen concentration. FIG.
of tantalum
to associate with the precipitation
nit’ride, our study
has not been as comprehensive
of the nitrogen
peak
as that of the oxygen
peak. THE
energy of 37.5 kcal was
used for the 334” peak and 40.0 kcal for the 362” peak. as that for oxygen.
Ld
Up to roughly
it is possible
0.12 weight’ per cent nitrogen, indicating
235
TXSTALUM
at half the peak height, increases with the
concentrations
peaks.
OF
Thus, as can he seen in Fig. 2, the
nitrogen
concentration
0.6 c.p.s., time
the
weight
SOLUTIONS
0.05
in detail
We estimat’e that
curves are presented
SOLID
in a
in the specimens
0.005
IS
up to strains of
were prepared
to that’ already described
for oxygen-tant~alum the concentration
FRICTION
EFFECT OF CONCENTRATION ON HEIGHT OF THE NORMAL (137°C) TANTALUM-OXYGEN PEAK
THE
By Snoek’s theory, t3)the height of an internal friction peak should be proportional atom concentrat’ion, the solute atoms.
to the interstitial
if no interaction
Consequently,
solute
occurs between
we thought it. would
be of value to check this aspect of Snoek’s theory for solutions
of
tantalum
concentrations. specimens varying
containing
A large
number
were prepared
with the oxygen
over a fifteen-fold of known
at
low
content
range from 0.003 to 0.045
weight’ per cent’. The preparation alloys
oxygen
of tantalum-wire
interstitial
of tantalum-oxygen
atom
content
has been
described previously. (l) The results of measurements
of
the peak heights at 0.6 c.p.s. in a torsional pendulum are shown in Fig. 3. The equation
of t’he least-square
line that best represents these data is Q-l = 1.10 (concentr. in weight per cent) -
0.0020.
With the exception of the lowest points, all points fall within ten per cent of this line. Some of t)his scatter may be associated
with variations
in grain-size
and
orientation from specimen to specimen. Usually most of the cross-section of a wire specimen is occupied by FIG. 2. Half-width of tantalum-nitrogen damping peak its a fuxtion of peek height.
one grain with, however, lying along the periphery.
a number of’ smaller grains
ACTA
236
METALLURGIC.!,
VOL.
4,
1956
In a completely
analogous manner, we interpret the
362” peak as arising from the diffusion 200
atoms,
-
each
of which
is interacting
nitrogen at)om. This assumption y
SLOPE
are presented similar to those for oxygen in Fig. 4a. The internal friction was measured at 417”C, where t,he
=2 I
+ IOO-
“0 7 0
BO-
:r/i ], WEIGHT
OXYGEN
of the height) concentration.
CONCENTRATION
EXTRAORDINARY
OXYGEN
(162”
As reported for
somewhat
AND
previously, higher
ON
AND
362”)
with neighboring THE
the tail of the 334” peak,
of the nitrogen concentrat’ion.
solute at’oms.
INFLUENCE THE
THE
Not’ only
NITROGEN
PEAKS
OF
OXYGEN
NITROGEN
ON
PEAK
does increasing
nitrogen
concentration
broaden t)he nitrogen peak, but nitrogen also broadens
the internal
concentrations
tant,alum can be represented
from
The slope of 1.9 indicates that the 362” peak
convernional manner. They arise from diffusion of free oxygen or nitrogen atoms that are not interact’@
015
4a. Plot showing quadratic dependence of the oxygen interaction peak on the oxygen OF
(334”) peak
These data have been corrected
Tl’e int*erpret t)he peaks at 137” and 334°C in the
FIG.
EFFECT
small.
is a quadrat’ic fun&ion
0.10
PERCENT
from the tail of the normal
however.
