RlllM[
[OglUgRlil
ELSEVIER
FluidPhase Equilibria 118 (1996) 249-270
Isobaric vapor-liquid equilibria for methyl esters + butan-2-ol at different pressures J u a n O r t e g a *, P a b l o H e r n a n d e z Laboratorio de Termodindmica y Fisicoqufmica, Escuela Superior de lngenieros lndustriales, 3507 I-University of Las Palmas de G.C., Spain
Received 10 May 1995; accepted 5 July 1995
Abstract
Vapor-liquid measurements for the mixtures of three methyl esters (ethanoate, propanoate, butanoate) and butan-2-ol were obtained at 74.66, 101.32 and 127.99 kPa in a small capacity still. All systems were found to be thermodynamically consistent and the maximum likelihood principle was chosen as the regression technique to determine the parameters of different available equations. Only the mixture methyl butanoate + butan-2-ol presented a minimum azeotrope which shifted toward concentrations richer in alcohol as working pressure increased. Experimental results were compared with prediction by UNIFAC and ASOG methods. Keywords: Experiments; VLE Data; Esters; Butan-2-ol
1. I n t r o d u c t i o n
There are a number of reasons for collecting VLE data at pressures other than atmospheric. Not only are such values of interest in engineering applications, there is also a need for observations on changes in mixture behavior with pressure, particularly the presence of singular points, which are relevant; for purification methods, and on effects of these intensive magnitudes in the theoretical analysis of solutions. Therefore, this paper is part of an ongoing research project into the behavior of isobaric vapor-liquid equilibria (VLE) in binary mixtures of alkyl esters and alcohols at our laboratory (Ortega et al., 1986; Ortega et al., 1987). Research analyzing the VLEs for the lowest methyl esters with normal and isomeric alcohols at different pressures have been undertaken with a view to systematizing that study (Ortega et al., 1990a; Ortega and Susial, 1990a; Ortega and Susial, 1993).
* Corresponding author. 0378-3812/96/$15.00 © 1996Elsevier ScienceB.V. All rights reserved SSDI 0378-3812(95)02821-8
250
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
However, within the framework of the project, it has been considered both necessary and appropriate to report new values for systems containing isomeric alcohols, for which there are insufficient literature values at the present time. Thus, extending the range of working pressures contemplated in previous research, VLE values have now been determined experimentally for binary mixtures consisting of three methyl esters (ethanoate, propanoate, butanoate) and butan-2-ol at pressures of 74.66, 101.32, and 127.99 kPa. No VLE values for these systems have been found in the literature consulted. However, Horsley (1973) proposed an azeotrope for the mixture (methyl butanoate + butan-2-ol) at atmospheric pressure for the conditions Taz < 370.85 K and Xester > 0.335. Besides reporting new experimental values, this paper also presents the results of correlations employed for those magnitudes measured by direct experimentation and those calculated indirectly from the experimental measurements. Furthermore, the experimental values have been compared with the predictions calculated using the ASOG model (Kojima and Tochigi, 1979) and two versions of the UNIFAC model, UNIFAC-1 (Fredenslund et al., 1975) and UNIFAC-2 (Larsen et al., 1987; Weidlich and Gmehling, 1987).
2. Experimental 2.1. Materials The components used in the experiment were supplied by Fluka and were the highest commercial grade. The most relevant physical properties of the methyl esters used in this study, p, n(D, 298.15 K), and Tb,~, did not differ greatly from the values reported earlier (Susial et al., 1989, Susial and Ortega, 1995; Ortega and Susial, 1991). The following experimental values were obtained for butan-2-ol at the temperature 298.15 K: p / ( k g m -3) = 802.29, 802.6 (Riddick et al., 1986), 802.3 (TRC, 1991); n(D) = 1.3949, 1.395 (Riddick et al., 1986), 1.3949 (TRC, 1991); Tb,2 = 372.36 K, 372.65 (TRC, 1991), 372.66 K (Ambrose and Sprake, 1970), 372.7 (Reid et al., 1977; Riddick et al., 1986).
2.2. Apparatus and procedure The experimental equilibrium still was a dynamic still in which both phases were refluxed. The still and the auxiliary fittings and equipment necessary for isobaric operation have been described in previous papers (Ortega et al., 1986; Ortega and Susial, 1993). The concentrations of the liquid and vapor phases were measured using an Anton Parr model DMA-55 vibrating-tube digital densimeter to a precision of +0.02 kg m -3, previously calibrated using water and n-nonane. Densities for the binary systems studied {x1CuH2u+jCOOCH3(u = 1, 2, 3)+xzCH3CH2CH(OH)CH~} at (298.15 ___ 0.01) K were validated by verifying the uniform distribution of excess volumes, V E, on methyl ester concentration. The resulting correlations, p = p(x~), were used to determine the equilibrium liquid and vapor concentrations, to a precision of ___0.002 units for the liquid phase and somewhat higher, +0.004, for the vapor phase. Comparing the concentrations of both phases calculated using V E = VE(xl) and p = p(xj) did not yield any significant differences.
