Al Ratio

Al Ratio

D.M. Bibby, C.D. Chang, R.F. Howe and S. Yurchak (Editors), Methane Conuersion 0 1988 Elsevier Science Publishers B.V., Amsterdam - Printed in The Net...

717KB Sizes 0 Downloads 23 Views

D.M. Bibby, C.D. Chang, R.F. Howe and S. Yurchak (Editors), Methane Conuersion 0 1988 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

579

INVESTIGATION OF ACIDIC PROPERTIES OF H-ZEOLITES AS A FUNCTION OF Si/Al RATIO K. SEGAWA,+ M. SAKAGUCHI and Y.

KURUSU

Department o f Chemistry, F a c u l t y o f Science and Technology, Sophia U n i v e r s i t y , 7-1 Kioi-cho, Chi yoda-ku, Tokyo 102( Japan)

ABSTRACT A c i d i c p r o p e r t i e s o f f o u r d i f f e r e n t t y p e s o f H - z e o l i t e c a t a l y s t s were A c i d i c s i t e s o f these z e o l i t e s s t u d i e d : H-Y, La-Y, H-M(mordenite) and H-ZSM5. have been c h a r a c t e r i z e d by TPD and high-temperature c a l o r i m e t r y o f N H 3 , and b y I R spectroscopy. The comparison c o n s i s t e n t l y a f f o r d e d t h e f o l l o w i n sequence The 2 9 S i - and "Al-MASNMR f o r t h e a c i d s t r e n g t h : H-M > H-ZSM5 1. H-Y > La-Y. e x h i b i t e d d e a l u m i n a t i o n b e h a v i o r d u r i n g t h e p r o t o n a t i o n o f t h e ammonium forms o f synthetic zeolites. The r e s o n a n c e l i n e o f '7Al-MASNMR attributed t o o c t a h e d r a l aluminum ions(dea1uminated s p e c i e s from z e o l i t e framework) appeared f o r H-Y a f t e r c a l c i n a t i o n i n a i r a t 773 K, whereas t h e o c t a h e d r a l peaks i n La-Y, H-M and H-ZSM5 were a p p r e c i a b l y i n h i b i t e d . Changes o f microenvironments o f S i - and A l - t e t r a h e d r a d u r i n g t h e p r o t o n a t i o n o f H - z e o l i t e s h a v e been i n v e s t i g a t e d : t h e s e would affect t h e a c i d i c p r o p e r t i e s .

INTRODUCTION Currently,

much a t t e n t i o n

i s focused on t h e a c i d i c p r o p e r t i e s and shape

1 ) . Since t h e

s e l e c t i v i t i e s o f c a t a l y t i c reactions over acid-type z e o l i t e s ( r e f .

a c i d i t y as w e l l as t h e s t r u c t u r e s t r o n g l y a f f e c t s t h e c a t a l y t i c behavior,

it i s

o f extreme importance t o c h a r a c t e r i z e t h e z e o l i t e c a t a l y s t as a f u n c t i o n o f Si/Al

r a t i o from t h e viewpoint o f t h e a c i d i t y ( r e f .

during t h e preparation o f acid-type zeolites, acidic

some d e a l u m i n a t i o n

properties o f zeolites.

zeolites

has o c c u r r e d ( r e f . T h i s work w i l l

3):

1246.0).

H-M(Si02/A1203=9.

and a c i d p r o p e r t i e s .

On t h e o t h e r hand,

7-20.4)

o f Na-form

t h i s would

r e f l e c t the

H-Y(Si02/A1203=4.8-5.6),

and H-ZSMS(Si02/Al203

=24.6-

We s t u d i e d t h e micro-environments o f S i - and A l -

t e t r a h e d r a i n t h e z e o l i t e framework by h i g h r e s o l u t i o n s o l i d s t a t e "Si27Al-MASNMR(magic

of

e l u c i d a t e t h e dealumination

behavior d u r i n g t h e preparation o f acid-type zeolites:

La-Y(Si02/Al203=4.8-5.6),

2).

by ion-exchange

a n g l e s p i n n i n g NMR),

and

and we compared t h e a c i d p r o p e r t i e s o f

z e o l i t e s by TPD( temperature-programmed d e s o r p t i o n ) and high-temperature m i c r o c a l o r i m e t r y o f NH3

*

and by I R spectroscopy.