( , , , , (,
006
contribution is relatively
for the contribution
/
006
THE
another
is justified in Fig. 4b,
where data for nitrogen in tantalum (taken from Fig. 1)
‘50_
2
4
of nitrogen
with
friction of
empirically
data
oxygen
in
as the sum
of t,wo peaks,
the oxygen
peak,
concomitantly
with reducing its The damping
height, as shown in a previous report.(l)
data can be fitted fairly well as the sum of the normal
one of which occurs at 137” and the We have just shown other at 162°C (Y = 0.6 c.P.s.). that the height, of the normal peak at 137°C varies
that given the 162”C, is that it arises from the diffusion
linearly with concentration.
of oxygen
In Fig. 4a, t’he logarithm
peakat137’Candasecondpeakat
An int’erpretation
nitrogen-atom
specimens
be correct’, we would
against
oxygen concentration.
the logarithm
of the
The oxygen concentration
varied from 0.05 to 0.125 weight per cent. the internal friction is due principally
was
At 192”C,
to t’he 162” peak,
neighbor.
peak t’o be proportional
and nitrogen concentrat,ions. this point, was conducted with the same amount cent), but, with varying
this contribution
been adjusted
from the 137” peak, as indicated
Table 1. The slope of 2.1 indicates of t,he extraordinary funct’ion
for
peak
of t’he oxygen
in
t’hat the height
at 162°C is a quadratic
concentration.
These
oxygen
concentration
interaction
this interpretation
the height
t’o the product
small.
data have
Should
expect
that from the tail of the 137” peak being relatively The measured
with
atoms, each of which is int)eracting with a
of the internal friction found at 192% in a number of is plotted
175”C(~=0.6c.p.s.).
of this latter peak, consistent
of the 175”
of the oxygen
An experiment on
specimens
of oxygen quantities
to check all loaded
(0.0225 weight per of nitrogen.
The
was kept low in order that, the
between oxygen atoms might be neglected.
The internal friction data obtained from measurements
facts
suggest that t,he 162’ peak may arise from diffusion of oxygen atoms, each of which has another oxygen at’om in its neighborhood with which it is interact,ing. TABLE 1. Internal friction data on tantalum-contairling oxygen at relatively high concentrations. All internal friction data observed at 0.6 c.p.s.
Weight, ~ per cent i ox)-gen
Height peak
, -fJ,-,‘,. I
0.050 ~ 0.075 0.100 0.125
~
of
oxygen
410 599 x33 913
104
Measured internal friction at 192°C. 10”
77 145
~
258
i
347
Calculated contribution from 137” Peak lo4
40
;
Internal friction from 162” Peak . 10”
37 0 I
I
002 WEIGHT
1 I1 1111111111 0.04 006 0.10 015 PERCENT NITROGEN
FIG. 4b. Plot showing quadratic dependence of the height, of the nitrogen interaction peak on the nitrogen concentratiol,.
0.5 r 0.4 c
0.3 !-
;;
TE 0.2
_-e b
/If
/
OXYGEN\y
N iTROGEN
r
.0876
If
SINGLE
FREQUENCY
.0131
.030? .0137
.0167 .0207
.0043
.0212
RELAXATION TIME
(VI = 0.89
PEAK z 2.408
/,
.0096
.0514
1 (“Cl
160
CYCLES/SEC
(142°C)
),
i
i,
I40
120
I I.9
2.0
2.1
2.2
2.3
RECIPROCAL
2.4
TEMPERATURE
2.7
2.6
2.5
2.8
(103/T(“K),
ying mnounts of nitrogen.
are shown in Fig. 5a.
made on these specimens
dat,a in Fig. 5a have been normalized normal oxygen peak (142% The oxygen considered
dissolved
at 0.9 c,p.s.).
From
with nitrogen
mass-action
can be
and those &at
considerations
itself
as a measure
The magnitude
we
are
would
expect
at this temperature peak is relatively
is the
co~~(~entration of
interacting
The
oxygen
small.
measured
at 215°C. where the contribution
CXI is the concentration
of free nitrogen.
content
condition
peak is negligible,
from the against
of the heighm of the normal oxygen peak
with nit’rogen, of free oxygen,
nitrogen
since
from the lT5’C
atoms
Coi is the concentration
as-received
~oilcentration,
the contribution
tail of the normal oxygen CoX
concentration.
at. 142°C can ho used
In Fig. 5b there is presented a plot of t,he damping
t’he product where
of the nitrogen
of the damping
as a measure of t,he free oxygen
in t’hese specimens
dist)ributed between two classes of atoms,
those il~teracting free.