251
J. Ortega. P. Hernandez/Fluid Phase Equilibria 118 (/9961249-270
3. Results 3.1. Densities and excess volumes
The densities, p, and excess volumes, V E, for each of the binary mixtures {x~ a methyl ester + x 2 butan-2-ol} were determined before calculating the equilibrium compositions, x~ and y~. The values
Table 1 Excess volumes for the binary mixtures methyl esters(I)+ butan-2-ol(2) at 298.15 K xl
P (kgm
3)
109 V E (m 3 mo1-1)
xICH .~COOCH 3 + x2CH.~CH(OH)CH2CH 3 0.0000 802.29 0.0 0.0238 804.11 74.6 0.0984 810.63 260.0 0.1532 815.24 423.9 0.1890 818.66 490.0 0.2704 826.90 599.3 0.3426 834.40 691.5 0.4259 843.57 762.4 0.5249 855.58 760.7 xIC2HsCOOCH 3 + x2CH3CH(OH)CH2CH 3 0.00(X) 802.29 0.0 0.0433 806.18 92.2 0.0782 809.38 169.9 0. I 148 812.82 241.0 0.1300 814.15 280.9 0.2042 821.34 391.2 0.2239 823.22 422.1 0.2364 824.50 432.2 0.2673 827.38 487.9 0.3319 834.10 518.9 0.3700 838.03 539.1 0.3747 838.52 541.8 (I.4117 842.24 569.4 0.4560 846.84 585.2 x iC 3H vCOOCH 3 + x2CH 3CH(OH)CH 2CH 3 0.0000 802.29 0.0 0.0328 805.16 73.5 0.0756 809.28 136.5 0.0911 810.45 194.3 0.1249 813.72 232.9 0.1620 816.95 309.8 0.2306 823.30 387.7 0.3268 832.07 473.3 0.3842 837.30 503.0
xI
P (kgm-3)
l0 ~) V E (m 3 mol i)
0.6099 0.6565 0.7512 0.8405 0.8728 0.8992 0.9323 0.9729 1.0000
866.66 873.16 886.32 899.97 905.23 909.57 915.08 922.01 926.97
715.5 652.9 571.0 413.6 337.2 275.0 195.9 92.8 0.0
0.4649 0.5221 0.5584 0.5944 0.6065 0.6828 0.7266 0.7668 0.7913 0.8545 0.8930 0.9392 0.9705 1.0000
847.80 853.90 857.81 861.65 867.48 871.50 876.50 881.00 883.86 891.01 895.73 901.33 905.18 908.84
583.8 582. I 573.7 569.4 530.2 505.0 457.0 422.0 386.7 317.8 234.7 140.7 70.5 0.0
0.5001 0.5458 0.6414 0.7072 0.8309 0.8624 0.9015 0.9636 1.0000
847.79 852.00 860.42 866.31 877.21 879.94 883.41 889.07 892.35
522.5 502.8 480.1 429.5 304.3 268.6 206.9 79.5 0.0
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
252
Table 2
Coefficients A i and k obtained using Eq. (1) and standard deviations,
s(V z), for the mixtures of methyl esters(I)+ butan-2-
o1(2) Mixture
k
A0
At
A2
109 s(V z ) / ( m 3 m o l - 1)
x 2 butan-2-ol + x Methyl ethanoate Methyl propanoate Methyl butanoate
0.067 0.133 2.559
3620.2 2494.7 2278.5
- 595.1 - 161.9 - 1116.8
1467.7
8.8 9.6 8.5
of these magnitudes are set out in Table 1. Table 2 presents the values for the coefficients k and A i in Eq. (1) used to correlate the (x~, V E) data for each system.
Q = XlX2 Y'.Ai[ x , / ( x, + k x 2 ) ] i
where
Q=
VE/(m
3 mol-')
(1)
i
Fig. 1 plots the experimental values and the fitted curves for the three mixtures considered in this study. The V E values were positive in all cases, although the expansion effects decreased regularly with methyl ester chain length due to the weakening of the polar forces that occurs in this type of compound, as already reported in previous papers for similar mixtures. The regular distribution of the
800
600
Y
200
o• xlxffnethyl methetylhan°ate+xzbut1an-2-°l propanoate+xzbutan-2-ol v xlrnethyl butanoate+x2butan-2-ol o
0.2
0.4
xl
0.6
0.8
Fig. 1. Excess molar volumes at 298.15 K for the mixtures (x~ methyl esters + x 2 butan-2-ol).
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 ~1996) 249-270
253
Table 3 Experimental vapor pressures for butan-2-ol T (K)
p0 (kPa)
T (K)
pi° (kPa)
7" (K)
p~) (kPa)
348.12 350.18 352.41 354.03 355,73 358,25 359,84 361,38 362.62 363.93 364.12 365.58 366.45
38.24 41.94 46.21 49.50 53.18 59.02 62.97 66.99 70.29 74.02 74.53 78.94 81.65
367.52 368.57 369.28 370.80 371.73 372.36 372.44 373.08 373.69 374.20 374.92 375.54 376.24
85.07 88.53 90.94 96.27 99.70 101.32 102.30 104.67 107.03 109.7(I 111.98 114.52 117.38
376.98 377.60 378.26 378.56 378.89 379.46 380.03 380.63 381.19 381.26
120.58 123.19 126.14 127.99 129.00 131.54 134.22 136.96 139.66 140.07
(x~, V >~) data points is indicative of good density values, and consequently, as stated above, there were no discrepancies between the estimates of the equilibrium concentrations calculated from the density values or those calculated from the excess volume values. 3.2. Vapor pressures The influence of vapor pressures on the thermodynamic treatment of VLE data is well known. Therefore, new experimental (T, pO) values for butan-2-ol were obtained using the same equilibrium still for a range of temperatures approaching the boiling points of the pure components at the working pressures used. The values thus obtained were then correlated using a method of non-linear regression employing the classic Antoine equation. New values had already been published for methyl esters (Ortega and Susial, 1990b; Ortega and Susial, 1990a; Ortega et al., 1990b). Table 3 contains the
Table 4 Coefficients A, B, C used in this work along to the standard deviations, s(pi°), for butan-2-ol in the Antoine equation: log(pi°/kPa) = A - B / [ T / K + C] Mixture
A
B
C
Methyl ethanoate Methyl propanoate Methyl butanoate
6.49340 6.58882 6.30360 6.31286 6.59921 6.32621 6.26852
1329.46 1469.36 1381.64 1159.84 1314.19 1159.00 1126.67
- 33.52 - 30.99 - 53.60 - 102.90 - 86.60 - 104.87 - 108.36
Butan-2-ol
s(p0) (kPa)
0.04
Ref. Ortega and Susial (1990b) Ortega and Susial (1990a) Ortega et al. (1990b) This work TRC (1991) Boublik et al. (1973) Ambrose and Sprake (1970)
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
254
Boublick et aL (1973)
[•
--1 ¸
"-.-..~".£...
.99.
°#. I
~2.
2.5,¢" 7 " " . .
-3
320
T/K
Fig. 2. Representation of differences, 6p~, between the curves obtained by Antoine equation using the parameters from literature Pi,lit o and those determined by us, Pi,exp" o The dashed line (- - .) corresponds to a difference of 2.5% with respect to the Antoine equation obtained with our experimental results.
experimental vapor pressures while Table 4 shows the constants A, B, and C used to correlate the data with the Antoine equation. Fig. 2 graphically represents the differences in the vapor pressure curves obtained using the Antoine equation for a given temperature range, along with the constants for butan-2-ol calculated in this study and the literature values (Ambrose and Sprake, 1970; Boublik et al., 1973; TRC, 1991). The figure shows that the differences in the curves plotted by Ambrose and Sprake (1970), Boublik et al. (1973), and TRC (1991) were small and though they increased slightly with temperature over a given range, they were in all cases less than 3%.
