Physica
52 (1971) 79-91 o North-Holland
ISOTHERMS
FOR
Publishing
THE
He-Ar
AT - 130, - 115, AND -90°C J. A. PROVINE* University
Co.
SYSTEM
UP TO 700 ATM
and F. B. CANFIELD
of Oklahoma, Norman,
Oklahoma,
USA
Received 7 September 1970
Synopsis A Burnett apparatus was used to obtain compressibility factors and virial coefficients for helium, argon, and four mixtures at -90, - 115, and - 130°C. The pressures for the first two isotherms ranged from 2 to 700 atmospheres for both pure components and all mixtures. For the - 130°C isotherm the pressures for the pure argon and mixtures ranged from 2 atmospheres to slightly below saturation pressure.
1. Introduction. Compressibility factors and virial coefficients are presented for helium, argon, and four mixtures at -9O”C, -115”C, and - 130°C. The pressure ranges from 2 to 700 atmospheres for the first two isotherms for all runs. For the - 130°C isotherm the pressure for the pure argon and mixtures ranges from 2 atmospheres to slightly belaw saturation pressure. These results complement those reported by other investigators for the helium-argon system at higher temperatures. Tanner and Massonl) report seven isotherms between 25°C and 174°C up to 125 atmospheres with two mixtures at each isotherm. Kalfoglou and Miller2) present six isotherms between 30°C and 500°C at pressures up to 80 atmospheres with seven mixtures at each isotherm. Blancett et ~2.~) give 50°C O”C, and -50°C isotherms at pressures from 2 to 700 atmospheres for the same four mixtures presented here. Data for pure helium and argon are reported only for consistency and for purposes of calculating interaction virial coefficients. Many investigators have reported compressibility data for the pure components. These investigations are too numerous to list here. 2. Experimental method. These data were obtained using the experimental method proposed by Burnett 4). This apparatus is described in detail in previous publications 375-a). Other modifications to reduce licjuid nitrogen t Present address: Continental Oil Co. Ponca City, Oklahoma. 79
P (atm)
10.2350
5
5 7
1.00857
1.00547
6.7072
6.5260 A (A.717
16.0812
6
1.01344
16.5018
10.5111
, fb-l?CA
25.3409
8
1.02113
25.9776
1 -,.-.l_
40.1491
9
1.03335
41.0726
103.696
105.243 64.1145
171.286
12
1.13782
172.476
10
292.968
16
1.22966
291.262
11
532.773
22
1.39831
517.529
1.05292
1.00316
3.2039
8
1.08476
1.00494 4.7844 3.0567
18 24
1.00489 1.00312
5.0154
6
1.00422
1.00270
5.1751
3.3076
65.3857
1.00774
7.4963
15
1.00765
7.8587
5
1.00661
8.1045
1 flc-lAfl/.
1.00636
1.00996
1.01562
1.02456
1.03877
1.06158
1.09880
1.16129
1.27115
16 19
16
18
22
26
28
31
36
49
6.2969 4 n?n.?