The
t,o unity at the
of
the
specimens
varies considerably,
in
and
the
as indicated
by variat’ions in t,he nitrogen peak height from 0.002 to 0.014. Since t’his nitrogen is difficult to remove, requiring temperat,ures above 2500°C and pressure of about 10e6 mm, the amount of nitrogen subsequently loaded into the specimens good
measure
of the total
cannot
be used as a very
nitrogen
content,.
It is
perhaps bettes to use the height of the nitrogen peak
FIG. 5b. Plot illustrating linear dependence of the height of the li5”C peak on the product of oxygen and nit~rogen concel1trations.
ACTA
238
METALLURGICA,
VOL.
4, 1056
THE UNIQUE POSITION OF THE INTERACTION PEAKS AND THEIR RESOLVABILITY
1 0.9 -
0.8 -
We shall now refer to the 162, li5,
Ol-
as int,eraction
0.6-
trariness
0.5 -
of this
questions
and 362°C peaks
To reduce the apparent
description,
need
concerns
0.4-
peaks. be
perhaps
considered
the uniqueness
arbi-
at least two
further.
The first of an inter-
of the position
action peak at, a fixed frecprency of vibration. position
0.3-
of an imeraction
tinuously
:: TE $ 0.20
with
centration,
changes
peak
in interstitial
the term “peak”
If the
were to vary solute
concon-
would be a description
of
lit,tle value. In Figs. ‘ia, Sb, and ‘ic there are shown plots of the interaction peaks at various concentrations. It can be seen that, t’hrough a range of concentration, the interaction-peak concentration.
.0615 .0610
0 FREOUENCY AMOUNT
OF
nitrogen interaction
.06
(vj’O.6
*
06
WEIGHT
positions
%
changes by 4 degrees. 0.05
400 II
360 I
360 II
1.5
14
340 I
320 II
RECIPROCAL
TEMPERATURE
d 50
300 I 17
1.6
I
I I.8
I.9
(103/T(“K,)
FIG. 6a. The influence of oxygen on the nitrogen-tantalum darnping peak-higher nitrogen level. and of the nitrogen observed
between
those concentrations proportionality
peak.
A linear relationship
damping
and this product
at which deviations
between
nitrogen
peak
is
up to
variation peak.
interaction
obtained
t,he
by
is relatively
greatest.
peaks in Figs. 5a, 7b, and Tc were
subtracting
a damping
curve
of unit
1.0 0.9
and
08
ON
0.6
was found capable of affecting
t,o study
the influence
0.5
both
the complementary of oxygen
I
case, to
different amounts of nitrogen. The results of damping
measurements
are to be found
0.4
on the nitrogen
peak. Four samples were prepared, with high and low oxygen concentrations in samples containing two
test specimens
where
and oxygen
peaks are more nearly of the same mag-
The interaction
the height and breadth of the oxygen peak, it was of some interest
from the 162°C
concentrations,
0.7
THE INFLUENCE OF OXYGEN THE NITROGEN PEAK
investigate
nit’rogen
nitude, this contribution
occur in the height
low
On the
A large part of this apparent
arises from the contribut’ion
At
and
peak (175°C)
relative magnitude of the oxygen-nitrogen
nitrogen concentration.
Since nitrogen
t,he oxygen
peaks at! 162°C and 362°C respec-
other hand, that for the oxygen-nit’rogen
t (“a I
do not vary with
of
tively appear constant wit’hin about a degree.
CYCLES/SEC.
NITROGEN
temperatures
The
on the four
0.3
7: 7’ 0
B 0.2 1
in Fig. 6a and 6b.
