Isothermal vapour pressures and excess functions of 3,5- and 2,6-dimethylpyridine with toluene measurement and prediction

Isothermal vapour pressures and excess functions of 3,5- and 2,6-dimethylpyridine with toluene measurement and prediction

Fluid Phase Equilibria 242 (2006) 1–9 Isothermal vapour pressures and excess functions of 3,5- and 2,6-dimethylpyridine with toluene measurement and ...

280KB Sizes 0 Downloads 21 Views

Fluid Phase Equilibria 242 (2006) 1–9

Isothermal vapour pressures and excess functions of 3,5- and 2,6-dimethylpyridine with toluene measurement and prediction Hamama Ben-makhlouf-Hakem a,∗ , Ahmed Ait-Kaci a , Jacques Jose b a

Laboratoire de thermodynamique des m´elanges organiques, Facult´e de chimie, USTHB, BP, 32 El-Alia 16111 Bab Ezzouar, Algeria b Laboratoire de chimie analytique I, Universit´ e Claude Bernard (Lyon I), 43 Boulvard du 11 novembre 1918, Bˆat Raulin/2, 69622 Villeurbanne Cedex, France Received 3 July 2005; received in revised form 8 November 2005; accepted 11 November 2005 Available online 3 February 2006

Abstract The vapour pressures of liquid (3,5; 2,6)-dimethylpyridine with toluene mixtures were measured by a static method in the range of 263.15–353.15 K. The pure components vapour pressures data and those of the mixtures were correlated with the Antoine equation. The excess enthalpies were measured at 303.15 K, by means of an isothermal calorimeter (C80 SETARAM model). The molar excess Gibbs energies, calculated from the vapour–liquid equilibrium data and the molar excess enthalpies compared satisfactorily with group contribution method (DISQUAC). © 2005 Elsevier B.V. All rights reserved. Keywords: Data; Excess properties; Vapour–liquid equilibria; Enthalpy; Pyridine derivatives; Lutidines

1. Introduction Previously, we have reported the experimental data of vapour pressures and excess enthalpies of (3,5; 2,6)-lutidines with nalkanes (C6 –C8 ) [1]. The experimental data were described by using the DISQUAC model [2]. To complete this study, we investigate the mixtures containing (3,5; 2,6)-lutidines and toluene. 2. Experimental 2.1. Apparatus and procedure The experimental HE data were measured at 1 atm by means of a microcalorimeter, C80 (SETARAM model, Lyon, France). The temperature T was maintained constant at 303.15 ± 0.02 K. Check measurements on (cyclohexane + benzene) are in the good agreement with the data reported by Marsh [3]. The estimated uncertainties in the mole fraction xi and HE are δ(xi ) = 0.0002 and δ(HE ) = 5 J mol−1 , respectively. The total vapour pressure measurements were carried out with a static method described elsewhere by Blondel-Tellouk et al. [4] Mixture compositions were prepared by mass and

degassed by distillation as described previously by BlondelTellouk et al. [4]. The liquid phase was analysed by chromatography (GLC). 2.2. Materials The purities of toluene and (2,6)-lutidine were 99 mol% as specified on their labels or certified by Flucka and Acros. That of (3,5)-lutidine was better than 98 mol%, it was verified by CPG. 3. Results Experimental molar excess enthalpies HE at 303.15 K are endothermic. They are reported in Table 1. The results have been fitted to the Redlich–Kister equation: E = x1 (1 − x1 ) Hi,exp

Corresponding author. E-mail address: [email protected] (H. Ben-makhlouf-Hakem).

0378-3812/$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.fluid.2005.11.016

ai (2x1 − 1)i

(1)

i=0

The values of the coefficients ai and the standard deviations δ(HE ), given by: 



n−1 

δ(H E ) =

N  i

1/2 E E (Hi,cal − Hi,exp )/(N − n)

(2)

2

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9

Table 1 Experimental molar excess enthalpies HE at 303.15 K 3,5-Lutidine (1) + toluene (2)

2,6-Lutidine (1) + toluene (2)

(J mol−1 )

x1

HE

0.1248 0.1817 0.2194 0.3217 0.4079 0.5991 0.6191

55 68 78 90 106 110 107

Vapour phase imperfection and variation of the Gibbs energy of the pure liquid components with pressure were accounted for in terms of the second molar virial coefficients and the molar volumes under saturation pressure.