3.3. Equilibrium data and correlations The p, T, x~, y~ values compiled by direct experimentation at the different working pressures (74.66, 101.32, 127.99) + 0.02 kPa and the corresponding values of y~ and "/2 for all three binary systems are listed in Table 5. Fig. 3(a)-3(c) shows the representation of (y~ - x Z) on xl and T on x~ and y~ for all cases. The activity coefficients for the mixtures characterized by {xlC ~H 2~+ 1COOCH 3(u = 1,2,3 ) + x2CH 3CH 2CH(OH)CH 3} were calculated using "Yi=
[fbiYiP/( xi 05i°P°)] exp[( pO_ p)viL/RT]
(2)
taking the vapor phase to be non-ideal and calculating the fugacity coefficients, ~b~ and qSi° by means of:
exp[(2i yi j yiyjij)JRT]
255
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 11996) 249-270
where the molar volumes, Vi L, for the pure components and their variations with temperature were assessed using a modified version of Rackett's equation (see Spencer and Danner, 1972). The values of the virial coefficients, B~j, in the equation of state, truncated at the second term, were calculated
Table 5 Experimental data for the mixtures ( x t methyl esters + x 2 butan-2-ol) at different working pressures
T
xI
Yl
~*
~2
xICH3COOCH3+x2CH3CH(OH)CH2CH3 p=74.66 kPa 364.04
0.0000
0.0000
-
1.000
362.19
0,0144
0.0787
1.553
1.007
361.16
0.0231
0.1213
1.533
1.008
358.52
0.0485
0.2344
1,514
0,999
355.40
0.0789
0.3464
1.498
0.999
353.80
0,0959
0.3971
1,477
1.002
352.56
0.1098
0.4369
1.468
1.000
351.13
0.1255
0.4778
1.464
1.002
350.12
0.1369
0.5049
1.460
1,005
349.06
0.1532
0.5341
1.423
1.008
347.43
0.1732
0.5740
1.419
1.013
346.10
0.1923
0.6055
1.402
1.018
344.55
0.2145
0.6397
1.391
1.024
343.30
0.2367
0.6697
1.370
1.021
341.00
0.2764
0.7157
1.345
1.029
339,22
0.3144
0.7500
1.310
1.037
337,34
0.3533
0.7800
1.286
1.057
336.26
0.3794
0.7977
1,267
1.066
335.37
0.4047
0.8118
1.244
1.079
334.50
0.4300
0.8257
1.225
1.088
332.80
0,4838
0.8517
1.187
1,111
331.00
0,5491
0.8765
1.142
1.158
329.63
0.5899
0.8934
1.134
1.178
328.37
0.6462
0.9090
1.099
1.242
326,97
0.7095
0.9236
1.067
1.365
325.49
0.7692
0.9407
1.054
1.441
324.23
0.8171
0.9546
1.052
1.488
323.38
0.8730
0.9668
1.027
1.639
322.53
0.9169
0.9776
1.019
1,770
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
256 Table 5 (continued)
321.90
0.9526
0.9867
1.013
321.12
1.0000
1.0000
1.000
1.906
372.36
0.0000
0.0000
369.82
0.0203
0.0987
1.528
1.001
369.20
0.0260
0.1220
1.498
1.002
366.39
0.0561
0.2347
1.433
0.999
360,10
0.1313
0.4463
1.372
0.997
358.20
0.1564
0.4980
1.352
1.003
356.58
0.1805
0,5437
1.337
1,001
355.07
0.2029
0,5813
1.326
1.003
352.40
0.2444
0.6405
1.307
1.014
351.11
0.2679
0.6693
1.292
1.016
349.48
0.2968
0.6991
1.277
1.031
348.33
0.3205
0.7210
1.261
1,039
347.28
0.3430
0.7401
1.247
1.047
346.30
0.3669
0.7577
1.228
1.057
344.98
0.4023
0.7817
1.202
1,069
344.35
0.4232
0.7918
1.179
1.087
342.95
0.4623
0.8149
1.159
1.103
341.53
0.5129
0.8375
1.121
1.140
338.52
0.6119
0.8811
1,085
1.202
p=101.32 kPa 1.000
337.27
0.6738
0.8967
1.043
1.318
335.16
0.7601
0.9257
1.021
1.425
333.89
0.8066
0.9416
1.019
1.477
332.81
0.8573
0.9563
1.009
1.579
331.90
0.8988
0.9695
1.005
1.626
330.92
0.9423
0.9829
1.004
1.678
330.34
0.9699
0.9908
1.002
1.782
329.81
1.0000
1.0000
1.000
378.56
0.0000
0.0000
377.19
0.0152
0.0670
1.452
0.996
375.95
0.0304
0.1135
1.266
1.002
374.83
0.0461
0.1615
1.220
1.001
371,83
0.0863
0.2763
1.199
1.002
370.42
0.1066
0.3294
1.198
0.998
p = 1 2 7 . 9 9 kPa 1.000
J. Ortega, P. Herna~lez / Fluid Phase Equilibria 118 ¢1996) 249-270
257
Table 5 (continued)
368.80
0.1300
0.3831
1,189
0.999
366.87
0.1585
0.4452
1,190
0,997
365.35
0.1824
0.4886
1.179
1,000
361.77
0.2365
0.5759
1.177
1.017 1.020
359.33
0.2834
0.6367
1.158
357.67
0.3145
0.6720
1.152
1.027
356.16
0.3442
0.7021
1 146
1.036
354.80
0.3734
0.7248
1 132
1.058
353.55
0.4014
0.7491
1 127
1.062
352.32
0.4303
0.7707
1 120
1.073
351.12
0.4581
0.7926
1 119
1.073
348.77
0.5224
0.8325
1 103
1.086
346.51
0.5879
0.8624
1.085
1.139
345.90
0.6048
0.8686
1.081
1,165
344.98
0.6337
0.8800
1.074
1.195
344.06
0.6640
0.8910
1.067
1.232
343.57
0.6899
0.9004
1.053
1.247
342.70
0.7249
0.9133
1.044
1.272
342.26
0.7597
0.9238
1.021
1.305
341.29