At neither nitrogen level, 0.06 nor 0.04 weight per cent nitrogen,
was oxygen
damping
peak.
found to broaden
On the contrary,
the nitrogen
t’he influence
of
oxygen was to decrease slightly the breadth of the nitrogen peak. The fact that oxygen does not broaden the nitrogen peak is perhaps not too surprising if it is borne in mind that oxygen diffuses about 25,000 times faster than nitrogen at 350°C. In t’he t,ime-interval required for a nitrogen atom to diffuse from one site t,o an adjacent one, any interaction influence of oxygen might be smeared out.
FREQUENCY AMOUNT
(VI = 0.6 OF
r 4fO I4
CYCLES/SEC
NITROGEN
- 04
WEIGHT
%
t (“C) 400I.
380I
I.5 RECIPROCAL
360I,
I I.6
340/
TEMPERATURE
320
I I.7
300I 1
200 ./ 0 1.6
(103/T(“K,,
Frc,. 611.The influence of oxygen on the rlitrogorl-tttrlt,alum dan+ng peak-lower nitrogen level.
I’O14T’EHti
height,
3~11
DOYLE:
corresponding
INTERSAL
to the
IN
FRICTION
“normal”
peak,
the experimental
damping
at it*s maximum.
There can be objection
curve normalized
SOLID
from
IO
to unity
peak to be subtracted
04 -
should be somewhat’ less than
be shown by the following If a hypothetical
is normalized
is subtract,etl from t)he synthesized peak
0.3-
02 -
from
to unity at
and if one of the peaks of unit height
of the second
; 0
curve, the position
can be determined
within
%9ooe00721
the positions
of the interaction
I 2.2
I 23
RECIPROCAL
1.5
I
24
TEMPERATURE
(lS3/T(‘K))
FIG. 5~. Detorminution of the position of the ox>-gen interaction pedc.
degrees. Although
-
argument’:
damping curve is synthesized
two peaks of equal height: its maximum,
as can
239
07 0.6 05
of its precise height is not’ required,
TANTdLUl\I
-
cedure on the grounds that the height of the normal
knowledge
OF
:“8-
to this pro-
unity. However, the precise height of the normal peak that should be snbt’racted is unknown, Moreover,
SOLUTIOSS
peaks in
Figs. ia, ib, and 7c are well est’ablished, little can be said about
their shapes from
sequently,
this procedure.
Con-
the fact, that the curves shown in Figs. 7a,
7b, and 7~1sre skewed reveals nothing about t’he shape of the interaction
peaks.
It is true that, at’ extremely the position in the
of the interaction
direction
of higher
interpret1 as an indication one neighboring jumping
high concentrations,
peak appears to move This we temperatures.
of the presence of more t’han
soliit’e atom
in the
vicinity
of a
atom.
The second question with respect to the interaction peaks concerns the possibilit,y mental
int,ernal
distinct
normal
internal-friction energy
friction 2nd
into
interaction
peaks.
of about
a,nd
Since
25 kcal, has a half-width
an
separation
of about
of the 162’ inter-
peak and the 137” peak is possible.
other hand, a partial separation peak
an experi-
separate
peak near 15O”C, with an activation
35 degrees, no distinct action
of resolving
curve
Inspection
readily discernable
inflection
2.1
23
2.2
RECIPROCAL
TEMPERATURE
(I03/T(‘K))
FIN. Sh. Determination of the position of the oxygen-nitrogen interaction peak.
of the 137” oxygen
and the nit,rogen-oxygen
175°C is possible.
On t)he
01
interaction
peak
at
of Fig. 5a discloses
a
point, which is the best
that can be done with respect
to the resolution
of
distinct peaks. ACTIVATION
Relaxation
ENERGY
times
usually be described exp
(E/R?!').
relaxatjon peaks
It is
times
are longer
for
MEASUREMENTS
diffusional
processes
in the exponential
of interest to find out whether the corresponding to the interaction than
those for
the normal
because of differences in the pre-exponential T,,, or in the activation Therefore,
can
form, 7 = 70
activation
energy E, or perhaps in both. energies for diffusion in various
specimens have been determined in peak temperature
peaks
constant 0.04 1.45
varying
the
I
I
155
16
RECIPROCAL
by noting the change
that results from
I 15
FIG.