x1

HE (J mol−1 )

0.01445 0.2129 0.2993 0.3406 0.4340 0.4479 0.5547 0.5885 0.6718 0.7056 0.7248 0.7746 0.8563

62 83 85 88 86 87 80 76 70 68 64 50 35

P=

yi =

a1

a2

3,5-Lutidine (1) + toluene (2) 2,6-Lutidine (1) + toluene (2)

431.7842

a3 72.1172

336.9400 −101.6635



2.68

146.8247 −132.0229

B12 − (B11 + B12 ) ; 2

Pi0 = P(xi=1)

(5)

where Vi0 is the molar volume of the pure compound estimated with the Rackett equation using the literature data for acentric factor and critical properties [6] and Bii the second molar virial coefficients evaluated with Tsonopoulos method [7,8]. The values are reported in Table 3. The direct experimental data for total vapour pressures at different temperatures for our mixtures are given in Table 4 together with the activity coefficients γ 1 and γ 2 and the excess molar Gibbs energies GE calculated by Barker’s method [9]:

δ(HE )

a4

192.8936

xi Pi0 exp[giE − (Bii − Vi0 )(P − Pi0 ) − 2P B12 (1 − yi )2 ] P (4)

BE =

Table 2 Coefficients ai and standard deviation δ(HE ) for least-squares representation by equation of HE at 303.15 K Mixtures

2  xi Pi0 exp[giE − (Bii −Vi0 )(P − Pi0 )−2PB12 (1 − yi )2 ] RT i=1 (3)

2.53

n−1

 GE = x1 (1 − x1 ) Ai (2x1 − 1)i RT

(6)

i=0

were determined by least-squares analysis and are reported in Table 2. N is the number of experimental points and n the number of coefficients ai . By fitting (GE /T)x1 = 0.5 data with a second degree polynomial in 1/T, the derivative at 303.15 K gives HE = 636 and 227 J mol−1 for 3,5-lutidine + toluene and 2,6-lutidine + toluene, respectively. The quantitative evaluation of HE from vapour pressure involves considerable uncertainty [5]. The maximum values of the enthalpy of mixing decrease in the following order:

where x1 is the liquid phase composition of 3,5- or 2,6-lutidine. 3,5-Lutidine + toluene mixtures exhibit positive deviations but those of 2,6-lutidine with toluene are negative. The values of the parameters Ai of Eq. (6) and the standard deviation for pressure are reported in Table 5. (GE /T)x1 = 0.5 was fitted to the following equation: GE = A + BX + CX2 T where X = 1/T (Fig. 1). The correlation coefficient R is then R > 0.99892 for 2,6lutidine (1) + toluene (2) and R > 0.99976 for 3,5-lutidine (1) + toluene (2).

3, 5-lutidine > 2, 6-lutdine The pure components vapour pressures data and those of mixtures were correlated with the Antoine equation.

Table 3 Molar volume V* (cm3 mol−1 ), vapour pressure P* (kPa), virial coefficients for the ij pair Bjj (cm3 mol−1 ) and for pure compounds (i = j) T (K)

263.15 273.15 283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15

Toluene

3,5-Lutidine

V*

P*

105.03 106.07 107.1 108.2 109.4 110.6 111.8 113.1 114.4 115.8

0.468 0.908 1.666 2.911 4.873 7.852 12.226 18.462 27.122 38.867

2,6-Lutidine

B11

V*

P*

B11

B12

V*

P*

B11

B12

−4842 −4055 −3452 −2983 −2610 −2310 −2065 −1861 −1691 −1545

110.6 110.7 111.7 112.7 113.61 114.64 115.69 116.78 117.91 119.07

0.016 0.038 0.830 0.169 0.325 0.596 1.049 1.775 2.904 4.603

−13150 −10550 −8612 −7145 −6016 −5136 −4439 −3879 −3425 −3051

−7820 −6404 −5337 −4518 −3879 −3373 −2966 −2635 −2362 −2133

108.57 109.6 110.6 111.7 112.79 113.93 115.11 116.33 117.59 118.90

0.065 0.143 0.296 0.575 1.061 1.868 3.154 5.129 8.066 12.31

−8500 −6950 −5781 −4885 −4186 −3632 −3188 −2826 −2527 −2278

−6391 −5286 −4447 −3799 −32891 −2883 −2553 −2282 −2057 −1868

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9

3

Table 4 Values of vapour pressure P (kPa), relative deviation P = 100(P − Pcal )/P, activity coefficients γ 1 and γ 2 and excess molar Gibbs energies GE (J mol−1 ) T (K)