9.8748
15.5183
38.7807 24.4677
61.9877
100.452
166.533
286.98
1.00650 1 00415
1.01019
1.01602
1.02525
1.04001
1.0639 1
1.10338
1.17063
1.29105
3 4
4
5
6
7
7
9
15 11
18
3 4
1.01214 11.7636
16
1.01199
12.3324
5
1.01036
12.7103
1.52399
4 3
1.01910 18.5064
19
1.01883
19.4043
7
1.01626
19.9741
1
5
1.03017
29.2318
23
1.02965
30.6433
8
1.02560
529.402
6
1.04793
46.4584
27
1.04691
48.6876
9
1.04048
49.9187
31.4930
69
7
1.07687
1.47902
9 7
1.12518
74.5963
30
121.792
34
1.12071 1.07478
78.1040
10
127.269
12
129.293
1.10382
1.20887
1.06447
15 12
1.36266
79.7981
21
1.67237
690.706 360.132 204.454
76 62 43
1.61944 1.34063 1.19910
701.742 371.683 212.730
20 14
o(Z). 105
24
Z = Pv/RT
u(Z) .105
Z = Pv/RT
1.28801 1.17033
P (atm)
1.51135
o(Z)-105
675.389
Z = Pv/RT
143.15 K
158.15 K
factors
368.318 214.196
100.OOOh Helium
P (atm)
183.15 K
Compressibility
TABLE I *
0
0)
1.02105
1.01325
1.00839
1.00533 1.00340
1.00217
19.1184
12.1779
7.7709
3.1738
1.00697
1.00444
1.00283
1.00181
10.1402
6.4742
4.1369
2.6449
proportional
1.01099
15.9067
factors
1.01742
* Weighting
1.02780
25.009 1
1.07401
100.692
39.4733
1.12562
164.875
1.04493
1.22356
280.052
62.6974
1.42890
511.031
4.9643
1.03375
47.6138
30.0997
1.09140
122.715
1.05491
1.15775
203.384
75.9150
1.57663
1.28827
676.277
353.613
to (3 + Prj)-2
1.65812
all data.
19
1.00187
2.1093
14
2 3
1.00324 5.1588 3.298 1
15
1.00293
1.00458
1.00132
2
1.00511 1.00206
3 2
1.00810 12.6531 8.0746
1.01132 19
3
1.01292 19.8639
1.00719
4 1.02086
31.2777
5 4 1.03431 49.5 103
6 1.05806
79.1306
8 1.10258
128.839
10 1.39624 1.19306
398.314 217.821
29 24
32
37
45
57
67
92
17
13
15
20
26
30
34
41
51
63
75
107
1.01790
1.02853
1.07637 1.04611
1.13171
1.24178
1.48566
1.00223
1.00348
1.00546
1.00858
1.01351
1.02142
1.03429
1.09375 1.05586
1.16515
1.31265
were used in treating
2.5093
3.9242
7
6.1405
5
9.6175
15.0873
23.7227
37.4523
59.5138
95.6791
157.178
269.416
503.655
2.9856
4.6695
7.3098
11.4560
17.9819
28.3081
44.7778
71.4028
115.543
192.277
338.466
667.956
5 4
6
8
9
10
11
14
19
22
5
5
5
5
7
8
9
10
12
15
19
26
11
tn
1.00866
1.00497
1.00296
1.00180
1.00112
i nnn7n
38.7362
24.7092
15.7876
10.0958
6.4580
A 1’217
9.8820
14 6.3289 A flr;X
15.4230
24.0608
37.5268
58.5947
17
20
23
26
0.99809 00~17~ n
0.99711
0.99571
0.99385
0.99181
0.99094
8 R
11
14
17
19
25 21
1.01589
0.99587
60.9325
92.0363
32
1.02128
147.522
39
1.06592 1.03112
155.988 96.6011
31
37
1.11217
53
1.40318
13
10
251.088
1.00053
3.1516
11
495.171
1BOO84
45
1.00135
7.6947
4.9240
18
15
62
1.00218
12.0250
21
1.38761
1.00361
18.8063
24
1.15212
1.00615
29.4489
28
263.365
1.01091
35
495.512
1.02048
72.8561
1.09040
1.04131
189.904
116.120
46.2121
1.21615
43
74
51
1.5797 1
330.827
Helium
rJ(Z). 105 P (atm)
2.4750
3.8637
6.029 1
9.404 1
14.6573
22.8205
35.4989
55.2362
86.4019
138.178
0.99872
0.99801
0.99693
0.99531
0.99292
0.98957
0.98534
0.98139
0.98259
1.00583
Z = Pv/RT
P (atm)
Z = Pv/RT
o(Z) .105
2 = Pv/RT
671.262
59.35%
P (atm)
143.15 K
158.15 K
183.15 K
TABLE I $ (continued)
9
6
7
10
13
15
17
20
25
28
o(Z). 105
LI
1.31733 1.03402 0.96821 0.96038 0.96737 0.9763 1 0.98373 0.98915 0.99288 0.99537 0.99701 0.99807
301.905 173.629 108.838 69.9629 45.1953 29.1701 18.7867 12.0761 7.7513 4.9702 3.1855
488.410 245.328 147.000 93.3320 60.1627 38.8538 25.0590 16.1255 10.3593 6.6468 4.2609 2.7305
71
58 39 34 28 24 22 20 17 14 11 10 14
44 38 31 26 23 20 18 14 11 10 13 471.152 217.937 129.040 85.4114 57.8188 38.7185 25.5770 16.7195 10.8486 7.0049 4.5087 2.896 1
1.18161 0.85493 0.79116 0.82013 0.86693 0.90786 0.93830 0.95944 0.97362 0.98295 0.98903 0.99295
t Weighting factors proportional to (3 + P,5)-2 were used in treating all data.