‘ic.
TEMPERATURE
(103/T(oK))
Determination of the position of the nitrogen int,eract’ion peak.
TABTX 2. Fundamental -..
Freq. of applied stress C.P.S. __, ----- .----.
System _.--
-_
-
-
--.
--
0 in Ttt
1 (low cont. 0.016 weight, per cent) 1
/
energies
!
O..i
..-- -I__ 37.8
E = “5.9 kc*1 from ]:ea.khroadt~h nwtts.
,_.~ 0.1
___~~ \‘alue E = 2i.A issome average of that, for normal and interact ion peaks
2.35i
2.191 ?.14i -_.-__-_.-
0.235 0.570
cent)
25.8
- ___
Comment
1% SCC
"._27;j
1.722
/ (low Cone. cn. 0.03 weight per 1
/
2.492 2.408
0.393
N in Ta
I
2.431 2.381 2.305
!
0.891
1.68!) 1.652 1.625 1.596
0.927 1.662
vibration
of the tantalum
is greater
Results of these measurements
are summarized
containing
only a little oxygen.
interaction
peaks are too close to resolve well enough
frequency
of t#he torsional
in Table 2, and are depicted Sb, and 8~. plots
friction
is a maximum
of t’he midpoint
tern~)~rat,~lr~
in Figs. 8a,
was determined
of t,he low-
t,he precision
has been described
and high-
of the measurements,
in detail in a previous
Data taken on specimens are shown in Fig. 8a. t,he measured
at which
sides of the damping peak versus the Such a procedure, which damping.
normalized enhances greatly
specimen
graphically
In all cases, the temperature
the internal from
2.494 2.438 2.358
j
0.293 0.891 1.722
0 cont.
High S COIN. (0.0225 weight per cent, 0 0.08 weight per cent pu’)
wire.
activation
I / Reciprocal ) Activation 1 peak temp. ene*g) I/T . lo” , kcal/mole
0.%5
0.612 1.673 ___.-_ 0.266 0.559 : 1.541
___._---__.___l_~ 0 in To, (high cont. 0.12 weight, per cent)
Low
data used in computing
-.
containing
The significant
activation
energy
report.(4)
only oxygen result is that
(27.8 kcal)
for the
co~lt,ail~i~lg a high concer~t,ratiorl of oxygen
than
for our purpose resent
some
that
(25.8 kcal)
for
since
broadened,
specimen
here, t,he value 27.8 kcal must rep-
average
activation
energy
the normal and that for the interaction over,
the
Since the normal and
t,he experimental
of t’hat for peak.
high-oxygen
Norcpeak
as precisely
as t’hat for the low-oxygen
peak.
There
can be no doubt., however, that, the activation is greater for the interaction normal peak.
It is doubtful
set, are si~nificaiitl~
that the values obtained see and 0.1 . 10--l*
different.
Data on a specimen Fig. Sb.
energy
peak t,han that for the
for rr, in the two cases, 0.5 . lo-r4
oxygen
is
its act,ivation energy cannot8 be measured
containing
and a large amount
a small amount
of
of nitrogen are shown in
This sample is the same as the one corre-
s~olldillg t,o the largest amount3 of nitrogen in Fig. 5a. For this sample,
the interaction
peak
separated by 38” from the normal peak. t,o measure separately, the normal with
changes
position
reasonably
and the interaction in the frequency
at 175’C
well, the shifts in peak
temperat,ures
of vibration.
