Ion—molecule and radical reactions in condensed layers studied by low temperature field ionization mass spectrometry. Part I. Methanol

Ion—molecule and radical reactions in condensed layers studied by low temperature field ionization mass spectrometry. Part I. Methanol

International Journal o f Mass Spectrometry and Ion Physics, 29 (1979) 125--135 125 © Elsevier Scientific Publishing Company, _hm~terdam -- Printed in...

444KB Sizes 1 Downloads 22 Views

International Journal o f Mass Spectrometry and Ion Physics, 29 (1979) 125--135 125 © Elsevier Scientific Publishing Company, _hm~terdam -- Printed in The Netherlands

ION--MOLECULE AND RADICAL REACTIONS IN CONDENSED LAYERS STUDIED BY LOW TEMPERATURE FIELD IONIZATION M A S S S P E C T R O M E T R Y . P A R T I. M E T H A N O L

H.H. GIERLICH and F.W. ROLLGEN

Institute o f Physical Chemistry, University o f Bonn, Wegelerstr. 12, 5300 Bonn (W. Germany) (First received 2 March 1978; in revised form 5 June 1978)

ABSTRACT The ion--molecule and radical reactions induced by field ionization (FI) of methanol in a condensed surface layer are investigated at low emitter temperatures (LT) using isot o p e labelling and benzene as radical scavenger. No influence of the emitter on the chem-

ical reactions was detected. The results agree with those obtained by radiation chemistry suggesting that LT-FI can be an interesting tool for the investigation of reactions in liquids, since stable and intermediate reaction products axe supplied directly to mass spectrometric analysis.

INTRODUCTION F i e l d i o n i z a t i o n ( F I ) o f o r g a n i c m o l e c u l e s is u s u a l l y c a r r i e d o u t a t r o o m t e m p e r a t u r e , o r a t h i g h e r t e m p e r a t u r e if t h e e f f e c t o f t e m p e r a t u r e o n t h e rate of ionization, the surface chemistry or the unimolecular decomposition b e h a v i o u r o f i o n s is o f i n t e r e s t . L o w e r i n g t h e e m i t t e r t e m p e r a t u r e a f f e c t s t h e f o r m a t i o n o f p r o t o n a t e d m o l e c u l e s a n d c l u s t e r i o n s d u e t o an i o n i z a t i o n o f m o l e c u l e s in m u l t i - a d s o r p t i o n o r c o n d e n s e d l a y e r s [ 1 - - 4 ] . H o w e v e r , so f a r no detailed investigations of the chemistry of organic molecules induced by F I in c o n d e n s e d l a y e r s h a v e b e e n m a d e . T h e p r e s e n t w o r k w a s c a r r i e d o u t t o e x p l o r e t h e c h e m i c a l r e a c t i o n s foll o w i n g F I p r o c e s s e s in a l i q u i d s u r f a c e l a y e r . T o t h i s e n d a s t a t i o n a r y s u r f a c e layer extending over the minimum ionization distance must be formed. For volatile substances such conditions were found at low emitter temperatures a n d l o w field s t r e n g t h s . Mass a n a l y s i s o f t h e i o n e m i s s i o n f r o m t h e s u r f a c e l a y e r a l l o w e d t h e m e c h a n i s m o f i o n - - m o l e c u l e a n d also r a d i c a l r e a c t i o n s t a k i n g p l a c e in a c o n d e n s e d l a y e r t o be e l u c i d a t e d . T h i s is d e m o n s t r a t e d f o r methanol. No chemical influence of the anode surface on the reaction products was d e t e c t e d .