1 .tabYJl
1.09102 0.98035 0.96021 0.96439 0.97331 0.98140 0.98749 0.99175 0.99462 0.99652 0.99776
014..YJu
488 314 276 222 200 192 178 151 117 89 97 146 61.5804 40.9799 27.0113 17.6427 11.4436 7.3886 4.7556 3.0540 1.9600
73.6126 49.1401 32.5543 21.3507 13.8902 8.9870 5.7918 3.7228 2.3907
0.87981 0.91517 0.94247 0.96185 0.97504 0.98380 0.98954 0.99327 0.99568
0.86259 0.90029 0.93137 0.95410 0.9698 1 0.98035 0.98729 0.99181 0.99473
29 26 29 33 37 40 43 45 46
36 24 27 31 35 38 41 42 44
0.99043
0.99385
12.0481
7.7767
5.0041
3.2146
0.96840
0.97950
0.98677 - -_. ._
6.9212
0.95172
25.4411
10.7318
0.92736
38.7233
16.5746
0.85308
0.89378
86.9052
58.2890
0.8203 1
0.98513
18.5848
130.547
0.97699
28.4761
1.23657
0.96459
43.2329
0.85488
0.91933 0.94607
64.9073
480.256
0.88335
96.6950
212.540
0.81832
0.84233
146.742
1.53885
0.89806
251.604
Helium
2 = Pv/RT
673.728
21.99%
P (atm)
183.15 K
16 .^
22
28
32
35
40
47
50
57
91
16
14
18
24
29
32
36
41
49 47
62
115
u(Z)~105
3.4280
5.3152
8.2059
12.5821
19.0833
28.4710
41.4389
58.2855
79.6751
113.428
202.535
677.175
P (atm)
0.98677
0.97937
0.96787
0.95006
0.9227
0.88139
0.82105
0.73936
0.64710
0.58973
0.67412
1.44262
1
30
22
29
40
49
55
57
61
67
65
84
198
1.9280
2.9965
4.6446
7.1708
10.9944
16.6802
24.8977
36.2558
2.3620
3.667 1
5.6760
8.7381
13.3442
20.1111
29.7113
42.6382
0.99120
0.98629
0.97866
0.96688
0.94877
0.92125
0.88010
0.82034
0.98920
0.98319
0.97386
0.95949
0.93750
0.90428
0.85519
0.78534
Z = PvIRT
P (atm)
Z = Pv/RT o(Z) .105
143.15 K
158.15 K
TABLE I t (continued)
21
21
19
18
16
13
11
12
20
19
18
16
14
10 12
14
u(Z).105
~
0.95470
0.97079
0.98121
0.98794
11.7382
7.6412
4.9436
3.1864
85
t Weighting
factors
proportional
0.98926
2.8406
0.95957
0.97395
0.93751
16.0343
10.5051
0.98326
0.90409
6.8249
25
0.85459
24.1577
4.4098
27
0.78434
51.1609 35.6771
2.6671
4.1286
6.3586
9.7123
14.6420
21.6219
30.8931
41.8848
52.4855
60.1068
72.3768
343.9010
2.9466
4.5572
7.0072
10.6772
16.0381
2.3.5342
33.2928
54.5344 44.4484
61.6081
83.5805
647.730
1.59250
0.98383
0.97482
0.96086
0.93936
0.90647
0.85684
0.78357
0.67993
0.54544
0.39989
0.30820
0.93719
0.98212
0.97216
0.95676
0.93304
0.89686
0.84246
0.76275
0.65159
0.51169
0.36985
0.32115
to (3 + PTj)-2 were used in treating
10 14
12
17
20
23
29
0.69250
70.5673
28
0.59232
28
57
13
11
18 14
21
2.3
24
26
28
26
30
94.2986
1.01460
0.93010
17.8632
0.54722
0.89300
26.7921
136.106
0.83853
39.2912
394.316
0.76248
55.8203
0.57021
101.864
0.66628
159.893
76.1874
1.50767
0.57297
657.367
all data.
