Journal of Molecular Structure (Theochem) 626 (2003) 81–86 www.elsevier.com/locate/theochem
Iso-nitrous acid complexes: a bond order analysis Abraham F. Jalbouta,b,c,*, Mohammed Solimannejadd a
Department of Physics, Dillard University, New Orleans, LA 70112, USA Department of Chemistry, The University of New Orleans, New Orleans, LA 70148-2820, USA c EJMAPS Organization, 1107 Carrollton Ave, Metairie, LA 70005, USA d Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak, Iran
b
Received 21 October 2001; accepted 15 October 2002
Abstract Formation of iso-nitrous acid (H– NO2) complexes with HF, HCl, H2O, CH3OH, (CH3)2O is investigated using the density functional theory B3LYP/6-311þþG(2d,2p) method. In this work the bond orders, HOMO –LUMO gaps, and eigenvalues were considered. q 2003 Published by Elsevier Science B.V. Keywords: Iso-nitrous acid; Density function; Hydrogen bond
1. Introduction Isomers of nitrous acid have been predicted in recent computational studies [1 – 3]. We have also recently explored the stability of this molecule [4]. Very recently the possible synthetic pathways of this molecule have been proposed in theoretical point of view [5]. In view of plausibility of the computational evidence, and of the importance of nitrous acid in certain combustion systems [6], a true characterization of this new molecule (H –NO2) and of its reactivity is clearly desirable. In the first part of the present study hydrogen bonded complexes of H – NO2 with water, methanol and dimethyl ether (DME) are investigated for their potential proton donor abilities. In the second part of this work, the proton acceptor * Corresponding author. Address: Department of Physics, Dillard University, New Orleans, LA 70112, USA. E-mail address:
[email protected] (A.F. Jalbout).
properties of the iso-nitrous acid via oxygen is investigated by analysis of the HNO2 complexes with HF and HCl.
2. Computational details The calculations were performed within the framework of the density functional theory approach using the GAUSSIAN 98 package of computer codes [7]. Electron correlation was considered via the density function theory at the B3LYP level of theory. The structures of the isolated monomers, H –NO2, H2O, CH3OH and (CH3)2O, HF, HCl and of the H – NO2 dimer complexes with the monomers were fully optimized by use of the 6-311þ þ G(2d,2p) basis set. Vibrational frequencies and intensities were computed for all the complexes. In addition to this interaction energies ðDECp ðABÞ ¼ EAB ðABÞ 2
0166-1280/03/$ - see front matter q 2003 Published by Elsevier Science B.V. PII: S 0 1 6 6 - 1 2 8 0 ( 0 2 ) 0 0 7 5 0 - 9
82
A.F. Jalbout, M. Solimannejad / Journal of Molecular Structure (Theochem) 626 (2003) 81–86
Table 1 Geometrical parameters of HNO2· · ·X complexes at the B3LYP/6-311þ þG(2d,2p) level of theory, also the ionization energy (eV) by Koopman’s theorem in which 21HOMO ¼ IE computed for the three lowest eigenvalues, and Band Gap is the HOMO– LUMO (eV) gap Molecule
Parameter
IE (eV)
H2O· · ·H–NO2
r(O· · ·H) ¼ 1.853 r(O–H) ¼ 0.961 r(N–H) ¼ 1.045 r(N–O) ¼ 1.225 u((–(–() ¼ 106.3 u(H–H· · ·O) ¼ 121.0 u(N–H· · ·O) ¼ 178.9
8.48 8.55 8.87
6.30
CH3HO· · ·H–NO2
r(O· · ·H) ¼ 1.806 r(O–H) ¼ 0.960 r(N–H) ¼ 1.048, r(N–O) ¼ 1.222 u(C–O· · ·H) ¼ 123.9 u(NH· · ·O) ¼ 174.6
8.35 8.48 8.8
6.23
(CH3)2O· · ·H–NO2
r(O· · ·H) ¼ 1.822 r(N–H) ¼ 1.047 r(N–O) ¼ 1.218 u(C–O· · ·H) ¼ 112.8 u(N–H· · ·O) ¼ 161.1
8.12 8.51 8.55
5.95
HNO2· · ·HF
r(O· · ·H) ¼ 1.834 r(H–F) ¼ 0.937 u(F–H· · ·O) ¼ 138.6
9.73 10.00 10.11
6.35
HNO2· · ·HCl
r(O· · ·H) ¼ 1.938 r(H–Cl) ¼ 1.300 u(Cl–H· · ·O) ¼ 150.4
9.32 9.34 9.81
5.97
EA ðABÞ 2 EB ðABÞ; where Cp is the complexe, A is monomer A, B is monomer B, and AB is the dimer) were corrected by the Boys – Bernardi full counterpoise correction [8] employing the Massage method (which makes it possible to add additional uncontracted basis functions to a standard basis set).