126 A p p l i c a t i o n o f t h e m e t h o d t o t h e s t u d y o f i o n - - m o l e c u l e a n d radical react i o n s in a c o n d e n s e d phase is o f particular i n t e r e s t since t h e r e a c t i o n p r o d u c t s are supplied directly t o mass s p e c t r o m e t r i c analysis. Using c o n v e n t i o n a l m e t h o d s mass analysis requires e v a p o r a t i o n o f t h e s o l u t i o n t h u s o n l y giving i n f o r m a t i o n o n stable r e a c t i o n p r o d u c t s . EXPERIMENTAL F o r r e c o r d i n g l ow t e m p e r a t u r e (LT)-FI mass s p ectra a 60 ° single focusing m a g n e t i c i n s t r u m e n t a n d a q u a d r u p o l e mass s p e c t r o m e t e r [ 5 , 6 ] , b o t h e q u i p p e d w i t h a c o o l a b l e FI s o u r c e w e r e used. T h e q u a d r u p o l e was also used f o r e n e r g y analysis o f field ions a p p l y i n g a m e t h o d d e s c r i b e d in ref. 6. T h e FI source o f t h e q u a d r u p o l e instmzment is s h o w n s c h e m a t i c a l l y in Fig. 1. T h e cooling o f t h e e m i t t e r is a c h i e v e d b y a c o p p e r b a n d w h i c h c o n n e c t s t h e e m i t t e r s u p p o r t e r t o a liquid n i t r o g e n trap. T h e flexible c o p p e r band allowe d a m e c h a n i c a l a d j u s t m e n t o f t h e p o s i t i o n o f t h e a n o d e to be m a d e by m i c r o m a n i p u l a t o r s since t h e a n o d e was c o u p l e d to t h e r o d o f a conventional FD s o u r c e [ 7 ] . A n y e m i t t e r t e m p e r a t u r e b e t w e e n r o o m t e m p e r a t u r e (RT) a n d a b o u t 145 K c o u l d be selected b y s i m u l t a n e o u s a p p r o p r i a t e heating o f t h e c o p p e r b a n d . T he t e m p e r a t u r e m e a s u r e m e n t s w e r e carried o u t by a c o p p e r c o n s t a n t a n t h e r m o c o u p l e placed o n t h e e m i t t e r h o l d e r . T h e t e m p e r a t u r e o f t h e e m i t t e r surface m a y be a f e w degrees h i g h e r because o f a t e m p e r a t u r e d i f f e r e n c e between the copper block and the emitter. T he gas was supplied t o t h e e m i t t e r b y a m o l e c u l a r b e a m . T h e pressure in

Cold finger

Copper bond

Gas inlet

Resistance heating colt

L, \

..

"-

Deflection plates

\

( ~

/

a\\\

Ouodrupole rod system

Emitter manipulation /

\\ \ I~ \

,od

t.

Emitter Counter electrode

Ion optics

Fig. 1. Schematic drawing o f the quadrupole mass analyzer combined w i t h a coolable

FI

source.

127

t h e b e a m was e s t i m a t e d t o be a b o u t 0.1 Pa. F o r r e c o r d i n g L T mass spectra t h e a n o d e - - c a t h o d e p o t e n t i a l d i f f e r e n c e d e t e r m i n i n g t h e field strength was set at vanishing d e t e c t o r ion c u r r e n t as m e a s u r e d at RT. Pt tips a n d c o n v e n t i o n a l a c t i va t e d 1 0 / a m W wire e m i t t e r s [7] w e r e used. T h e l a t t e r w e r e e m p l o y e d f o r r e c o r d i n g t h e mass s p ectra s h o w n in Figs. 2, 3, 5 a nd 6. T h e d e g r e e o f d e u t e r a t i o n o f C6D6 and CDsOH (Fa. Merck} was a b o u t 99.5%. RESULTS AND DISCUSSION