x1

2,6-Lutidine (1) + toluene (2) 263.15 0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

y1

P

P

γ1

γ2

GE

0.0162 0.0363 0.0631 0.1060 0.1595 0.2457 0.4390

0.415 0.373 0.324 0.260 0.215 0.172 0.114

−0.32 0.93 0.79 −1.55 −0.58 1.93 −0.85

0.8766 0.8974 0.8832 0.8676 0.8760 0.9029 0.9493

0.9938 0.9896 0.9966 1.0092 0.9958 0.9373 0.7895

−46 −72 −101 −145 −180 −200 −184

273.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0188 0.0416 0.0718 0.1197 0.1783 0.2705 0.4683

0.811 0.278 0.634 0.516 0.430 0.346 0.238

0.01 0.76 0.56 −0.1.56 −0.33 1.55 −0.73

0.8958 0.9079 0.8910 0.8742 0.8818 0.9073 0.9517

0.9946 0.9918 1.0000 1.0135 1.0013 0.9456 0.8032

−42 −65 −93 −137 −173 −194 −180

283.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0215 0.0470 0.0806 0.1333 0.1968 0.2943 0.4952

1.496 1.343 1.176 0.965 0.812 0.6599 0.467

0.23 0.62 0.32 −1.22 −0.15 1.26 −0.63

0.9062 0.9165 0.8975 0.8800 0.8870 0.9114 0.9538

0.9953 0.9936 1.0026 1.0167 1.0056 0.9523 0.8149

−37 −59 −86 −131 −167 −189 −176

293.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0241 0.0524 0.0894 0.1468 0.2150 0.3170 0.5198

2.628 2.361 2.075 1.718 1.457 1.193 0.868

0.37 0.52 0.27 −1.09 −0.02 1.03 −0.56

0.9171 0.9236 0.9032 0.8853 0.8917 0.9151 0.9558

0.9959 0.9950 1.0045 1.0189 1.0086 0.9576 0.8250

−34 −54 −81 −126 −162 −184 −173

303.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0268 0.0579 0.0981 0.1602 0.2326 0.3386 0.5421

4.412 3.976 3.507 2.927 2.500 2.065 1.540

0.43 0.44 0.18 90.98 0.06 0.87 −0.49

0.9256 0.9293 0.9081 0.8901 0.8961 0.9161 0.9577

0.9964 0.9961 1.0060 1.0204 1.0107 0.9617 0.8338

−31 −50 −77 −121 −158 −181 −170

2,6-Lutidine (1) + toluene (2) 313.15 0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0295 0.0632 0.1067 0.1734 0.2498 0.3592 0.5626

7.129 6.441 5.705 4.795 4.123 3.438 2.620

0.44 0.38 0.12 −0.88 0.10 0.75 −0.44

0.9325 0.9340 0.9124 0.8947 0.9004 0.9220 0.9595

0.9968 0.9970 1.0069 1.0211 1.0119 0.9648 0.8417

−29 −47 −73 −118 −155 −177 −167

323.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.03210 0.0685 0.1153 0.1863 0.2665 0.3788 0.5812

11.128 10.085 8.965 7.585 6.561 5.523 4.292

0.40 0.34 0.09 −0.79 0.11 0.66 −0.40

0.9379 0.9377 0.9163 0.8990 0.9046 0.9254 0.9613

0.9971 0.9976 1.0075 1.0211 1.0123 0.9672 0.8489

−27 −45 −71 −115 −152 −174 −165

333.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0347 0.0738 0.1238 0.1990 0.2827 0.3975 0.5983