29
35 27
44
51
58 55
60
57
45
40
132
26
23
34
45
54
59
64
66
59
47
45
247
30.3901
0.67337
0.88421 0.92502 0.95165 0.9689 1 0.98004
8.8420 5.8225 3.7946 2.4567
0.82245
0.73078
0.97532
0.96158
0.94032
0.90762
0.85776
0.78291
13.2030
19.1872
26.6933
3.0288
4.6645
7.1265
10.7467
15.8673
22.6192
66
114
108
98
86
72
58
54
109
102
92
79
65
52
Helium
Helium
59.35%
Helium
80.00%
100%
Composition
2.4650806
328.78934
13 795.749 -_. _-- --
4
36 462.861
5
3
2 744.0613
4
2
10.246538
240.83183
1410.5876
4
2
123.69844
3
12.271634
2
Bx
3
k
183.15 K
2 150. -- ___
24.5
0.141
3 951.
232.
4.39
0.0399
36.2
1.60
0.0279
@k)
Virial
4
3
2
3423
6
13 037.747 _- _ .- --
405.85040
- 4.1004249
056.5
-233621.59
11 029.173
152.22850
9.6572578
1 896.4162
112.98310
12.662644
Bk
158.15 K
(cc/g mol)k-1
5
4
3
2
4
3
2
k
coefficients
TABLE II *
._ .__
703.
12.3
0.0939
1 010 000.
78 500.
2 220.
27.7
0.181
77.1
3.72
0.0738
O(Bk)
4
3
2
4
3
13 400.376
413.83618
- 6.1746247
4 766.3382
255.54634
7.2977738
9 693.2153
5 2
1 143.1125
146.78233
12.127116
Bk.
4
3
2
k
143.15
K
674.
13.7
0.0954
26.7
0.987
0.0141
1 300.
93.1
2.15
0.0247
@k)
Argon
Helium
series.
t Virial coefficients,
100%
21.99%
526 000. 15 800 000. 179 000 000.
-2
81 212 245.
-494
5
6 7
111.59
145 000 000.
-
not that
accurate,
are expressed
12 800 000.
though
12 310 159. -
420 000.
- 7 050 250.3 217 391 120.
1 036 023 900.
-44
6 730.
90 391.637
digits
to allow
accurate
calculation
31 600 000 000.
- 425 167 990 000.
to eight
3 230 000 000.
133 000 000.
2 770 000.
31 700.
194.
0.524
2 470 000.
195 000.
5 560.
66.1
0.315
92 200.
5 800.
38 552 947 000.
1 110 709 200.
084.186
2 229.9070
0.184 53.3
- 77.870274
82 134 809.
135 893.06 - 5 776 047.8
462.81321
- 49.550057
-372
17 661.667
1 286.9467
5
4
- 56.479549
703 060.
