Journal of Alloys and Compounds 274 (1998) 201–205
L
Isothermal sections of the Ru–Si–Ge, Ru–Ge–Sn and Ru–Si–Sn systems at 9008C a ,b c b, L. Perring , F. Bussy , J.C. Gachon * b
a ´ Institut de Chimie Minerale et Analytique, BCH, Universite´ de Lausanne, CH-1015 Lausanne, Switzerland ´ , UMR 7555, Goupe Thermodynamique Metallurgique ´ , Universite´ Henri Poincare´ , Nancy 1, BP 239, Laboratoire de Chimie du Solide Mineral ` F54506 Vandoeuvre-les-Nancy Cedex, France c ´ ´ , BFSH 2, Universite´ de Lausanne, CH-1015 Lausanne, Switzerland Institut de Mineralogie et Petrographie
Received 19 March 1998; received in revised form 14 April 1998
Abstract The ternary systems Ruthenium–Silicon–Germanium, Ruthenium–Germanium–Tin and Ruthenium–Silicon–Tin were investigated by powder X-ray diffraction and electron microprobe analysis. Relations at 9008C between solid phases are given and no ternary compound was found. Solubilities and evolution of lattice parameters have been correlated. Maximum mutual solubilities in the Si–Sn and Ge–Sn systems are given. 1998 Elsevier Science S.A. Keywords: Ru–Si–Ge alloys; Ru–Ge–Sn alloys; Ru–Si–Sn allys; Phase diagram; Isothermal section
1. Introduction The purpose of this work was to investigate solid state phase relations in the three systems: Ru–Si–Ge, Ru–Si– Sn and Ru–Ge–Sn. In the general study of the interactions of Ru with Si, Ge and Sn [1–6], we have investigated these ternaries by X-ray diffraction (XRD) and electron probe microanalyses (EPMA). Previous work on these ternaries consists in a single study of the electrical and magnetic properties of Ru 2 Ge 32x Sn x and Ru 2 Si 32y Ge y [7,8] (Table 1).
0.048 and 2Q ranging from 5 to 1458. The lattice parameter determinations were done using internal standards such as Ge or Si powders and U-Fit routine [16]. The microprobe analyses were performed using a Cameca SX 50 (Earth Sciences Dept. Universite´ de Lausanne). Pure elements were taken as 100% standards.
3. Results
3.1. The Ruthenium–Silicon–Germanium system 2. Experimental details The ternary samples (0.5–1 g) were prepared by induction furnace melting of appropriate amounts of the elements under a protective argon atmosphere. The ingots were annealed in silica tubes for 10 days at 9008C under an argon atmosphere before water quenching. Binary Si–Sn and Ge–Sn alloys were directly quenched after melting and analyzed (Table 2). XRD was performed with a Philips PW1729 diffractometer using copper Ka radiation, the step width being
Fig. 1 shows the isothermal section of the Ru–Si–Ge system at 9008C. The various regions are listed in Table 3. The stability fields of the CsCl and FeSi structure types of RuSi are given in detail in Fig. 2. No ternary phase has been identified at this temperature. A total substitution of Si by Ge is observed in the isomorphic compounds, thus two ternary solid solutions were identified: RuSi ( 12x) Ge x between RuSi and RuGe(FeSi type) Ru 2 Si ( 32x) Ge x between Ru 2 Si 3 (Ru 2 Ge 3 type) and Ru 2 Ge 3
*Corresponding author: E-mail:
[email protected] 0925-8388 / 98 / $19.00 1998 Elsevier Science S.A. All rights reserved. PII: S0925-8388( 98 )00569-6
From XRD with an internal standard the cell parameter
L. Perring et al. / Journal of Alloys and Compounds 274 (1998) 201 – 205
202
Table 1 Crystallographic data of the binary compounds of the ternary systems Phase
Space group
Structure
Isotype
Ru 4 Si 3 RuSi RuSi Ru 2 Si 3 RuGe Ru 2 Ge 3 Ru 2 Sn 3
Pnma Pm3 m P21 3 Pbcn P21 3 Pbcn P-4 c2
orthorhombic cubic cubic orthorhombic cubic orthorhombic tetragonal
Ru 3 Sn 7
Im3 m
cubic
a (nm)
b (nm)
c (nm)
References
0.40239
1.71584
0.8937
0.5525
FeSi Ru 2 Ge 3 Ru 2 Sn 3
0.51872 0.2910 0.4700 1.1052 0.48449 1.1436 0.6178
0.928
0.5716 0.9916
Ru 3 Sn 7
0.9351
Weitzer [9] ¨ Goranson [10] ¨ Goranson [10] Weitzer [9] Raub et al. [11] Poutcharovsky [12,13] Poutcharovsky [13] Schwomma [14] Nial [15]
CsCl FeSi
Table 2 Element characteristics Element
Origin
Purity
Shape and size
Ruthenium Silicon Germanium Tin
Metalor Fluka Balzers Balzers
99.96% min 99.9% 99.999% 99.9995%
powder 1–25 mm lumps 1–2.5 mm granulates 0.7–3.5 mm shots 1.5–3.5 mm
Fig. 2. Schematic enlargement of the RuSi area, the structural type is given in parentheses.
