Ionic and paramagnetic energy levels algebra

Ionic and paramagnetic energy levels algebra

JOURNAL OF MOLECULAR SPECTROSC’OPY IONIC AND 26, III-130 (1968) PARAMAGNETIC ENERGY LEVELS ALGEBRA MAURICE KIBLER Section de Recherches de...

1MB Sizes 0 Downloads 29 Views

JOURNAL

OF

MOLECULAR

SPECTROSC’OPY

IONIC AND

26, III-130

(1968)

PARAMAGNETIC

ENERGY

LEVELS

ALGEBRA MAURICE

KIBLER

Section de Recherches de M&unique Ondulatoire Facult& des Sciences de Lyon, Villeurbanne,

AppliquCe France

The algebra of coupling and recoupling coefficients relative to a (finite) subgroup G of the special unitary group in two dimensions SU(2) is developed in this paper. Following the work of Schanfeld on the cubic field, and the work of Flato on the trigonal and tetragonal fields, the J symbols are defined from the ClebschGordan coefficients (j,j,n~,n~~ 1jlj2jmz3) expressed in the jr, scheme where I’7 stands for the y-row of the irreducible representation I? of G. The definition of the irreducible tensorial sets under the group G, leads to the Wigner-Eckart theorem. Properties of the J coefficients and of the related f are obtained from the properties of the 3 - j Wigner’s symbols for SU(2). Utilizing the technique developed by Racah, the recoupling coefficients Jv and X are calculated as function off. Numerical values of the f’s for the cubic and tetragonal groups (electronic configurations d2, f’) are given in the appendix. I. INTRODUCTION

Crystalline field and elect,ronic spin resonance problems call upon the operators @.cry (potential energy of the crystalline field) and +,,,, (potential energy of interaction between the external magnetic field and the L and S angular moment,a) . Traditionally, two ways are used in the determination of eigenstates of The Wigner-Eckart theorem is applied either @.cryand %,ag . (a) to the group Xl’(Z), or (b) to a finite group. (a) Taking into account the interelectronic interaction e”/lij and the spinorbit coupling E(ri) s,.Zi , the electronic state funct’ions laSLJM) for the free at(Jm (Russell-Saunders coupling) provide a basis of the irreducible representation D., of SU(2). The energies acry and %,nagare expressed as linear combinations of t,he components TF’ of the t,ensors Tck’ irreducible under SU(2). Consequently the repeated application of the Wigner-Eckart t.heorem leads t,o the evaluation of matrices for @cIYand %,ag in t’he SL JJ, quantization. The method, we have just recalled, is sometimes useful for the weak crystalline field case. But it does not take advantage of the fact that the invariance group of &,, is a subgroup of the three-dimensional rot,ation group R(3) or is isomor111

112

KIBI,lX

phic

to such a subgroup ( whether the total angular momentum is an integer (11 half an odd int,eger; it is only the spectral group which labels the spin that, chwges 1. (b) On the other hand, in the strong field model (1-J), the irreducible wpwgroup G are introduced. Let, us suppos;c~ that, scnt:ltic)ns of the point qmmetr~ @,) > ?,‘I.,, > (,t( ~~ij~,.z,, +‘1 , @l,,:,,) where @h is a crystalline potentkl of high qmmetr>~, cubic for example, and @1 is a ptJklltid of low symmetry, let II* s:r? tckxgonnl or trigcJlld. The monuelectronic crystalline stBates arc coupled int 1I :1 configul:l~t,ion. Taking into account thch interelectronic repulsion, this CI~IIfiguration is split into terms. These terms xrc (Jbtairled according to the l’auli’s rsclusion principle arid calI UptJrl the: irreducible reprcsentationti of G. 3 ~OIYYI\-VI wch of the operators considered is cogredient \vit’h :L given basis function +I, I’., i for t hc irreducible represontntion I’ of the s;?mmetry group G of the JXLIXI~:L~Iletic ion. Then, matrices for a?,,- and $,,:,, c:tn be cvnluated t#hrough the gen(~~ized Wigncr-Eelart theorem. The inconvcnicnce of this procedure is that it dew Ilot IIse the electrostatic and spill-orbit energy mnbrices already c~:Jcul:ltc~d in thtl ,ST,JJ; representution ( for :I det,ailed description, see Ref. ;j ). ~‘(JllWc]UeIlt~y the simplcl, way of solving the problem of iOIliC cncrgy Icvc~l:: ir; to work iI the WA field scheme but, \vith explicit usage of the symmt~tr~ conditions, i.e., using t)he st:Lt’es laSLJI’, 1 rrl:lted to the states iaSL./.l/ I through the unitary tr~tilsfonli:ttioll ( J:ll ~JT’, ). l~ollowing t.hcse principles, Ychijnfeld (.$) calcul:~tcd the cubic field m:~l ric*tls iclcctwnic configurat~ions tl’, r/“) in ./r, re~nw~Ilt:~ti~Jll. I~hLto (s-6) nchieve(i th(h ccmputat ioI1 of t,hc trigonul :111dtetr:lg(JIl~~~ field matrices for t,he same c.ontig~~.;~~ tioils. The nwthod dcvclopcd in these two prrviou:: \~orks may bcl :~pplicd furt1kt.r tI 1 .~omc new. operators distinct of @C,.Y . l~ollowillg the method of Racuh (Y--.9) it swmc>d int.erest.irqg to build the nlgt4xx of the coupling and recoupling coeffi(*i(~~lt~ c?i~Jres.vc~ irl the rep1 e%Wt:~ti(Jll .Ir, . This point of vie\\- 11;~ xlread~- hectr rls;cl(l for the I-, TV, S coefficients introduced in the strong field scheme (10). .I grwt number of formulas introduced in the following n-ill provide u~c~ful means of control for the computntion of the aCVj-and @,,,:,xm:tt,rices OII thth i./r.., ) hasis. l:llrthermore, it is worth \\.hile looking c:trefull\- :it the tr:UlSfcJrnl:~1 jot, 1:tw front the formul:ts writ.tcn ill the ,131 scheme to t.he formulxs it1 th(L ./I’, scheme. ‘The formal substitution of I’, to thca magnetic quantum tllun tw /I/ [\\,hich is related to the introduction of the crystallographic clunntum tlumb(~r of Hell\\-ege (II)] does not reflect exactly this correspondence principle. ?Lhu m;lttclr of fact, ;ip:Lrt from the trivial problem of the dimensions of t,he co1lsidcrt~(l il.rcducibk rcpresc~r~tatioris, cBomplicated phase manipulations enter illto t II<>.I I‘., Ir~JJrc,sellt:Lt,ioIl. 111 :L forthcomirlg cul:ttioIl

