Computational Techniques for Differential Equations
623
J. Noye (Editor)
0 Elsevier Science Publishers B.V. (North-Holland), 1984
ITERATIVE METHODS FOR SOLVING LARGE SPARSE SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS
LEONARD COLGAN South A u s t r a l i a n I n s t i t u t e o f Technology, Adelaide, South A u s t r a l i a
I I
!
1
I
I 0 opt
I I
I I
2
-0
Len Colgan
624
CONTENTS
1.
INTRODUCTION.
2.
THEMODELPROBLEMS
....................................
625
...............................
625
..............................
627
MATRIX PRELIMINARIES 4. 4.1. 4.2. 4.3. 4.4.
BASIC ITERATIVE METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 Gauss-Seidel method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 634 Successive overrelaxation (SOR) method ...................... Symmetric successive overrelaxation (SSOR) method. . . . . . . . . . . . . . 638
5.
CHEBYSHEVACCELERATION . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.
CONJUGATE GRADIENT ACCELERATION
7.
REDUCED SYSTEMS (RED-BLACK SYSTEMS)
8.
ALTERNATING-DIRECTION IMPLICIT (ADI) METHODS
9.
COMPARISON OF ITERATIVE METHODS
. . . . . . . . . . . . . . . . . . 645
. . . . . . . . . . . . . . . 649
. . . . . . . . . 651
. . . . . . . . . . . . . . . . . . .654
APPENDICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A: A list of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY
640
.....................................
656 656 658 661 664 668 673 677
Iterative Methods
1.
625
INTRODUCTION Because o f t h e s u b s t a n t i a l i n c r e a s e i n speed and e f f i c i e n c y o f modern d i g i t a l computers, n u m e r i c a l methods i n v o l v i n g i t e r a t i v e processes have r e q a i n e d much p o p u l a r i t y . F o r example, t h e d i s c r e t i z a t i o n o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s , u s i n g e i t h e r f i n i t e d i f f e r e n c e s o r f i n i t e elements, i n v a r i a b l y leads t o t h e problem of s o l v i n g a l a r g e system o f l i n e a r equations. I n p a r t i c u l a r , e l l i p t i c p a r t i a l d i f f e r e n t i a l equations i n two dimensions, o r more s o i n t h r e e dimensions, y i e l d l i n e a r systems which, because o f t h e v e r y l a r q e number o f equations w i t h v e r y few non-zero c o e f f i c i e n t s , sugqest an i t e r a t i v e method r a t h e r than a d i r e c t method. The a v a i l a b l e l i t e r a t u r e on i t e r a t i v e techniques i s vast, whi!e t h e number o f s u b s t a n t i a l l y d i f f e r e n t methods i s e q u a l l y vast. Hence a s u i t a b l e s e l e c t i o n has been made, t a k i n g i n t o account t h e s i m p l i c i t y o f d e s c r i p t i o n , ease of i m p l e m e n t a t i o n on a computer, e f f i c i e n c y i n t h e use o f s t o r a g e and time, a v a i l a b i l i t y o f s o f t w a r e , and most i m p o r t a n t l y , p e r s o n a l preference. Consequently, r a t h e r than d e t a i l i n g a succession o f methods and t h e i r many v a r i a n t s , a s m a l l r e p r e s e n t a t i v e s e l e c t i o n has been i n c l u d e d w i t h a l i s t o f r e f e r e n c e m a t e r i a l f o r those i n t e r e s t e d enouqh t o seek f u r t h e r in f o rma t i on.
A
b r i e f summary o f t h e c o n t e n t s o f t h i s a r t i c l e i s as f o l l o w s : The f i r s t sect i o n i n t r o d u c e s two model problems f o r subsequent d i s c u s s i o n , and t h i s i s f o l l o w e d by t h e necessary m a t r i x p r e l i m i n a r i e s . L i n e a r s t a t i o n a r y i t e r a t i v e methods of t h e f i r s t degree a r e then described, a l o n g w i t h t h e i r correspondinn convergence c r i t e r i a . The p a r t i c u l a r methods d e t a i l e d are t h e b a s i c Jacobi, Gauss-Seidel, Successive O v e r r e l a x a t i o n (SOR), and S y m m t r i c Successive Overr e l a x a t i o n (SSOR) methods. O f these, i t i s f a i r t o say t h a t o n l y Successive O v e r r e l a x a t i o n has any p r a c t i c a l c l a i m f o r d i r e c t implementation. However, t h e Jacobi and SSOR methods a r e i n c l u d e d because they can be a c c e l e r a t e d subs t a n t i a l l y u s i n g Chebyshev o r c o n j u g a t e g r a d i e n t a c c e l e r a t i o n procedures, which comprise t h e n e x t two s e c t i o n s . Then f o l l o w s a d e s c r i p t i o n o f how t h e s i z e o f t h e system can p o s s i b l y be reduced u s i n g a s o - c a l l e d " r e d - b l a c k " o r d e r i n n on r e c t a n q u l a r domains. A1 t e r n a t i n g - D i r e c t i o n I m p l i c i t (ADI) methods are r e p r e s e n t e d by t h e Peaceman-Rachford method. Throuahout these d i s c u s s i o n s , i t s h o u l d be understood t h a t v a r i a n t s o f these b a s i c methods can y i e l d f u r t h e r improvements. For example i t i s p o s s i b l e t o use b l o c k - i t e r a t i v e methods ( o r l i n e - i t e r a t i v e methods) i n c e r t a i n circumstances, and these can produce w o r t h w h i l e t i m e s a v i n g s when compared t o t h e fundamental p o i n t - i t e r a t i v e methods. These a r e d e s c r i b e d e x t e n s i v e l y i n many r e f e r e n c e s i n t h e b i b l i o n r a p h y . F i n a l l y , a b r i e f comparison o f s e l e c t e d i t e r a t i v e methods i s i n c l u d e d . Append i x A c o n t a i n s a l i s t o f t h e symbols used i n t h i s c h a p t e r , and subsequent Appendices l i s t p o s s i b l e FORTRAN s u b r o u t i n e s (and o u t p u t s ) t o implement a number o f t h e methods discussed.
A s p e c i a l acknowledgement must be made t o P r o f e s s o r David M. Younq o f t h e Center f o r Numerical A n a l y s i s , a t t h e U n i v e r s i t y o f Texas a t Austin. I n prep a r i n g a r e v i e w a r t i c l e such as t h i s , i t was necessary t o s e l e c t n o t a t i o n , d e f i n i t i o n s , p a r t i c u l a r methods and examples f r o m t h e l i s t o f r e f e r e n c e m a t e r i a l . P r o f e s s o r Young's i n f l u e n c e i n t h i s area i s e s p e c i a l l y s i q n i f i c a n t and much o f t h e f o l l o w i n g m a t e r i a l can be a t t r i b u t e d d i r e c t l y t o him. 2.
7HE RODEL PROBLEMS Consider t h e two-dimensional Poisson e q u a t i o n
a2u
7 +
ax
a2u ay
= -1, w i t h u(x,y)
=
0
on t h e boundary o f t h e u n i t square Osx
Len Colgan
626
Using a uniform g r i d of m s h - s i z e h , we can approximate the given e l l i p t i c p a r t i a l d i f f e r e n t i a l equation a t a p o i n t (x,y) by the usual f i n i t e d i f f e r e n c e formula U( X , Y - ~ ) + U ( X - ~ , Yx ), Y - )~+Uu ((x+h ,y)+u(x,y+h) =
-l.
“Model Problem 1” corresponds t o h = = 0.2. Then there would be 16 unknowns corresponding t o the function values a t the i n t e r n a l nodes. Let t h e s e be 16, where the natural ordering i s used. denoted by u, , i = l ,
...,
0 0 - 1 0 0 0 0 0 0 0 0 0 0 o”u,’ -1 4 - 1 o 0 - 1 o o o o o o o o o n u Z 0 - 1 4-1 o 0 - 1 o o o n o o o o o u3 0 0 - 1 4 0 0 0 - 1 0 0 0 0 0 0 0 0 u4 - 1 0 0 0 4 - 1 0 0 - 1 0 0 0 0 0 0 0 us
‘4-1
0-1 0 o 0-1 0 0 0-
0 0 0 0 0 0 0
0 0
0 0
.o
0 0 0
0 0 0
i.e.
A!
=
0 0 0 0 0 0
’1’
’0.04’
1 0.04 1 0.04 1 0.04 1 0.04 0 - 1 4 - 1 0 0 - 1 0 0 0 0 0 0 u6 1 0.04 o 0 - 1 4 - 1 o 0 - 1 o o o o n u7 1 0.04 1 0 0 - 1 4 0 0 0 - 1 0 0 0 0 US = h z 1 = 0 . 0 4 0 - 1 0 0 0 4 - 1 0 0 - 1 0 0 0 US 1 0.04 0 0 - 1 0 0 - 1 4 - 1 0 0 - 1 0 0 u10 1 0.04 0 0 0 - 1 0 0 - 1 4 - 1 0 0 - 1 0 u11 1 0.04 0 0 0 0 - 1 0 0 - 1 4 0 0 0 - 1 u12 1 0.04 0 0 0 0 0 - 1 0 0 0 4 - 1 0 0 u13 1 0.04 0 0 0 0 0 0 - 1 0 0 - 1 4 - 1 0 u14 1 0.04 0 0 0 0 0 0 0 - 1 0 0 - 1 4 - 1 u15 1 0.04 0 0 0 0 0 0 0 0 - 1 0 0 - 1 4,(u16,
b.
The c o e f f i c i e n t m a t r i x A i s s y m t r i c and p o s i t i v e d e f i n i t e , sparse, and has a band-width o f 9. "Model Problem 2" corresponds t o h =
$J = 0.025.
I n t h i s second model problem, we have a l a r g e sparse l i n e a r system Ay = b, where t h e m a t r i x A i s o f o r d e r 1521, and t h e v e c t o r y c o n t a i n s t h e unknown values u , i = 1 , 1521, numbered i n t h e n a t u r a l o r d e r i n g . A has a bandw i d t h of' 79, and t h e r e a r e a t most f i v e non-zero e n t r i e s i n each row o f A.