Fig. 1. Isothermal section of the Ru–Si–Ge system at 9008C.
Fig. 3. Evolution of cell parameter a (nm) of the solid solution RuSi ( 12x) Ge x versus Ge concentration.
Table 3 List of regions occurring in the Ru–Si–Ge system at 9008C Number
Phase 1
Phase 2
Phase 3
(1) (2) (3) (4) (5) (6) (7) [8] [9]
Ru Ru 4 Si 3 RuSi (CsCl) Ru Ru 4 Si 3 RuSi ( 12x) Ge x (FeSi) Ru 2 Si ( 32x) Ge x Ru Ru 4 Si 3
Ru 4 Si 3 RuSi (CsCl) RuSi ( 12x) Ge x (FeSi) RuGe RuSi ( 12x) Ge x (FeSi) Ru 2 Si ( 32x) Ge x Si ( 12x) Ge x Ru 4 Si 3 RuSi (CsCl)
-
() and [] represent two- and three-phase regions, respectively.
RuGe RuSi ( 12x) Ge x (FeSi)
L. Perring et al. / Journal of Alloys and Compounds 274 (1998) 201 – 205
203
Table 4 List of domains in the Ru–Ge–Sn system at 9008C Number of region
Phase 1
Phase 2
Phase 3
(1) (2) (3) (4) (5) (6) (7) [8] [9] [10]
Ru RuGn ( 12x) Sn x Ru 2 Ge ( 32x) Sn x Ru Ru 2 Sn ( 32x) Ge x Ru 2 Ge ( 32x) Sn x RuGe ( 12x) Sn x Ru Ru 2 Ge ( 32x) Sn x RuGe ( 12x) Sn x
RuGe Ru 2 Ge ( 32x) Sn x Ge Ru 2 Sn ( 32x) Ge x Ru 3 Sn ( 72x) Ge x Ru 2 Sn ( 32x) Ge x Ru 2 Sn ( 32x) Ge x RuGe ( 12x) Sn x Ru 2 Sn ( 32x) Ge x Ru 2 Ge ( 32x) Sn x
Ru 2 Sn ( 32x) Ge x Ru 3 Sn ( 72x) Ge x Ru 2 Sn ( 32x) Ge x
() and [] represent two- and three-phases regions, respectively. Fig. 4. Evolution of cell parameters of the orthorhombic solid solution Ru 2 Si ( 32x) Ge x versus Ge concentration. Uncertainties are smaller than the dashed line thickness. a: j, b: d and c: m.
variations of these two solid solutions were determined as functions of composition (see Fig. 3 and also Fig. 4). The total substitution of germanium for silicon in 3d transition metal compounds has already been reported, e.g. for TiSi 22x Ge x [17].
3.2. Ruthenium–Germanium–Tin system Fig. 5 gives the 9008C section of the Ru–Ge–Sn system. The various regions are listed in Table 4. The tin rich domain was not studied because melting occurred at 9008C and no new ternary phase was found in this system. The binary phases have a range of limited extension in the ternary field. Variations of lattice parameters of RuGe ( 12x) Sn x and Ru 3 Sn ( 72x) Ge x are plotted versus the third element concentration in Figs. 6 and 7. The lattice parameter modifications of Ru 2 Ge 3 and
Fig. 5. Isothermal section of the Ru–Ge–Sn system at 9008C.
Fig. 6. Evolution of cell parameter a (nm) of the solid solution RuGe ( 12x) Sn x versus tin proportion. ‘?’ represents an unexplained result.
Ru 2 Sn 3 could not be clearly established because of XRD peak superposition of Ru 2 Ge (32x) Sn x and Ru 2 Sn ( 32y) Ge y . The maximum values of solubility obtained by microprobe investigations are given in Table 5 and are compared with those deduced from Figs. 6 and 7.
Fig. 7. Cell parameter evolution of the solid solution Ru 3 Sn ( 72x) Ge x versus Germanium concentration.
L. Perring et al. / Journal of Alloys and Compounds 274 (1998) 201 – 205
204 Table 5 Maximum values of solubilities
3.3. Ruthenium–Silicon–Tin system
Phase
x max (EPMA)
x max (XRD)
RuGe ( 12x) Sn x Ru 2 Ge ( 32x) Sn x Ru 2 Sn ( 32x) Ge x Ru 3 Sn ( 72x) Ge x
0.024 0.2 1.4 0.55
0.016 not determined not determined 0.64 (5726.36)
No ternary phase has been identified by X-ray diffraction at an annealing temperature of 9008C. The tin-rich region was not investigated because of the occurrence of melting. The XRD investigations did not show third element solubility in the binary phases. Microprobe studies will have to confirm these facts. Table 6
3.4. Mutual solubilities in the Si–Sn and Ge–Sn systems Table 6 List of regions occurring in the Ru–Si–Sn at 9008C Number
Phase 1
Phase 2
(1) (2) (3) (4) (5) (6) (7)a (8)a (9)a [10] [11] [12]
Ru Ru 4 Si 3 RuSi (FeSi) Ru 2 Si 3 Ru Ru 2 Sn 3 Ru 4 Si 3 RuSi (CsCl) RuSi (CsCl) Ru Ru 4 Si 3 RuSi (CsCl)
Ru 4 Si 3 RuSi (CsCl) Ru 2 Si 3 Si Ru 2 Sn 3 Ru 3 Sn 7 Ru 2 Sn 3 Ru 2 Sn 3 Ru 3 Sn 7 Ru 4 Si 3 RuSi (CsCl) Ru 2 Sn 3
Phase 3
We measured the mutual solubilities on induction melted and water quenched alloys. Table 7
4. Conclusion
Ru 2 Sn 3 Ru 2 Sn 3 Ru 3 Sn 7
a
These two phase fields are probably very narrow and cannot be represented exactly on this scale. () and [] represent two- and three-phase regions, respectively.