1. Field ionization in condensed surface layers A t high field strength, i.e. high i o n i z a t i o n p r o b a b i l i t y , a surface lay er can only e x t e n d u p t o t he critical i o n i z a t i o n d i s t a n c e fo r FI, w h i c h is a b o u t a f e w Angst roms [ 8 ] . FI processes t a k i n g place inside a c o n d e n s e d surface l a y e r r e q u i r e on t h e o n e h a n d l o w i o n i z a t i o n probabilities, i.e. lo w field strengths, and on t h e o t h e r a sufficiently high gas pressure or l o w e m i t t e r t e m p e r a t u r e t o f o r m a t h i c k c o n d e n s e d lay er on th e a n o d e surface. Using a gas supply by a m o l e c u l a r b e a m o n t o t h e field a n o d e such c o n d i t i o n s were f o u n d for a c e t o n e , m e t h a n o l a n d o t h e r alcohols at gas pressures in t h e beam o f a b o u t 0.1 Pa a n d a n o d e t e m p e r a t u r e s n e a r t h e m e l t i n g p o i n t o f t h e substances [9]. U n d e r t he s e c o n d i t i o n s t h e l a y e r th ick n es s is n o t static b u t m a y c h a n g e with t i m e a c c o r d i n g to t h e locally a n d t e m p o r a l l y v ary in g i o n i z a t i o n c o n d i t i o n s , i.e. space charge f l u c t u a t i o n in th e l a y e r has to be a s s u m e d [ 1 0 ] . E v i d e n c e f o r F I in c o n d e n s e d layers is o b t a i n e d f r o m t h e e n e r g y distribut i o n o f t h e d e s o r b e d ions using a Pt tip e m i t t e r . U n d e r n o r m a l ( R T ) c o n d i t i o n s t h e i n t e n s i t y m a x i m u m o f t h e i on e n e r g y d i s t r i b u t i o n is d e t e r m i n e d by t h e m i n i m u m or critical i o n i z a t i o n d i s t a n c e xc. In t h e case o f F I in a c o n d e n s e d l a y e r t h e ions start at t h e phase b o u n d a r y c o n d e n s e d l a y e r ] v a c u u m w h i c h is at a l o w e r p o t e n t i a l t h a n xc, t h u s leading t o a shifting an d b r o a d e n i n g o f ion signals to l o w e r masses, as observed in a single focusing mass s p e c t r o m e t e r d u r i n g e m i t t e r cooling. T h e charge t r a n s p o r t f r o m t h e p o i n t o f origin inside t h e layer t o t h e phase b o u n d a r y can be a s s u m e d t o t a k e place e i t h e r by e l e c t r o n t r a n s f e r processes a n d / o r by ion m i g r a t i o n as f o u n d in e l e c t r o l y t i c solutions. T h e LT mass spectra o f a c e t o n e (m.p. 178 K) an d m e t h a n o l (m.p. 175 K) are s h o w n in Figs. 2 a n d 3 respectively. F o r c o m p a r i s o n t h e R T s p ectra are d ispl a ye d as well. T h e e m i t t e r t e m p e r a t u r e s are c h o s e n to achieve a maxim u m i o n emission, p r e d o m i n a n t l y o f cluster ions. Because o f a limited mass range o f t h e s p e c t r o m e t e r , a c e t o n e cluster ions ~ m / e 3 5 0 c o u l d n o t be d e t e c t e d . A t still l o w e r a n o d e t e m p e r a t u r e s a d r o p in emission was observed, a c c o m p a n i e d b y an increase o f t h e i n t e n s i t y f l u c t u a t i o n s . In spite o f e m i t t e r t e m p e r a t u r e s a few degrees b e l o w t h e m e l t i n g p o i n t o f t h e substances t h e c o n d e n s e d surface l a y e r c a n n o t be c o m p l e t e l y solid b u t m a y be in a liquid o r liquid-like state. T h e i m pi ngi ng m o l e c u l e s supplied f r o m t h e gas p h as e

128 (a)

[M]'

6O

o (:

40, n--

[M*H 14' 20

[2M-H1 ° |

I .

i

,'0

2O

8'o

60

'

1()0

!

role

,oo

t ~)

[sM]:

["]'

[6 M ]:

[~Ml" 80

60

[3M]'

m

[z.]:

¢;

40 (i) n-,

~r

..a.