567 866.7
8 510.
45 253.027
4
68.0
- 28.752386
0.259
1 060 000.
831.31611
6
1 990. 75 100.
2
12 323 874.
5
3
14 281.530
- 340 730.28
4
2
2 363.1502
-94.044109
1 507.7540
-53.415305
of Z by summing
3
2
3
the virial
149.
0.565
21.0
0.0969
aa
J. A. PKOVINE
usage and to increase bath cryostat 3. Results.
AND
the heat transfer
F. B. CANFIELD
rate to the Burnett
cell in the gas
are given by Provines). Isotherms
were measured
for pure helium,
pure argon,
and
four mixtures having compositions of 21.99, 41.05, 59.35, and 80.00 mole percent helium in argon. These are the recommended compositions after examination
of mass spectrographic
and molecular
weight
analysis
of the
experimental gas mixtures. Two runs were made for each pure component and each mixture for the -90, - 115, and - 130°C isotherms. The method used to reduce the Burnett data to compressibility factors and virial coefficients has been described previously 10). The results are presented in tables I, II, and 111. Table I lists the observed pressures and the compressibility factors calculated from the virial coefficients along with the standard deviations in the compressiblity factor. Table II presents the virial coefficients for each isotherm with their standard deviations. Table III contains the information necessary to calculate the compressibility factor from the Burnett constants using the following equation,
where Pi is the observed pressure for the jth expansion, Zo/Pois the run constant, N, is the cell constant, and cj is a pressure-distortion correction of the form:
The constants ak and bk are given in table IV. Although the method of Hall and Canfieldia) generally was used for treating the data, certain variations were made for some of the runs at - 115°C and - 130°C. The - 115°C isotherm which is slightly above the critical temperature of argon gave some unexpected results. For two mixtures (59.35% He and 41.05% He) the results indicated a change in composition had occurred for one of the two runs. It is thought that this is due to the phenomenon of fluid-fluid phase separation coupled with incomplete mixing with the magnetic pump after the first expansion. This phenomenon is an equilibrium that exists between two separate, distinct gas phases that occur at high pressures in a region that for most systems would be a region of homogeneous fluid mixtures. This phenomenon has been observed experimentally by Streettir) at temperatures slightly below the critical
Helium
Helium
41.05%
21.99%
1.5624775
143.15
a) Cell constants were not adjusted
during treatment
“f
1 990
838
“)
1 080
“)
6 460
650
521
577
664
45.159399
406.73647
436.01653
54.287840
469.40729
437.81290
85.344567
432.42335
424.92747
402.83797
428.93728
413.01121
433.34338
446.87397
(PO/Z,) 1
0.0279
0.629
0.244
of these runs because of the small number
36.472193
366.95112
388.64174
44.202546
388.37653
69.961120
398.73433
370.75670
137.37712
352.89039
357.09704
285.27560
339.01874
357.63875
347.37650
360.17590
370.11305
(POP-O) 2
of data points.
equation.