0.8002
0.9383
1.014
1.328
340.70
0.8302
0.9453
1.003
1.423
339.97
0.8671
0.9572
0.994
1.471
339.10
0.9037
0.9681
0.991
1.575
337.78
0.9528
0.9855
0.997
1.553
336.49
1.0000
1.0000
1.000
x C H COOCH +x CH CH(OH)CH CH 125
3
2
3
2
3
p=74.66 kPa 364.04
0.0000
363.50 362.73
0.0000
-
1.000
0.0133
0.0337
1.322
1.003
0.0300
0.0819
1.456
0.998
361.26
0.0620
0.1596
].433
1.000
359.78
0.0959
0.2347
1.423
1.001
359.20
0.1118
0.2606
1.379
1.007
358.00
0.1468
0.3202
1.338
1.010
357.50
0.1657
0.3497
].314
1.008
357.00
0.1835
0.3755
1.293
1.009
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
258 Table 5 (continued)
356.13
0.2103
0.4171
1.287
1.008
355.15
0.2418
0.4562
1.261
1.020
354.75
0.2605
0.4775
1.240
1.021
354.23
0.2807
0.5017
1.229
1.022
353.67
0.2982
0.5210
1.222
1.031
352.97
0.3213
0.5458
1.215
1.040
351.85
0.3679
0.5913
1.190
1.053
351.27
0.3941
0.6124
1.172
1.067
350.71
0.4209
0.6358
1.159
1.074
350.11
0.4493
0.6570
1.144
1.091
349.51
0.4803
0.6813
1.131
1.102
348.82
0.5146
0.7056
1.118
1.123
348.23
0.5484
0.7264
1.100
1.150
347.50
0.5916
0.7526
1.082
1.187
346.86
0.6319
0.7767
1.067
1.222
346.28
0.6699
0.7986
1.055
1.261
345.69
0.7098
0.8249
1.048
1.280
345.21
0.7554
0.8458
1.026
1.366
344.70
0.8015
0.8798
1.023
1.342
344.28
0.8395
0.9021
1.015
1.378
343.94
0.8733
0.9188
1.005
1.470
343.59
0.9070
0.9354
0.997
1.618
343.32
0.9340
0.9525
0.995
1.697
343.18
1.0000
1.0000
1.000
-
372.36
0.0000
0.0000
-
1.000
370.68
0.0397
0.0941
1.355
0.995
369.80
0.0644
0.1443
1.312
0.995
368.82
0.0910
0.1953
1.292
0.998
366.96
0.1511
0.2951
1.238
1.002
366.34
0.1693
0.3233
1.232
1.006
p=I01.32 kPa
365.40
0.1960
0.3638
1.229
1.011
364.14
0.2435
0.4289
1.209
1.012
363.61
0.2656
0.4564
1.198
1.012
363.18
0.2799
0.4701
1.185
1.022
362.77
0.2940
0.4873
1.184
1.025
362.25
0,3138
0.5084
1.175
1.031
J. Ortega, P. Hernandez/Fluid Phase Equilibria 118 (1996)249-270
259
Table 5 (continued)
361.76
0.3334
0.5301
1.169
1.034
361.27
0.3538
0.5504
1.161
1,040
360,82
0.3754
0,5695
1.147
1.048
360.32
0.3978
0.5903
1.138
1.055
359.86
0.4209
0.6102
1.127
1.063
359.34
0.4469
0,6327
1.118
1.070
358.70
0.4798
0.6596
1.106
1.081
358.12
0.5137
0.6846
1.091
1.096
357.22
0.5605
0.7175
1.077
1.126
356,60
0,6003
0,7443
1.063
1 149
355.90
0.6489
0.7730
1.043
1 194
355.32
0.6901
0.8001
1.033
1 220
355.02
0.7172
0.8152
1.022
1 251
354.49
0,7629
0.8462
1.014
1 269
353.81
0.8199
0.8780
1,000
1 363
353.64
0.8355
0.8903
1.000
1 351
353.50
0.8530
0.9003
0.995
1.382
353.04
0.8930
0.9211
0.986
1.531
352.84
0.9252
0.9427
0.980
1.604
352.74
0.9464
0.9571
0.979
1.690
352.66
1.0000
1.0000
1.000
378.56
0.0000
0.0000
377.76
0.0288
0.0632
1 598
376.92
0.0549
0.1159
1 276
0.992
375.86
0.0878
0.1748
1 237
0.995
375.30
0.1091
0.2101
1 215
0.994
374.92
0.1207
0.2287
1 207
0.996
374.01
0.1556
0.2816
1 181
0.997
372.90
0.1940
0.3405
1 180
0.997
372.12
0.2205
0.3755
1.169
1.003
371.42
0.2453
0.4092
1.167
1.004
370.36
0.2880
0.4630
1.158
1.005
369.87
0.3039
0.4785
1.149
1.016
368.83
0.3374
0.5174
1.152
1.025
368.23
0.3640
0.5421
1,137
1.036
367.00
0.4193
0.5959
1.123
1.047
p=127.99 kPa 1.000 0.995
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
260 Table 5 (continued)
366.16
0.4563
0.6293
1.116
1.058
365.58
0.4870
0.6545
1.106
1.068
365.12
0.5105
0.6707
1.095
1.085
364.48
0.5498
0.6989
1.079
1.105
363.69
0.6059
0.7359
1.055
1.141
363.30
0.6387
0.7577
1.042
1.158
362.67
0.6826
0.7858
1.029
1.194
362.10
0.7293
0.8145
1.015
1.239
361.66
0.7610
0.8357
1.011
1.264
361.26
0.7949
0.8581
1.006
1.292
360.85
0.8299
0.8792
0.999
1.348
360.44
0.8634
0.8985
0.993
1.433
360.20
0.8913
0.9145
0.986
1.531
359.91
0.9204
0.9369
0.986
1.561
359.76
0.9311
0.9435
0.986
1.624
359.67
1.0000
1.0000
1.000
-
xlC3HTCOOCH3+x2CH3CH(OH)CH2CH3 ;)=74.66 kPa 364.04
0.0000
0.0000
-
1.000
363.93
0.0105
0.0175
1.751
1.001
363.69
0.0248
0.0359
1.532
1.005
363.53
0.0506
0.0707
1.486
1.002
363.28
0.0785
0.1042
1.423
1.004
363.06
0.1027
0.1350
1.419
1.004
362.85
0.1265
0.1635
1.405
1.006
362.62
0.1540
0.1957
1.391
1.007
362.44
0.1840
0.2252
1.347
1.013
362.30
0.2086
0.2536
1.344
1.011
362.14
0.2396
0.2832
1.314
1.017
362.00
0.2737
0.3116
1.271
1.028
361.89
0.3014
0.3391
1.260