16.838 15.311 13.659 11.627 10.115 8.593 6.798

0.33 0.31 0.08 −0.71 0.10 0.60 −0.37

0.9420 0.9407 0.9198 0.9033 0.9088 0.9288 0.9632

0.9974 0.9981 1.0077 1.0206 1.0120 0.9687 0.8555

−26 −43 −69 −112 −149 −171 −161

4

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9

Table 4 (Continued ) x1

y1

P

P

γ1

γ2

GE

343.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0373 0.0790 0.1321 0.2116 0.2985 0.4153 0.6140

24.777 22.611 20.240 17.325 15.152 12.292 10.446

0.23 0.29 0.08 −0.64 0.07 0.57 −0.35

0.9450 0.9430 0.9229 0.9076 0.9131 0.9323 0.9651

0.9977 0.9985 1.0077 1.0197 1.0111 0.9697 0.8616

−25 −42 −67 −111 −146 −168 −158

353.15

0.1192 0.2311 0.3550 0.4998 0.6097 0.7102 0.8250

0.0399 0.0841 0.1403 0.2239 0.3139 0.4323 0.6285

35.551 32.565 29.246 25.163 22.115 19.137 15.617

0.11 0.28 0.10 −0.58 0.03 0.55 −0.33

0.9472 0.9447 0.9259 0.9119 0.9175 0.9359 0.9670

0.9979 0.9988 1.0074 1.0182 1.0096 0.9701 0.8674

−25 −41 −66 −109 −143 −164 −154

3,5-Lutidine (1) + toluene (2) 263.15 0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0019 0.0145 0.0341 0.0562 0.0694 0.1392

0.446 0.365 0.284 0.217 0.182 0.107

0.80 0.18 −0.49 1.51 −1.25 0.14

1.0664 1.6793 1.1792 1.0611 1.0508 1.0247

0.9904 0.9446 1.1651 1.3406 1.3722 1.5350

−14 113 347 294 265 167

T (K)

273.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0026 0.0174 0.0401 0.0654 0.0800 0.1557

0.868 0.719 0.564 0.433 0.368 0.221

0.90 0.11 −0.39 1.24 −1.03 0.11

1.2184 1.7208 1.1903 1.0683 1.0556 1.0249

0.9921 0.9583 1.1853 1.3704 1.4103 1.6051

4 155 391 332 299 186

283.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0034 0.0207 0.0468 0.0752 0.0913 0.1725

1.598 1.337 1.056 0.815 0.702 0.431

1.00 0.03 −0.30 0.97 −0.82 0.09

1.3537 1.7585 1.2028 1.0757 1.0605 1.0253

0.9934 0.9690 1.2010 1.3970 1.4456 1.6736

19 191 433 369 333 206

293.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0043 0.0243 0.0542 0.0858 0.1031 0.1893

2.801 2.362 1.879 1.461 1.272 0.798

1.09 −0.05 −0.21 0.72 −0.61 0.07

1.4692 1.7920 1.2163 1.0832 1.0654 1.0258

0.9944 0.9771 1.2128 1.4207 1.4779 1.7400

31 223 474 407 368 227

303.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0052 0.0282 0.0622 0.0969 0.1154 0.2062

4.700 3.989 3.194 2.503 2.205 1.413

1.18 −0.12 −0.13 0.47 −0.41 0.05

1.5629 1.8214 1.2307 1.0906 1.0705 1.0264

0.9952 0.9830 1.2211 1.4414 1.5074 1.8041

42 251 513 444 402 248

313.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0062 0.0324 0.0710 0.1087 0.1283 0.2230

7.591 6.476 5.217 4.123 3.672 2.402

1.27 −0.19 −0.04 0.24 −0.22 0.03

1.6343 1.8466 1.2456 1.0982 1.0755 1.0271

0.9957 0.9870 1.2262 1.4592 1.5339 1.8658

50 274 551 481 437 269

3,5-Lutidine (1) + toluene (2) 323.15 0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0073 0.0369 0.0805 0.1211 0.1417 0.2398

11.845 10.143 8.222 6.556 5.899 3.937

1.36 −0.26 0.04 0.02 −0.04 0.1

1.6841 1.8674 1.2610 1.1057 1.0806 1.0279

0.9961 0.9894 1.2283 1.4742 1.5575 1.9250

56 294 586 518 471 290

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9

5

Table 4 (Continued ) x1

y1

P

P

γ1

γ2

233.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0083 0.0416 0.0908 0.1341 0.1555 0.2566