20

1

l

I

v--, t._J

l ,~

80 .

.

. 120 . .

i

. ~

160 m~e

,i '

24O

2 6o

'

~ 0

'

---

Fig. 2. FI ma~s spectra o f a c e t o n e obtained ( a ) at R T and (b) at an emitter temperature o f 1 6 5 K. Emitter: activated 1 0 / ~ n W wire.

cause a heating of the layer according to the higher gas phase temperature m d the transfer of polarization energy to the surface, thus producing a temperature gradient across the layer. This assumption is supported by the ob-

129 100 -

la}

[M]; /

80

60-

40.

20.

[ M 4.H']"

/ r2M]" !

2b

!

6'O

e'o

1~o

1:~o

"

~o

m/e

To ~o

b)

'°°t

t

=o

80

o

.:L'" 60

u; c

.T_, = ¢::

x 10

..-: z,0 o n-

t

T

o

,,-,, 20

o I

1

16o

J

,

2~ m/e

I

g

z;.o

&I"

"

" ~I'

z;o

-~

Fig. 3. FI mass spectra o f m e t h a n o l o b t a i n e d (a) at R T and (b) at an e m i t t e r temperature o f 1 6 3 K. Emitter: activated 1 0 p~n W wlre.

130 served ion c h e m i s t r y discussed b e l o w . T h e observed cessation o f emission at l o w e r t e m p e r a t u r e can be ascribed t o t h e g r o w t h o f a solid l a y e r n o t hind e r e d b y i o n i z a t i o n processes. With t h e alcohols t h e f o r m a t i o n o f (M + H) ÷ ions is always energetically m o r e favourable t h a n t h e f o r m a t i o n o f M-* ions [ 4 ] . H e n c e t h e M.+ peaks in t h e a l c o h o l spectra give e v i d e n c e f o r surface areas o f high i o n i z a t i o n probability in w h i c h t h e r a t e o f FI o f i n c o m i n g m o l e c u l e s c o m p e t e s w i t h t h a t o f their a b s o r p t i o n i n t o t h e c o n d e n s e d l ay er via t h e f o r m a t i o n o f h y d r o g e n bonds. E n e r g y analysis o f M.* ions f o r m e d at a c o o l e d Pt tip s h o w s t h a t th es e ions d o n o t start f r o m t h e i r critical i o n i z a t i o n d i s t a n c e b u t f r o m p o i n t s furt h e r f r o m t h e e m i t t e r surface. This is m o s t p r o b a b l y d u e to FI i n t o e l e c t r o n a c c e p t o r states f o r m e d by ions in t h e layer. In c o n t r a s t to t h e R T mass s p e c t r u m o f a c e t o n e (Fig. 2a) t h e LT spect r u m (Fig. 2b) exhibits n o (M + H) ÷ ion. F u r t h e r m o r e s t r o n g (nM).* ion sigr~!~ are observed w h e r e a s ( n M + H) ÷ ions w i t h n ~> 2 are a b s e n t or o f w e a k intensity. T h e (M + H) ÷ i n t e n s i t y was f o u n d t o d e c r e a s e d u r i n g e m i t t e r cooling a n d was n o m o r e d e t e c t a b l e u n d e r L T c o n d i t i o n s . I t has b e e n suggested t h a t t h e p r o t o n a t i o n o f a c e t o n e t a k e s place b o t h w i t h a n d w i t h o u t surface i n t e r a c t i o n [ 1 1 ] . Since a p r o t o n a t i o n r e a c t i o n is e n e r g e t i c a l l y a n d kinetically f a v o u r e d by a surface i n t e r a c t i o n [4] t h e loss o f an (M + H ) ÷ ion signal in t h e LT mass s p e c t r u m allows t h e c o n c l u s i o n s to be d r a w n : 1, t h a t p r o t o n a t i o n o f a c e t o n e is n o t possible w i t h o u t surface i n t e r a c t i o n an d 2, t h a t u n d e r c o n d i t i o n s o f LT-FI n o c h e m i c a l i n f l u e n c e o f t h e e m i t t e r surface o n t h e ion c h e m i s t r y exists. Obviously at R T (M + H) ÷ a c e t o n e ions are formed by the reaction 2(CH3)2CO ~

