Introduction to Image and Video Processing

Introduction to Image and Video Processing

Image and Video Processing 3.1 Basic Linear F i l t e r i n g w i t h Application to Image Enhancement Alan C. Bovik, and Scott T. Acton ...

85KB Sizes 4 Downloads 174 Views

Image and Video Processing 3.1

Basic Linear F i l t e r i n g w i t h Application to Image Enhancement Alan C. Bovik, and Scott T. Acton ..............................................................................................................................................

99

Introduction • Impulse Response, Linear Convolution, and Frequency Response • Linear Image E n h a n c e m e n t D i s c u s s i o n . References 3.2

Nonlinear Filtering for Image A n a l y s i s a n d E n h a n c e m e n t Gonzalo R. Arce, ]an Bacca, and ]osf L. Paredes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

109

Introduction • Weighted Median Smoothers and Filters • Image Noise Cleaning • Image Z o o m i n g • Image Sharpening • Edge Detection • Conclusion • References 3.3

M o r p h o l o g i c a l Filtering for Image Enhancement and Feature Detection Petros Maragos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction • Morphologic Image Operators • Morphologic Filters for Image E n h a n c e m e n t Morphologic Operators for Template Matching • Morphologic Operators for Feature Detection O p t i m a l Design of Morphologic Filters for E n h a n c e m e n t • Conclusions • References

135

3.4

Wavelet Denoising for Image Enhancement

Dong Wei, Umesh Rajashekar, and Alan C. Bovik .................

157

Introduction • Wavelet Shrinkage Denoising • Image E n h a n c e m e n t via Wavelet Shrinkage Examples • Image Denoising Using Natural Scene Statistics • S u m m a r y • References 3.5

Basic Methods for Image Restoration and Identification Reginald L. Lagendijk and ]an Biemond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

167

Introduction • Blur Models • Image Restoration Algorithms • Blur Identification Algorithms • References

W. Clem Karl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction • Direct Regularization Methods • Iterative Regularization Methods • Regularization Parameter Choice • S u m m a r y " References

3.6

Regularization in Image Restoration and Reconstruction

183

3.7

Multichannel Image Recovery Nikolas P. Galatsanos, Miles N. Wernick, Aggelos K. Katsaggelos, and Rafael Molina .......................................................................................................

203

Introduction • Imaging Model • Multichannel Image Estimation Approaches • Explicit Multichannel Recovery Approaches • Implicit Approach to Multichannel Image Recovery • Acknowledgments • References

3.8

Multi-Frame Image Restoration

Timothy J. Schulz .........................................................................................

219

Introduction • Mathematic Models • The Multi-Frame Restoration Problem • Nuisance Parameters and Blind Restoration • Applications • Acknowledgments • References

3.9

Iterative Image Restoration

Aggelos K. Katsaggelos, and Chun-Jen Tsai .......................................................

235

Introduction • Iterative Recovery Algorithms • Spatially Invariant Degradation • Matrix-Vector Formulation • Use of Constraints • Additional Considerations • Discussion • References 3.10

Motion Detection and Estimation

]anusz Konrad ............................................................................................

253

Introduction • Notation and Preliminaries • Motion Detection • M o t i o n Estimation • Practical Motion Estimation Algorithms • Perspectives • Acknowledgments • References 3.11

Video Enhancement and Restoration Reginald L. Lagendijk, Peter M.B. van Roosmalen, Jan Biemond, Andrei Rare¢, and Marcel ]. T. Reinders .................................................................................... Introduction • Spatio-Temporal Noise Filtering • Blotch Detection and Removal • Vinegar Syndrome Removal • Intensity Flicker Correction • Kinescope Moir6 Removal • Concluding Remarks • References

275

3.12

Local a n d G l o b a l S t e r e o M e t h o d s Yang Liu and ].K. Aggarwal ...................................................................... Introduction • Background of Computational Stereo Vision • A Taxonomy of Stereo Correspondence Algorithms • Conclusion • Acknowledgment • References

3.13

Image S e q u e n c e

Stabilization, Mosaicking, and Superresolution Rama Chellappa, S. Srinivasan, G. Aggarwal, and A. Veeraraghavan .................................................................................................................

Introduction • Biologic Motivation: Insect Navigation • Global Motion Models • Algorithm two-dimensional Stabilization • Mosaicking • Motion Superresolution • three-dimensional Stabilization • S u m m a r y . References

297

309