1.031
361.78
0.3606
0.3900
1.216
1.044
361.76
0.3849
0.4076
1.191
1.054
361.69
0.4213
0.4305
1.152
1.080
361.66
0.4655
0.4568
1.107
1.117
361.66
0.4950
0.4731
1.078
1.147
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
261
Table 5 (continued)
361.67
0.5322
0,5001
1.060
1.174
361,71
0.5681
0.5272
1.045
1.201
361.85
0.6240
0.5692
1.023
1.250
361.96
0.6718
0.6067
1.009
1.302
362.19
0.7162
0.6494
1.006
1.331
362,41
0.7684
0.6915
0.991
1.423
362,74
0.8084
0.7362
0.992
1.453
363.12
0.8532
0.7793
0.983
1.564
363.52
0.8891
0.8300
0.992
1.571
363.93
0.9174
0.8717
0.997
1.567
364.13
0.9461
0,9098
1.002
1,676
364.58
0.9729
0.9497
1.003
1.828
364.95
1.0000
1.0000
1.000
p = 1 0 1 . 3 2 kPa 372.36
0.0000
0.0000
372.26
0.0071
0.0107
1 640
O. 994
372.13
0.0201
0.0278
1 511
O. 994
371.95
0.0333
0.0451
1 488
0.996
371.66
0.0645
0.0842
1 446
O. 997
371.54
0.0855
0.1065
1 385
O. 999
371.39
0.1097
0.1342
I 366
I. 000
371.22
0.1358
0.1615
1 335
I. 004
370.98
0.1799
0.2079
1.306
1. 008
370.90
0.2034
0.2311
1,287
1.010
370.81
0.2331
0.2583
1.259
1.015
370.73
0.2615
0.2840
1.237
1.021
370.69
0.2880
0.3074
1.217
1. 026
370.66
0.3135
0.3294
1.199
1. 031
370.64
0.3449
0,3547
1,174
1.041
370.63
0,3728
0,3784
1.159
1.047
I. 000
370.63
0.4005
0.4020
1.146
1.054
370.66
0.4307
0.4239
1.123
I . 068
370.70
0.4620
0.4462
i . I00
1.085
370.77
0.4938
0.4732
1.089
1.094
370.88
0.5428
0.5076
1.059
I . 128
371.39
0.6316
0.5782
1.021
1. 178
371.53
0.6605
0.5992
1.008
1. 209
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
262 Table 5 (continued)
371.81
0.7025
0.6392
1.002
1.230
372.39
0.7746
0.7064
0.987
1.294
372.64
0.8031
0.7349
0.983
1.326
372.97
0.8349
0.7684
0.979
1.366
373.35
0.8666
0.8060
0.978
1.398
373.73
0.8992
0.8458
0.978
1.451
374.23
0.9299
0.8904
0.981
1.458
374.77
0.9618
0.9406
0.987
1.423
375.07
0.9806
0.9696
0.989
1.420
375.17
0.9917
0.9864
0.992
1.480
375.35
1.0000
1.0000
1.000
-
378.56
0.0000
0.0000
-
1.000
378.47
0.0142
0.0183
1.460
1.003
378.29
0.0434
0.0552
1.448
1.001
378.19
0.0640
0.0775
1.383
1.002
p=127.99 kPa
378.06
0.0891
0.1065
1.370
1.001
377.95
0.1191
0.1375
1.327
1.003
377.82
0.1559
0.1744
1.290
1.007
377.69
0.2075
0.2229
1.243
1.014
377.62
0.2336
0.2468
1.225
1.018
377.60
0.2593
0.2710
1.213
1.021
377.59
0.2818
0.2927
1.206
1.022
377.58
0,3083
0.3146
1.185
1.028
377.59
0.3327
0.3371
1.176
1.031
377.60
0.3510
0.3518
1.163
1.036
377.64
0.3846
0.3760
1.133
1.050
377.71
0.4118
0.4009
1.126
1.052
377.77
0.4450
0.4237
1.099
1.071
377.87
0.4724
0.4468
1.088
1.078
377.97
0.5010
0.4702
1.077
1.088
378.09
0.5331
0.4947
1.061
1.104
378.13
0.5532
0.5183
1.070
1.099
378.33
0.5821
0.5392
1.052
1.116
378.41
0.6195
0.5591
1.022
1.170
378.88
0.6856
0.6178
1.007
1.209
379.12
0.7196
0.6490
1.001
1.235
263
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 ~1996) 249-270
Table 5 (continued)
379.34
0.7458
0.6768
1.001
1.245
379.64
0.7809
0.7082
0,992
1.292
379.71
0.7965
0.7277
0.997
1,295
379.95
0.8220
0.7559
0.997
1.317
380.55
0.8540
0.7939
0.991
1.329
380.83
0.8894
0.8404
0.999
1.346
381.66
0.9471
0.9205
1.004
1.365
381.93
0.9692
0.9522
1.008
1.398
382.24
0.9862
0.9780
1.008
1.422
382.54
1.0000
1.0000
1.000
-
using the empirical correlations of Tsonopoulos (1974). These calculations for V~t and Bij were also included in the consistency test put forward by Fredenslund et al. (1977). Applying this test, all the mixtures proved to be thermodynamically consistent. All the systems studied displayed a positive shift
o.5
1
(a)
370
(a)
0.4 360
-
0.3
0.1
330 -
0.0
-0.1
o
o'.2
o'.4
o'.6 Xf
o'.8
320 I
o
o'.2
o'..
o'.8
I
1
xl
Fig. 3. Plots of Y l - x] vs. x 1 and T vs. x~ or y] for the mixtures xt methyl esters+ x 2 butan-2-ol for ( O ) , methyl ethanoate, (O), methyl propanoate, and ( v ) , methyl butanoate at different working pressures: (a), 74.66 kPa, (b), 101.32 kPa: (c), 127.99 kPa.
264
J. Ortega, P, Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
0.5
380.
(b)
(b)
0.4 370"
0.3
0.1
340"
0.0
-0.1
330 0
0.2
0.4
0.6
0.8
I
0
0.2
0.4
Xl
0.5,
XI
0.6
0.8
390"
(c)
(c) 0.4
380"
0.3
I
-,,.,
0.1-
0 . 0 m.,,.
-0.1
1
0
. . ~,~_
0'.2
"~]
0'.4
0'.8 Xl
0'.8
I1
340
330
0
Fig. 3 (continued).
ole
o14
x!