*O(C2Hs) + (CI-I3)2COIT

(1)

w h e r e * d e n o t e s a surface b o n d . T h e p r o t o n a t i o n o f a c e t o n e in a c o n d e n s e d l a y e r m a y be h i n d e r e d by an activation e n e r g y , since t h e gas phase r e a c t i o n M ÷ + M -~ (M -- H)" + (M + H) ÷ is a p p r o x i m a t e l y t h e r m o n e u t r a l [ 1 2 ] , T h e ab senc e o f a c h e m i c a l surface i n f l u e n c e o n t h e r e a c t i o n p r o d u c t s at LT is very i m p o r t a n t . This c o n c l u s i o n is also s u p p o r t e d by th e observation t h a t in c o n t r a s t t o t h e R T mass spectra t he LT s p ectra o f t h e alcohols are indep e n d e n t o f t h e e m i t t e r material (Pt, C).

2. R e a c t i o n s o1" m e t h a n o l T h e F I - i n d u c e d surface c h e m i s t r y o f m e t h a n o l at R T has been t r e a t e d in several p u b l i c a t i o n s [ 1 , 4 , 1 3 - - 1 5 ] b u t is so far n o t y e t fully u n d e r s t o o d . Exp e r i m e n t s w i t h i s ot ope labelling [14] a n d e n e r g y analysis o f d i f f e r e n t ioni z a t i o n p r o d u c t s [15] p o i n t t o a s t r o n g surface i n t e r a c t i o n in t h e i o n - f o r m i n g reactions. H o w e v e r , as s h o w n above, such a surface i n f l u e n c e o n t h e mass s p e c t r u m can be n e g l e c t e d at l o w e m i t t e r t e m p e r a t u r e s a n d f o r l o w field strengths. T h e LT mass s p e c t r u m differs f r o m t h e R T s p e c t r u m in t h e rela-

131 tively high intensities o f p r o t o n a t e d species a n d d e h y d r o g e n a t i o n p r o d u c t s in c o m p a r i s o n with t h e M.* i o n i n t e n s i t y . In t h e p r i m a r y process o f FI o f m e t h a n o l in a c o n d e n s e d layer, (M + H ) ÷ ions should be f o r m e d according t o t h e r e a c t i o n 2 CH3OH ~

CH30" + CH3OI-I~2

(2)

Using CD3OH a n d CH~OD it was f o u n d t h a t at RT and high field strengths the m e t h y l h y d r o g e n s are involved in t h e p r o t o n a t i o n reactions to an appreciable e x t e n t (see Fig. 4). H o w e v e r at low field strengths and even at low emitter t e m p e r a t u r e s t h e h y d r o g e n in (M + H) ÷ is mainly t h a t o f t h e hyd r o x y l group, as is to be e x p e c t e d from t h e association o f m e t h a n o l molecules via t h e f o r m a t i o n o f h y d r o g e n bonds. In t h e search for t h e free radical left f r o m reaction (2) b e n z e n e was used as radical scavenger and a d d e d to m e t h a n o l in t h e gas inlet system. The result is shown in Fig. 5. T h e t w o peaks at role 108 and role 109 p r e s e n t in t h e LT s p e c t r u m are n o t observed at RT. These peaks can be formally ascribed to t h e c o m p o s i t i o n s (C6H6 + C H 3 O H - H) ÷ (role 109) and (C6H6 + CH3OH -- 2H) ÷ (m/e 108) respectively. T h e c o r r e s p o n d i n g LT spectmJm o f a m i x t u r e o f C6D6 and CH3OH (Fig. 6a) gives evidence for t h e losses o f benzene h y d r o g e n in role 113 and m e t h a n o l h y d r o g e n in role 115. Finally t h e mass s p e c t r u m o f a m i x t u r e o f C6D6 and CD3OH (Fig. 6b) allows t h e structure o f t h e above ions to be d e t e r m i n e d since role 117 c o r r e s p o n d s t o a loss