This first attempt to determine the solid phase relations at 9008C in the ternary systems Ru–Si–Ge, Ru–Ge–Sn and Ru–Si–Sn shows no pure ternary compound. The solubility of the third element (Si, Ge, Sn) in each binary RuX compound is not dramatically different from its solubility in X (Table 8). The only difference is found in the Ru–Ge–Sn system where Ge has a solubility in Ru 0.4 Sn (0.62x) Ge x which is around 30% (1 Ge for 1 Sn)
Table 7 Mutual solubilities and comparison of microprobe results with published data
Germanium in Tin Tin in Germanium Silicon in Tin Tin in Silicon
Our EMPA results (standard deviation)
Maximum solubility literature data [18,19]
1.3 at. % (0.3) 2.8 at. % (0.7) 0.37 at. % (0.03) 0.27 at. % (0.02)
negligible 1.1 at.% at 4008C 1.0 at. % at eutectic temperature negligible 0.1 at.% at 10668C
Table 8 Behavior of the third elements Ternary systems Ru–Si–Ge Total substitution of Si and Ge in RuSi ( 12x) Ge x and Ru 2 Si ( 32x) Ge x Ru–Ge–Sn Small to medium solubilities of Ge in Ru–Sn compounds and Sn in Ru–Ge compounds Ru–Si–Sn Apparently no solubilities of Si in Ru–Sn phases and Sn in Ru–Si compounds
Binary systems [20] ⇔
Si–Ge continuous solid solution
⇔
Ge–Sn limited mutual solubilities
⇔
Si–Sn very small mutual solubilities
L. Perring et al. / Journal of Alloys and Compounds 274 (1998) 201 – 205
while in Ge–Sn the limiting value is around 1% Ge (Table 8).
References [1] L. Perring, J.C. Gachon, J. Alloys Comp. 224 (1995) 228–231. [2] L. Perring, P. Feschotte, J.C. Gachon, J. Phase Equilib. 17(2) (1996) 101–1063. [3] L. Perring, P. Feschotte, F. Bussy, J.C. Gachon, J. Alloys Comp. 245 (1996) 157–163. [4] L. Perring, P. Feschotte, J.C. Gachon, Thermochim. Acta 293 (1997) 101–108. [5] L. Perring, J.J. Kuntz, P. Feschotte, J.C. Gachon, J. Chim. Phys. 94 (1997) 939–947. [6] J.J. Kuntz, L. Perring, P. Feschotte, J.C. Gachon, J. Solid State Chem. 133 (1997) 439–444. ´ J. Less-Common Met. 71 [7] C.P. Susz, J. Muller, K. Yvon, E. Parthe, (1980) P1–P8. ` [8] C.P. Susz, Thesis No. 1758, Universite´ de Geneve, Switzerland, 1976.
205
[9] F. Weitzer, P. Rogl, J.C. Schuster, Z. Metallk. 79(3) (1988) 154– 156. ¨ ¨ B. Nolang, ¨ [10] K. Goransson, I. Engstrom, J. Alloys Comp. 219 (1995) 107–110. [11] E. Raub, W. Fritzsche, Z. Metallk. 53 (1962) 779–781. ´ Acta Crystallogr. B30 (1974) 2692– [12] D.J. Poutcharovsky, E. Parthe, 2696. ´ J. Less-Common Met. 40 [13] D.J. Poutcharovsky, K. Yvon, E. Parthe, (1975) 139–144. [14] O. Schwomma, H. Nowotny, A. Wittman, Monatsh. Chem. 95 (1964) 1538–1543. [15] O. Nial, Sven. Kem. Tidskr. 59 (1947) 172–183. [16] M. Evain, U-Fit program, I.M.N. Internal Report, Nantes, France, 1992. [17] N. Boutarek, R. Madar, Appl. Surf. Sci. 73 (1993) 209–213. [18] R.W. Olesinski, G.J. Abbaschian, Bull. Alloy Phase Diag. 5(3) (1984) 265–271. [19] R.W. Olesinski, G.J. Abbaschian, Bull. Alloy Phase Diag. 5(3) (1984) 273–276. [20] T.B. Massalski, L.H. Bennett, J.L. Murray in: H. Baker (Ed.), Binary Alloy Phase Diagrams, American Society of Metals International, Metals Park, Ohio, 1990.