Band Gap
3. Result and discussion Table 1 presents the calculated structural properties of HNO2, H2O, CH3OH, (CH3)2O, HF, HCl monomer species and dimer complexes at the B3LYP/ 6-311þ þ G(2d,2p) level of theory where in the table we defined a geometrical parameters have units of
Table 2 B3LYP/6-311þ þG(2d,2p) bond orders (Mulliken) for H2O· · ·H–NO2
H2(H2O) H3(H2O) H4(HNO2) N5(HNO2) O6(HNO2) O7(HNO2)
O1(H2O)
H2(H2O)
H3(H2O)
H4(HNO2)
N5(HNO2)
O6(HNO2)
0.95647 0.95636 0.01601 0.02270 0.00882 0.00875
0.01436 20.00021 0.00199 0.00033 20.00048
20.00028 0.00192 20.00044 0.00056
0.86056 0.01624 0.01437
1.75246 1.75511
0.20161
A.F. Jalbout, M. Solimannejad / Journal of Molecular Structure (Theochem) 626 (2003) 81–86 Table 3 B3LYP/6-311þ þG(2d,2p) bond orders (Mulliken) for H2O· · ·H– NO2 Atom
Valency
O1 H2 H3 H4 N5 O6 O7
1.969119 0.972470 0.972469 0.906691 4.394736 1.979022 1.979926
Table 6 B3LYP/6-311þ þ G(2d,2p) Mulliken bond orders for CH3HO· · ·H–NO2, O1, C2, H3, H4, H5, H6 are part of the CH3HO group, H7, N8, O9, O10 constitute the HNO2 group O1
Table 4 B3LYP/6-311þ þG(2d,2p) bond orders (Lowdin) for H2O· · ·H– NO2
H2(H2O) H3(H2O) H4(HNO2) N5(HNO2) O6(HNO2) O7(HNO2)
O1 (H2O)
H2 (H2O)
1.31064 1.31100 0.18865 0.06946 0.01003 0.00976
0.14242 0.01390 0.00734 0.00159 0.00136
H3 (H2O)
H4 (HNO2)
N5 (HNO2)
O6 (HNO2)
0.01389 0.00136 0.88488 0.00132 0.15834 2.42062 0.00155 0.15783 2.42122 0.46765
˚ ) for bond lengths and degrees (8) for angstroms (A bond angles. In the study of molecular complexes, it is essential to assess the accuracy with which the computational procedure reproduces the essential properties of the subunits. The reliability of the density functional theory B3LYP method [9] for accurate prediction of different molecular properties in different systems has been demonstrated previously in the large number of studies in Refs. [10,11]. In the present study the molecular properties of the subunits are compared Table 5 B3LYP/6-311þ þG(2d,2p) bond orders (Lowdin) for H2O· · ·H– NO2 Atom
Valency
O1 H2 H3 H4 N5 O6 O7
2.899539 1.477244 1.477489 1.417498 5.810826 3.059554 3.059358
83
C2
H3
H4
H5