[CD3OH" H] "

[I O 30HI "

D3o.Y

L

E%0.-@

[cD30,.,]. [c%oN-D]"

o)

Fig. 4. Molecular ion group o f CD3OH obtained by FI at E T o n a Pt tip using a quadrupole mass analyzer. A n o d e - - c a t h o d e potential difference: (a) 7 kV; (b) 10 kV.

132 I'--'1 "r"

100

80. o

T

t

60-

o

:o

T--,

40

o 109

IOE 20

,

,

20

I,II

,

.

60

,

,

,

IO0

80

m/e Fig. 5. F I mass s p e c t r u m o f a m i x t u r e o f m e t h a n o l i n t e n s i t y o f C 5 H 5 .+ i5 i n d i c a t e d b y a n a r r o w .

ii

_

1 ~0

120

L I ,11

1fi0

i

~--and benzene at 163 H. The higher

o f D and role 115 o f 2D atoms. The h y d r o x y l h y d r o g e n s are retained in b o t h ion structures: H role 10B

H H C H2OH----J+

rNe 109

H

F r o m t h e i s o t o p e distribution in Fig. 6 it follows t h a t (C6D6 + OCD3) ÷ and (Ce~DsOCD3)+ ions also c o n t r i b u t e t o t h e ion signals at role 118 and role 116 respectively. The ions o f mass 109 obviously result from ionization o f intermediates. The additions o f m e t h o x y a n d CH2OH'-radicals t o b e n z e n e have b e e n postulated in t h e radiation c h e m i s t r y o f m e t h a n o l a n d b e n z e n e m i x t u r e s b u t so far have n o t b e e n directly observed [ 1 6 , 1 7 ] . Since reaction (2) leads t o free CH30" radicals whereas CH2OH" radicals are a t t a c h e d t o b e n z e n e t h e follow-

133 -to

u, 100"

I

la)

8O *,.--, ..r

60.

~o

o

-r

c

!

'=E

I.O

T ,¢=

,_%0 r'~

20

¢J

|,11

,

I,I,

H

,11

rl'l I e

8

100-

ib)

80 T

o -r

"T-

o

60 -ic

o

o

w

L0 O

20

I

I, 2

'

s0

' 80

'

I ~0

i .

. 120 .

.

140

I I ~0

Fig, 6. FI mass spectra at 1 6 3 K: (a) mixhtre o£ CHsOH and C6D6; (b) mixture of CDzOH and C6D6. The higher intensifies of C6D6; are indicated by arrows.

134

ing bimolecular reaction succeeding reaction (2) m u s t be p o s t u l a t e d CHsO" + CH3OH -~ CHsOH + CH2OH" (3) This reaction is well a c c e p t e d in the radiation c h e m i s t r y o f m e t h a n o l [ 1 7 ] . Benzyl alcohol (mass 108) m a y be f o r m e d prior t o FI via t h e reaction C6I-I6CH2OH" + R" -* C6HsCH~OH + RH