To whom a l l correspondence should be addressed.

580

EXPERIMENTAL Z e o l i t e samples Z e o l i t e s a m p l e s w e r e s u p p l i e d by t h e C a t a l y s i s S o c i e t y o f J a p a n ( J a p a n Reference C a t a l y s t s : zeolites

were

(Y-type,

from JRC-Z-Y),

H-ZSM5(24.6,

JRC-Z-)

studied:

80.0,

form:

H-M(9.7,

5.6)(Y-type. 14.7,

1246)(ZSM5-type,

each code o f z e o l i t e ,

exchanged);

and H-M,

and

Numbers i n parentheses a f t e r

i s t h e Si02/A1203 mole r a t i o i n Na-

by e m i s s i o n s p e c t r o c h e m i c a l a n a l y s i s . o f Na-form

L a ( N 0 3 ) 3 f o r La-Y

ion-exchanged

5.6)

La-Y(4.8, from JRC-Z-M)

20.4)(mordenite-type,

z e o l i t e s were prepared by ion-exchange NH4N03 f o r H-Y

Four d i f f e r e n t a c i d - t y p e

from JRC-Z-Y).

from JRC-Z5).

such as H-Y(4.8),

t h i s was determined

1).

i n Na-form(ref.

H-Y(4.8,

w i t h aqueous

Acid-type solution o f

a n d H C 1 f o r H-ZSM5(above 9 9 %

s a m p l e s w e r e d r i e d a t 373 K f o r 24 h and t h e n

c a l c i n e d a t 773 K f o r 5 h. MASNMR spectroscopy The MASNMR has been e m p l o y e d f o r z e o l i t e s a m p l e s a f t e r t h e y h a d been hydrated

i n a desicator

t e m p e r a t u r e f o r 24 h,

saturated

aq.

solution

o f NH4C1 a t room

l i n e w i d t h o f 27A1-MASNMR

The MASNMR s p e c t r a were o b t a i n e d a t 53.7 MHz f o r 2 9 S i and 70.4 MHz

spectra. f o r 27Al

with

i n order t o minimize t h e

on a F o u r i e r t r a n s f o r m p u l s e d NMR spectrometer(JE0L JNM-GX270)

was equipped w i t h a CP/MAS

u n i t (JEOL NM-GSH27MU).

w i t h magic a n g l e spinning(MAS) d u r i n g data acquisition.

which

A l l NMR s p e c t r a combined

s p e c t r a were measured w i t h p r o t o n d e c o u p l i n g

Cross p o l a r i z a t i o n ( C P )

p r o t o n s do n o t a t t a c h d i r e c t l y t o "Si

was n o t employed,

and 2 7 A l n u c l e i .

c o l l e c t e d w i t h 700 t o 1300 scans accumulated p e r spectrum. a r e c a l i b r a t e d by TMS and Al(H20)63+

f o r 29Si-

since the

8 K d a t a p o i n t s were The chemical s h i f t s

and 27A1-MASNMR measurements.

respectively. High-temperature m i c r o c a l o r i m e t r y M i c r o c a l o r i m e t r i c measurements o f NH3 on a c i d - t y p e w i t h a high-temperature

calorimeter(HAC-450G.

z e o l i t e s were performed

Tokyo R i k o ) a t 473 K.

c a l o r i m e t r i c experiments, t h e samples were evacuated o v e r n i g h t a t 673 a pressure o f

Before

K

down t o

Pa f o r t h e e l i m i n a t i o n o f w a t e r molecules.

A d s o r p t i o n measurements and TPD Both a d s o r p t i o n measurements and TPD o f NH3 were performed under vacuum conditions.

About 150 mg o f a sample was charged i n a q u a r t z b a s k e t a t t a c h e d

t o a s t a n d a r d vacuum s y s t e m ( l ~ l O - ~ Pa). hung down t o t h e sample basket.