paper

the machinery

of iorlic and paramagnetic

)I = 2, 3 I in a cubic cryst:tlline

eIlergy

developed levels

will

of a11 ion

ficltl \vith Inn- s?mmctry

he applied

to thts c:$

(cl”, .I’” c~r~fig~~r:~ti~,l~~

distorsicJI1.

IONIC ENERGY II.COUPLING

113

LEVELS

COEFFICIENTS

I. Clebsch-Gordan Coeficients and S-j Symbols in the jI’, Scheme Prom the angular momentum theory (Id), it is well known that the transformation from the uncoupled representation jl”jz”j,zj,, to the coupled representation jl”jz~~“j,, is achieved through the unitary matrix (j, jsrnlm 1j&j;ma) . This transformation reduces the Iironecker product Dj, @ Dj, of the irreducible representations Dj, and Dj, of SU(2). Expressed in terms of basis functions /jr,) this leads us to Iaj,j,jZ,,,)

=

C Iqljzhrlrzuz) . rlr2,ylr2

(jlj2rlulh2

I jlh~3r3,,),

(11

where the matrix element (jrjJ’1 rl r 2yt 1j, j2j3r3y3), independent of the additional quantum numbers (Y, is related to the Clebsch-Gordan coefficients (j,j,m,rn, 1 j&?j,rn,) by the formula

Wrlylr2y2 l.h.iti3W =

m,gm, Wlrl Ijm)(j2r2y2

1j2m2)

. (ij2mm2 Ijlj2jn)

(2) (j3m8(j3rsy3)

The last matrix reduces the Kronecker product rl @ r2 of the irreducible representations rl and r2 into a sum of irreducible representations I’3 . The Clebsch-Gordan coefficient (jljzrlvlrzrz / j,j&I’,,,) is zero if one of the following situations occurs (i) jr , j, , j, do not satisfy the triangular condition; (ii) the r zirreducible representations of G are not contained in Dji (i = 1,2,3) ; or (iii) the triple direct product r1 $3~rz @ r3* does not contain the identity. With an adapted choice of the phases for the state functions [jr,), the ClebschGordan coefficients in the jl?, scheme can always be taken real. Notations. In the relation ( 1) , c r zyi means summation over all the irreducible representations ri contained in Dj, , followed by the summation over all the rows yi of each irreducible representation I’< . If ri intervene several times in Djj , we will use the notations I’i’, I?’ . . . When necessary for typographical convenience, r7 will be written p and p0 will denote the single row of the identity representation of G. With this convention, 6(p7, pj) = 6(I’, , I’j)6(yi, -yj). The asterisk will denote the complex conjugate and we will use t,he abbreviations Ij] = 2j + 1, [r] = dimension of the irreducible representation I’ and a = b(i)c means that a runs from b to c, inclusive, in increments of i. Finally, note that S(jr , j2 , j,) = 1 if j, , j2 , j, satisfy the triangular condition and S(j, , j, , j,) = 0 otherwise. The highest degree of symmetry is obtained through introduction of the f coefficient defined by

JCIBLIS11

114 with

expressicw can hr where (..,,r ) is ‘d metric tensor of Wigner (13). h symmetrical found for .i from (3) using (3, (41, the unitary property of the tratlsfomutioll m:ttrix (,j)fl / -jr’, ) and the definitJioxl of t,he 3 - .j symbols of Wigner ( ‘“j i”“s I l?12m;<

The j( ~~~~~~ ) coefficient, is zero if (i ) or (ii) are sat,isfied or if the triple tliwctB product, r, @ I?? @ rn does not, contain the idqtity. Tntroducing R pseudo contittcted product. i,,: t 1, it is possible to avoid thcx phase difictllties \t-hich appear in t.he jr, scheme. The signification of (,$I ) is clmr: t,he clunntit;\,

cc)

J, lj,)lj,‘)

w’

PP

=

c (,,;:tL, >ljnl!Ijnh'),

mm ’

is inv:wi:tnt under t#he [j]-dimcl~sio~~sl sinylect~ic group Sr,( 2j + 1 ) ues of [j] (11’the Ij]-dimensicmal rot.:ition group) K( 2j + 1 ) fol odd cp (&j / jp) is t~rmsforrned under rotations cont~~gredierltly i.e., I“rom EC{. (4 ) md the properties of met)ric tensors (,A, I ), it is easy the s~~mhols (,Lt) obey the following relations

for even valv~dues of lj], to the I,jp’ ). to show that.