(4)

in w h i c h R" is a CH30" o r CH2OH" radical. F o r t h e f o r m a t i o n o f anisole (C~IsOCHs) a similar r e a c t i o n can be f o r m u l a t e d . Benzyl alcohol and anisole are k n o w n t o be f o r m e d in t h e radiation chemistry o f m e t h a n o l - - b e n z e n e mixtures [16]. F o r m a l d e h y d e m a y be p r o d u c e d by reactions o f m e t h o x y radicals CH30" + CH30" -* CH20 + CH3OH (5) This reaction has been suggested t o a c c o u n t in part f o r t h e CH20.* peak o f t h e RT s p e c t ~ i m o f m e t h a n o l [14]. F o r m a l d e h y d e can also be f o r m e d by reactions o f CH2OH" with m e t h o x y radicals or CH2OH', c o m p e t i n g however, with t h e f o r m a t i o n o f semi-acetal and glucol (see below). In addition, t h e field reaction CH2OH" + CH3OH ~

CH20 + CHsOI-I~2

(6)

m a y c o n t r i b u t e to t h e f o r m a t i o n o f neutral f o r m a l d e h y ( l e as well, By successive FI, CH20.* a n d (CH20 + nM + H) ÷ ions axe p r o d u c e d with n ~ 0. Molecular ions o f f o r m a l d e h y d e axe clearly i d e n t i f i e d in t h e LT spectra o f m e t h a n o l . However, t h e latter ions (e.g. for n = 1) c a n n o t be distinguished f r o m t h e p r o d u c t o f t h e reaction (competi.ng with reaction (6)) CH~OH" + CH3OH --~ H O C H ~ H C H ~ (role 63)

(7)

which is e x p e c t e d to o c c u r as well. A d i m e r i z a t i o n o f CH2OH" radicals d e p e n d s on the concentrRtion a n d rate o f diffusion o f these radicals in t h e surface layer and their lifetime with respect t o FI processes. The absence o f a (CD2OH)~ p e a k (role 66) and a (CH2OH)~ p e a k (role 6 2 ) i n t h e spectra o f CD3OH and CH3OH respectively leads t o t h e c o n c l u s i o n t h a t glucol is n o t f o r m e d to a large e x t e n t . However, a small c o n t r i b u t i o n o f p r o t o n a t e d glucol to t h e (2M - - H) ÷ peak (role 63) in t h e s p e c t w m o f Fig. 5 and t o t h e (2M -- HD) + peak (role 67) in Fig. 6b is possible. The FI-induced c h e m i s t r y o f m e t h a n o l in a c o n d e n s e d surface layer is less c o m p l i c a t e d t h a n t h a t o f long chain alcohols. This will be s h o w n in a later publication.

3. Comparison o f LT-FI with Radiation Chemistry The chemical effects o f an ionizing radiation are m u c h m o r e c o m p l i c a t e d t h a n t h e chemistry following FI processes. In LT-FI o n l y i o n - - m o l e c u l e reactions and reactions o f radicals p r o d u c e d by i o n - - m o l e c u l e reaction take

135

place. M o r e o v e r t h e ions are q u i c k l y r e m o v e d f r o m t h e r e a c t i o n z o n e . However, in irradiation o f liquids t h e c h e m i s t r y is n o t o n l y d u e t o primarily f o r m e d ions b u t results also f r o m reactions o f e x c i t e d neutrals, neutr~liT, e d ions, t h e i r f r a g m e n t s a n d in a d d i t i o n f r o m r e a c t i o n s o f negative ions [ 17]. A f u r t h e r d i f f e r e n c e lies in t h e fact t h a t t h e p r o b a b i l i t y o f FI d e p e n d s exponentially o n t h e i o n i z a t i o n p o t e n t i a l ; t h u s u n d e r c o n d i t i o n s o f LT-FI o n l y m o l e c u l e s w i t h l o w e s t i o n i z a t i o n p o t e n t i a l will be p r o d u c e d . However, t h e e x a m p l e o f m e t h a n o l shows t h a t LT-FI gives valuable inform a r i o n o n i o n - - m o l e c u l e r e a c t i o n and radical r e a c t i o n s in liquids. By successive FI o f l a y e r m o l e c u l e s left f r o m i o n - - m o l e c u l e r e a c t i o n s it is also possible t o d e t e c t n e u t r a l r e a c t i o n p r o d u c t s a n d even i n t e r m e d i a t e s . T h e analysis of the field-induced reactions of methanol demonstrates that reaction mechanisms difficult t o e l u c i d a t e in r a d i a t i o n c h e m i s t r y are r a t h e r easily derived f r o m LT-FI mass spectra w i t h t h e aid o f i s o t o p e labelling a n d radical scavengers. H o w e v e r , as s h o w n w i t h glucol, difficulties m a y arise w i t h t h e d e t e c t i o n o f p r o d u c t s o f radical r e c o m b i n a t i o n reactions. Bug such r e a c t i o n p r o d u c t s are less difficult t o f i n d by analysis o f liquids after irradiation. ACKNOWLEDGEMENTS