HC2 0.82850 H3 0.94098 0.02078 H4 20.02691 0.99270 0.00691 H5 20.01720 0.99447 20.00168 0.00086 H 6 20.01552 0.99976 20.00190 20.00102 20.00982 H7 0.02031 0.00240 0.00017 0.00212 20.00110 N8 0.02985 0.00256 0.00326 0.00320 20.00130 O9 0.01496 20.01116 20.00134 0.00827 20.00026 O10 0.01001 0.00072 0.00089 0.00139 20.00012 H6 H7 N8 O9 O10
H7
0.00095 20.00023 0.83504 0.00094 0.02011 0.00052 20.00094
N8
N9
1.75406 1.79568
0.21584
with the corresponding values in the complexes for the study the changes of these properties during complex formation. From the bond orders (Tables 2– 21) there is not much overlap between the two monomers (also notice the changes in atomic valencies), from the Mulliken (most reliable) definity there are only bond orders of 0.01601, 0.18865, 0.02031, 0.00034, 0.10586, 0.10586, for the species H 2O· · ·H – NO 2, (CH 3) 2 O· · ·H – NO 2, CH 3HO· · ·H – NO2 , HNO2· · ·HF, HNO2· · ·HCl, respectively. The Lowdin definition yields (in the same order) bond orders of 0.18865, 0.20783, 0.19430, 0.18507, 0.16513, which Table 7 B3LYP/6-311þ þ G(2d,2p) CH3HO· · ·H–NO2
bond
orders
(Mulliken)
for
Atom
Valency
O1 C2 H3 H4 H5 H6 H7 N8 O9 O10
1.784976 3.830724 0.968068 0.987521 0.963853 0.973679 0.879056 4.422106 2.001413 2.023982
84
A.F. Jalbout, M. Solimannejad / Journal of Molecular Structure (Theochem) 626 (2003) 81–86
Table 8 B3LYP/6-311þ þG(2d,2p) Lowdin bond orders for CH3HO· · ·H– NO2, O1, C2, H3, H4, H5, H6 are part of the CH3HO group, H7, N8, O9, O10 constitute the HNO2 group
C2 H3 H4 H5 H6 H7 N8 O9 O10
H7 N8 O9 O10
O1
C2
1.40054 1.30050 0.09721 0.10189 0.10279 0.20783 0.07432 0.01103 0.01025
0.15119 0.92972 0.94068 0.93953 0.02028 0.01140 0.00606 0.00249
0.01581 0.01167 0.01137 0.01611 0.00734 0.00108 0.00158
0.09275 0.09275 0.00370 0.00217 0.00293 0.00087
H6
H7
N8
N9
0.00325 0.00103 0.00034 0.00030
0.87760 0.15659 0.15319
2.41209 2.42322
Table 9 B3LYP/6-311þ þ G(2d,2p) CH3HO· · ·H–NO2 Atom O1 C2 H3 H4 H5 H6 H7 N8 O9 O10
H3
H4
Table 10 B3LYP/6-311þ þ G(2d,2p) bond orders for (CH3)2O· · ·H – NO2 whereby O1, C2, C3, H4–9 are part of (CH3)2O, and H10, N11, O12, O13 are part of H–NO2 O1
H5
0.09174 0.00207 0.00083 0.00030 0.00018
C2 C3 H4 H5 H6 H7 H8 H9 H10 N11 O12 O13
bond
orders
(Lowdin)
for
are clearly higher (and are known to overestimate these values). The species with the lowest HOMO – LUMO Band Gaps are the most tightly bound species (from bond order considerations and confirmed in other work [4]).