I ti )

IONIC

ENERGY

LEVELS

115

each component I$: has the same transformation law under rotation as the basis function cp(kr,)l’ Following RI1 we obtain the Wigner-Eckart theorem

This formula is a generalization of the equation for a tT:kg)component (see Ref. 6, p. 30%). The relation between the f symbol as defined in (6) and the j symbol is

equality which can be reversed using (6). The preceding equalit’y can be rewritten in the following forms

= [jJ””

(-_)““(j, hi1 Pl lj,

kP2/JCL).

Thus the conditions for j t,o be different from zero are t,he same as t,he ones for the corresponding Clebsch-Gordan coefficient in the jr, scheme. The main difference between the j symbol and the 17 symbol recently introduced by Tang Au-chin et al. (14) arises in the utilization of a Clebsch-Gordan coefficient of t,he point symmetry group. However, there is also a discrepancy in phase and dimensions of the irreducible representations considered. The advantage of the f symbol is apparent in the simplification introduced in Eq. (8). Furthermore the numerical evaluation of the j coefficients does not require a previous knowledge of the Clebsch-Gordan coefficients ( l?ll?2y1y2I rlr2r3y3) and avoids the uneasy manipulation of phase factors of the type (- ) I‘. III.

Algebraic

Properties

of the f and f-Matrix

Elements

a. Symmetry. The symmetry properties of the f arise from the properties of the 3 - j symbols of Wigner for SG(T),. Inspection of formula (5) shows that an even permutation of columns in j (&i$i) does not change its value,, whereas an odd permutation does introduce a phase factor given by (-)31+92f,f3. For example, we have

p (i;i!J

= f(;I,.+$j;,),

f (.7;itJ

= (_)i’tJ2+i~j(~;~~3).

Symbol f has lower symmetry than the j symbol. One of its symmetries is easily expressible: permutation of t’he last two columns of f(&$~) give rise to a phase change of value (-) 31+j2+J3,

116

KIBLER

6. Orthonormality Relations. The Clebsch-Gordan coefficients (J&L~P~ 1jlj&cca) are evidently elements of a unitary matrix of dimension bJj2]. Thus FG2 (jti?j3Pclpl5,h/w2) jgy k&P2

(j&w2

(5.&&37

I.m3Pc(3~cG.h~~ IjtiZPlG)

= G,‘,

IMP,‘,

= G4’7 d~h’,

PdQl , j2 , id, Pd.

The former relat’ions can be rewritten in terms off symbols. We get

and the dual relat’ion

Relations (9) and (10) remain true after subst’itution off in place off: in this case t’heq’ will lead to the following formulas which are useful for the evaluation of :I J$ mnkix

Finally notice that for [I’] = [r’] = 1, we have

r. 2lliscellane~us Formulas. (A) From (9) we get the particular case

After summation on p3 both sides of the preceding equalities it, is obvious that If/ 5 1 and Ifi 5 1. Thus from (S) and (11) we obtain the following useful suni rulr

CB ) Utilizing orthogonality properties (6 ), (91, and ( lo), further relations involving~ and (,,:I) symbols can be derived from (7 i . For example after multiplication of ( 7) by (p,:;?,,,J, summation of both sides over pR’ and utilization of (6 ), w have

IONIC

ENERGY

117

LEVELS

With a similar method, we get

and

(C)

When j, = 0 the f($~~:~) coefficient takes the simpler form

4 ) =[jll-““s(jl , jlj20 Pl PZ PO

j&(111, Pd.

(12)

Consequently f( E,i,i,) = 1. (D) Using (12) in relation (9) written in terms of f we obtain

p”(I;{,) = [jl%j’,

0M.A

PO>

This sum rule [to be compared with relation (10.21) of Ref. 91 expresses the center of gravity theorem in the jr-, scheme and is specially useful in the verification of the diagonal elements of the field matrices. The f(E;:) coefficients for the svmmetric group (4 !} and the tetragona1 group are compiled in Se&on IV (J, j’ = 0(1)6, k = 2(2)6). III. I)

RECOUPLING

COEFFICIENTS

TV Symbols

a. IlejPnition. At the begimung (RII), the W coefficients (and the @ deduced from the previous one after symmetrization, see Ref. 9) were defined from the V symbols. l,at,er in RIII, the W coefficients have been related to the transformation lalv between two distinct coupling schemes of three angular momenta. In the following, we will use the former presentation which amounts, in last analysis, to t.he construction of convenient rotat,ional invariants. Thus from the highly symmetrical f coefficients we will build the new coefficients Tvf defined by

( )

[j,]-‘s(j,‘, .Mp3”, P3’Wf ;;;;;

11s

BIBLEIt

t-‘utt)ing j,’ = j, , ps” = pa’ and summing

Utilization

both sides of ( 13) on pa’ MT get

of (7 ) in ( 14) leads to t.he simpler

form

(;;;;)*.7’(p;,) J‘ (y;) j (;:;!J).