A McBain-type q u a r t z s p i r a l s p r i n g was

The sample was evacuated f o r 5 h a t 773 K.

The w e i g h t change b e f o r e o r a f t e r NH3 a d s o r p t i o n a t 373 K was d e t e r m i n e d by t h e

581 change

i n t h e l e n g t h o f the spring.

meter(type-2U,

Shinko E l e c t r o n i c ) .

which was equipped w i t h a d i s p l a c e m e n t A f t e r a d s o r p t i o n o f NH3,

t h e sample was

e v a c u a t e d a t 373 K u n t i l t h e p r e s s u r e r e a c h e d I x I O - ~ Pa(3-4 determination o f a c i d i t y .

F o r TPD experiments,

for the

t h e p r e s s u r e change from t h e

e l i m i n a t i o n o f NH3 a t e l e v a t e d temperature(373-773 by an i o n i z a t i o n gauge(G1-K,

h).

K, 10 K m i n - I ) was m o n i t o r e d

ULVAC) which r e c o r d e d a u t o m a t i c a l l y .

I R spectroscopy

I R c e l l w i t h K B r windows was designed t o f i t an i n f r a r e d

A vacuum-tight spectrometer(270-30,

H i t a c h i ) and t o be a t t a c h e d t o a vacuum ~ y s t e m ( l x l O - Pa). ~

I R s p e c t r a were o b t a i n e d a t room t e m p e r a t u r e w i t h t h e s p e c t r o m e t e r o p e r a t i n g i n t h e absorbance mode.

S e l f s u p p o r t i n g z e o l i t e wafers were pressed:

t h i c k n e s s was 10.2 mg could

be lowered

examination,

t h e sample

The c e l l was arranged such t h a t t h e z e o l i t e w a f e r

into slots

between t h e o p t i c a l

windows

for

spectroscopic

and withdrawn upward by t h e a c t i o n o f a magnet i n t o a heated

p o r t i o n f o r t h e p r e t r e a t m e n t and a d s o r p t i o n o f NH3, P y r i d i n e and C o l l i d i n e . RESULTS AND DISCUSSION

MASNMR spectroscopy I n framework a l u m i n o s i l i c a t e s , formula Si(nAl),

where n = 0.

t h e r e a r e f i v e p o s s i b i l i t i e s , d e s c r i b e d by t h e

1, 2, 3 o r 4.

These f i v e b a s i c u n i t s o f Si(nA1)

express t h e f a c t t h a t each silicon atom i s l i n k e d ,

A

v i a oxygens,

B

-90

-100

Ppm from TMS

-110

150

t o n aluminum

0

100

50

0

-50

ppm from A ~ ( H ~ o ) ~ ~ +

Fig. 1. "Si-MASNMR(A) and 27A1-MASNMR(B) s p e c t r a o f Na-Y(4.8). Open c i r c l e s denote A1 atoms, c l o s e d c i r c l e s S i atoms.

582 S

NH4-Y (4.8)

Si

H-Y (4.8) ( a i r )

H-Y(4.8) ( v a c )

La-Y (4.8) I

I

I

I

I

I

I

-60 -80 -100 -120

ppm from TMS

I

I

,

,

I

and 27A1-MASNMR s p e c t r a o f Y(4.8). Fig. 2. "Sia t 773 K; (vac), evacuated a t 773 K.

(air),

( S i /A1 ) nmr*

Si(4A1) Si(3A1) Si(EA1) S i ( l A 1 ) Si(OA1) ~~~

* *i6

0 0 0 0 0

11 11 4 8 10

44 43 14 38 37

c a l c u l a t e d by eqn. 1. determined by chemical a n a l y s i s .