of the int,eraction peak was located
tract,ing from
the experime~ltal
is
It is possible
curve,
The by sub-
a calculated
damping peak corresponding t,o normal peak, The data obtained for the normal peak are in good agrcement with those found with the specimen cont,aining -25
’ 2.30
150 / 2.35 FIECIPROCAL
PEAK
MC
1 240 TEMPERATURE
I
> 265 i103~‘/T(*K~~
Frci. 8a. Activation energy determination diffusion of oxygen in tantalum.
oxygen
Ix, / 2.50
for the
alone in small amounts
(26.1 vs 25.8 kcal in
t’he act’ivation energy and 0.5 vs 0.3 . 10-r* ser in rO). The activation energy for t’he oxygen-nitrogen interaction peak was found to be greater than that: for the
normal
oxygen
peak,
values obtained sig~fi~antly
27.3 against
26.1 kcal.
for rO, 0.3 vs. 1.0 - lo-i4
The
see, are not
different, wit.hin our e~~erinleI~ta1 error.
The act-ivation energy for the diffusion in tantalum
at. low
concentration
of nitrogen
has
also
been
measured. The resuhs are shown in Fig. 8~. We obtained a value of 37.6 kcal for the act,ivation energy and 0.S X lOPi4 set for -ra with a specimen in which the nitrogen peak height was about 0.019. The activation peaks,
energies
measured
for the normal
25.8 and 26.1 kc.al for oxygen,
for nitrogen, obtained
should
be compared
and 37.5 kcal
with some values
by an entirely different met,hod.
shown t,hat the half-breadt,h,
caorresponding to a single relaxation following
relationship
It has been
WIjp, of a damping peak process, bears the FIG. 8b. Activation energy detwrnination for the diffusion of oxygen in tantalum as &fected by nitrogen.
to the activat,ion energy.(i)
E (keal) = 5.28/Wri,. If a plot of t’he half-breadth various
interstitial
concentrat,ions
zer0 ~on~ent,ratioll,
the
value
of a damping
curve f’or
is ext’rapolated
to
where illtera~t~ions do not occur,
of t,he half-breadth
so obtained
one relaxation
should
correspond
to that for only
Previously,
we reported a value of 25.0 ktal for oxygen
in t~antalum by t,his method.(l) obtained
by an extrapolation
zero oxygen polation
This
process.
number
of a half-breadth
concentrat,ion.
More properly
the extra-
Wihh the dam available
tain unambiguous
in Fig.
results, actjivation-energy
SOME
ON THE NATURE OF THE BETWEEN INTERSTITIAL SOLUTE ATOMS
COMMENTS
INTERACTION
It has been shown that,, over a range of concemration, the hnernal friction
associated
with the diffusion of a
single solute element can be described only t.wo relaxatJion times.
Moreover,
5a, we can now correct for t,he broadening
arising from
the two peaks appear t’o be constant
amount
left
composition.
. ‘oxygen”
specimens.
A llalf-breadth
is thus obt’ained corresponding of 25.9 kcal.
An
extrapolated
of 0.204 + 10-s
to an activation
energy
a&ions
as a functiou
half-breadth
of
between
solute atoms can t-ake place from a
rather limited number of relative configurations,
to an activation
number
should
37.5 ken1 obtained
be
0.143 . 10P3 is
in t,antalum.
energy
compared
of 37.0
with
from the measurement
in the peak temperature
the
This kcal. value
of the shift
with changes in the frequency
of vibration. The:
compilation
Sivertsen’“)
made
by
Marx,
shows a wide variation
energies for the diffusion
Baker,
and
in the activation
of oxygen
and nitrogen
niobium workers.
and t’antalum, as measured by Undoubtedly a factor contributing
variation
is that due t,o concentration
in
various to this
which has not,
always been controlled very well. The extra relaxation times found as a result of interactions at the higher concentrateions have higher activation energies, and thereby increase the average act.ivation energy as
of
These facts suggest perhaps that inter-
in t,he more con~ent,ional
from Fig. 2 for nitrogen
corresponds This
in the
rather well by the posit,ions of
This is in good agreement w&h the values
25.8 and 26.1 kcal obtained
obtained
nitrogen
measure-
int*erstit.ial solute atoms at low ~o~lce~~t.ratiol~s.
the small
of residual
Therefore, t,o ob-
ments should be carried out on specimens containing
was
plot to
should have been made to zero total inter-
stitial concentration.
measured in a damping experiment,.