..T Rewriting 6(

these expressions

in terms of Clehsch-Gordan

coefficients we get

( )

1:3:,i3 j)‘. j, jgcL3’, p3)( -)j1+j3+j4+j6([jJ[j,J)"'~~,. 6

Obviously, this presentation can also be related to the method used in RIII: the 1v.f are relat,ed to the elements of t,he unitary matrix of transformation bet.sveen two different coupling schemes of three angular momenta. In the problem
= C Ijw llj212) ljd41 (.j&ruw2 I j&jw2) g,I”2Pl?PJ

(j12j31112~3

WC might’ as well couple j, and j, and then add their resultant case

The unitary

transformation

which connects

these t,wo states is

/ .itij:~jp).

jfj to jr and in this

IONIC

ENERGY

LEVELS

On the other hand using the unit’ary property (j?n j jr,), (16) leads t,o

of the transformation

119 matrix

Consequently TV, is identical with the T’ coefficient (which is the 6 - j symbol of Wigner also) with well-known properties ($?,I&‘, 15). b. Afiscellaneous Fotwaulas. Relations involving Iv and f coefficients (with the same total number off on both sides) can be proved from the definition of mf and the orthogonality properties (6)) (9)) and (10). Thus, multiplying (13) by [j3’Jj;( p~“~;j;~l) and th en summing on j,’ and P:” we get’ after utilization of (IO) and reordering of the arguments

and to

Multiplying ( 17) by f( $$i’) *, summing both sides on pz , p4 , ~(6and using (9) we get the well-known orthogonality relation for the 6 - j symbols

II. X Symbols The same procedure we have just used in order to define 6 - j symbols as function off can be applied again to t,he recoupling coefficients 3(n - 1) - j of an arbitrary number n of angular momenta. However n-e will limit ourselves to the case n = 4. Let us define the Xf symbol by

120

that leads to t,he remarkably

KIBLER

symmetric expression

This coefficient can be related to the transformation law between two different coupling schemes of four angular momenta. For t,he sake of brevity, we will not discuss that point. A simple development of (19) show-s that Sf = S. Consequently the defined XI coefficient is a 9 - j symbol of Wigner with well-known properties (see for esample Refs. 9, 13, 15). Relat’ions involving j and .X symbols can be derived from (IS) using orthogonality relations of thef. For example we obtain easily

.j

(;i::;hJ

(;;_i;;hJ

and the relation analogous to the relation of de-Shalit. ( 16) is

Appendix rl den,otes the identity representation of the considered point, group G. Since the f( r$$,) coefficient’s are independent of ?, they will be writ.ten .I’(:;. ;, ) . These coefficients with values J, J’ = O(l)4 and J, J’ = ) z( l)l,?,$ have I~erl calculated by Schiinfeld (J), for the (4 !} group and by Flato (5-G) in t,he I:< !} and tetragonal cases. In Table IV of Ref. (6’) we can find the values of t,hr ex-

IONIC

ENERGY

121

LEVELS

pression (70) ““f( &? ,) with J, J’ = 0( 1)4, for each irreducible represent.ation r of t’he tetragonal group. The necessary values of the f’s for the computation of the cubic and tetragonal field matrices have been calculated by the author for t,hef’ configuration. In order to avoid human errors, the coefficientsf( fi:,) with J, J’ = 0( 1)6 for cubic and tetragonal symmetries have been recalculated on the Univac 110s computer with the program set up by Dr. Y. Bordarier. For convenience, we list here the coefficients of interest for the computation of cubic (potential of degree 4 and 6) and tetragonal (potential of degree 2, 4, and 6) crystal field matrices a:,,~, = go4 + (5/14)1’2(g44 @La

= yo2,

&.tra = go6 +

&a

+ ~4~),

= yo4 -

(1/14)“2(yt4

@:ut, = go6 -

(7/10P2(y44

+

(7/2>“‘($4

+ y46),

y44),

+ y4Y

where ypkis the spherical harmonic of degree k. The tetragonal group is a subgroup of (4 !}. Therefore, we will classify the f coefficients relative to the cubic case according to the irreducible representations of t#hetetragonal group. The cubic f’s are derived in a straightforward manner using the following reductibility law Tetragonal representations

Cubic representations r1

--+

r2 r3 r4

-+

r5

+

---)

+

rl(rl) r2( rd r,(c) + r,(c) r,(b) + r4(r2) r3w5) + r5(r4)

Bethe’s notation is used for the irreducible representations of the cubic group, whereas the notations of Ref. (6) are used for the tetragonal group (Bethe’s notations are recalled in bracket). The (JM 1 JI’,) matrix elements necessary for the computation of thef values listed are from Refs. (5, 6) for J = 0( 1)4 and in the cases J = 5, 6 we used the method given in Ref. (8) in order to obtain the results of the Table A. Tabulation of f( Frrrkl)values is given with restriction J < J’ since for the case considered, we obtain easily the following symmetry relation

Explanation of Tables. The squares of thef’s these values, is the indication of the sign of values obtained are rational fractions, we will the denominator. Coefficients that are zero for

are listed here. In front of each of the corresponding f. Since all the write the numerator first and then physical reasons (6( J, J’, k) = 0)

Representations and corresponding J-value

6

-1

5

-1

4

1

1

d/s

- VW

V%

3

2

l

1

0

-1

-2

-6

Normalization factor

IONIC TABLE

123

LEVELS

1

J 0

J'

2

2 41

2

ENERGY

2

FIFI-VALUES 1 5

J 411

J' 5

FIFI-VALUES 7 330

61 611

-3 -7

5

6

a58 715

35

411

1

30

-1

42

411 5

-2

286

2

411

41

41

0

5

61

-4

143

41

411

4

99

5

611

4

1001

41

5

1

66

61

61

0

41

61 611

611 611

-2 -72

61

0

41

611

10

429

411

411

16

3465

TABLE J

2 J'

FI FI-VALUES

J

J'

FIFI-VALUES

2 2

2 3

2

35 14

61 611

5

-1

4 4

390 a58

2

4 3

1 0

42

3 3

4

-4

3 4

5 4

4

715 5005

5

5

-6

715

5

61

-4

455

105

5

611

-4

1001

3 -16

110 3465

61

61

61

611

0 -2

91

5

-7

330

611

611

72

5005

TABLE J

3 J'

FIFI-VALUES

J

J,

Fi FI-VALUES

1

1

1'