4. Conclusions This can be an interesting subject for study about this new molecule, which is under investigation and
H4
H5
H7
H8
H9
H10
H7 0.00078 H8 0.00258 20.00080 H9 20.00097 0.00005 20.01004 H10 0.00034 20.00029 0.00087 20.00004 N11 0.00004 0.00079 20.00018 0.00068 0.81607 O12 0.00047 0.00014 0.00027 20.00013 20.01860 O13 0.00121 0.00126 0.00015 0.00003 0.02343
Valency 3.306358 4.401901 1.516655 1.237908 1.242114 1.243099 1.440600 5.809993 3.057312 3.058966
C3
0.81466 0.82089 0.02858 20.02697 0.99183 0.00941 20.00788 0.98746 0.00282 0.00031 20.01702 0.99614 20.00011 20.00054 20.01183 20.03078 0.01029 0.99732 0.00171 0.00133 20.01655 0.00454 0.99553 0.00113 20.00154 20.01026 20.00378 0.99016 0.00069 0.00638 0.04957 0.00685 20.00585 0.00395 20.00151 0.03918 0.01045 20.00437 0.00524 20.00180 0.00619 0.00020 0.00098 0.00439 20.00023 0.01579 20.01847 0.00122 0.02168 20.00326 H6
0.46689
C2
O12 O13
N11 O12 1.83837 1.75217 0.22944
Table 11 B3LYP/6-311þ þ G(2d,2p) (CH3)2O· · ·H–NO2
bond
orders
(Mulliken)
for
Atom
Valency
O1 C2 H3 H4 H5 H6 H7 H8 H9 H10 N11 O12 O13
1.636825 3.828748 3.836592 1.012832 0.970254 0.971090 0.981820 0.975957 0.972790 0.874798 4.456644 2.061493 2.024660
A.F. Jalbout, M. Solimannejad / Journal of Molecular Structure (Theochem) 626 (2003) 81–86 Table 12 B3LYP/6-311þ þG(2d,2p) Lowdin bond orders for (CH3)2O· · ·H– NO2 whereby O1, C2, C3, H4–9 are part of (CH3)2O, and H10, N11, O12, O13 are part of H –NO2 O1 C2 C3 H4 H5 H6 H7 H8 H9 H10 N11 O12 O13
C2
C3
H4
Table 14 B3LYP/6-311þþ G(2d,2p) bond orders (Mulliken) for HNO2· · ·HF H1 (HNO2)
0.01961 0.02805 0.02596 0.92320 0.91955 0.92207 0.01940 0.00942 0.00201 0.00218
0.08945 0.08896 0.00205 0.00172 0.00184 0.00482 0.00672 0.00200 0.01865
0.08798 0.00197 0.00352 0.00851 0.00207 0.00109 0.00022 0.00126
H6
H7
H8
H9
H10
H7 H8 H9 H10 N11 O12 O13
0.00181 0.00759 0.00328 0.00299 0.00105 0.00024 0.00122
0.08988 0.08970 0.00265 0.00081 0.00039 0.00032
0.08759 0.00340 0.00098 0.00020 0.00028
0.00184 0.00074 0.00010 0.00014
0.87226 0.14923 0.15854
O12 O13
N11 2.43306 2.39776
O12
Table 15 B3LYP/6-311þþ G(2d,2p) bond orders (Mulliken) for HNO2· · ·HF Atom
Valency
H1 N2 O3 O4 H5 F6
0.979081 4.388262 2.073753 1.955250 1.032558 0.953422
Table 16 B3LYP/6-311þþ G(2d,2p) bond orders (Lowdin) for HNO2· · ·HF
0.46602 N2(HNO2) O3(HNO2) O4(HNO2) H5(HF) F6(HF) orders
H5 (HF)
0.89738 N2(HNO2) O3(HNO2) 0.00460 1.80632 0.02714 1.61736 0.25203 O4(HNO2) H5(HF) 20.00207 0.02191 0.00721 0.10586 F6(HF) 0.05203 0.04529 0.00359 20.04715 0.89965
0.19843 0.91094 0.92145 0.92242 0.02019 0.02654 0.02713 0.02159 0.01651 0.00355 0.02174
bond
N2 O3 O4 (HNO2) (HNO2) (HNO2)
H5
1.40670 1.42422 0.10193 0.10137 0.10197 0.10274 0.10399 0.10264 0.19430 0.07441 0.00981 0.01354
Table 13 B3LYP/6-311þ þ G(2d,2p) (CH3)2O· · ·H–NO2
85
(Lowdin)