o16
ot8
J. Ortega, P. Hernandez/ FluidPhase Equilibria 118 !19961249-270
265
away from ideality, with the values of Yi decreasing slightly as the working pressure increased. The values of Y2 were also recalculated using Eq. (2) with the values of pO calculated by means of the Antoine equation and the constants A, B and C for butan-2-ol reported by other workers. However,
Table 6 P a r a m e t e r s o b t a i n e d in t h e d i f f e r e n t e q u a t i o n s u s e d f o r the b i n a r y m i x t u r e s x ~ m e t h y l e s t e r s + x 2 b u t a n - 2 - o l at t h e d i f f e r e n t pressures x ICH 3COOCH 3 + x 2CH 3CH(OH)CH
2CH 3
6(T/K)
~( y~)
s(GE/RT)
Margiiles
A12 = 0 . 4 4 4
A21 = 0 . 2 1 3
0.03
0.005
0.025
Van Laar
AI2 = 0.435
A21 = 0 . 7 5 1
0.02
0.002
0.008
"~
A21 = 2 0 1 4 . 6 a
0.02
0.002
0.007
Agl2 = 2357.3 a
Age1 = 332.1 a
0.02
0.002
0.008
p = 74.66 kPa
Wilson NRTL,
Ai2 = 67.8 cr = 0 . 4 7
UNIQUAC,
z = 10
Aul2 =
Au21 =
0.02
0.(/03
0.0 t 0
Redlich-Kister
A o = 0,555
5233 a
- 1921 a A~ = 0 . 1 3 1
A 2 = 0.085
0.02
0.002
0.007
E q , ( 1), k = 0 . 5 0
A o = 0,669
A ~= - 0.542
A 2 = 0.591
0.02
0.003
0.009
Margiiles
Al2 = 0,404
Ael = 0.283
0.01
0.005
0.015
Van Laar
Alz = 0,419
A2t = 0 . 5 2 9
0.01
0.(X)3
0.007
A12 = 6 9 3 . 7 a
A21 = 8 0 0 . 7 a
0.01
0.003
0.006
0.01
0.0(/3
0.006 0.007
p = 101.32 kPa
Wilson NRTL,
Agl2 =
a = 0.47
UNIQUAC,
z = 10
Ag?l = 2 3 3 . 3 Au2j = - 1777.1
1255.4 a
AUt2 = 4344.5 a
'~ "~
0.01
0.004
A 2 = - 0.046
0.01
0.004
0.008
A 2 =0.167
0.01
0.004
0.011
A 21 = - 0 . 2 6 2
0.02
0.010
0.037
A21 = 0 . 4 9 2
0.02
0.005
0.014
A21 = 2 2 8 7 . 2 a
0.02
0.005
0.014
a
0.02
0.005
0.014
a
0.02
0.006
0.018
Redlich-Kister
A o = 0.463
A~ = 0 . 0 7 0
Eq. (I), k = 0.37
Ao = 0.423
A t = -0.061
Margtiles
A ~2 = 0 . 1 1 6
Van Laar
Ale = 0.227 A12 = - 6 5 5 . 4 a
p = 127.99 kPa
Wilson NRTL,
o~ = 0 . 4 7
UNIQUAC,
Ag21 = -- 1 1 4 6 . 8 Au21 = - - 2 2 6 3 . 9
Agl2 = 2760.9 a
z = 10
AUl2 =
5148.7 ~
Redlich-Kister
A o = 0.307
A~ = 0 . 1 4 8
A 2 = 0.008
0.02
0.005
0.015
E q . (1), k = 0 . 4 1
Ao = 0.293
Al = --0.400
A2 = 0 , 5 2 5
0.01
0.004
0.009
x iC 2 H s C O O C H 3
+ x 2CH3CH(OH)CH2CH
3
p = 74.66 kPa Margiiles
A 12 = 0 . 4 5 7
A 21 = 0 , 4 9 2
0.04
0.006
0.007
Van Laar
AI2 = 0 . 3 5 3
A21 = 0 . 5 2 9
0.02
0.005
0.005
A21 = 1 9 3 8 . 5 a
0.02
0.004
0.005
= --329.7 a
0.02
0.004
0.005
4748.9 a
z~U21 = - - 2 1 1 4 . 6 a
0.02
0.006
0.006
Redlich-Kister
A o = 0.423
A I = 0.082
A 2 = 0.033
0.02
0.004
0.006
Eq. (I), k = 0,45
A o = 0.488
A 2 = 0,338
0.01
0.003
0.003
Wilson NRTL,
AI2 = - 4 0 4 , 5 a = 0,47
UNIQUAC,
z = 10
a
Agl2 = 1850.6 a
Au12 =
Agel
A~ = - 0 . 3 4 5
p = 101.32 kPa Margi~les
AL2 = 0 . 3 1 3
A?I = 0 , 2 4 6
0.04
0.008
0.008
Van Laar
A12 = 0 . 3 1 2
A2t = 0.375
0.04
0.005
0.006
A2~ = 1060.1 "~
Wilson NRTL,
AI2 = 40.5 a
a = 0.47
UN1QUAC,
z = 10
Agl2 = 9 9 9 . 7 Au12 = 4 1 5 0 . 2
a a
Ag21 = 1 0 0 . 5 Au21 = - 2 0 3 4 . 8
0.04
0.005
0.006
a
0.04
0.005
0.006
a
0.03
0.005
0.006
Redlich-Kister
A o = 0.345
A~ = 0 . 0 5 9
A 2 = - 0.085
0.03
0.005
0.006
E q . ( 1 ), k = 0 , 3 8
A o = 0.247
A I = - 0.048
A 2 = 0.161
0.02
0.006
0.005
J. Ortega, P. Hernandez/ Fluid Phase Equilibria 118 (1996) 249-270
266 Table 6 (continued) p = 127.99 kPa
Margi~les A I 2 = 0.292 Van Laar At2 = 0.237 Wilson /112 = - 795.4 ~ NRTL, a ~ 0.47 Agt2 = 2007.2 a U N I Q U A C , z = 10 /1ux2 = 4693 a Redlich-Kister A o = 0.304 Eq. (1), k ~ 0.29 A o = 0.267 x IC 3 H v C O O C H 3 -I- x 2 C H 3 C H ( O H ) C H 2 C H 3 p = 74,66 kPa Margi~les Van Laar Wilson NRTL, a = 0 . 4 7 U N I Q U A C , z = 10 Redlich-Kister Eq. (1), k = 0.51 p = 101.32 kPa MargiJles Van Laar Wilson NRTL, a = 0.47 U N I Q U A C , z = 10 Redlich-Kister Eq. (1), k = 0.40 p = 127.99 kPa Margiiles Van Laar Wilson NRTL, cr = 0.47 U N I Q U A C , z = 10 Redlich-Kister Eq. (1), k = 0.34
A21 = 0.506 A21 = 0.459 /121 = 1589.6 a /1gzt = 413 a /1/,121 = - 1990.3 a A t = 0.018 A t = -0.076
A~2 = 0.318 A I 2 = 0.411 At2 = 1096.2 a Ag12 = --438.6 a Aut2 = 3159.9 a A 0 = 0.351 A 0 = 0.255
and by TRC
A21 = 0.237 0.291 /121 = 198.2 ~ Ag21 = 1731.1 ~ /1u21 = - 1676.8 a A i = - 0.069 A~ = 0.262
not very
likelihood
appreciable,
reaching
0.003 0.004 0.004 0.004 0.003 0.004 0.003
- 0.079 A2 = -0.233
0.04 0.05 0.05 0.05 0.04 0.04 0.03
0.009 0.010 0.010 0.010 0.009 0.007 0.009
0.005 0.005 0.005 0.004 0.004 0.003 0.004
A2 = -0.146
0.06 0.04 0.04 0.04 0.05 0.04 0.03
0.006 0.005 0.005 0.005 0.005 0.005 0.005
0.003 0.003 0.003 0.003 0.002 0.003 0.003
for butanoate,
by TRC
the differences
results proved
validation
for the temperature
range
data involved
minimizing
only
4%
in the literature, namely,
for ethanoate;
of the experimental
principle,
0.008 0.009 0.009 0.009 0.008 0.009 0.007
A 2 =
0.330 A2t = 0.307 A2j = 770.1 a /1g2t = 946.3 a Au2t = - 1858.1 a A 1 = - 0.020 A 1= 0 . 1 0 2
esters published
c a s e , t h a t is, < 4 % . T h e s e The treatment
A2 = -0.060
0.02 0.04 0.04 0.04 0.05 0.04 0.02
1.