30

41

6111

-1

1

2

411 411

4

572 3465

31

10 28

411

1

-1 -1

51

1

aa

1

311 2

3 -1

140 70

411

511

-7

411 411

5111 61

7 14

440 1320 2145

2 2

31

1

56

2 2

311 41

-3 -1

280 24

411

611

0

411

6111

-7

2

411

-1

168

51

51

5

31

31

0

51

511

0

31 31

311

1

28

51

5111

-7

41

-1

60

51

61

3 0

572 658 206 143

31 31

411

1

105

51

611

51

-1

616

6111

0

31

511

-9

440

51 511

31

5111

-3

311 311

311

1

440 105

41

0

311

411

1

311 311

51 511

5 0

311 41

5111 41

1 -7

aa 495

41

411

-1

220

41

51

0

41

511

1

41

5111

1

110 1320

41

61 611

1 3

17160 104

511 511 511 511 5111 5111 5111 5111 61 61 61 611 611 6111

511 5111 61 611 6111 5111 61 611 6111 61 611 6111 611 6111 6111

-3 -9 -27 3 a 3 -16 0 -27 5 0 27 -11 3 -1

J 4

J' 511

-2

55

4 51

6 51

1 -10

143 429

41 TABLE

2002 2002 4004 910 la20 10010

4

J 1

J' 1

1

3

3 3

3 4

3

51 511 4

3 4 4

za 462

1430 1430 20020 364 1001 1430 5005

51

FIFI-VALUES 15 -2 35 -3 105 -4

51

511

0

231

51

6

0

511 495

SII 6

511 6 6

6 -32 2

0 -10 0 28 0

F1 FI-VALUES

715 1001 5005

1‘24

KIBLER

TABLE J

5 J'

2

2

FIFI-VALUES 35 2

J 4

J' 61

F\F -56

3 4

-1

14 42

4 5

611 5

0 -6

715

3

3

0

5

61

64

5005

3 3

4 5

-4 3

105 110

5 61

611 61

0 -10

1001

4 4

4

-16

3465

5

-7

330

61 611

611 61 I-

0 22

435

TABLE J

6 J'

FIF

J

J'

FIFI-VALUES

0

41

1

9

41 411

611 411

0 2

3861

30

411

5

4

143

61 611

0 a

1287

-7

a58

2 2

1

I-VALUES

I-VALUES 2145

0

411

2 2

2 41

1 0

2

4

99

2

411 5

411 411

-1

66

5

5

2

61

0

2

611

4lY

5 5

61 611

0 1

429

dd61

61

bl

-147

9724

61 611

611 611

0 361

29172

41

41

10 Yt(

41

411

0

41 41

5 61

0

TABLE

-40

1287

7

IF I-VALUES

J

J'

F

2

2

1

2

3

2

4

4

99

2

5 61 611

-1 0

66

2 2

10

429

5

3

-2

33

3

4

3

5

0

3

61

-a

3

611

0

TABLE

30

Lid

J

J'

4

4

2

3861

4

5

4

143

4 4

61 611

0 a

1287

5

5

-7

a58

5 5

61 611

0 1

429

61

61

11

2652

61

611

0

611

611

361

FjF(-VALUES

29172

a

J

J'

FIF

1 1

31 311

0 1

I-VALUES

J

J'

FIFI-VALUES

41

41

49

17

41

411

0

L7

41

51

-5

3861

41

511

-7

429

0

1122

1

41

1

1 1

411 51

0 55

1188

41

5111

1

511

1

132

41

61

0

1 2

5111 2

0 -2

41

611

0

135

41

6111

1

429

2 2

31

-1

L-l

411

411

-13

594

311

0

411

51

0

2

41

0

L

411

1

2 L

51

0

511 5111

0 -Li

2 L

411

511

0

411 411

5111 61

1 5

1287 2574

411 411

611

-1

234

297

6111

0

99

61

-13

L576

51

51

7

a58

611

-5

31L

51

311

5

a58

0 -1

51

5111

0

31

6111 31

51

61

0

31

311

0

31 31

41 411

0 5

51 51

611 6111

0 35

3432

511

511

-7

a5a

31

51

0

511

5111

0

31

511

0

511

61

0

;

5v4

198

IONIC TABLE 31

a (CONTINUED) Sill 35

3a61

31

61

529

54054

JI

611

-5

546

31 311 311 311 311 311 311 311 311 311

6111

0

3iI 41 411 51 511 5111 61 611 6111

1 -7 0 5 -7 0 0 0 -25

TABLE J

9 J'

1

3

1

4

1

51

1 35

FtF 1

66

594 429 429

ENERGY

LEVELS

511 511 5111 5:II 5111 5111 61 61 61 611 611 6111

611 6111 5111 61 611 6111 61 611 6111 611 6111 6111

0 -1 14 -1445 -1 0 -3481 5 0 33 0 -64

I-VALUES 27

3536 7293

27 11tla

J'

Fi

51 511 6 51 511 6 511 6 6

-5 -7 7 7 5 35 -7 -1 -64

Fi F I-VALUtS -13 594

1

132

3 4

1 -7

66 594

3

51

5

429

3

511 6

-7 -25

429

3 4

4

49

1722

TABLE

10 J'

F IF I-VALUES

J

J'

-2

4 4 4 4 5 5 5 61 61 611

4 5 61 611 5 61 611 61 611 611

3003

135 27 99 297 2376 312 594 1YB 3861 54054 546

F I-VALUES

J

511

2 3 4 5 61 611 3

1050192 10608

4 4 4 51 51 51 511 511 6

1

2 2 2 2 2 i 3 3 3 2 3

3432 3861 61776 624

3003

3 3

i

125

3861 429 429 a58 858 3432 a58 3432 7293

1

1287

5 -1

2574

5 61 611

-1 1 -8 -13 -5 -1 5 35 529 -5

TABLE J

11 J'

F t F I-VALUES

J

J'