36 37 38 42 39

~~

9 9 44 12 14

calcined i n a i r

with Si/A1 ratios.

peak i n t e n s i t i e s i n Y(4.8)

Normalized peak i n t e n s i t i e s

Na-Y (4.8) NH -Y(4.8) H-!( 4.8) ( a i r ) H-Y (4.8) (vac) La-Y (4.8)

I

2 7 -MASNMR ~ ~

29Si-MASNMR

TABLE 1 H i g h - r e s o l u t i o n "Si-MASNMR

I

0 -100 ppm from A1(H20)6 3+ 100

~~~

( S i /A1 )ca3b* ~~

2.5 2.6 5.1 2.8 2.8

2.4 2.4 2.4 2.4 2.4

583

H-Y (5.6)

La-Y (5.6)

H-M( 20.4)

H-ZSM5(80.0)

I

-60

I

I

I

I

,

I

l

I

-80 -100 -120

"Si-MASNMR "Si-

I

1

0

I

-100

2 7 ~-MASNMR 1

and E7A1-MASNMR s p e c t r a o f a c i d - t y p e z e o l i t e s .

The "Si-MASNMR

neighbors(ref.4).

d i f f e r e n t resonance peaks a t -89 kinds o f Si-tetrahedra Si(3A1),

I

ppm from A I ( H ~ O ) ~ ~ +

ppm from TMS

F i g . 3.

I

100

Si(ZAl),

s p e c t r a o f Na-Y(4.8) t o -105

i n Fig.

ppm from TMS,

1 showed f o u r

which r e p r e s e n t f o u r

a t t a c h e d t o d i f f e r e n t numbers o f a j a c e n t A l - t e t r a h e d r a ;

Si(lA1)

and Si(OA1).

The P7A1-MASNMR spectrum i n Fig.

1

g i v e s one sharp resonance peak a t 59 ppm f r o m A l ( H ~ 0 ) 6 ~ + ,which i s assigned t o t e t r a h e d r a l framework s i t e s occupied b y t h e aluminum(ref. shows d i r e c t l y s i x - c o o r d i n a t e d

aluminum(A1-octahedra)

o f ' t h e f o u r - c o o r d i n a t e d aluminum i n t h e by t h e dashed

l i n e i n t h e spectrum.

framework

4).

27A1-MASNMR a l s o

b u i l d up a t t h e expense

a t 0 ppm, as i s r e p r e s e n t e d

In case o f Na-Y(4.8).

no d e t e c t a b l e

584

o c t a h e d r a l aluminum has been observed.

Therefore,

a l l t h e aluminum atoms a r e

t e t r a h e d r a l l y c o o r d i n a t e d t o oxygens i n t h e framework. F i g u r e 2 g i v e s t h e "Si-

and 27A1-MASNMR

s p e c t r a o f NH4-Y(4.8),

c a l c i n e d i n a i r a t 773 K o r i n vacuum a t 773 K and La-Y(4.8). exchange f r o m Na-Y observed.

t o NH4-Y(see

When t h e NH4-Y

Fig.

1 and 2),

no s e r i o u s d e a l u m i n a t i o n was

was c a l c i n e d i n a i r a t 773 K ,

occurred.

B u t t h e o c t a h e d r a l aluminum peaks i n H-Y(4.8)

La-Y (4.8)

were a p p r e c i a b l y i n h i b i t e d ( s e e Fig. 2).

The d i s t r i b u t i o n s o f Si(nA1) i n "Si-MASNMR

H-Y(4.8) A f t e r ion-

some d e a l u m i n a t i o n

c a l c i n e d i n vacuum and

s p e c t r a o f Y(4.8)

were o b t a i n e d

by computer s i m u l a t i o n o f each spectrum, based on Gaussian peak shapes. and ( S i / A l )

1 summarizes t h e peak i n t e n s i t i e s o f Y(4.8) chemical

analysis,

t h a t denote ( S i / A l ) n m r

and ( S i / A l ) c a

respectively.

(Si/Al)nmr

r a t i o s a r e c a l c u l a t e d from t h e f o l l o w i n g e q u a t i o n ( r e f .

(si'A1)nmr

=

4 n=O

Y,

The

6):

4 . :Asi(nAl) n=O

i s t h e peak area o f each d e c o n v o l u t e d c u r v e o f "Si-MASNMR