FIG. 8~. Activation energy determinatiorl diffusion of nitrogen in tantalum.
for the
and
ACTA
24”
METBLLURGICA,
VOL.
4,
oxygen
atoms.
atomic distances.
The second peak, whose height is proportional
to the
Other experimental observations lend some support to this viewpoint. Should a strain interaction occur
square of the oxygen
arising from the diffusion
over relatively
which is interacting
t.hat the interaction
that plastic
forces
extend
large distances,
deformation
number of precipitate
over
only
short
it might be expected
or the presence
part,icles would alter the breadth
was 0.105
week in a furnace from
whose
600”
and
was aged further
400°C.
examination
specimen
loaded
of the half-width have
correspond breadth quantity The
height
to 0.186 . 10-3.
compared
with that in a
damping was 0.10. The values
subsequent
been
plott’ed
with
2.
These
data
It is seen that the a large amount
is no greater than those containing
of
When
both
tantalum, varies
have
been
described
nitrogen
and nitrogen
are present
a nitrogen
whose height
of the oxygen
and nitrogen
This peak is interpreted
atom with which
The activation oxygen
as arising
it is interacting
energies found
in its
for the diffusion
interact’ing with ot’her oxygen
of
atoms or w&h
nitrogen atoms are higher t’han that measured for the diffusion of free, non-interacting The interactions
between
oxygen.
interstitial
solute atoms from a
limited number of relative configurations. ACKNOWLEDGMENT
oxygen in tamalum can be represented as the sum of two peaks, one occurring at 137°C and the other at N 0.6 c.P.s.).
is directly
in
at li.YC,
neighborhood.
manuscript.
concentration,
with another
is found
The authors are indebted
arising from the diffusion
frequency
as the
from the diffusion of oxygen atoms, each of which has
of
oxygen
oxygen
a peak
as the product
report.(l)
friction
137”C, whose height
is interacting
concent’rations.
stimulating
162°C (applied
can also be represented
atom in its neighborhood.
CONCLUSIONS
The internal
oxygen atom.
appear to occur over short at’omic distances
experiments
briefly in a previous
in tantalum
each of which
no such
of prccipitatc. cold-work
wit’h a neighboring
preted as arising from the diffusion of nitrogen atoms,
to the two aging treaton Fig.
to the shaded circles.
for this specimen
precipitate
peak
with 0.12 weight per cent nit’rogen
for which the maximum ments
for a
disclosed the presence of
a large amount of precipitate
nitrogen
was lowered
The
declined to 0.0676 and the half-width Metallographic
The
the half-width
temperature
to
as
atoms, each of
(v N 0.6 c.p.s.). The second peak, whose height varies as the square of the nitrogen concentration, is inter-
and aged at’ 600°C for one day.
gradually
of oxygen
with 0.20 weight per
cent nitrogen
This specimen
is interpreted
sum of two peaks, one at 334°C and the other at 362°C
wire was loaded
0.211 . 10P3.
concentration,
Neither do,
however. A tantalum
damping
of free, non-interacting
Similarly, t’he damping arising from the diffusion of
of a large
of an experiment,al internal friction peak.
maximum
the diffusion
1956
The peak at
proportional
is interpreted
to the
as arising from
conversations
to J. C. Fisher for many and
for
reviewing
the
REFERENCES 1. 2. 3. 4. 5.
R. W. POWERS, _4ctaMet., 3, 135 (1955). T. H. KE, Phys. Rev., 74, 914 (1948). J. L. SNOEP, Physica, 8, 711 (1941). R. W. POWERS, Acta ilfet., 2, 604 (1954). MARX, BAKER, and khVERTSEN, Acta Xef.,
1, 193
(1953).