17.924 15.390 12.549 10.097 9.178 6.243

1.44 −0.33 0.11 −0.19 0.14 −0.01

1.7134 1.8838 1.2767 1.1132 1.0857 1.0287

0.9963 0.9904 1.2279 1.4865 1.5783 1.9815

61 310 622 554 505 311

243.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0093 0.0466 0.1018 0.1476 0.1699 0.2732

26.383 22.697 18.610 15.111 13.871 9.612

1.53 −0.40 0.19 −0.38 0.30 −0.03

1.7240 1.8956 1.2927 1.1206 1.0907 1.030

0.9964 0.9903 1.2250 1.4961 1.5963 2.0353

64 322 655 590 538 332

253.15

0.0472 0.1889 0.4951 0.6789 0.7326 0.8720

0.0103 0.0519 0.1137 0.1618 0.1846 0.2898

37.874 32.623 26.893 22.039 20.421 14.405

1.61 −0.47 0.26 −0.57 0.46 −0.04

1.7181 1.9026 1.3088 1.1281 1.0958 1.0304

0.9964 0.9893 1.2198 1.5030 1.6116 2.0863

65 331 686 624 571 353

T (K)

GE

Table 5 Coefficients Ai and pressure standard deviations δ (Pa) for least-squares representation by Eq. (3) T (K)

263.15 273.15 283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15

3,5-Lutidine (1) + toluene (2)

2.6-Lutidine (1) + toluene (2)

A1

A2

A3

A4

δ

A1

A2

A3

δ

0.6353 0.6883 0.7356 0.7775 0.8145 0.8469 0.8750 0.8991 0.9192 0.9356

0.0040 −0.0112 −0.0166 −0.0137 −0.0040 0.0116 0.0324 0.0576 0.0869 0.1199

−0.3794 −0.3082 −0.2532 −0.2113 −0.1803 −0.1592 −0.1436 −0.1352 −0.1319 −0.1323

0.6171 0.5481 0.4918 0.4462 0.4092 0.3794 0.3553 0.3358 0.3195 0.3056

0.0155 0.0134 0.0116 0.0103 0.0096 0.0094 0.0098 0.0106 0.0118 0.0131

−0.2658 −0.2421 −0.2225 −0.2062 −0.1925 −0.1809 −0.1710 −0.1624 −0.1550 −0.1484

−0.3026 −0.2957 −0.2887 −0.2813 −0.2732 −0.2644 −0.2547 −0.2442 −0.2329 0.2207

−0.2875 −0.2708 −0.2562 −0.2429 −0.2305 −0.2186 −0.2069 −0.1952 −0.1831 −0.1708

0.0148 0.0121 0.0101 0.0087 0.0077 0.0069 0.0062 0.0055 0.0050 0.0046

4. Theory 3,5-; 2,6-Lutidine + toluene are regarded as possessing three types of surfaces: type a, alkane (CH3, CH2 group); type n, nitrogen (N group); type c (aromatic). The relative molecular volume ri , the surface qi and surface αsi (s = a, n, c) of all the molecular species have been calculated on the basis of group volumes and surfaces recommended by Bondi [10], taking arbitrarily the volume and surface of methane as unity [11,12]. The applied values are shown in Tables 6 and 7. The three types of surfaces a, n and c generate three pairs of contacts: (a,n), (a,c), (c,n). The equations used to calculate GE and HE are the same as in the other publication [2]. The temperature dependency of the interaction parameters has been expressed in term of dispersive (dis) and/or quasichemical (quac) interaction coefficients: quac dis Cst,l and Cst,l ,

where s, t = (a, n), (a, c), (c, n)

and l = 1 (Gibbs energy), l = 2 (enthaly)

Table 6 Relative group increments for molecular volume, rG = VG /VCH4 , and areas qG = AG /ACH4 , calculated by Bondi method (ref.) (VCH4 = 17.12 × 10−6 m3 mol−1 ; ACH4 = 2.90 × 10−5 m2 mol−1 ) Group

rG

qG

CH4 CH3 C6 H 5 C5 H 5 C5 H 4 N

1.00000 0.79848 2.67757 2.35396 2.20668 0.30374

1.00000 0.73103 1.83793 1.72413 1.48970 0.10907

5. Estimation of interaction parameters (a) Contact (a,c) - The dispersive interchange parameters of the contact (a,c) was already evaluated for toluene + n-alkane by Cannas et al. [13].