Here As~(,,A~) spectra.

/

ASi(nAl)

Table

r a t i o s f r o m NMR and

When t h e d e a l u m i n a t i o n o c c u r r e d a f t e r h e a t t r e a t m e n t o f NH4-Y

o r La-

t h e aluminum atoms o f Si(3A1) and Si(2A1) a r e p r e f e r e n t i a l l y removed f r o m

t h e framework,

which may decrease t h e a c i d i t y .

(Si/Al)nmr from ( S i / A l ) c a calcined i n air,

And t h e i n c r e a s e d v a l u e s o f

i n d i c a t e t h e dealumination. E s p e c i a l l y f o r H-Y(4.8) s e r i o u s dealumination from t h e framework has been

observed. F i g u r e 3 and Table 2 show t h e NMR r e s u l t s o f H-Y(5.6). and H-ZSM5(80.0).

F o r H-M and H-ZSM5,

La-Y(5.6).

H-M(20.4)

t h e m a j o r A l - s i t e s would be S i ( l A 1 ) .

no s e r i o u s d e a l u m i n a t i o n o c c u r r e d d u r i n g t h e p r e p a r a t i o n . TABLE 2 H i g h - r e s o l u t i o n "Si-MASNMR with S i / A l ratios.

peak i n t e n s i t i e s i n a c i d - t y p e z e o l i t e s

Normalized peak i n t e n s i t i e s Si(4A1) Si(3A1) Si(2A1) S i ( l A 1 ) Si(OA1) ~

H-Y(5.6) La-Y (5.6) H-M( 9.7) H-M( 14.7) H-M( 20.4) H-ZSM5( 24.6) H-ZSM5( 80.0) H-ZSM5( 1246) 3tx

(Si/Al)nmr*

(Si/Al)ca+*

~

7 12 0 0 0 0 0 0

33 35 10 4 4 0 0 0

c a l c u l a t e d by eqn. 1. determined by chemical a n a l y s i s .

46 40 60 45 33 26 10 0

14 13 30 51 63 74 90 100

3.0 2.7 5.0 7.5 9.8 15.0 40.0 -

2.8 2.8 4.8 7.4 10.2 12.3 40.0 623

and

585

h

c,

.r

-0 .r

u

m

/j 0. 0

0.0

0.1

,

,

0 . O

0.2

0.3

0.4

1

0 : H-Y 0 : La-Y 0 : H-M

A: H-ZSM5

0.5

Al/Si ratio F i g . 4.

The a c i d i t y p e r S i atom as a f u n c t i o n o f A l / S i r a t i o .

2 f u n c t i o n o f Si/A1 r a t i o

Acidity

A c i d i t y p e r Si-atom o f a c i d - t y p e z e o l i t e s were measured by NH3 c h e m i s o r p t i o n a t 373 K as a f u n c t i o n o f A l / S i r a t i o .

We assumed t h a t one A l -

h e d r a l p a i r c o r r e s p o n d i n g t o one S i ( l A 1 ) g i v e s one a c i d s i t e . t h e observed a c i d i t y would be on t h e s o l i d l i n e i n Fig.

and S i - t e t r a I n t h i s case,

4.

The a c i d i t y o f

H-ZSM5 and H-M a r e c o n s i s t e n t w i t h t h e s o l i d l i n e , and t h e v a l u e s a r e i n c r e a s e d w i t h i n c r e a s i n g numbers o f Al-atoms.

B u t on H-Y and La-Y l o w e r v a l u e s t h a n t h e

e s t i m a t e d v a l u e a r e found.

This is because of the larger number of sites which do not result in a proportional increase in acid sites.

Si(d1)

High-temperature m i c r o c a l o r i m e t r y r e p o r t e d m i c r o c a l o r i m e t r y measurements o f NH3 a t 423 K t o

Vedrine e t al.,

c h a r a c t e r i z e t h e a c i d c e n t e r s i n H-ZSM5(ref.

7-8).

They found t h a t t h e a c i d

d i s t r i b u t i o n o f s t r o n g e r a c i d s i t e i s more' homogeneous i n H-ZSM5. the

temperature

at

473 K f o r

c a l o r i m e t r y measurements