0.0231
0.516
0.219
0.00506
0.286
0.0167
1.63
0.158
0.0385
0.131
0.156
0.0199
0.205
0.0562
0.0410
0.155
0.0545
u(Po/Zo) 2
of Z from the Burnett
0.00599
0.644
0.324
0.0196
0.195
0.197
0.258
0.0686
0.0495
0.202
0.0712
fJ(~O/~O)l
to eight digits to allow accurate calculation
1.5624775
1.5622752
1.5623030
1.5624775
1.5620088
are expressed
“f
808 2 200
1.5625218
“)
1.5620835
1.5624775
143.15
1 060 2 020
158.15
1.5620016
158.15
183.15
1.5622774
183.15
“)
1.5624775
1.5624775
1.5624772
143.15
678 1.5637869
1.5623533
158.15
183.15
1.5622529
143.15
1.5619351
117
917
254
190
733
251
o(Nms) . lo7
constants
1.5623561
1.5623027
1.5623731
1.5624923
1.5625505
1.5623632
NC02
1.5628770
690
950
247
185
773
265
o(Nml) . lo7
158.15
183.15
1.5617856
1.5621135
143.15
1.5623644
1.5624628
143.15
158.15
1.5625762
183.15
1.5623974
158.15
N 021
183.15
TK
t Values of Zs/Ps and N, though not accurate,
100% Argon
Helium
59.35%
80.00% Helium
100% Helium
Composition
Burnett
TABLE IIIt
90
J. A. PROVINE
AND F. B. CANFIELD TABLE IV
Coefficients
for equation
(2)
a3( 1011)
a4( 1014)
-3.22 -2.92 -3.13
2.22 0.818 2.40
0.00801 -3.08 -1.03
h
bz(l0’)
b3( 10’1)
b4( 1014)
1.00 1.00 1.00
-4.66 -4.22 -4.51
T”K
al
183.15 158.15 143.15
1.00 1.00 1.00
T”K 183.15 158.15 143.15
a2(107)
3.49 1.28 3.77
0.126 -4.85 - 1.62
temperature of argon starting at 576 atm. Therefore for these mixtures the runs were treated individually and the results for the first runs are not reported. The - 130°C isotherm also required some variation for certain mixtures in the data treatment procedure. For the first runs for the 80.00 and 59.35% He mixtures, the gas-liquid phase boundary was apparently crossed for the initial pressure, so that the two runs were for mixtures of slightly different composition. These runs were also treated separately, and the results for the first run are not reported. Since the runs for the 4l.O5o/o helium mixture, and the pure argon had to be started at the 21.99% helium mixture, pressures slightly less than the saturation pressure, these runs had fewer data points than the others. Preliminary attempts at fitting these runs indicated that there were too many adjustable parameters for the number of data points. Therefore for these runs the values of the cell constants obtained from the 100% helium runs were used and held constant in the Newton-Raphson determination of the run constants and virial coefficients. 4. E~v_m.
The standard
deviations
listed in tables
I, II, and III
for the
compressibility factors, virial coefficients, and Burnett constants were calculated from a propagation of errors analysis. Hall and Canfieldie) give the form of the equation used and a discussion of the development of the equation. The standard deviations for the Burnett constants seem reasonable as indicated by the fact that the deviations for the cell constants are of the same magnitude as the difference between the cell constants for each isotherm. Acknowledgment. This research is part of a long-range study of the volumetric behavior of gaseous mixtures at low temperature. The project is wholly supported by grant GK-633 from the National Science Foundation.
ISOTHERMS FOR THE He-Ar SYSTEM
91
The authors express their appreciation to the staff of the University of Oklahoma Computer Laboratory and Continental Oil Company Computer Department for their contribution of machine time.
REFERENCES 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)
Tanner, C. C. and Masson, I., Proc. Roy. Sot. Al26 (1930) 268. Kalfoglou, N. K. and Miller, J. G., J. Phys. Chem. 71 (1967) 1256. Blancett, A. L., Hall, K. R. and Canfield, F. B., Physica 47 (1970) 75. Burnett, E. S., J. Appl. Mech., Trans. A.S.M.E. 58 (1936) A136. Blancett, A. L., Ph. D. Dissertation, University of Oklahoma, Norman, Oklahoma (1966). Hall, K. R., Ph. D. Dissertation, University of Oklahoma, Norman, Oklahoma (1967). Hall, K. R., Blancett, A. L. and Canfield, F. B., Cryo. Tech. 5 (1969) 98. Hall, K. R. and Canfield, F. B., Physica 47 (1970) 219. Provine, J. A., Ph. D. Dissertation, University of Oklahoma, Norman, Oklahoma (1969). Hall, K. R. and Canfield, F. B., Physica 47 (1970) 99. Streett, W. B., Trans. Faraday Sot. 65 (1969) 696.