...,
A p a r t f r o m equations d e r i v e d f r o m p o i n t s a d j o i n i n g a boundary, we have t o s o l v e a system ( h = 1/40) o f t h e f o r m
I t e r a t i v e Methods
627
I n g e n e r a l , numerical s o l u t i o n s o f ( e l l i p t i c ) p a r t i a l d i f f e r e n t i a l e q u a t i o n s l e a d t o l i n e a r systems w i t h t h e c o e f f i c i e n t m a t r i x h a v i n g a s t r u c t u r e somewhat s i m i l a r t o t h e ones generated b y t h e model problems. However, f i n i t e element schemes o f t e n produce a m a t r i x w h i c h i s l e s s sparse and w i t h l e s s p a t t e r n . I n t h e s u b r o u t i n e s l i s t e d i n t h e Appendix, t h e m a t r i x A i s t o be i n p u t i n an unsymmetric sparse form, a l t h o u g h f o r t h e second problem i t w o u l d c l e a r l y be more economical t o use a s y m m t r i c sparse s t o r a g e scheme. For t h e f i r s t model problem, t h i s w o u l d r e q u i r e t h e d a t a t o be i n p u t as
A 14, -1, -1, -1, 4 , -1, -1, -1, 4 , -1, -1, -1, 4, -1, -1, 4 , -1, -1, -1, -1, 4 , -1, -1, -1, -1, 4, -1, -1, -1, -1, 4 , -1, -1, 4, -1, -1, -1, -1, 4, -1, -1, -1, -1, 4, -1, -1, -1, -1, 4 , -1, -1, 4 , -1, -1, -1, 4 , -1, -1, -1, 4, -1, -1, -1, 41 J A l l , 2 , 5 , 1, 2, 3, 6 , 2, 3 , 4 , 7, 3, 4 , 8, 1, 5 , 6 , 9, 2, 5 , 6, 7,10,3,6,7,8,11,4,7,8,12,5,9,10,13,6,9,10,11, 14, 7, 10, 11, 12, 15, 8, 11, 12, 16, 9 , 13, 14, 10, 13, 14, i 5 , 11, i 4 , 15, 1 6 , 12, 15, 161 ISTARTIl, 4, 8, 12, 15, 19, 24, 29, 33, 37,
42, 4 7 , 51, 5 4 , 58, 6 2 , 651
Althouqh t h e s o l u t i o n o f t h e second model problem, h =,,1/40, i s more t y p i c a l of “ l a r g e sparse systems o f l i n e a r a l g e b r a i c equations , t h e f i r s t problem, w i t h o n l y 16 v a r i a b l e s , has been i n t r o d u c e d t o enable some o u t p u t s t o be shown i n t h e Appendix.
3.
MATRIX PRELIMINARIES L e t B be a r e a l NxN m a t r i x , and ,x an N-dimensional r e a l v e c t o r . (a)
Then p ( B ) , t h e s e c t r a l r a d i u s o f B, i s t h e maximum o f t h e moduli o f t h e eigenvalues o f d e t m(B) and M(B) ( o r , i f unambiquous, merely m and M) r e p r e s e n t t h e s m a l l e s t and l a r g e s t eiqenvalues o f B, s o t h a t m(B)
(b)
For
(c)
We d e f i n e t h e 2-norm o f ,x by
Il_xllz
11 11,
m a t r i x norm
=
(x&=
(
i
P ( B ) 2 IlBll
x:)”
i=1
The 2-norm o f B i s g i v e n b y
1 1 ~ 1 =1 ~ I~(B~B)I+, and t h i s m a t r i x norm IIB_xlI2 IIBIIZ =
i5t-Q
-.
Clearly /IB_x/I2 (d)
i s s u b o r d i n a t e t o t h e v e c t o r norm i n t h a t
II,x112
5
/lBl/2//x2(j/2.Also, i f B i s svmmetric, t h e n / / B / / z= p(B).
For any n o n s i n g u l a r m a t r i x !J, we d e f i n e t h e Id-norm o f t h e v e c t o r ,x and of t h e m a t r i x B b y
Len Colaan
628
and
IIBllw
=
IIWBW-'112.
Hence, i f I4BW-l i s symmetric, t h e n l j B l l w = P ( B ) . (e)
B i s symmetric p o s i t i v e d e f i n i t e i f and o n l y i f B i s symmetric and z'Bp0 f o r a l l _x#_O. Then a l l t h e eigenvalues o f B a r e p o s i t i v e , and &here e x i s t s a unique symmetric p o s i t i v e d e f i n i t e m a t r i x , denoted by B , whose square i s equal t o B . Also, B i s symmetric p o s i t i v e d e f i n i t e i f and o n l y i f t h e r e e x i s t s a n o n - s i n g u l a r m a t r i x X such t h a t B = X'X.
F O
( f ) B i s i r r e d u c i b l e (indecomposable) i f i t cannot be p u t i n t o t h e f o r m ( G H), where F and H a r e square, by simultaneous row and column permutations.
(9)
A m a t r i x B i s s a i d t o have "Pro e r t A i f , by a p p r o p r i a t e simultaneous row and column p e r m u t a t i o n s , - d k d k i r i t t e n i n t h e f o r m
where D1 and D2 a r e square diagonal m a t r i c e s . (h)
B = Ibll I has weak diagonal dominance i f Ibl,
I
N 2
1 /bil 1
1 =1
(l
I #1
and f o r a t l e a s t one i, t h e i n e q u a l i t y i s s t r i c t . Then i f B i s a r e a l symmetric m a t r i x which i s i r r e d u c i b l e , b >O f o r N, and B has weak diaqonal dominance t h e n B i s symnekkic i=l, positive definite.
...,
The m a t r i c e s A i n t h e l i n e a r systems A! = ,b d e r i v e d f r o m t h e model problems a r e i r r e d u c i b l e , have " P r o p e r t y A", have weak diagonal dominance and a r e s y m t r i c positive definite.
4.
B A S I C ITERATIVE METHODS
Consider a l a r g e sparse l i n e a r system
A!
=
b,
(4.1)
where A i s a g i v e n r e a l , n o n s i n g u l a r NxN m a t r i x , and b i s a g i v e n r e a l Ncomponent vector. Such systems t h a t a r i s e f r o m d i s c r g t i z a t i o n s o f p a r t i a l d i f f e r e n t i a l equations y i e l d a m a t r i x A t h a t i s u s u a l l y symmetric p o s i t i v e d e f i n i t e , and so t h i s assumption s h a l l b e made. I n any case, such a c o n d i t i o n i s o f t e n necessary t o guarantee convergence o f t h e i t e r a t i v e methods considered.
A l i n e a r s t a t i o n a r y i t e r a t i v e method o f t h e f i r s t degree can be c o n s t r u c t e d I t h e o r e t i c a l l y ) i n t h e f o l l o w i n q manner. Suppose t h e r e e x i s t s a n o n s i n o u l a r m a t r i x Q which i n some sense can be imagined'as b e i n g an approximation t o A, b u t , u n l i k e A, i s r e a d i l y i n v e r t i b l e . More p a r t i c u l a r l y , i t i s p o s s i b l e t o s o l v e c o n v e n i e n t l y any l i n e a r system o f t h e f o r m Q_x = ,c. F o r example, Q may be
Iterative Methods
629
a diagonal, t r i - d i a g o n a l , or lower t r i a n g u l a r matrix, o r t h e product of two o r more such matrices. Q i s c a l l e d a s p l i t t i n g matrix. The system (4.1) i s c l e a r l y equivalent t o
Q_u = (Q-A)!
b
+
which leads t o the i t e r a t i v e process - (Q-A)_~'"' +
Q_U(nC1)
i s not usually found e x p l i c i t l y , t h i s can be written as
Although Q-'
-
=
where B = I
-
U(n+l)
k.
k,
f
and ,k
Q-'A
(4.2) =
Q-'b.
Because the i t e r a t i o n matrix B i s constant, this process i s c a l l e d s t a t i o n a r y . (Information concerning nonstationary methods, such as Richardson's method, can be found i n Forsythe and Wasow (1960); o r Young (1954), (1971).)
...
The basicmethod ( 4 . 2 ) is conver ent i f the sequence g"', $", _u('), converqes t o the t r u e solutiongy f o r a l l i n i t i a l vectors y c O ) , and t h i s l i m i t i s independent of the choice o f $'). A necessary and s u f f i c i e n t condition f o r convergence i s t h a t p ( B ) < l .
The e r r o r vector a f t e r n i t e r a t i o n s i s
5 ( n ) = u( n )
-lj.
The residual vector i s
c'"'
=
b -
Ag'"',
(from (4.1))
and t h e pseudo-residual vector i s
6'"'
=
-
E(n)
-
-
,,ln+l)
Since y = Bg + E( " + I )
-
+ ,k
=
=
=
k,
B g
-
,,(nl
yln)
, (from ( 4 . 2 ) ) , in t h i s case.
then from (4.2) we have (n)
and hence
$ ( O ) . (")
Consequently,
IIL I12
(0)
II
IIB" 1 1 2 ,
f o r any g")
+ 0.
112
The average r a t e of convergence f o r n i t e r a t i o n s i s defined by 1 R,(B) = - iT Tn I I B n ( ( z a I f Rn(B1) <
Rn(B2),
then BZ i s i t e r a t i v e l y f a s t e r f o r n i t e r a t i o n s than E l .
Then, t o reduce an i n i t i a l error by a prescribed f a c t o r , sav l o m 6 , i t would require approximately
Len Colgan
630
'n 10' i t e r a t i o n s .
"lp.7-
However, the average r a t e of convergence, Rn(B), i s r a r e l y available. The asymptotic r a t e of converaence, denoted by R(B), i s defined by R(B) = lim R ( B ) ,
n-
n
and i t can be shown t h a t R(B) =
- In
(4.3)
p(B).
(Since IIBn112 2 Cp(B)In f o r a l l n t l , then R ( B ) which IIBn112 < 1.)
2
Rn(B)
for any positive n f o r
This asymptotic r a t e of convergence R(B), f o r a convergent matrix B , i s certainly t h e simplest p r a c t i c a l way i n modern usage o f measuring t h e rapidity of convergence. Hence, a crude estimate o f th_e,number o f i t e r a t i o n s required t o reduce the norm of t h e e r r o r by a f a c t o r 10 i s given by (4.4)
However, this estimate can often y i e l d misleadingly low values f o r n. example, see Varga (1962). 1 4.1
Jacobi Method
[For
I t e r a t i v e Methods
(n+l)
UlS
(n+l)
+ u):
= %(u(,;)
+ u';:
u15
=
L(u::'
-t
u:!")