information o f the stronger acid s i t e s .

We p r e f e r r e d

t o collect the

The r e s u l t s a r e summarized i n Fig. 5.

A l l m i c r o c a l o r i m e t r i c curves a r e decreased w i t h i n c r e a s i n g coverage o f NH3 on zeolites.

H-M(20.4)

showed a h i g h e r i n i t i a l

heat o f adsorption(higher

s t r e n g t h ) and a l a r g e r amount o f s t r o n g e r a c i d s i t e s t h a n o t h e r s . H-M(20.4)

and H-ZSM5(80.0)

acid

I n addition,

gave a d r a s t i c a l decrease o f t h e h e a t o f a d s o r p t i o n

a t p a r t i c u l a r narrow domain o f coverage o f NH3.

The r e s u l t s suggest t h a t H-M

and H-ZSM5

h a v e more homogeneous A1 d i s t r i b u t i o n a l o n g t h e c h a n n e l s o f

zeolites.

The c a l o r i m e t r i c c u r v e s o f H-Y(5.6)

indicate the wider acid

586

-

150

c 4)

7

0

E

. 3 Y

0 1

I

I

1 .o

0.0

2.0

NH3 adsorbed / mmol g - l Fig. 5.

High-temperature m i c r o c a l o r i m e t r y o f NH3 on a c i d type z e o l i t e s .

d i s t r i b u t i o n than H-M

and H-ZSM5.

From t h e m i c r o c a l o r i m e t r y and t h e TPD o f

NH3. we conclude t h e f o l l o w i n g sequence f o r t h e a c i d s t r e n g t h :

H-M > H-ZSM5

> H-Y > La-Y.

I R spectroscopy The OH s t r e t c h i n g v i b r a t i o n s o f acid-type z e o l i t e s a f t e r evacuation a t 773 K a r e shown i n F i g .

6.

Two o r t h r e e t y p e s o f OH g r o u p s a r e o b s e r v e d a t

wavenumbers from 3800 t o 3500 cm-l.

9-10)

zeolite(ref,

Terminal Si-OH groups a t o u t e r s u r f a c e o f

g i v e s a band a t 3738 o r 3735 cm-’.

Those t e r m i n a l Si-OH

groups showed very weak chemical i n t e r a c t i o n between p y r i d i n e and NH3.

The

a c i d i c OH bands whose i n t e n s i t i e s reduced o r disappeared a f t e r a d s o r p t i o n o f base molecules g i v e bands a t 3673 and 3648 cm-I La-Y(5.6).

3610 cm-l

f o r H-M(20.4)

expense o f those a c i d i c OH bands, region.

hydroxyls(ref. 3610 cm-l

NH bands

However, t h e band a t 3557 cm-I

base molecules,

f o r H-Y(5.6).

and 3613 cm-l

3676 cm-’

f o r H-ZSM5(80.0).

for

A t the

b u i l t up a t 3500 t o 3000 cm-’

i n La-Y(5.6)

does n o t i n t e r a c t w i t h

and t h e band can be assigned t o OH s t r e t c h i n g o f Lanthanum 11).

For H-M(20.4),

about 25-30 % o f t h e a c i d i c OH bands a t

s t i l l remained even a f t e r a d s o r p t i o n a t room temperature.

was i n t r o d u c e d t o H-M.

t h e a c i d i c band almost vanished.

When NH3

We conclude t h a t about

25-30 % o f OH groups i n H-M a r e l o c a t e d i n s m a l l e r channels, such as so-called s i d e pockets, and t h e r e s t a r e i n main channels o r on o u t e r surfaces. The r i n g v i b r a t i o n r e g i o n s o f I R s p e c t r a a f t e r ’ a d s o r p t i o n a t 473 K on acidt y p e z e o l i t e s are shown i n Fig. 7.