T h e a u t h o r s are i n d e b t e d t o Prof. Dr. H.D. B e c k e y a n d U. G i e s s m a n n for s t i m u l a t i n g discussions. T h e y gratefully a c k n o w l e d g e t h e supporg f r o m t h e W i s s e n s c h a f t s m i n i s t e r i u m des L a n d e s N o r d r h e i n - W e s t f a l e n a n d t h e F o n d s d e r D e u t s c h e n C h e m i s c h e n Industrie. REFERENCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M.G. In abram and R. G o m e r , Z. Naturforsch. A, 1O ( 1 9 5 5 ) 863. H.D. Beckey, Z. N a t u r f o r s c h . A, 14 ( 1 9 5 9 ) 712; 15 ( 1 9 6 0 ) 822. W.A. S e h m l d t , O. F r a n k and J.H. Block, Surface Sci., 44 ( 1 9 7 4 ) 185. F.W. Ri~llgen and H.D. B eckey, Z. N a t ur f o rsch. A, 29 ( 1 9 7 4 ) 230. H.H. Gierlich, H.J. H ei nen and H~D. B e c k e y , Biomed. Mass S p e c t r o m . , 2 ( 1 9 7 5 ) 31. H.J. Heinen, H.H. Gierlich and H.D. B e c k e y , J. Phys. E, 8 ( 1 9 7 5 ) 877. H.D. B eck ey and H.-R. S c h u l t e n , Angew. Chem., Int. Ed. Engl., 14 ( 1 9 7 5 ) 403. H.D. B eck ey , Principles o f Field I o n i z a t i o n and Field D esorpt i on Mass S p e c t r o m e t r y , P er g amo n Press, O x f o r d , 1977. A detailed discussion o f F I o f molecules in t he t e m p e r a t u r e / p r e s s u r e range w here a phase t r ~ n ~ t i o n takes place at t he field a n o d e surface is in preparation, R. G o m e r , A c c o u n t s Chem. Res., 5 ( 1 9 7 2 ) 41. F.W. R~llgen and H.D. B e c k e y , Sur f ace Sci., 23 ( 1 9 7 0 ) 69. F.W. R~illgen and H.D. Beckey, Sur f ace Sci., 27 ( 1 9 7 1 ) 312. H.D. B eck ey and P. Schulze, Z. N a t ur f or s c h. A, 21 ( 1 9 6 6 ) 214. I.V. G o l d e n f e l d and I.Z. Korostyshevskij, T eor. Eksp. Khim., 4 ( 1 9 6 8 ) 218. H.J. Heinen, F.W. RSllgen and H.D. B e c k e y , Z. N a t u r f o r s c h . A, 29 ( 1 9 7 4 ) 773; H.J. Hein en an d F.W. R61lgen, Proe. 3rd Int. Conf. Solid Surf., Vienna, 1977. A. Ekst~om and J.L. G r a n e t t , J. Phys. Chem., 70 ( 1 9 6 6 ) 324. R.A. H o l r o y d , in P. Ausloos (Ed.), F u n d a m e n t a l Processes in R a d i a t i o n Chemistry, Interscience, New Y or k, 1968, and references cited therein.