=
L(u\;)
+ ui;)
-t
631
0.04)
+ u'~:) + 0.04)
u):
-t
0.04)
Using an i n i t i a l e s t i m a t e _ u C o ) = Q, s u b r o u t i n e JAC (see Appendix B), a c o r r e s p o n d i n g c a l l i n g program, and a s u i t a b l e s t o p p i n g c r i t e r i o n (see l a t e r ) , t h e o u t p u t i n Appendix B i s obtained. The s p e c t r a l r a d i u s (SR i n t h e s u b r o u t i n e ) i s e s t i m a t e d , and s t o p p i n g i s i n v o k e d when
F o r t h e second model problem, t h e Jacobi method i s e q u i v a l e n t t o r e w r i t i n g (2.1) i n t h e i t e r a t i v e form
We can express t h e m a t r i x A as t h e m a t r i x sum A=D+L+U, where D i s t h e diagonal m a t r i x such t h a t d,l = a , 1 , and L and U a r e r e s p e c t i v e l y s t r i c t l y l o w e r and upper t r i a n q u l a r NxN m a t r i c e s , whose e n t r i e s a r e those r e s p e c t i v e l y below and above t h e main d i a s o n a l o f A. We can t h e n r e w r i t e (4.1) as DL.~ = -(L+U)!
+ ,b,
which i n t u r n y i e l d s t h e Jacobi i t e r a t i o n method
-
U(n+l)
= - 0 - l (L+U)y'"'
+ D-'_b.
Hence our general n o t a t i o n corresponds t o a s p l i t t i n g m a t r i x i t e r a t i o n matrix
BJ :-D-l(L+U)
I
=
-
D-' A, and
k,
Q,
:D, an
z D-'_b.
I t s h o u l d be p o i n t e d o u t t h a t i t i s p o s s i b l e t o n o r m a l i z e t h e i n i t i a l m a t r i x problem so t h a t t h e diagonal elements a r e u n i t y (see Varqa (1962)), and t h i s a v o i d s numerous d i v i s i o n o p e r a t i o n s d u r i n g t h e i t e r a t i v e process.
The Jacobi method w i l l converge p r o v i d i n g p(B,) < 1. However, t h i s i s n o t guaranteed, even though t h e m a t r i x A m i g h t be s y m m t r i c p o s i t i v e d e f i n i t e , because, a l t h o u g h i t can be shown t h a t t h e eiqenvalues o f B a r e r e a l a n d < 1, i t i s p o s s i b l e t h a t m(B,) < -1. (The Jacobi method converse if both A and 2D-A a r e symmetric p o s i t i v e d e f i n i t e . )
A u s e f u l s u f f i c i e n t c o n d i t i o n f o r convergence i s t h a t A i s i r r e d u c i b l e and has weak diaqonal dominance w i t h 4 , > 0 ( a s t r o n g e r c o n d i t i o n t h a n p o s i t i ve d e f i n i teness)
.
Another s u f f i c i e n t e x t r a c o n d i t i o n besides p o s i t i v e d e f i n i t e n e s s i s f o r t h e I n t h i s case t h e e i g e n v a l u e s o f B, a r e m a t r i x A t o have " P r o p e r t y A". hl f o r [A, I < 1. T h i s w o u l d i m p l y e i t h e r z e r o o r e x i s t as r e a l p a i r s t h a t p(B,) = M(B,) < 1.
*
Len CoZgan
632
Because o f i t s importance i n t h e i t e r a t i v e methods s t i l l t o be discussed, we denote XJ = M(BJ) t o be t h e l a r g e s t p o s i t i v e e i g e n v a l u e o f BJ. The Jacobi i t e r a t i o n m a t r i c e s f o r t h e model problems possess a l l these p r o p e r t i e s . I n f a c t , i t can be shown t h a t X, = cosnh i n each case. For h = 0.2,
For h = 0.025,
0.809017.
XJ
XJ = 0.996317.
Hence t h e appro2imate number o f i t e r a t i o n s r e q u i r e d t o reduce t h e e r r o r by a f a c t o r 10- i s n =
I n lo6 - I n cos ah'
For h = 0.2. t h i s i m o l i e s 66 i t e r a t i o n s . and i s v e r i f i e d i n ADDendix 8. I J i t h h = 1/40, t h i s y i e l d s n = 4475. [ i i t h g(") = ,O, i t a c t u a i l y takes 4479.1 We n o t e t h a t t h e converqence r a t e o f t h e Jacobi method appears t o b e very slow, I t can be shown f o r any g e n e r a l i z e d O i r i c h l e t problem t h a t t h e number o f i t e r a t i o n s r e q u i r e d t o achieve a s p e c i f i e d l e v e l o f converqence i s p r o p o r t i o n a l t o l / h 2 f o r a small mesh-size h. The f a c t t h a t t h e Jacobi method can be a c c e l e r a t e d , u s i n q Chebyshev a c c e l e r a t i o n , t o y i e l d a p r o p o r t i o n a l i t y o f l / h , i s adequate reason f o r i t s i n c l u s i o n here. The n e x t two b a s i c methods, Gauss-Sei del and Successive O v e r r e l a x a t i o n , a l t h o u g h i n d i v i d u a l l y f a s t e r t h a n Jacobi, cannot be a c c e l e r a t e d i n t h e same way.
NOTE:
Suppose o u r b a s i c Jacobi i t e r a t i o n was o f t h e f o r m
U(n+l)
=
i
(n) alul-k
(n) +
a2ul-l
+ a3 u(") + a4 u(") + c, f o r ai > 9, i=l,.., 1+1 1+k
4.
T h i s might correspond t o a general e l l i p t i c p a r t i a l d i f f e r e n t i a l equation where, say,
k = l - 1 h ' and u(x,y) i s g i v e n on t h e boundary o f t h e u n i t square. shown t h a t
+
XJ = 2(-
G) cosnh.
Our model problems correspond t o a, = 4.2
Then i t can be
4, i=1,..,4.
Gauss-Sei del Method For t h e f i r s t model problem, t h e Gauss-Seidel i t e r a t i v e method i s r e p r e s e n t e d by
d"+l)=
&(u:"'
+ '":it +
U:n+l)
=
g(,,\"+l)
,,in+')
=
L(~:"+') + u:")
Ul"+l
u:"")
)
+ + +
+ u\"' & ( J l n + l+ ) ~(6") +
= &(u:"+') =
+ 0.04) u:")
+ +
0.04) 0.04)
0.04)
u:"'
t 0.04)
I t e r a t i v e Methods
633
See Appendix C f o r a p o s s i b l e s u b r o u t i n e GS, w i t h an o u t p u t corresponding t o y(O) = 0, and a s t o p p i n q c r i t e r i o n s i m i l a r t o t h a t f o r t h e Jacobi method. I t r e q u i r e d 34 i t e r a t i o n s . For t h e second model problem, t h i s i s e q u i v a l e n t t o r e w r i t i n g (2.1) it e r a t i ve form
i n the
i.e. t h e l a t e s t e s t i m a t e s f o r a l l components of g a r e always used i n subsequent computations. I n m a t r i x form,
Hence t h e s p l i t t i n g m a t r i x i s BGS = - ( P L ) - ' U = I - (D+L)-'A,
*
Q,, E and
P L , the i t e r a t i o n matrix i s 3 (D+L)-l_b.
kGs
I t can be shown t h a t i f A i s symmetric p o s i t i v e d e f i n i t e , t h e n t h e Gaussconverge. (The eigenvalues need n o t be r e a l , and Seidel i t e r a t i o n complex eigenvalues t e n d t o produce an i r r e g u l a r convergence.) However, i f A i s " c o n s i s t e n t l y ordered" (see K i n c a i d and Young (1978); o r Varga (196?), f o r a p r e c i s e d e f i n i t i o n ) and has " P r o p e r t y A", t h e n t h e eigenvalues o f ,B, a r e r e l a t e d t o t h o s e o f B, i n t h e f o l l o w i n g way: t h e e i g e n v a l u e s o f ,B w i l l be r e a l , and f o r each nonzero p a i r 2 XI o f B,, t h e r e corresponds e i qenval ues 0, XIz f o r BGS
.
Hence, i n t h i s case,
and t h e Gauss-Seidel i t e r a t i o n converges a b o u t t w i c e as f a s t as t h e Jacobi i t e r a t i o n . I t w o u l d r e q u i r e about h a l f as many i t e r a t i o n s t o a c h i e v e t h e
Len CoZgan
634
accuracy s p e c i f i e d i n (4.4);
R(Ba,)
i.e.
= 2 R(B J
1. .
T h i s i m p l i e s about 33 i t e r a t i o n s f o r h = 0.2, and about 2240 i t e r a t i o n s f o r h = 1/40. (Using s u b r o u t i n e GS, t h e 2240 i t e r a t i o n s have been verified.) The number o f i t e r a t i o n s i s again, o f course, p r o p o r t i o n a l t o l / h 2 . The Gauss-Seidel method i s i n c l u d e d here m a i n l y t o i n t r o d u c e t h e n e x t procedure, Successive O v e r r e l a x a t i o n . B e f o r e d o i n q so, a b r i e f comment on I d e a l l y , we m i g h t wish t o guarantee a s t o p p i n g c r i t e r i o n i s warranted. that
say, w i t h an added s a f e g u a r d c o n d i t i o n taken n s nmx nmx *
, f o r some
prescribed
However, we cannot measure e i t h e r ( 1 ~ ' " ) ( ( 2 o r ( I L I ( ~ z p r e c i s e l y . Ue can f i n d t h e pseudo-residual b c n ) a t ea& sten, b u t t h i s can o n l y be used e f f e c t i v e l y i f we have a good e s t i m a t e f o r t h e s p e c t r a l r a d i u s o f t h e i t e r a t i o n m a t r i x . I t s h o u l d be p o i n t e d o u t t h a t a s t o p p i n g t e s t o f t h e form
not i m p l y
does 4.3
t h e accuracy s p e c i f i e d above.
Successive O v e r r e l a x a t i o n (SOR) Method For t h e second model problem, t h i s i s e q u i v a l e n t t o r e w r i t i n g (2.1) i n t h e i t e r a t i v e form n + l)
(,,
I
= W{4(Ui-,,
("+I) +
+
(n+') u,.l
+ u;:ie+
u:+":
h2)l
+ (l-o)ul("'.