6

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9 Table 7 Volumes ri , total surfaces qi and molecular surface fractions αsi calculated from the group increments rG and qG given in Table 6 Compound

ri

qi

αni

αci

αai

Toluene Benzene Pyridine Methylpyridine 3,5-Lutidine 2,6-Lutidine

3.4760 2.8248 2.6577 3.3089 3.9601 3.9601

2.0906 2.0724 1.8332 2.3298 2.8264 2.8264

0.1043 0.0000 0.0595 0.0468 0.0386 0.0386

0.5460 1.0000 0.9405 0.6394 0.4441 0.4441

0.3497 0.0000 0.0000 0.3138 0.5173 0.5173

(b) Contact (c,n) In a previous work [1] dis and quac parts of contact (c,n) were evaluated for pyridine and its methyl derivadis = 19.26; C dis = 1.244; C quac = tives + benzene (Ccn,1 cn,2 cn,1 quac 4.502; Ccn,2 = 0.177). Table 9 Molar excess Gibbs energies GE and excess molar enthalpies HE of pyridine; 2picoline; 3-picoline; 4-picoline; 2,6-lutidine; 3,5-lutidine + n-heptane mixtures at temperature T and equimolar composition: comparison of direct experimental results (Exp) with calculated values (Calc), using the interchange coefficients from Table 8 Mixture

Fig. 1. Polynomial fit of (GE /T)x1 = 0.5 with a second degree of 1/T: (a) 3,5lutidine (1) + toluene (2) (b) 2,6-lutidine (1) + toluene (2).

T (K)

Pyridine (1) + toluene (2) ␣-Picoline (1) + toluene (2) 3,5-Lutidine (1) + toluene (2) 2,6-Lutidine (1) + toluene (2) a b c d e

GE (T, x1 = 0.5) (J mol−1 )

HE (T, x1 = 0.5) (J mol−1 )

Calc

Calc

Exp

174

174b

Exp

298.15

225.1

225.1a

298.15

113.8

113.8c

75.5

75.5d

303.15

513.3

513.3e

107.9

107.9e

85

85e

303.15

−121

−121e

From Ref. [15]. From Ref. [14]. From Ref. [16]. From Ref. [17]. This work.

Table 8 quac dis Interchange coefficients, dispersive Cst,l and quasichemical Cst,l (l = 1, Gibbs energy; l = 2, enthalpy) for contact (s,t) System

Contact (a,n)

Pyridine + toluene

2-Methylpyridine

3.5-Lutidine + toluene

2,6-Lutidine + toluene

(a,c)

dis = 17.43; Can,1 quac Can,1 dis Can,1 quac Can,1 dis Can,1 quac Can,1 dis Can,1 quac Can,1

= 12.95; = 18.84; = 0000; = −1.95; = 0.000; = 39.71; = 0.00;

(c,n)

dis Can,2 = 4.823

dis = 0.320; Cac,1

dis Cac,2 = 0.620

quac Can,2 = 7.900 dis CE,2 = −31.81 quac Can,2 = 0000 dis Can,2 = −1.29 quac Can,2 = 0.00 dis Can,2 = 0.21 quac Can,2 = 0.00

quac Cac,1 = 0.000; dis Cac,1 = 0.320; quac Cac,1 = 0.000; dis = 0.320; Cac,1 quac Cac,1 = 0.00; dis = 0.320; Cac,1 quac Cac,1 = 0.000;

quac Cac,2 = 0.00 dis Cac,2 = 0.620 quac Cac,2 = 0.00 dis Cac,2 = 0.620 quac Cac,2 = 0.00 dis Cac,2 = 0.620 quac Cac,2 = 0.00

dis = 19.26; Ccn,1

dis Ccn,2 = 1.244

quac Ccn,1 dis Ccn,1 quac Ccn,1 dis Ccn,1 quac Ccn,1 dis Ccn,1 quac Ccn,1

= 9.000;