e t al. ( 1 9 8 1 )
at our laboratory
0.010 0.007 0.007 0.007 0.006 0.005 0.004
A2t =
= 0.328 A 12 = 0.349 Al2 = 326.4 a / 1 g 1 2 = 147.4 a Aut2 = 3489.7 a A o = 0.323 Ao = 0.344
(1991)
0.013 0.008 0.008 0.008 0.007 0.006 0.007
A21 =
AI2
values for the methyl and Ambrose
/12~ = 2033.9 a /1g21 = - 760.8 a /1U21 = --2295.9 a A t = 0.110 A 1= - 0 . 3 4 7
At2 = 0.455
were
A2 = -0.105 A 2 = 0.432
0.06 0.05 0.05 0.04 0.03 0.02 0.01
A2~ = 0.384
At2 = 0.421 A I 2 = - - 172.5 a /1gtz = 998.1 a /1ut2 = 4208.9 a A o = 0.439 A o = 0.487
a All parameters in J mol
the differences
0.253
A21 =
(1991)
by TRC
and Boublik
i n t h e Yi v a l u e s
cases.
(1991),
Using
Boublik
e t al. ( 1 9 7 3 )
were comparable
of the vapor pressures
s e t o u t in T a b l e
the objective
in the worst
the constant e t al. ( 1 9 7 3 ) ,
for propanoate; to the preceding
and correlations
computed
3.
fitting the activity coefficients
using the maximum
function
4
O.F.=
E [ M i , c a l - Mi,exp. ] 2/ S M2i i=l
(Mi=P,T,x,y)
(4)
267
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 ¢1996) 249-270
A series of changes previously effected by our laboratory were made in the original program of Prausnitz et al. (1980), as reported earlier. The data were correlated using various now classic equations for the treatment of VLE data, such as the van Laar, Margi~les, Wilson, NRTL and UNIQUAC equations and other polynomial equations, such as the Redlich-Kister equation and an equation analogous to Eq. (1) above, which were also used in the data reduction procedure. The values of the standard deviations, SMi, for each of the magnitudes in Eq. (4) used in the simultaneous regression procedure were 0.02 kPa for p, 0.01 K for T, 0.002 for x~, and 0.004 for YlTable 6 gives the constant values calculated for each of the correlations. Generally, they all appeared to be suitable for correlating the data for the mixtures considered here. Fig. 3 plots the experimental values and the curves obtained by setting Q = Y l - x l and Q = T-~,VXITb,i in an expression analogous to Eq. (1). The figures clearly reveal the variation in the magnitudes considered with ester type and, in particular, the presence of an azeotrope in the mixture (methyl butanoate + butan-2-ol), which shifted toward the fractions less rich in the methyl ester as working pressure increased. The exact location of the singular point, a minimum azeotrope, was calculated using the relations referred to above and Eq. (1), which yielded the following contour conditions for determining the location of the azeotrope:
y, = x l
(s)
(OT/Ox,)p=(OT/Oyl)p=O
If Q = Yl - X l in Eq. (1), then: 0=
(6)
]~_~Aiz i where z = x , / [ x I + kx2]
Table 7 Error percentage obtained in prediction of activity coefficients using different models on the mixtures methyl esters + butan2-ol at various working pressures ASOG
UNIFAC-2
OH/COO a OH/COOC Butanol-2-ol + 74.66 kPa Methyl ethanoate 7.9 Methyl propanoate 7.8 Methyl butanoate 5.3 101.32 kPa Methyl ethanoate 9.6 Methyl propanoate 9.2 Methyl butanoate 7.7 127.99 kPa Methyl ethanoate 14.5 Methyl propanoate 10.7 Methyl butanoate 8.0
UNIFAC- 1 b OH/COOC
c
OH/COOC
d
COH/COO e CCOH/COOC f OH/COO ~
2.9 4.0 3.5
2.5 5.2 3.5
7.6 8.2 9.0
2.4 3.9 3.1
3.6 5.5 6.0
1.8 3.6 3.8
2.8 4.5 4.4
3.1 6.5 3.6
8.8 9.8 12.4
2.8 5.3 3.7
4.7 7.3 9.5
1.5 5.1 6.1
5.4 4.6 3.9
5.4 6.9 3.5
12.9 10.9 12.5
7'.0 (:~.5 4.3
9.1 8.7 9.9
4.5 6.2 6.6
:' Kojima and Tochigi (1979). b Larsen et al. (1987). c Gmehling et al. (1993). cl Gmehling et al. (1982). " Fredenslund et al. (1975). t Fredenslund et al. (1977). g Macedo et al. (1983).
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
268
but if instead Q = T - XlTb,l -0 =
where
X2Tb.2 for condition (5), then:
- rb,2 + (1 - 2xl), a=
(7)
E A i zi and /3= ( d c r / d z ) .
The coefficients A~ in cr correlated the temperature values and hence differed from the coefficients in expression (6), where they were correlations for yl - x~. Solving these equations yielded numerical values for the azeotropes at the different working pressures: p = 74.66 kPa p = 101.32 kPa p = 127.99 kPa
T = 361.7 K T = 370.6 K T = 377.6 K
Yl = xl = 0.451 y~ = x~ = 0.399 yj = x I 0.351 :
which agrees with the proposal by Horsley (1973) at atmospheric pressure.
4. Theoretical prediction of VLE using group-contribution models Isobaric VLE values for the systems considered in this study were predicted using the ASOG model (Kojima and Tochigi, 1979) and two versions of the UNIFAC model, here designated by UNIFAC-1 (Fredenslund et al., 1975) and the more recent, UNIFAC-2 (Larsen et al., 1987; Weidlich and Gmehling, 1987). The accuracy of the predictions was assessed in all cases by comparing the values of the activity coefficients, Yi, derived implicitly from Eqs. (2) and (3). Table 7 presents the percentage errors in the estimates of the % values. The original UNIFAC-1 model was used with various alcohol/ester interaction pairs existing in the literature, including the interaction pair O H / C O O , not recommended for alkyl esters (Macedo et al., 1983). Unexpectedly, this interaction pair yielded the best prediction results, whereas the interaction pair originally proposed, O H / C O O C , produced the highest errors, of around 10%. Both the version of the Lyngby group (Larsen et al., 1987) and the version of the Dortmund group (Weidlich and Gmehling, 1987) yielded excellent results for all the mixtures under all the experimental conditions, with mean errors of around 5%. Finally, in the ASOG model estimation errors increased progressively with working pressure; conversely, the predictions improved with methyl ester chain length. This latter finding is significant, because the ASOG model uses the more flexible C O 0 group for all alkyl esters instead of the COOC group employed in UNIFAC-1, which uses different areas depending upon whether or not the esters are an alkyl ethanoates. Summing up, even though this study used an isomer of an alcohol, which usually results in poorer predictions, the overall results were positive, with mean errors in the range of 5 - 1 0 % for all the mixtures under all the experimental considered.