The parameter o i s c a l l e d a r e l a x a t i o n parameter. The new e s t i m a t e u , ( ~ + ' ) can be regarded as a w e i g h t e d average o f a t e r m o b t a i n e d i n a manner s i m i l a r t o t h e Gauss-Seidel concept and t h e c u r r e n t e s t i m a t e d " ) . T h i s i t e r a t i o n i s l i n e a r , sta+,ionary and c o m p l e t e l y c o n s i s t e n t w i t h ' (4.1), i n t h e sense t h a t i f i t converges, i t gives t h e t r u e s o l u t i o n y. I n m a t r i x form,
-. ,,(n+l)
(E+wL)_u'"*'' _u("+"
-
= w ~ ~ - ' ( - ~ ~ ' " + ' ) IJ_u'"' = C-WU
= (DewL)-'C-wU
The s p l i t t i n g m a t r i x i s
+ (l-w)Dl_u'"'
+
+ (1-w)Dly'"' QSOR
BsoR :( D+oL)-lC-wth(l-w)D1 and
+ !)I
+ (i-w)_U'") o,b
+ (E+wL)-'w_b.
:$0 + L, t h e I t e r a t i o n m a t r i x i s =
I
-
( i D + L)-lA,
635
I t e r a t i v e Methods
kso,
(2+ L I - ' ~ .
F ( D + ~ L ) - '=~ ~1
For w = 1, the method i s merely Gauss-Seidel. I t can be shown tha t i f A i s symmetric positive d ef i n i t e and irreducible, then p(Bso,)
2 A,,
r
X2,
...,
k
XN1 ( X i
> 0 ) and N2 zero
Corresponding t o 2 A, 1 > 0, there are two eigenvalues fying the relationship lJ
+ w
-
1=
WAG,
i.1
o f BsoR
satis(4.3.1)
or equivalently,
For o > 1, t h i s usually produces complex eigenvalues N2 eigenvalues of BsoR ar e a l l equal t o (1-u).
i.1.
The remaining
I n p a r t i c u l a r , we know t h at w = 1 corresponds t o the Gauss-Seidel i t e r a t i o n . Then equation (4.3.1) confirms the e a r l i e r statement concerning the r a t e s of convergence of the Jacobi and Gauss-Seidel methods under the conditions being assumed; i . e . p(BG,) = C p ( B J ) 1 2 = Xi. There i s an optimal value of w, denoted by wept, t h a t minimises the spectral radius o f BSOR, depending on A,; i.e.
w
OPt
minimises - A max s A 5xJ J
i
12* (4.3.2)
2 p(BSoE) = w
-
1, i f
w t u,,~.
Len Colgan
636
T h i s graph shows how p(BS0,) v a r i e s w i t h choices o f w between 0 and 2, and how t h e r a t e o f convergence would improve d r a m a t i c a l l y as w approaches w f r o m below. OPt
, l e t p(B R ) = i. I f we were For convenience o f n o t a t i o n , when o = w t o know w, t , which we can c e r t a i n l y f i 8 8 ' v i a (4.3.57 i f we know A,, then t h e r a t e o? convergence o f t h e SOR method i s a b o u t 2d times t h e square r o o t o f t h e r a t e o f convergence o f t h e Jacobi method (and hence about t w i c e t h e square r o o t o f t h e r a t e o f convergence o f t h e Gauss-Seidel method). I n p a r t i c u l a r , t h e number o f i t e r a t i o n s r e q u i r e d t o o b t a i n t h e e r r o r r e d u c t i o n p r e v i o u s l y p r e s c r i b e d i s now p r o p o r t i o n a l t o l / h . For t h e model problems, A, = cos Hence, from (4.3.2),
w
= 1.8545 f o r h = 1/40.
which i s
I-.
opt
1~
h.
2 = ___ l+sinnh, which i s = 1.2596 f o r h
=
0.2,
and
The s p e c t r a l r a d i u s o f BsoR w i t h w = wa p t i s
0.2596 f o r h = 0.2,
and = 0.8545 f o r h = 1/40.
Using
we expect t o r e q u i r e 11 i t e r a t i o n s f o r h = 0.2 and 88 i t e r a t i o n s f o r h = 1/40. However, u s i n g t h e t r u e v a l u e o f wept as i n p u t s i n t o t h e s u b r o u t i n e SOR o f Appendix D, i t i s found t h a t 15 and 114 i t e r a t i o n s r e s p e c t i v e l y a r e a c t u a l l y r e q u i r e d . T h i s i s because t h e i t e r a t i o n m a t r i x Bso,, c o r r e s ponding t o Q ~ i s~n o,t a b l e t o be d i a g o n a l i s e d , b u t has a Jordan Canonical Form which leads t o a s m a l l e r r e d u c t i o n i n t h e e r r o r s t h a n p r e d i c t e d by t h e s p e c t r a l r a d i u s alone. For e f f e c t i v e use o f t h e SOR method, i t i s e s s e n t i a l t h a t we have an a c c u r a t e e s t i m a t e f o r A,, and thereby G p t . I f we o v e r e s t i m a t e Q ~ t h~ e decrease i n t h e a s y m p t o t i c r a t e o f convergence i s n o t t o o s e r i o u s . However, an underestimate of h p tproduces a c o n s i d e r a b l e r e d u c t i o n i n t h e
,
Iterative Methods
637
convergence r a t e . I f t h e m a t r i x A has “ P r o p e r t y A “ , i t i s i n t e r e s t i n g t h a t t h e v a l u e o f wept i s independent o f t h e o r d e r i n which t h e unknowns a r e a c t u a l l y determined f o r most p r a c t i c a l o r d e r i n g s . E s t i m a t e s f o r A, can sometimes be o b t a i n e d a p r i o r i , o r e l s e an a d a p t i v e procedure can be employed f o r t h e a u t o m a t i c d e t e r m i n a t i o n o f A, as t h e a c t u a l i t e r a t i v e procedure i s b e i n g c a r r i e d o u t . (See Young (1971) o r Hageman (1972).)
A p o s s i b l e a d a p t i v e procedure t h e n can e a s i l y be i n c o r p o r a t e d i n t o an SOR code u s i n g t h e f a c t t h a t g i v e n e i t h e r A, ( t h e s p e c t r a l r a d i u s o f B J ) o r ( t h e s p e c t r a l r a d i u s o f ,,B, w i t h w = Q ~ ~ a)l l , t h r e e q u a n t i t i e s A,, p and wept can be determined v i a r e l a t i o n (4.3.2) as w e l l as (4.3.3) which i s d e r i v a b l e from (4.3.1) and t h e f o r m u l a f o r
i=
p(Bso,).
The f o l l o w i n g a d a p t i v e procedure i s n o t r i g o r o u s i n t h a t i t r e q u i r e s f o r a l l values o f w used w h i l e we seek t h e optimum v a l u e . liowever, i n p r a c t i c e , i t has been q u i t e s u c c e s s f u l .
w < woqt
(i)
Choose a value w so t h a t w < wept i s c e r t a i n ; f o r example, we c o u l d s t a r t w i t h w = 1.
(ii)
Apply a few steps o f SOR, and t h e n use t h e r a t i o o f c o n s e c u t i v e pseudo-residuals
where
g n ) = u_(”cl)
-
d n ), as
an estimate f o r
i.
(iii)
Use t h i s e s t i m a t e f o r i, and t h e c u r r e n t w, t o c a l c u l a t e a corresponding e s t i m a t e f o r A, v i a (4.3.3)
(iv)
Use t h i s A, e s t i m a t e t o c a l c u l a t e an improved v a l u e f o r wept v i a (4.3.2). Then r e t u r n t o (ii).
P r o v i d e d we a r e s e n s i b l e i n d e c i d i n g how o f t e n t o a p p l y t h i s a d a p t i v e process, t h e v a l u e o f o,, can be o b t a i n e d f a i r l y e a s i l y w i t h o u t adding much c o s t t o t h e o v e r a l l Successive O v e r r e l a x a t i o n method. T h i s process t h e o r e t i c a l l y r e l i e s on t h e e s t i m a t e w approaching uOpt f r o m below. As i t does so, t h e convergence r a t e of t h e a c t u a l SOR method improves noticeably.