F1F

0

41

0

0

411

611 41 I 5 61 611 5 61 611 61 611 611

a -640 0 128 -56 5 3 11 0 -135 5

41

61 611 41 411 5 61

1 -1 4 16 -7 -3 -7 0 2 -4 0

41 411 411 411 411 5 5 5 61 61 611

TABLE J

12 J'

FIF

2 2 2 2 2 2 3 3

2 3 4 5 61 611 3 4

I-VALUES 42

J 4

J' 4

FIF 640

105

4

5

0

3465 330

4 4

61 611

0 56

6435

-7 7 0

390 a58

5

5

-5

a58

5 5

61 611

-25 -11

1092 5460

-2

77

61

61

0

4

2

2

i. 2

41

2

i ‘? 41 41 41

411 5

1 4 -16 7

9 42 99 3465 330 286 a58 3i)bl 143

14 -1445

234 3861 61776

-1 -3481

624

5

10608 3536

33

1050192

t- -VALUES 1287 27027 6435 6435 858 2860 5460 9724 51051

I-VALUES 27027

TAtiLk 3

5

-4

3 3

61 611

0 8

TABLE

13 J'

J 1

12

IcUNTINU~U) 429

b1

b1 1

121

18564

611

611

-5

51051

FIFI-VALUES LB 1

J

J' 41

FIFI-VALUES

41

35

30888

5

756

41

411

-15

1144

429

1

31 311

1

41

- -7

540

41

51

7

15444

1 i

411 51

-1 L5

60 4752

41 41

511 5111

-5 5

1716 57L

1 I

511

-7

~640

41

61

1

286

-7

LLO

41

611

1

130

i

5111 2

i

lBY

41

6111

5

1716

i

31

1

3780

411

411

125

216216

L

311 41

-1 -1

28 220

411

51

1

429

L

411

511

0

2

411

11

1260

411

5111

35

5148

2 i

51 511

1 7

d&

i i

5111

-7

411 41 I 411

61 611 6111

-7 7 21

10296 4680 2860

bi

L

611

-77 7

51 51

51 311

5 -7

3432 3432

L

6111

-7

5 IL

21

5111

7

1144

31 31

31

-35

Lj

21

01

-5

572

311

-1

616

51

611

31

41

-1

6111

-49

13728

31

-1

88 5544

51

411

511

511

-5

3432

31

51

-10

1001

511

5111

-5

1144

31 >I

511 5111

1 -1

143 1>444

511 511

61 bI1

-11 81

1456 7280

31

61

123

3CJH8b

511

6111

-5

96096

31

bll

1

jli

.I

4111

1

27L

5111 5111

2111 01

-10 --i

3861 17LY7L8

311 311

511 41

5 4Y

1648

5111

611

7

li480

11880

311

411

-ibY

ziL40

2111 61

6111 61

8 59405

5005 iY405376

311 511

51 511

25 4Y

1LOlL d5kO

61 6i

611 0111

-7 52Y

42432 544544

311 311

5111

-1

~860

61

-2

143

611 611

611 6111

165 405

99008 4Y504

311

611

U

6111

6111

-80

51051

311 TABLE

6111 14 J'

5

J'

440 ZY70 56160 iL‘+b

I6

0

1716

3

FI FI-VALiltS -5 1dY

J 4

21

FIFI-7

I

4

7

135

4

511

5

429

I

51

--L5

1188

511

7

660

t, 51

-5 -5

42Y

i

4 51

3 3

3 4

-5 -4Y

461 LY70

51 51

511 6

7 49

858 3432 858

J i

,VALUtS 3861

858

3

51

-25

3003

3

511

-49

2145

511 511

511 6

5 5

3

6

-5

429

6

6

320

4

4

-35

7722

TABLE d L

15 J' i

FIFI-VALUES -8 1bY

J 4

J' 4

FIFI-VALUtS -125 54054

L

3

-1

Y45

24024 51051

4

5

-35

1287

i

4

-11

315

5

14

1485

4 4

61 611

7 -7

2574

i i

6I

77

14040

5

1170 3861

2

611

-7

312

5

432432

IONIC TABLE 3 3

15 3 4

ENERGY

LET-ELS

(CONTINUED) 35 1

594 Ad%6

5 61 61 bI1

611 61 611 611

-7 -59405 7 -162

3120 7351344 lob08 L457L

2

5

1

3861

5

61

-1L5

71LL

3

6II

-1

78

TAULE .I

16 JI

FIFI-VALUES

J

J'

FIFI-VALUtS

u cl

61 611

1 0

41 411

611 411

0 128

6435

2

41

411

5

3

2860

L L

411 5

411 411

61 61 I'

0 -135

97c4

2

61

5

5

-24

12155

2 41

611 41

41

411

41 41

5 5 61 61 bI1

61 bI1 61 611 b11

0 -35 8 0 -72

FIFI-VALUtS

-3 -4

13

186 143

-2 -40

715 ii%7

5 61

0 -14/

YlL4

TAbLE J

17 J'

F iFI-VALUtS

J

J'

i

4

-3

186

2

5

-4

143

L

61

L

--L

713

3

611 3

-24

1001

j

4

3

5

j

61

0 0 1

52

011 4

4 4 4 5 5 5 61 61 bI1

5 61 611 5 61 61 I 61 611 611

-135 -24 0 -35 88 0 -72

11%

6435 J

41

J' 51

FIFI-VALUES 49 228%

4; 41 41

ii1 5111 61

-7 0 0

41 41

611 6111

0 35

411 411 411 411 411 411 411 51 51 51 51 51 51 511 511 511 511 511 5111 5111 5111 5111 61 61