The major a c i d s i t e s a r e Bronsted sites(BPy

587

."..\

mmm

mm m, mm

mr.u

r.IDI0

mmm

1 ',

, 3000 4000 3000 4000 3000 4000 3000

4000

wave number

H-Y (5.6)

La-Y (5.6)

/ cm-l H-ZSM5 (80.0)

H-M(20.4)

F i g . 6. I R s p e c t r a o f OH s t r e t c h i n g o f a c i d - t y p e z e o l i t e s : ( a ) a f t e r e v a c u a t i o n a t 773 K, ( b ) p y r i d i n e adsorbed and evacuated a t 473 K. ( c ) NH3 adsorbed and evacuated a t room temperature.

h

1

0.1

cn

-

d

7

- m h m a M

-

h

b

----

1700

1400 1700

1400 1700

wave number

H-Y (5.6) Fig. 7.

La-Y (5.6)

1400 1700

/ cm-l H-M( 20.4)

A d s o r p t i o n o f p y r i d i n e on a c i d - t y p e z e o l i t e s .

1400

H-ZS?l5( 80.0)

588

at

1543 cm-’)

(5.6)(BPy:

for

65 %).

83 Z),

H-ZSM5(80.0)(BPy: However, f o r H-Y,

H-M(20.4)(BPy:

80 % ) and La-Y

o n l y 26 Z o f BPy was observed.

After the

d e a l u m i n a t i o n , t h e c o n c e n t r a t i o n o f BPy tended t o decrease. When more b u l k y base m o l e c u l e s ( c o 1 l i d i n e : i n t r o d u c e d on a c i d - t y p e z e o l i t e s ,

2,4,6-trimethyl-pyridine)

were

o n l y H-ZSM5 d i d n o t i n t e r a c t w i t h c o l l i d i n e .

The r e s u l t s suggest t h a t a l l t h e a c i d i c s i t e s o f H-ZSM5 a r e l o c a t e d i n t h e channels b u t n o t on t h e o u t e r surfaces. I n conclusion,

d e a l u m i n a t i o n o f a l u m i n o s i l i c a t e s has o c c u r r e d a t t h e

c a l c i n a t i o n s t e p from ammonium-form t o H-form. change t o (A10)’

The p a r t of A l - t e t r a h e d r a may

o r n o n - a c i d i c aluminum o x i d e species.

We found d e a l u m i a t i o n

o c c u r r e d on Si(3A1) o r Si(2A1) s i t e s w i t h w a t e r vapor which would a c t as an a c i d i c r e a g e n t a t h i g h e r temperatures.

Most o f t h e S i ( l A 1 ) s i t e s o f H-M and

H-ZSM5 a r e a c i d i c and 80 % o f a c i d i c s i t e s a r e s t r o n g e r Bronsted s i t e s .

REFERENCES 1

7

8 9 10 11

M. Niwa. M. Iwamoto and K. Seqawa, B u l l . Chem. SOC. Jpn., 59(1986) 37 3 5- 3 739. W.O. Haag. R.M. Lago and P.B. Weisz, Nature, 309(1984) 589-591. P.A. Jacobs and H.K. Beyer, J. Phys. Chem., 83(1979) 1174-1177. J.M. Thomas and J. K l i n o w s k i . Adv. Catal., 33(1985) 199-374. J. K l i n o w s k i , J.M. Thomas, C.A. F y f e and G.C. Gobbi, Nature, 296(1982) 533-537. C.A. Fyfe. J.M. Thomas, J. K l i n o w s k i and G.C. Gobbi, Angew. Chem. I n t . Ed. Engl., 22(1983) 259-267. J. Vedrine, A. Auroux, P. Dejave, V. Ducarme. H. Hoser and S Zhou, J. Catal., 73(1982) 147-160. A. Auroux, V. B o l i s . P. Wierzchowki, P.C. G r a v e l l e and J.C. Vedrine, J. Chem. SOC. Faraday Trans. 11, 75(1979) 2544-2555. P.A. Jacobs and R. von Ballmoos. J. Phys. Chem.. 86(1982) 3050-3052. M. B. Sayed, R.A. Kydd and R. P. Cooney, J. Catal., 88( 1984) 137-149. J. Scherzer and J.L. Bass, J. C a t a l . , 46(1977) 100-108.