H1 (HNO2)
N2 (HNO2)
O3 (HNO2)
O4 (HNO2)
H5 (HF)
0.89581 0.16051 0.16810 0.01294 0.07029
2.47338 2.30588 0.03498 0.05874
0.46017 0.01043 0.00873
0.18507 0.07732
1.43513
for
Atom
Valency
O1 C2 H3 H4 H5 H6 H7 H8 H9 H10 N11 O12 O13
3.737617 4.497177 4.494098 1.248705 1.246933 1.245474 1.235715 1.245254 1.245580 1.433098 5.814809 3.066827 3.081642
Table 17 B3LYP/6-311þþ G(2d,2p) bond orders (Lowdin) for HNO2· · ·HF Atom
Valency
H1 N2 O3 O4 H5 F6
1.307647 5.768782 3.113215 3.196530 1.678550 1.650205
86
A.F. Jalbout, M. Solimannejad / Journal of Molecular Structure (Theochem) 626 (2003) 81–86
Table 18 B3LYP/6-311þ þG(2d,2p) bond orders (Mulliken) for HNO2· · ·HCl H1 (HNO2)
N2 (HNO2)
O3 O4 (HNO2) (HNO2)
H5 (HCl)
0.90625 N2(HNO2) O3(HNO2) 0.00537 1.84383 0.03079 1.63864 0.23233 O4(HNO2) H5(HCl) 20.00135 20.00045 0.00170 0.11116 Cl6(HCl) 0.08984 20.02935 0.00689 20.00935 0.96266
Table 19 B3LYP/6-311þ þG(2d,2p) bond orders (Mulliken) for HNO2· · ·HCl Atom
Valency
H1 N2 O3 O4 H5 Cl6
1.030905 4.358915 2.090121 2.003573 1.073718 1.020699
Table 20 B3LYP/6-311þ þG(2d,2p) bond orders (Lowdin) for HNO2· · ·HCl
N2(HNO2) O3(HNO2) O4(HNO2) H5(HF) Cl6(HCl)
H1 (HNO2)
N2 (HNO2)
O3 (HNO2)
O4 (HNO2)
H5 (HCl)
0.90569 0.16924 0.16924 0.01169 0.05131
2.46244 2.33670 0.03394 0.05471
0.46276 0.00847 0.00768
0.16513 0.07761
1.38418
Table 21 B3LYP/6-311þ þG(2d,2p) bond orders (Lowdin) for HNO2· · ·HCl Atom
Valency
H1 N2 O3 O4 H5 Cl6
1.309148 5.793483 3.110581 3.213421 1.603405 1.575482
will be reported in the near future. In this work we have used bond orders (both Mulliken and Lowdin), Band Gaps, and ionization energies are used for the evaluation of inorganic van der Waals complexes stability. We shall report more of intermolecular bond orders in future work [12].
References [1] K. Tabata, Y. Teng, Y. Yamaguchi, H. Sakurai, E. Suzuki, J. Phys. Chem. A 104 (2000) 2648. [2] Y. Teng, Y. Yamaguchi, T. Takemoto, K. Tabata, E. Suzuki, Phys. Chem. Chem. Phys. 2 (2000) 3429. [3] W.T. Chan, S.M. Heck, H.O. Pritchard, Phys. Chem. Chem. Phys. 3 (2001) 56. [4] M. Solimannejad, A.F. Jalbout, Submitted for publication. [5] W.T. Chan, H.O. Pritchard, Phys. Chem. Chem. Phys. 4 (2002) 557. [6] P.Q.E. Clotheir, B.D. Aguda, A. Moise, H.O. Pritchard, Chem. Soc. Rev. 22 (1993) 101. [7] M.J. Frisch G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 98, Revision A.6, Gaussian, Inc., Pittsburgh, PA, 1998. [8] S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553. [9] A.D. Becke, J. Chem. Phys. 98 (1993) 5648. [10] J.B. Foresman, Æ Frisch, Exploring Chemistry with Electronic Structure Methods, Second ed., Gaussian, Inc, Pittsburgh, PA, 1996. [11] A.F. Jalbout, M. Solimannejad, L. Turker, J. Mol. Struct.: THEOCHEM (2003) Invited Review Article. [12] A.F. Jalbout, M. Solimannejad, Work in progress.