411 51 511 2111 61 611 6111 51 511 5111 61 bI1 6111 511 5111 61 611 6111 5111 61 611 6111 61 611

-5 0 0 -5 -1 135 0 -10 -21 0 0 0 81 -24 0 0 0 35 30 -7 35 0 -Y61 -245

3 4 TABLE

J

i

1% J@ 51

FlFl _j

I

511

35

1

5111

0

1

61

0

1

611

0

1

6111

-1

i

41

u

-VALUES

572 1716

>Y 4iY

i

411

8

L

51

0

L

511

0

i L

5111 61

1 -25

143 1144

2

611

1

520

L 31

6111 31

0 27

2002

31 31

311 41

0 0

31 31 31

411 51 5Ii

7 0 0

85%

31 51

5111 61 6;l 6111

-3 4Y 5 0

L%6 Yl5i

311

-25

bOO6

311

41

5

286

311

411

0

311 311 311

51 511 5111

-7 -15 0

3; 31 311

832

3432 1144

3

2431 46189 461%9

2860

0

9714 12155 243 1 4199 461%Y

11440

1'1448 2574

1716 466752 14144 7293 4862

19448 12155

lY448 2431 35896

3536 369512 33592

1”S

KIBLEI’, 18

TABLE.

~CONTINLJELJI

311

41

0

311

611

0

311

6111

-9

61 611

6111 611

0 11

1144

611

6111

0

lL870

6111

6111

2

FIFI-VALUES

335Y2

41

41

1

41

411

0

TABLE J

19 J'

FjF(-VALUES

J

J'

1

51

-3

572

4

51

49

2288

1 I

511 6

35 -1

1716 IY

4 4

511 6

-7 35

11440 lY448

6006 Lb6

51 51

51 511

-10 -21

7293 4862 19448

46189

3

3

-25

3

4

5

3

51

-7

6

81

511

-15

343/! 1144

51

3

311

511

-L4

12155

3

6

-Y

1144

511

6

35

19448

4

4

1

lLM70

6

6

2

46189

FIFI-VALUES

TABLE

20

J

J'

FIFI-VALUES

J

J’

2

4

8

429

4

5

-5

1716

i 2

5

145 1144

4

61

-I

466152

61

I -25

4

611

135

14144

2

611

1

520

5

5

30

2431

3

J 4

L7

LOO2

5

bl

-7

38896

7

858

5

611

35

3536

286

61

61

-Y61

36Y512

3 3

5

-3

3

61

44

Yl52

bl

bi1

-L45

jd5Yi

611

611

11

33592

F(FI-VALUES

3

bIi

5

b3d

4

4

-5

2574

TABLE J

21 J'

FIFI-VALUES

J

J'

cl

61

0'

41

611

361

29172

lJ

611

1

13

411

411

-56

6435

2

41

10

4L9

411

5

11

5460

L

411

-7

ti58

411

-135

Y7L4

4

1001

61 611

5

51051

5 61

-168 35

12155 L431

2

5

2

61

-i

715



611

-7L

5005

411 5 5

u 8 1

5

611

0

41

41 411 5

1287 429

61 61

61 611

0 -72

46109

41

61

G

611

611

-224

46189

TABLE J

22 J'

F IFI-VALUES

FIFI-VALUES

2 i

4 5

7 -4

i

61

L 3

611 3

3 3 3

J

J'

l35n 1001

4

5

-11

5460

4

61

-121

lb564 51051

91

4

611

-5

;L 0

5005

5

5

16b

12155

5

61

-1

221

4

a

429

5

611

0

5 61

-24 0

1001

61 61

61 611

0 0

611

611

LZ4

3

611

5

4004

4

4

56

6435

TABLE J

23 J'

FIFI-VALUES

J

J'

FlF(-

1

51

~1

ZL88

41

51

7

9152

1 1 i

511 5111

5 5

6864 5li

41 4I

511 5111

4Y i8Y

45760 34320

bI bII

5 YY

LYlL

41

61

lll6Y

I

ZYli

41

611

15

Ab67008 56576

1

6111

-1

1OYL

41

--~45

717YL

z

41

8

4L3

41

-343

51480

CIlI

I

41

I

4618Y

VALUES

IONIC

TABLE

23 411 51

15

22B8

2

511

21

2288

2 2

5111 6I

25 11

2912

2

611

1

311 41 411 51

31

511

31 31 31 31 311 311 311 311 jI1 311 311 311 311 41 41 J 1 I 1 3 3 3 3 3 4

5111 61 611 6111 311 41 411 51 411 5111 61 611 6111 41 411 24 J’ 51 SlI 6 3 4 51 511 6 4

TABLE J

25 J'

2

4

2

5

;

TABLE

3

61 6II 3

3

4

5

5

3

61

3

611 4

4

129

LEVELS

(CONTINUED)

2 2

2 31 31 31 31 31

ENERGY

0

-5

-361 -3 5 -a1 27 529 5 -375 25 5 5 4Y -15 5 105 -363 -9

-7 9

4004

14560 20020 1144 1144 24024 1144 4576 32032 8008 256256 23296 32032 3432 8008 1144 1372ir 32032 8008 36608 23296

32032 51480 5720

411 411 411 411 411 411 51 51 51 51 51 51 511 511 511 511 511 5111 5111 5111 5111 61 61 61 611 611 6111