Ccn,2 = 0.257

= 19.26;

dis Ccn,2 = 1.244

= 9.000;

Ccn,2 = 0257

= 19.26;

dis Ccn,2 = 1.244

= 9.00; = 19.26; = 9.00;

quac

quac

quac

Ccn,2 = 0.257 dis Ccn,2 = 1.244 quac

Ccn,2 = 0257

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9

From structural considerations (intramolecular inductive effect and liquid-structure breaking effect of the alkyl substituents on benzene ring and enthalpy–entropy compensation effect), the interaction parameters of the contact (c,n) for pyridine and its methyl derivatives + toluene may be different from those with benzene and, consequently, we have determined the interaction coefficients from the available experimental data [14–16] of these system. (c) Contact (a,n) - The interaction parameters for the contact (a,n) were estimated using our experimental data for HE and GE and some experimental data from literature [15–18]. Table 8 lists the final coefficients. 6. Comparison with experiment and discussion The excess enthalpies of mixing for binaries pyridine and its methyl derivatives + toluene have been measured at 298.15 K by Wilczura et al. [14,17]. The maximum of mixing decrease in the

Fig. 2. Comparison of experimental data of GE and HE at 303.15 K for binaries systems formed with (a) toluene + 3,5-lutidine (b) toluene + 2,6-lutidine.

7

following order: pyridine > ␣-picoline > ␥-picoline > 2, 4-lutidine > ␤-picoline > 2, 6-lutidine There are no experimental data for 3,5-lutidine with toluene, so we have measured the excess enthalpies of 3,5- and 2,6lutidine with toluene at 303.15 K. Fig. 2 shows the position methyl groups effect on the excess function (HE ,GE ,TSE ). TSE values are relatively important and GE is temperature dependent. The molar excess enthalpies HE and the excess Gibbs energy GE decrease with increasing steric effect (pyridine; ␣-picoline + toluene; 3,5-; 2,6-lutidine + toluene). This is connected with the influence of the number and the position of the CH3 group on the free electron pair on the nitrogen atom and on the steric hindrance at nitrogen atom see Table 9. The molar excess enthalpies HE curves are not so symmetrical as for mixtures of pyridine derivatives with normal alkanes

Fig. 3. Comparison of theory with experiment for the molar excess Gibbs energy GE and the molar enthalpy HE , at 303.15 K, of 2,6-lutidine (1) + toluene (2) mixtures vs. x1 , the mole fraction of 2,6-lutidine. Full lines, predicted values using DISQUAC; points, experimental results; GE () (this work); HE () (this work).

8

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9

[19–24]. This asymmetry may be due to association phenomena in the mixtures [25–29]. The excess Gibbs energy are positive for binary system formed with 3,5-lutidine + toluene and negative for 2,6-lutidine with toluene. The difference is due to the stronger – and n– interactions in solution with 2,6-lutidine + toluene than with 3,5lutidine + toluene. Nakanishi and co-workers [26] found that steric hindrance at nitrogen atom caused by the position of methyl group change degree of association of pyridines [21]. The two methyl groups in ortho positions strongly weaken the auto-association of 2,6-lutidine. This is clearly seen from the comparison of Hvap of 2,6-lutidine (37.46 kJ mol−1 ) [30] and 3,5-lutidine (39.46 kJ mol−1 ) [30]. Also, the presence of the two methyl groups in the 2,6-lutidine leads the n– interactions being negligible. Probably, the intermolecular interactions between different molecules (2,6-lutidine and toluene) are stronger than those between molecules of the same type.

Because of those association phenomena in (2,6)lutidine + toluene system; calculated GE and HE from DISQUAC model do not agree with experimental data Fig. 3. The model DISQUAC reproduces quite accurately the experimental measurements GE and HE for binary system of 3,5lutidine + toluene. Fig. 4 shows the experimental and theoretical curves of GE and HE at 303.15 K. 7. Conclusion The problem of intermolecular interactions in mixtures of lutidines and toluene is very complicated. The steric hindrance at nitrogen atom caused by the position of methyl group change degree and type of association in those mixtures. More investigations are needed to explain the qualitative and quantitative association phenomena. References

Fig. 4. Comparison of theory with experiment for the molar excess Gibbs energy GE and the molar enthalpy HE , at 303.15 K, of 3,5-lutidine (1) + toluene (2) mixtures vs. x1 , the mole fraction of 3,5-lutidine. Full lines, predicted values using DISQUAC; points, experimental results; GE () (this work); HE () (this work).