A
s t o p p i n g t e s t which i s v e r y n e a r l y e q u i v a l e n t t o (n)
llE 112 -___ <
say, i s as f o l l o w s :
A f t e r t h e nth i t e r a t i o n , d e f i n e [~(n),
if
-
I < R‘”’
< 1,
Then t h e SOR process t e r m i n a t e s when
Len CoZgan
638
T h i s t e s t i s found t o be s a t i s f i e d w i t h i n a c o u p l e o f i t e r a t i o n s a f t e r t h e d e s i r e d accuracy has a c t u a l l y been achieved. Appendix 0 shows t h e o u t p u t corresponding t o u s i n g a n i n i t i a l i n p u t of w = 1, and t h e n a d a p t i n g t o f i n d wept. I t takes 17 i t e r a t i o n s , which i s was known i n advance. ( O b v i o u s l y o n l y 2 more t h a n needed i f t h e t r u e W, a b e t t e r i n i t i a l e s t i m a t e f o r w would 6e s u p p l i e d , i f a v a i l a b l e . ) The s u b r o u t i n e SOR does n o t a l l o w t h e v a l u e o f w t o change t o o o f t e n , and i n t h i s case t h e r e i s o n l y one change f r o m t h e i n i t i a l w = 1 t o w = 1.28213 a f t e r 5 i t e r a t i o n s . Suppose we make i t even more d i f f i c u l t t o change t h e v a l u e o f w by a l t e r i n g t h e 1 1 5 t h l i n e o f t h e s u b r o u t i n e ( w i t h 0.01) t o read IF(ABS(
SR-PSNORM/PSPREV) .GT
.o . O ~ O ~ ) T H E N
i . e . change 0.01 t o 0.0001. Then t h e o n l y change i n w i s a f t e r 14 i t e r a t i o n s t o y i e l d a new w = 1.25967. A l t h o u g h t h i s i s a l m o s t e x a c t l y wept, i t takes a t o t a l o f 24 i t e r a t i o n s b e f o r e convergence i s o b t a i n e d . B a s i c a l l y , t h e more i t e r a t i o n s performed w i t h a g i v e n W, t h e b e t t e r w i l l be t h e n e x t e s t i m a t e f o r wept. However, we c a n n o t a f f o r d t o use a poor v a l u e o f w t o o l o n g . Obviously, a compromise i s r e q u i r e d . S i m i l a r l y , f o r t h e second model problem w i t h h = 1/40 and 1521 v a r i a b l e s , t h e a d a p t i v e SOR method ( w i t h 0.0001) r e q u i r e s 154 i t e r a t i o n s , compared t o 114 ifuopt was known. Using an i n i t i a l w = 1, t h e a d a p t i v e method changes w t o w = 1.8000 a f t e r 26 i t e r a t i o n s , t o w = 1.8500 a f t e r 34 i t e r a t i o n s , and t o w = 1.8549 a f t e r 130 i t e r a t i o n s , t h e r e b y c o n v e r g i n g i n 154 i t e r a t i o n s . (Compare w i t h t r u e wept = 1.8545.) 4.4
Symmetric Successive O v e r r e l a x a t i o n (SSOR) method Each i t e r a t i o n o f t h e SSOR method c a n be regarded as two d i s t i n c t o p e r a t i o n s . F i r s t l y , i t uses a f o r w a r d SOR i t e r a t i o n i n which t h e unknowns a r e computed s u c c e s s i v e l y i n t h e i r n a t u r a l o r d e r i n g , and t h e n a backward SOR i t e r a t i o n i n which t h e unknowns a r e computed i n t h e o p p o s i t e o r d e r . The same v a l u e o f t h e r e l a x a t i o n f a c t o r W, 0 < w < 2, is used i n b o t h p a r t s o f each SSOR i t e r a t i o n . L e t BBSOR be t h e i t e r a t i o n m a t r i x a s s o c i a t e d w i t h t h e backward sweep. Then each SSOR i t e r a t i o n , depending upon a r e l a x a t i o n f a c t o r W, c a n be w r i t t e n i n a m a t r i x f o r m such as
where and
BsoR BBSOR
= ( DtwL) = (O+wU)-'
-'C -wU+(
1- w ) D I
[ -wL+( 1-w)Dl.
Hence, t h e i t e r a t i o n m a t r i x f o r t h e Symmetric Successive O v e r r e l a x a t i o n method i s g i v e n by
I t e r a t i v e Methods
Bs ,OR
5
( D+wU)
-'C -wL+(
1-w) 0 1(D+wL )
-'C -mu+(
639
1 -w) 0 1.
I t can b e shown t h a t t h e c o r r e s p o n d i n g s p l i t t i n g m a t r i x i s
I n t e r e s t i n g l y , i f A i s a symmetric p o s i t i v e d e f i n i t e m a t r i x ( i . e . LT=U), and 0 < w < 2 , t h e n t h e s p l i t t i n g m a t r i x Q i s i t s e l f symmetric p o s i t i v e d e f i n i t e . T h i s f a c t can be used t o prove t h a t , i f 0 < w < 2, a l l t h e eigenvalues h. o f ,,B a r e r e a l and l i e i n t h e i n t e r v a l 0 5 X < 1. (See Young (1971).) The r a t e o f convergence o f t h i s SSOR method i s n o t p a r t i c u l a r l y s e n s i t i v e t o t h e p r e c i s e c h o i c e o f t h e r e l a x a t i o n f a c t o r W, and so t h e e x a c t optimum v a l u e o f w i s n o t necessary. A number o f good values f o r w have been expounded, depending upon t h e i n f o r m a t i o n a v a i l a b l e . I n any case, i t i s known t h a t t h e SSOR method converges s a t i s f a c t o r i1y prov i d e d
P(D-'LD-~u)
5
b.
T h i s p a r t i c u l a r c o n d i t i o n i s s a t i s f i e d f o r themodel problem, and f o r most examples o f g e n e r a l i s e d D i r i c h l e t problems p r o v i d e d t h e n a t u r a l o r d e r i n g o f t h e mesh p o i n t s i s employed. I f we know t h a t P(D-~LD-'U) 5 i j , and we also know A,, t h e l a r g e s t e i g e n v a l u e o f t h e c o r r e s p o n d i n g J a c o b i i t e r a t i o n m a t r i x , t h e n a good v a l u e f o r w would be W*
=
2
1+
4 2 m
(See Young (1971). )
Moreover, f o r t h i s v a l u e to*, i t can be shown t h a t
I n a more general s i t u a t i o n , we m i g h t be a b l e t o f i n d a n upper bound f o r
p(D-lLD-lU), say B ( L ~ ) ,and an upper bound f o r X J , say a good v a l u e f o r w would b e W*
1,.
I n t h i s case,
2
=
1+w i t h a c o r r e s p o n d i n g bound f o r p(BssoR).
As a t y p i c a l comparison between t h e e f f e c t i v e n e s s o f t h e SOR method u s i n g wept, and t h e SSOR method u s i n g w*, c o n s i d e r t h e model problems. Here h., = cosah, and we know 4 i %. Hence w*=--
2 1 + fi(1-cosnh)'
which i s v e r y c l o s e t o
2 1t 2 sin
ah
Len CoZgan
640
w
=
1
t
2 sinnh
Comparing these, we can see t h a t t h e SOR Method converges about t w i c e as q u i c k l y as t h e SSOR method. T h i s c o n d i t i o n i s t r u e f o r most l i n e a r systems d e r i v e d f r o m g e n e r a l i z e d D i r i c h l e t problems f o r which 5 J-h, and t h e number o f i t e r a t i o n s necessary i s a p p r o x i m a t e l y p r o p o r t i o n a l t o l / h , f o r small h. Besides needing t w i c e as many i t e r a t i o n s , t h e SSOR method r e q u i r e s t w i c e as much work p e r i t e r a t i o n . However, t h e s e d i s advantages can be overcome i n two ways. F i r s t l y , i t i s p o s s i b l e t o e x t r a p o l a t e t h e SSOR method, which c a n square t h e s p e c t r a l r a d i u s o f t h e i t e r a t i o n m a t r i x . B u t most i m p o r t a n t l y , s i n c e t h e eigenvalues X o f 8 a r e r e a l w i t h 0 IX < 1, we can a c c e l e r a t e t h e convergence o f t h e SSORSoR method by employing e i t h e r Chebyshev a c c e l e r a t i o n or c o n j u g a t e g r a d i e n t a c c e l e r a t i o n (see ahead).
B
A s u b s t a n t i a l improvement i n t h e convergence r a t e c a n be achieved i n t h i s manner. T h i s i s n o t p o s s i b l e w i t h t h e SOR method. S i m i l a r l y , we c a n a c c e l e r a t e t h e Jacobi method, b u t n o t Gauss-Seidel. 5.
CHEBYSHEV ACCELERATION (See Hageman and Young (1981); o r Varga (1962).)
K i n c a i d and Young (1978);
Consider a b a s i c s t a t i o n a r y i t e r a t i v e method o f t h e f o r m
-
$")
U("+l) = B
t
,k,
where t h e eigenvalues o f t h e i t e r a t i o n m a t r i x B a r e r e a l . F o r example, we m i g h t use t h e Jacobi i t e r a t i o n w i t h B, = I Symmetric Successive O v e r r e l a x a t i o n i t e r a t i o n w i t h BsSoR = (D+wU)-'C-wL+( l-w)DI(D+wL)-'C-d+(
-
D-'A,
or the
l-o)OI.
L e t m = m(B) and M =M(B) r e p r e s e n t r e s p e c t i v e l y t h e s m a l l e s t and l a r g e s t eigenvalues X o f B, so t h a t m
2
X
2
M, f o r a l l X.
The Chebyshev a c c e l e r a t i o n t e c h n i q u e does n o t assume t h a t t h e m a t r i x A o f t h e o r i g i n a l l a r g e sparse l i n e a r system i s n e c e s s a r i l y p o s i t i v e d e f i n i t e . I n s t e a d , i t m e r e l y r e q u i r e s t h a t t h e i t e r a t i o n m a t r i x B i s s i m i l a r t o a syrrmetric m a t r i x w i t h r e a l eigenvalues l e s s t h a n one. i.e.
M
< 1.
Even i f t h e b a s i c method d i v e r g e s because m < -1, t h i s a c c e l e r a t i o n process converges and i s s t i l l v e r y e f f e c t i v e . In a l l cases, i t produces a c o n s i d e r a b l e improvement i n t h e r a t e o f convergence. etrization
Fundamentally, we r e q u i r e t h e e x i s t e n c e o f a n o n s i n g u l a r s m a t r i x W such t h a t WBW-' i s symmetric w i t h eigenvalues X
I t e r a t i v e Methods
641
E q u i v a l e n t l y , we r e q u i r e W such t h a t w(I-B)w-~
= I - WBW-'
i s symmetric p o s i t i v e d e f i n i t e , For example, suppose A i s symmetric p o s i t i v e d e f i n i t e , and l e t W = 0'. b a s i c Jacobi method w i l l d i v e r g e i f m(BJ) < -1.) Then
(The
W (I - B ~ 1w-l = D'(D-'A)D-'' = CTC
where C = AHD-''. S i m i l a r l y , f o r t h e SSOR method, l e t
D-'(D+~U),
w=-
o
<
i 2.
Then W(I-BssoR)W-' i s symnetric p o s i t i v e d e f i n i t e . choose W = QrsoRor W = A' i n t h i s case.
I n f a c t , we c o u l d a l s o
Even though i t i s n o t e s s e n t i a l , i t i s c o n v e n i e n t t o assume t h a t A i s symmetric p o s i t i v e d e f i n i t e i n o r d e r t o a n a l y z e t h e e f f e c t i v e n e s s o f Chebyshev a c c e l e r a t i o n . I t i s a polynomial a c c e l e r a t i o n , and i s termed a s e m i - i t e r a t i v e method w i t h r e s p e c t t o t h e c o r r e s p o n d i n g b a s i c i t e r a t i v e method. An o u t l i n e o f t h e t h e o r y behind Chebyshev a c c e l e r a t i o n i s as f o l l o w s : Suppose we have a b a s i c i t e r a t i v e method t h a t generates a sequence o f v e c t o r s v ( ~ ) ; i . e . we have a n i n i t i a l v e c t o r y ( O ) , and t h e n B
v(l) = !(')
-
V(n+l)
=
f
y(n)
_k e t c , such t h a t
+ _k.