J. Ortega, P. Hernandez / Fluid Phase Equilibria I 18 (1996) 249-270
269
5. List of symbols coefficients of Antoine equation refractive index at D-sodium line working pressure po vapor pressure of species i gases universal constant R T absolute temperature Th.~ normal boiling temperature of species i VL liquid molar volume liquid mole fraction of species i x~ vapor mole fraction of species i Yi Greek letters 7~ activity coefficient of species i p density ~bi fugacity coefficient of species i
A,B,C n(D) P
Acknowledgements We are thankful to the DGICYT (MEC) frem Spain for financial support for this project (PB92-0559).
References Ambrose, D., Ellender, J.H., Gundry, H.A., Lee, D.A. and Townsend, R., 1981. Thermodynamic properties of organic oxygen compounds. LI. The vapour pressures of some esters and fatty acids. J. Chem. Thermodyn., 13: 795-802. Ambrose, D. and Sprake, C.H.S., 1970. Thermodynamic properties of organic oxygen compounds. XXV. Vapor pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Thermodyn., 2: 631-645. Boublik, T., Fried, V. and H~la, H., 1973. The Vapour Pressures of Pure Substances. Elsevier, Amsterdam. Fredenstund, Aa., Jones, R.L. and Prausnitz, J.M., 1975. Group contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J., 21: 1086-1099. Fredenslund, Aa, Gmehling, J. and Rasmussen, P, 1977. Vapor-Liquid Equilibria Using UNIFAC. A Group Contribution Method. Elsevier, Amsterdam. Gmehling, J., Li, J. and Schiller, M., 1993. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Chem. Eng. Res., 32: 178-193. Gmehling, J., Rasmussen, P. and Fredenslund, Aa., 1982. Vapor-liquid equilibria by UNIFAC group contribution. Revision and extension. 2 lnd. Eng. Chem. Process Des. Dev., 21:118-127. Horsley, L.H., 1973. Azeotropic Data--Ill. Advances in Chemistry Series 116, A.C.S. Washington DC. Kojima, K. and Tochigi, K., 1979. Prediction of Vapor-Liquid Equilibria by the ASOG Method. Kodansha Ltd.. Tokyo. Larsen, B.L., Rasmussen, P. and Fredenslund, Aa., 1987. A modified UNIFAC group contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res., 26: 2274-2286. Macedo, E.A., Weidlich, U., Gmehling, J. and Rasmussen, P., 1983. Vapor-liquid equilibria by UNIFAC group contribution Revision and extension 3. Ind. Eng. Chem. Process Des. Dev.. 22: 676-678.
270
J. Ortega, P. Hernandez / Fluid Phase Equilibria 118 (1996) 249-270
Ortega, J., Pefia, J.A. and de Alfonso, C., 1986. Isobaric vapor-liquid equilibria of ethyl acetate+ethanol mixtures at 760_+0.5 mmHg. J. Chem. Eng. Data, 31: 339-342. Ortega, J., Oc6n, J., Pefia, J.A., de Alfonso, C., PazAndrade, M.I. and Fern~indez, J., 1987. Vapor-liquid equilibrium of the binary mixtures CnH2n + I(OH) (n = 2, 3, 4)+ propyl ethanoate and ethyl ethanoate. Can. J. Chem. Eng., 65: 982-990. Ortega, J. and Susial, P., 1990a. Measurements and prediction of VLE of methyl propanoate/ethanol/propan-l-ol at 114.66 and 127.66 kPa. J. Chem. Eng. Jpn., 23: 349-353. Ortega, J. and Susial, P., 1990b. VLE at 114.66 and 127.99 kPa for the systems methyl acetate+ethanol and methyl acetate +propan-l-ol. Measurements and prediction. J. Chem. Eng. Jpn., 23: 621-626. Ortega, J. and Susial, P., 1993. Vapor-liquid equilibria behavior of methyl esters and propa-2-ol at 74.66, 101.32, and 127.99 kPa. J. Chem. Eng. Jpn., 26: 259-265. Ortega, J., Susial, P. and de Alfonso, C., 1990a. Vapor-liquid equilibrium measurements at 101.32 kPa for binary mixtures of methyl acetate+ethanol or propan-l-ol. J. Chem. Eng. Data, 35: 350-352. Ortega, J., Susial, P. and de Alfonso, C., 1990b. Isobaric vapor-liquid equilibrium of methyl butanoate with ethanol and 1-propanol binary systems. J. Chem. Eng. Data, 35: 216-219. Ortega, J. and Susial, P., 1991. Vapor-liquid equilibria of mixtures of methyl butanoate +propan-2-ol at 74.66, 101.32, and 127.99 kPa. Ber. Bunsenges Phys. Chem., 95: 1214-1219. Prausnitz, J.M., Anderson, T.F., Greens, E.A., Eckert, C.A., Hsieh, R. and O'Connell, J.P., 1980. Computer calculations for multicomponent V - L and L - L equilibria. Prentice-Hall, Inc., Englewood Cliffs, NJ. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., 1977. The Properties of Gases and Liquids, 3rd edn., MacGraw-Hill, New York. Riddick, J.A., Bunger, W.B. and Sakano, T.K., 1986. Organic Solvents. Techniques of Chemistry, Vol. II, 4th edn., Wiley-Interscience, New York. Spencer, C.F. and Danner, R.P.J., 1972. Improved equation for predicting of saturated liquid density. J. Chem. Eng. Data, 17: 236-241. Susial, P., Ortega, J., de Alfonso, C. and Alonso, C., 1989. Vapor-liquid equilibrium measurements for methyl propanoate-ethanol and methyl propanoate-propan-l-ol at 101.32 kPa. J. Chem. Eng. Data, 34: 247-250. Susial, P. and Ortega, J., 1995. Vapor-liquid equilibria of methyl ethanoate with n-butyl and iso-butyl alcohol at 74.66 and 127.99 kPa. J. Chem. Eng. Jpn., 28: 66-70. TRC, 1991. Thermodynamic Tables of Non-hydrocarbons, Texas A and M University, College Station, TX. Tsonopoulos, C., 1974. An empirical correlation of second virial coefficients. AIChE J., 20: 263-272. Weidlich, U. and Gmehling, J., 1987. A modified UNIFAC model. 1. Prediction of VLE, and H E. Ind. Eng. Chem. Res., 26: 1372-1381.