[1] H. Ben-makhlouf-Hakem, A. Ait-Kaci, J. Jose, Fluid Phase Equilib. 232 (2005) 189–206. [2] M.R. Tin´e, H.V. Kehiaian, Fluid Phase Equilib. 32 (1987) 211– 248. [3] K.N. Marsh, Int. Data Ser. Sel. Data Mixtures Ser. A 1 (1973) 1–3. [4] A. Blondel-Tellouk, H. Loiseleur, A. Barreau, E. Behar, J. Jose, Fluid Phase Equilib. 110 (1995) 315–339. [5] J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures, third ed., Butterworth, London, 1982, p. 183. [6] W.V. Steele, R.D. Chirico, A. Nguyen, S.E. Knipmeyer, J. Chem. Thermodyn. 27 (1995) 311–334. [7] C. Tsonopoulos, AICHE J. 20 (1974) 263. [8] C. Tsonopoulos, AICHE J. 20 (1975) 827. [9] J.A. Barker, Aust. J. Chem. 6 (1953) 207. [10] A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York, 1968. [11] H.V. Kehiaian, K. Sosnkowska-Kehiaian, R. Hryniewicz, J. Chim. Phys. 68 (1971) 922. [12] H.V. Kehiaian, J.-P.E. Grolier, G.C. Benson, J. Chim. Phys. 15 (1978) 1031–1041. [13] A. Cannas, B. Marongio, S. Porcedda, Thermochim. Acta 311 (1998) 1–19. [14] W. Woycicki, K.W. Sadowska, Bultin de l’Academie Polonaise des sciences chimiques XVI (6) (1968). [15] J. Jose, C. Michou-Saucet, M.A. Michou-Saucet, Int. Data Ser. Sel. Data Mixtures Ser. A (1) (1988) 42. [16] J.-C. Merlin, A. Ait-Kaci, Int. Data Ser. Sel. Data Mixtures Ser. A (1) (1982) 34. [17] H. Wilczura, T. Kasprzycka-Guttman, A. Myslinski, J. Therm. Anal. 4 (1995) 563–770. [18] S. Warycha, J. Chem. Eng. Data 38 (1993) 274–276. [19] T. Kasprzycka-Guttman, H. Wilczura, Thermochim. Acta 209 (1992) 25–30. [20] T. Kasprzycka-Guttman, H. Wilczura, Thermochim. Acta 198 (1992) 405–412. [21] T. Kasprzycka-Guttman, H. Wilczura, Thermochim. Acta 184 (1991) 321–327. [22] H. Wilczura, T. Kasprzycka-Guttman, M. Jarosz-Jarszewska, A. Myslinski, J. Therm. Anal. 45 (1995) 751–759. [23] R. Kechavarz, J.P. Dubes, H. Tachoire, Int. Data Ser. Sel. Data Mixtures Ser. A (1) (1992) 18–30. [24] A. Michou-Saucet, J. Jose, C. Michou-Saucet, Int. Data Ser. Sel. Data Mixtures Ser. A 2 (1986) 140–145.

H. Ben-makhlouf-Hakem et al. / Fluid Phase Equilibria 242 (2006) 1–9 [25] H. Wilczura, T. Kasprzycka-Guttman, E. Megiel, Thermochim. Acta 274 (1996) 53–59. [26] J.J. Abe, K. Nakanishi, H. Touhara, J. Chem. Thermodyn. 10 (1978) 483. [27] R.K. Nigam, S. Aggarwal, S.P. Sharma, Fluid Phase Equilib. 16 (1984) 25–39.

9

[28] E. Megiel, T. Kasprzycka-Guttman, A. Jagielska, L. Wroblewska, J. Mol. Struct. 569 (2001) 111–119. [29] P.P. Singh, D.V. Verma, Thermochim. Acta 13 (1975) 89–92. [30] David R. Lide, Hand Book of Chemistry and Physics, 84th ed., 2003/2004.