A t t h e nth i t e r a t i o n , we w i s h t o choose c o n s t a n t s anI , i=O,l,..,n define
and t h e n
i n such a way t h a t t h e sequence o f v e c t o r s u(") tends towards t h e t r u e was solution o f Ay = b i n some o p t i m a l f a s h i o n . I f t h e i n i t i a l v e c t o r y"' i n f a c t u , t h e n c l e a r l y v ( " ) = u f o r a l l n 2 0, and so we r e q u i r e i n t h i s case t h a t u_cn) = 9 f o r aT1 n 2 0.
u
n
Hence we have t h e added c o n d i t i o n t h a t n
Since y =
1
i = o
1 anl 1 = 0
an12, we have
= 1, f o r each n 2 0.
Len CoZgan
642
i.e.
2")= Pn(B) E ( ' ) , "
C
pn ( x ) =
where t h e polynomial Pn(x) i s given by
anlxi
, for n
2
O.
1 - 0
The o n l y r e s t r i c t i o n we have imposed so f a r on t h e polynomials Pn(x) i s t h a t P n ( l ) = 1. L e t W be t h e synunetrization m a t r i x corresponding t o t h e m a t r i x B. Since WBW-l i s symmetric, then WP,(B)W-l i s a l s o symmetric, and hence IIPn(B)Ilw = p(Pn(B)) (see M a t r i x P r e l i m i n a r y ( d ) ) . Thus,
imp1 ies
A t t h e nth i t e r a t i o n , our o b j e c t i v e i s t h e r e f o r e t o choose t h e constants a,, so as t o minimise p(Pn(B)).
..,
L e t XI = m, A z , of Pn(B) a r e P n ( h l ) ,
A = M < 1 be t h e eigenvalues o f B. The eigenvalues Hence, f o r each n, we wish t o minimise
.., Pn?XN).
Instead o f t h i s p r o b l m , consider a s i m i l a r m i n i m i s a t i o n problem which d e t e r mines t h e v i r t u a l s p e c t r a l r a d i u s p(Pn(B)); we minimise
given t h a t P n ( l ) = 1. The s o l u t i o n o f t h i s problem i s c l a s s i c a l , and can be expressed i n terms o f Chebyshev polynomials, T,(x). Because o f a l i n e a r transformation, and t h e c o n d i t i o n P n ( l ) = 1, we f i n d t h a t
C l e a r l y t h i s expression could be used t o generate t h e c o e f f i c i e n t s but t h i s would be cumbersome, and, besides, t h e necessary storage o f a l l t h e vectors y C o ) , y ( l ) , , y ( n ) would be unmanageable. T h i s Chebyshev a c c e l e r a t i o n process can be reduced t o a second degree i t e r a t i o n by making use o f t h e second order recurrence r e l a t i o n f o r Chebyshev polynomials; v i z .
...
T ~ ( x )= 1 Ti(x) = x T,+,(x)
= 2x T,(x)
-
TnVl(x),
n
t
1.
Using t h i s recurrence, and a c e r t a i n amount o f algebra, t h e Chebyshev
Iterative Methods
643
a c c e l e r a t i o n process can be expressed s i m p l y as t h e second-degree s e m i - i t e r a t i v e method : L e t m, M < 1 be t h e s m a l l e s t and l a r g e s t eigenvalues r e s p e c t i v e l y o f t h e general i t e r a t i o n m a t r i x B. D e f i n e c o n s t a n t s
2 Then, g i v e n
2-M-m
,for n
an a r b i t r a r y
u _ ( ~ + ' )=
*
w,+,{y(B~~'")+k)
+
2
0 let
( l - y ) ~ ' ~ )+ } ( l - ~ ~ + ~ ) { ~ - " ,
where t h e sequence o f a c c e l e r a t i o n parameters w
n
W1
= 1;
Wp
=
l-c,a'
n+l
=-
1-&0'w~
for n
i s defined by 2
2.
I f m and M a r e c o r r e c t l y chosen, t h e n Chebyshev a c c e l e r a t i o n converges cons i d e r a b l y f a s t e r t h a n t h e b a s i c method. One p o s s i b l e disadvantage i s t h a t i t r e q u i r e s s t o r a g e o f two i t e r a t i o n v e c t o r s a t each stage. A f i r s t - d e g r e e f o r m does e x i s t , b u t t h e a c c e l e r a t i o n parameters t h e n tend t o become l a r g e , p o s s i b l y making t h e i t e r a t i o n u n s t a b l e due t o r o u n d i n g e r r o r .
I t c a n be shown t h a t t h e sequence o f which i s g i v e n b y
W ,
parameters tends towards a l i m i t , ,w
From t h e d e r i v a t i o n o f t h e a c c e l e r a t i o n procedure, and knowing t h e maximum v a l u e o f t h e Chebyshev p o l y n o m i a l s o v e r t h e r e l e v a n t i n t e r v a l , i t c a n t h e n be shown t h a t t h e v i r t u a l s p e c t r a l r a d i u s i s
O f course, p ( P m ( B ) )
l+r" --
5; 2rn'2
2r""
f o r l a r g e n. Consider t h e second model
problem, where M = -m = cosah, h = 1/40, when we a p p l y Chebyshev a c c e l e r a t i o n t o t h e b a s i c Jacobi method. Then y = 1, u = M, and so r = - 1-s in r h l + s i nah'
To a c h i e v e t h e accuracy p r e s c r i b e d e a r l i e r , we r e q u i r e n
zw
185 i t e r a t i o n s ,
(Using s u b r o u t i n e JSI o f Appendix E, which c a n b e c o n f i r m e d by experiment. w i t h t h e t r u e values o f M, rn i n p u t , and a s u i t a b l e s t o p p i n g t e s t , 187 i t e r a t i o n s were r e q u i r e d . ) The number o f i t e r a t i o n s i s p r o p o r t i o n a l t o l / h f o r s m a l l h, and t h e r e a r e a p p r o x i m a t e l y 1% t o 2 t i m e s as many as f o r t h e Successive O v e r r e l a x a t i o n method u s i n g I,.I,,~.
Len Colyan
64 4
I f we were t o use Symmetric Successive O v e r r e l a x a t i o n , and a p p l y Chebyshev a c c e l e r a t i o n , a s i m i l a r a n a l y s i s shows t h a t t h e number o f i t e r a t i o n s i s now p r o p o r t i o n a l t o 1/& f o r small h, and i n t h e case o f t h e second model problem, o n l y 26 i t e r a t i o n s a r e r e q u i r e d . T h i s seems t o be v e r y few, c o n s i d e r i n g we are, i n e f f e c t , l o o k i n g f o r 6 s i g n i f i c a n t f i g u r e s f o r t h e 1521 v a r i a b l e s .
However, t h i s needs t o be balanced by t a k i n g i n t o account t h e amount o f work i n v o l v e d i n each i t e r a t i o n , a l o n g w i t h t h e t o t a l t i m e and s t o r a g e r e q u i r e m e n t s . I t should be noted t h a t t h e f o r n w l a e f o r t h e c o n s t a n t s y and u, as w e l l as f o r t h e a c c e l e r a t i o n parameters 4, i n v o l v e t h e s m a l l e s t and l a r g e s t eigenvalues m, M o f t h e b a s i c i t e r a t i o n m a t r i x B.
Also, a s t o p p i n g t e s t t h a t i s f r e q u e n t l y used i n o r d e r t o t e r m i n a t e t h e Chebyshev a c c e l e r a t i o n procedure a t about t h e c o r r e c t i t e r a t i o n i s o f t h e form
Hence, i f t h e values G f m, M a r e n o t known, e s t i m a t e s w i l l have t o be found. Suppose these a r e i, M r e s p e c t i v e l y . I t can be shown t h a t Chebyshev a c c e l e r a t i o n i s n o t r e a l l y s e n s i t i v e t o e r r o r s i n v o l v e d i n i, e s p e c i a l l y i f ii 5 m, b u t i t i s v e r y s e n s i t i v e t o e r r o r s i n fl. I n p a r t i c u l a r , as fl approaches M from below, t h e r a t e o f converges improves d r a m a t i c a l l y . A d a p t i v e procedures have been developed which generate a c c u r a t e e s t i m a t e s f o r f 4 while the actual a c c e l e r a t i o n process i s i n o p e r a t i o n . I n t h g case o f Jacobi w i t h Chebyshev a c c e l e r a t i o n , i t i s o f t e n s u f f i c i e n t t o l e t m = -R, w h i l s t i f SSOR i s t h e b a s i c method, fi i s u s u a l l y l e f t as z e r o throughout. O f course, i n t h i s l a t t e r case, a good v a l u e w* o f t h e o v e r r e l a x a t i o n parameter a l s o needs t o be found a d a p t i v e l y . D e t a i l s o f these v a r i o u s a d a p t i v e procedures can be found i n Hageman and Young (1981); o r Grimes, K i n c a i d , MacGregor and Young (1978). A p o s s i b l e s u b r o u t i n e JSI t o implement t h e Jacobi method w i t h Chebyshev a c c e l e r a t i o n , and which adapts t o f i n d M, i s l i s t e d i n Appendix E. I t r e q u i r e s an i n i t i a l e s t i m a t e f o r M ( c a l l e d SRJ i n t h e s u b r o u t i n e ) , which i s o f t e n zero, and t h e n adapts. There a r e i n b u i l t r e s t r i c t i o n s t o p r e v e n t t h e parameters b e i n g changed t o o r e g u l a r l y .
[ B r i e f l y , i f n-s i s t h e number o f i t e r a t i o n s performed s i n c e t h e e s t i m a t e o f M was l a s t changed a t i t e r a t i o n number s, t h e n d e f i n e , u s i n g some o f t h e n o t a t i o n i n t h e p r e v i o u s two mentioned r e f e r e n c e s , qT =
2r( n- 1 ____
/ 2
l+r'n d
Y
=
Zl/(n--s)
=
(x
t
)
r/x)/(l
+r)
and t h e n a new v a l u e f o r
fl i s g i v e n by
I t e r a t i v e Methods
+(Fl + where
lii =
m,
645
m + Y(2-8-i)),
fl a r e t h e previous e s t i m a t e s , with t h e option of l e t t i n g a new
-8.