51 -25 511 77 5111 3 61 -10443 bII 1115 6111 3610 51 35 511 -3 5111 -25 61 lY5 363 611 81 6111 42 511 -567 5111 33 61 15 611 -245 6111 -21 5111 -17 61 611 -15 6111 -119 61 -35 611 -1785 6111 -77 611 61 I I 525 -7 6111

FlFi-VALUES

J

-21

572

-5

1716

1

273

-25

850

-5 -49

2002 3432

15

8008

Y 7

8008 12870

4 4 4 51 51 51 511 511 6

J’ 31 511 6 51 511 6 511 6 6

J 4 4 4 5 5 5 61 61 611

J’ 5 61 611 5 61 611 61 611 611

FI FI-VALUES

-25 -11 -1 -3 3 -27 -529 -5 343

1001 728 3640 286 286 2002 64064 5824 12870

9152 4160 80080 4356352 39603L 10850&H 14586 19448 77792 83716 99008 544544 12155 388Y60 14144 14144 777YL 24310 Y152 14144 4862 86Y44 134368 173888 134368 268736 92378

FIFI-VALutS -7

LL88

-49

11440

245

1944b

-70

7293

3

4862

-al

136136

-i6a

12155

245 14

19448 46189

FtFI-VALUES -3

20020

10443

1089088

-135 42

9Yooa 12155

17

2288

-5

3536

119

21736

35

33592

77

33592

are omitted and accidental zeros are denoted by 0. Each table gives (&:,) for a fixed k and a fixed irreducible representation r of the tetragonal group. Consequently the f’s are indexed only by J and J’. However, if the representation I? appears several times in D, then we use the notations JI, JII . . * and for exam1rr) is denoted 2 31. ple fG& Numerical example: in the table 13 we read

HIBLEI’L

1:50

I. J’( ,$;yf, ) (for &,,,,

potenti:tl):

Table

1: I’ = I’1 ; Table

2: r =

I’? ; Table

3:

I’ = I’:< ; Table 4: r = r,, ; Table 5: I’ = r5 . 11. j( ,::!;.:I ) (for du,, potential) : Table G: r = 1’1 ; Table

7: I? = r2 ; Table S: ; Table 9: r = I’.$ ; Table 10: I’ = IT5 . Table 11: r = I’1; Table 12: r = I’? ; TaIII . ,I’( r+‘,>:I, ) (for @.tutr;lpotential): ble 13: r = rn ; Tdde 14: r = rd ; T:iblc 15: I’ = rs. Ii’. j’( ,::!,::I) fw (&, pot~ent~ial) : Tshle 16: r’ = 1’1 ; T:lble 17: I? = rz ; Txhlc 1s: 1’ = I‘:{ ; Table 19 : I’ = I’d ; T:lble “0: I’ = r5 . \‘.. ./‘I ,.;:‘,.‘~II) (for @tCt,.iLpotential i : Table 21 : I’ = r1; Table 22: r = 1‘: ; TnNC28:r = r:+; T~~hl~ 21: I‘ = I’, ; T:lhle 25: I’ = r5. I’ =

I’;,

The aut her wishes to thank Prof. &I. Plato for his continuous assistarlce awl dt-voted guidalbcc it1 the preparation of this work. IIe also wish(,s to Olank Prof. II. Chabbal for the kind hospitality esteuded to him in the “Laburatoirc Aimi! Cotton” and for fillancial sup port. Thallks are also due to I)r. 1.. Bordarier for utilixatioll of his computer program and IO t)r. ht. (‘aitla.rd for ilrleresliilg dixllssiuns.

/. Y. T\s.\i+E .\Nu S. Suu.\ruo, J. i’hjjs. Sot. Japan 9, 753 (1954). J. I’hp. SW. Japan 13, 394 (1958). .? Y. T.\s.\HE .\su II. KAMIRTJXA, 3. J. S. (~RIFFJTII, “The Theory of Transition ;LIetal-Tolls.” Cambridge Llniv. Press, LUIII.IOII and New York, 19ci-l. 4. (;. SclIONFELx) (M.Sc. Thesis, Cniversity of Jerllsalem, 1958). -5. M. I’I.\w (RI.&-. Thesis, 1:niversity of Jerusalem, 1959). i;, M. E‘L\TO, J.dlOl. SpeCfr!/. 17, 300 (1965). 7. (;. I?.x.\H, Z’hys. Rev. 62, -438 (1942). 8. G. I:.w.\H, Phys. I2ev. 63, X7 (19-U). 9. 11. F.lso .\ND c;. kWH, “Irredrlribte Tellscrrial Sets.” Academic Press, New York. 1959. I/I. J. 5. (GRIFFITH ” The Irrrdrlciblr Tensor Method for Molecular Symmetry (;rr,llps.” Prt’llt ive-Ilat;, Jj;ltglewc)od Cliff’s, 191i2. If. Ii. Il. IlEl,I#\\.EGt:, .IW. Pk!/Sik 4,95 (1918j. I,“. 12. I-. ('ONDON .INI) (i. It. SH~BRT~.EY, “Ttle Theory of Atomic, Spectra.” (‘amhridge Iilliv. Press, Lolldot~ atld New York, 1963. IS. 11;. I’. WIGKEH, ” 011 the Xlatrices which lHI.\N-~I:R, l’ \A’ (~o-SEN., (btr ZIEIS, INI) T\I SHI~-SH.\N. hi. Sirhim (I’ckimJ) 16, (5) (19tiGJ. 1.5. A. It. t';I)MOSI)S. “ Anglllar &lomerlllun itI Quantum Mechanics.” 2nd rd. Pritlcetan I-niv. PEWS. Prillcetoll, New Jorst:y, 19W. /(i. A. I)E~SII\LI'L., I'hqa, I