(All the above v a r i a b l e s a r e , in e f f e c t , t h e most straightforward way of solving t h e "Chebyshev equation". ) 1 For t h e f i r s t model problem, i t r e q u i r e s 22 i t e r a t i o n s i f m , M a r e known, and 26 i t e r a t i o n s i f they a r e t o be found adaptively (see Appendix E ) . S t a r t b g with M = 0, m = -1, and t h e r e a f t e r l e t t i n g til = -8, t h e subroutine changesM t o 0.7624 a f t e r 2 i t e r a t i o n s , and then t o 0.8087 a f t e r 6 i t e r a t i o n s . (Compare with true M = 0.8090.) For t h e second model problev, i t r e q u i r e s 187 and 218 i t e r a t i o n s r e s p e c t i v e l y . For more information on Chebyshev a c c e l e r a t i o n , and i t s comparison w i t h t h e Successive Overrelaxation i t e r a t i v e method, one can r e f e r t o Golub (1959); or Golub and Varga (1961). 6.
CONJUGATE GRADIENT ACCELERATION Hestenes and S t i e f e l (1952), i n "Methods of conjugate g r a d i e n t s f o r solving l i n e a r systems", J . Res.Nat.Bur.Standards, introduced t h e c l a s s i c conjugate g r a d i e n t concept. I t i s a p a r t i c u l a r c a s e of e a r l i e r c o n j u g a t e - d i r e c t i o n methods, and can be derived by modifying the " s t e e p e s t descent" o p t i m i s a t i o n technique. Moreover, f o r an Nth order system A x = b, i t would converge t h e o r e t i c a l l y i n a t most N i t e r a t i o n s . However, a f t e r a c e r t a i n amount of research f l u r r y t h a t immediately followed, l i t t l e p r a c t i c a l implementation of this conjugate g r a d i e n t method was used u n t i l r e c e n t l y . Renewed i n t e r e s t has been sparked by broadening the scope of the o r i g i n a l method of Hestenes and S t i e f e l . Rather than regarding the conjugate gradient method a s an i s o l a t e d one, i t can be considered a s possibly t h e simplest c a s e of a c c e l e r a t i n g a b a s i c i t e r a t i v e method using "conjugate g r a d i e n t a c c e l e r a t i o n " . More s p e c i f i c a l l y , consider t h e b a s i c s t a t i o n a r y Richardson i t e r a t i v e technique, where t h e s p l i t t i n g matrix Q andthe symmetrization matrix W ( i f A i s symmetric p o s i t i v e d e f i n i t e ) a r e both t h e i d e n t i t y matrix I , and t h e i t e r a t i o n matrix i s I-A. Then t h e o r i g i n a l conjugate g r a d i e n t method can be regarded a s conj u g a t e g r a d i e n t a c c e l e r a t i o n applied t o this Richardson i t e r a t i o n . Moreover, a conjugate g r a d i e n t a c c e l e r a t i o n can be applied under the same c o n d i t i o n s a s required f o r Chebyshev a c c e l e r a t i o n , and i n v a r i a b l y i t converges in fewer i t e r a t i o n s . Also, the a c c e l e r a t i o n parameters do not involve eigenvalues, and hence can be generated automatically, although t h e l a r g e s t eigenvalue M of t h e i t e r a t i o n matrix may eventually be required f o r a s u i t a b l e stopping t e s t simil a r t o t h e ones outlined i n e a r l i e r methods. The f a c t t h a t the method theore t i c a l l y terminates i n N i t e r a t i o n s i s unimportant f o r l a r g e s p a r s e problems, because any p r a c t i c a l i t e r a t i v e technique n e c e s s a r i l y must converge in conside r a b l y fewer steps than this. For s i m p l i c i t y , we s h a l l assume t h a t A i s symnetric p o s i t i v e d e f i n i t e . Actually, a s i s the s i t u a t i o n with Chebyshev a c c e l e r a t i o n , i t i s s u f f i c i e n t merely t o r e q u i r e t h a t a symmetrization matrix W e x i s t s f o r the i t e r a t i o n matrix 8. e.g. Richardson (W=I), Jacobi (W=D"). SSOR ( W = l / J z T D-%(D+wU)), under s u i t a b l e assumptions. Let c(n) = b i s arbitrary.
-
$n+l)
dn)
A be the residual vector a f t e r n i t e r a t i o n s . Suppose Then t h e o r i g i n a l conjugate g r a d i e n t method i s of t h e form =
dn) + amp( n ) ,
IJ'"
Len CoZgan
646
in'
where the a r e suitably chosen direction vectors, and a r e generated iteratively by the relation
y)
=
(")
The parameters an =
t o )=
r(O) *
.
8, a r e determined by
01,.
(r(") * , -r ( " )
(P n , (
, given
(n-1) 'n-1.P
,Ap' n , )
, or
equivalently
(p(")
,rCn)
(t")
I
and
Hestenes and Stiefel suggest that the f i r s t expressions for % and & are simpler to compute, b u t the second values for a, and 8, tend t o yield better results. I n practice, the iterations would proceed thus: given hence
y(O)
u(~+')
$n-l),
T
compute r("), followed by, in order,
p_
(n)
, an and
The validity of the classic conjugate gradient method l i e s in the f a c t that the residuals a r e orthogonal, i.e. ( $ I ) ,c ( 1 ) ) = 0 for i # j ; and the direction vectors a r e "A" or "conjugate", i.e. (A"P('),A"E(')) i # j.
=
0 f o r i # j , or equivalently, (p(",Ap(")
- orthogonal", =
0 for
The property of orthogonal residuals has as an immediate consequence the theoretical termination property mentioned e a r l i e r . NOW, suppose we decide to eliminate the direction vectors p(") from formulae above. This yields a second-degree i t e r a t i v e process for u_ involving the residual vectors; ,,(n+l) *
-
un+1
{yn+l"
where (fn)
-
'n+1
(tn) ,A$n))'
n,
+
U_(n)
1t
p+",,
U_(n-l),
)
and the parameters wn a r e defined by the sequence w1
=
1
As can be seen, t h i s has a form somewhat similar to the Chebyshev acceleration process. In f a c t , t h i s can be regarded as a special case of the following more general conjugate gradient acceleration method.
Iterative Methods
647
Consider a general l i n e a r s t a t i o n a r y i t e r a t i v e method o f the f i r s t degree t o solve A! = 5 , o f the form
corresponding t o a s p l i t t i n g m a t r i x Q, where B = I - Q-'A. L e t W be a nons i n g u l a r symmetrization m a t r i x such t h a t W(1-B)W-' i s symnetric p o s i t i v e d e f i n i t e . L e t $(") = B u(") + k - y(") be the pseudo-residual vector.
-
Then the conjugate g r a d i e n t a c c e l e r a t i o n procedure as applied t o t h i s basic method i s given by:
u_('),
Given an a r b i t r a r y
-
U(n+l)
n
for
-
w n + l {Yn+l (BY
=
wn+l
'yn+1
0 let
2
(n)
(n)
+k)
+ ( l - y n + l ) y ( " ) 1 + (l-llJ+l)U_(n-l)
+ u'"'1
+
(l-wn+l)u_(n-'),
where the sequences of a c c e l e r a t i o n parameters yn and w, yn+l -
1 -
. -6'
n,
w1 =
1
6( n l TWTWB_G( e)
(6.1) a r e defined by
and
TWTW$'n'
1
I t can be shown t h a t t h i s procedure minimises t h e CWTW(I-B)IWnorm o f t h e e r r o r vector E ( ~ )when compared w i t h any general polynomial a c c e l e r a t i o n procedureapplied t o t h e same basic i t e r a t i v e method. I n p a r t i c u l a r , i t would o f t e n r e q u i r e fewer i t e r a t i o n s than Chebyshev acceleration. I t i s worthwhile t o p o i n t o u t a few r e l e v a n t p r o p e r t i e s o f t h i s conjugate g r a d i e n t a c c e l e r a t i o n process: (a)
I f we consider t h e basic Richardson i t e r a t i o n w i t h Q = I , B = I-A, k = b_, 6'"' = r C n )W, = I etc., i t can be seen immediately t h a t t h e conjugate Gradienf a c c e l e r a t i o n reduces t o the second-degree form o f the c l a s s i c conjugate g r a d i e n t method.
(b)
U n l i k e Chebyshev acceleration, t h e symnetri4ation m a t r i x W i s needed i n t h i s process. More p r e c i s e l y , we r e q u i r e W W , and upon i n s p e c t i n g W f o r the Jacobi and SSOR methods, t h i s i s u s u a l l y simple o r can be e l i m i n a t e d by a s u i t a b l e p r e c o n d i t i o n i n g ( s c a l i n g ) o f the o r i g i n a l l i n e a r system. I t can be shown t h a t t h e pseudo-residuals a r e W orthogonal i.e.
(c)
( w & ~ ' , w & ' ' )= 0, f o r i f j .
The a c c e l e r a t i o n parameters do n o t r e q u i r e knowledge o f t h e eigenvalues However, s i n c e a stopping t e s t i s o f the f o r m
m(B), M ( B ) .
Len CoZgan
648
an estimate f o r M(B) must be found, Adaptive procedures t o f i n d M(B) have been developed. Again, d e t a i l s can be found i n Hageman and Young (1981); o r Grimes, Kincaid, MacGregory and Young (1978). (d)
Since B&"' is needed i n the evaluation o f t h e parameter y n + l , i t i s b e n e f i c i a l i f we can avoid having t o determine By(") a l s o . This can be achieved by using the second form (6.1) f o r the d e f i n i t i o n of U ( n + l ) , and generating the pseudo-residual vectors $ ( " ) by means o f thewsecond degree r e c u r s i o n
-
&n+l)
-
-
(n)
w ~ tyn+lB$ + ~
+
(l-Yn+l
1~+, ,+~- l (
I$'
n-1) 9
which can be derived q u i t e simply. (e)
There appears t o be more work necessary i n the c a l c u l a t i o n o f t h e a c c e l e r a t i o n parameters on each i t e r a t i o n o f the conjugate g r a d i e n t a c c e l e r a t i o n than f o r t h e corresponding Chebyshev a c c e l e r a t i o n . A1 so, more storage i s required. Nevertheless, f o r a wide range o f problems, conjugate gradient a c c e l e r a t i o n uses l e s s computer time, even when the eigenvalues f o r Chebyshev a c c e l e r a t i o n a r e known i n advance. However, counter-examples t o t h i s can be constructed.
(f)
Suppose t h e m a t r i x A i s n o t necessarily symmetric, b u t AT + A i s symmetric p o s i t i v e d e f i n i t e . We can then use a s p l i t t i n g m a t r i x Q = J~(A~+A)
and so o b t a i n a basic i t e r a t i v e method
gu_cn+l)
= %(A~-A)!(") t
b,
where Q i s symmetric p o s i t i v e d e f i n i t e . For general problems, Q may not be e a s i l y i n v e r t i b l e , and consequently i t may r e q u i r e an i n t e r n a l i t e r a t i o n procedure w i t h i n each basic i t e r a t i o n before u _ ( ~ + ' ) can be computed Furthermore, the eigenvalues o f the i t e r a t i o n m a t r i x B = 4Q-'(AT-A) a r e purely imaginary. However, a eneralized conjugate g r a d i e n t a c c e l e r a t i o n rocedure has been developed, :orresponding t o t h i s basic i t e r a t i v e i r o c e s s . [See Concus and Golub (1976). 1 L e t _6(n) = Q-'I-;(AT-A)g'"' + 5?1 - u_ ( n ) be t h e pseudo-residual. method can be expressed i n t h e form
Then t h i s
where the a c c e l e r a t i o n parameters a r e given by W1
=
1
Appendix F contains a s i m p l i f i e d subroutine JCG t o implement Conjugate Gradient Acceleration a p p l i e d t o the b a s i c Jacobi i t e r a t i v e method. As w i t h JSI i n the previous section, i t can adapt t o f i n d M, t h e l a r g e s t eigenvalue o f B , which i s required i n the stopping t e s t . To do t h i s , Hageman and Young (1931) have shown t h a t i t i s convenient t o form ( t h e o r e t i c a l l y ) a symnetric t r i d i a g o n a l m a t r i x , o f order n, a f t e r n
I t e r a t i v e Methods
649
i t e r a t i o n s , r e p r e s e n t e d by
Then t h e l a r g e s t e i g e n v a l u e o f t h i s t r i d i a g o n a l i s t h e new e s t i m a t e f o r M. The s u b r o u t i n e NEWTON i s s u f f i c i e n t t o accomplish t h i s . Once M i s found t o a r e q u i r e d accuracy, no f u r t h e r e s t i m a t e s a r e sought. Because M i s o n l y r e q u i r e d i n t h e s t o p p i n g t e s t and n o t i n t h e a c t u a l i t e r a t i o n s , t h e number o f i t e r a t i o n s f o r convergence o f t h e JCG method i s independent o f t h i s . The o u t p u t f o r t h e f i r s t model problem i n d i c a t e s t h a t o n l y 3 i t e r a t i o n s were necessary, and a t t h e t i m e o f stopping, t h e a d a p t i v e technique had achieved M = 0.809017 ( p r e c i s e l y ! ) . For t h e second model problem, i t r e q u i r e d o n l y 63 i t e r a t i o n s , d u r i n g w h i c h M was found c o r r e c t l y on t h e 27th i t e r a t i o n , and no f u r t h e r e s t i m a t e s f o r M were sought a f t e r t h a t .
7.
REDUCED SYSTEMS (RED-BLACK SYSTEMS) Consider a s i m p l e r v e r s i o n o f t h e model problems where we s h a l l use h = 4. Then A i s o f o r d e r 9. Suppose we number t h e i n t e r n a l nodes i n t h e " r e d - b l a c k " o r d e r i n g , as f o l l o w s : 1.1)
(0.1
(1.0)
'
0 0 0 0
4
0 0 0 0 . 4 0 0 0 . 0 4 0 0 . 0 0 4 0 . 0 0 0 4 .
1 1 1 0
0
0 -1 0 0 -1 0 -1 -1 -1 -1 0 -1 0 -1 -1
................... .
-1 -1 0
-1 -1 0 0 - i -1 -1 -1 0 < O 0 - 1 - 1 -
0
0
-1
1
. . . .
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4
I n g e n e r a l , a system Au_ = b_ i s s a i d t o be a " r e d - b l a c k system" i f i t can b e p a r t i t i o n e d so t h a t
where D1, D2 a r e d i a g o n a l m a t r i c e s o f o r d e r N1, N2 r e s p e c t i v e l y such t h a t N1, N 2 a r e t h e numbers o f " r e d " and " b l a c k " p o i n t s , and N = N 1 + N P . I f we assume A i s symmetric p o s i t i v e d e f i n i t e , then K = G . C l e a r l y , whenever f i n i t e d i f f e r e n c e d i s c r e t i z a t i o n s a r e used o v e r r e c t a n g u l a r domains, we can arrange f o r t h e l a r g e sparse l i n e a r systems t o be " r e d - b l a c k ' ' systems.
Len Colgan
650
Then A!
can be r e w r i t t e n as
= Di
21
[K
hi
+ G Fz =
+ D Z Y Z = !z,
which suggests an i t e r a t i o n o f t h e form: Given
gZo), p e r f o r m =
f D 1 $1"' I
-G
+
$2")
(7.1)
S i n c e D;,' 0;' a r e t r i v i a l l y found, t h e sequence o f u_:"' v e c t o r s can be computed a l o n g w i t h y $ " ) . E l i m i n a t i n g 45") f r o m t h e two equations, t h e above i t e r a t i o n process can t h e o r e t i c a l l y be regarded as $2 n+')
t&")
= D;'KD;'G
+ ( ~ ; ' b ~- D;'KD;'~~).
The s i z e o f t h i s system i s N z , which i s about h a l f t h e s i z e o f t h e o r i g i n a l system. Using t h e general n o t a t i o n f o r b a s i c i t e r a t i v e methods, t h i s Reduced System can b e expressed i n t h e f o r m $zn+')
=
BRSt2")
+ ,,k
,
krhere BRS E D;'KDY1G, k I n p r a c t i c e however, t h e z (D;'bz - D;'KD;'b,). f o r m (7.1) would be us;% f o r the"computations d u r i n g each i t e r a t i o n , and i t i s c l e a r l y possible t o store the v e c t o r s i n t h e same computer l o c a t i o n s as Moreover, t h e amount o f work i n v o l v e d i n each s t e p o f t h e Reduced the System i t e r a t i v e method i s about t h e same as f o r t h e b a s i c J a c o b i method.
.
As
d2")
-r
y2, t h e n
Suppose W = 0.:
W BW , -'
+
gl.
Then = D:(D;K ' D;G ' )D;" =
D;"KD;'
=
CTC where C
GD"; = D;"GO;",
s i n c e KT = G.
Since W BW , '= CTC i s symmetric, then llBRsIlw= p ( B R S ) , and t h e eigenvalues a r e r e a l and non-negative. A l s o , u s i n g t h i s " r e d - b l a c k " o r d e r i n g , t h e o f ,B b a s i c Jacobi i t e r a t i v e method can be w r i t t e n i n t h e f o r m
and so
Now,
I t e r a t i v e Methods
651
i . e . t h e y 2 values a f t e r two Jacobi i t e r a t i o n s a r e t h e same as a f t e r one Reduced System i t e r a t i o n . I t can be shown t h a t p(B,2) = p ( B i S ) = p ( B R S ) . When t h e m a t r i x A i s s y m n e t r i c p o s i t i v e d e f i n i t e and has " P r o p e r t y A", we know t h a t p ( B J ) < 1. Hence, under these c o n d i t i o n s , p(BR,) = [ p ( B J ) l 2 < 1. Because o f t h e s e p r o p e r t i e s , we can c l e a r l y a c c e l e r a t e t h i s Reduced System method u s i n g e i t h e r Chebyshev a c c e l e r a t i o n o r c o n j u g a t e g r a d i e n t a c c e l e r a t i o n . I n a l l cases, t h e number o f i t e r a t i o n s i s a b o u t one h a l f as many as needed i n t h e c o r r e s p o n d i n g Jacobi process t o achieve t h e same accuracy. The g a i n s i n t i m e and s t o r a g e requirements a r e o f a s i m i l a r o r d e r . For example, t h e Chebyshev a c c e l e r a t i o n procedure a p p l i e d t o t h e reduced system c o u l d b e c a r r i e d o u t i n t h e f o l l o w i n g way: Given ui')
,
. . . , uy) - ,
f i n d din) u s i n g Dlu_(l"' the expression D,&"'
= -G
dZn)+ b l ,
y l n ) + b2
= -K
and t h e pseudo-residual
&"'
b y means o f
- y (2n ) .
Then t h e Chebyshev a c c e l e r a t i o n i s o f t h e f o r m
e,
A" 2 9 , u
where c o n s t a n t s y = g i v e n r e c u r s i v e l y by
=
and t h e a c c e l e r a t i o n parameters on a r e
T h i s i s , o f course, e q u i v a l e n t t o t h e general form, because m = 0 and M = Xf, To o b t a i n t h e p r e s c r i b e d accuracy f o r a s u i t a b l e s t o p p i n g t e s t m i g h t be
u,
Again, i f A, i s n o t known, a d a p t i v e processes have been developed. Other methods s i m i l a r t o a Reduced System w i t h Chebyshev a c c e l e r a t i o n a r e a l s o a v a i l a b l e , and a r e o b t a i n a b l e as m o d i f i c a t i o n s o f t h e fundamental " r e d - b l a c k " o r d e r i n g concept. 8.
ALTERNATING-DIRECTION IMPLICIT (ADI) METHODS Peaceman-Rachford Method There a r e a number o f d i f f e r e n t AD1 methods. Only t h e Peaceman-Rachford method w i 11 b e c o n s i d e r e d h e r e (see B i r k h o f f , Varga and Young (1962) ; o r Varga (1962) ) . Consider t h e s i m p l e r model problem corresponding t o h = +, and t h e r e s u l t i n g l i n e a r system A! = b. Assume we a r e u s i n g t h e n a t u r a l o r d e r i n g .
Len Colgan
652
Then t h e m a t r i x A can b e w r i t t e n as A = Al 0 1 2 -1 0 1-1 2 - 1 0 0 -1 2 0 0 2 A l = i : 0 -1 0 0 0 0 0 0 0 0
;
0 0
0 0
0
0 1 2 1
0
0
0 0 0
0 0 0
-1 2
0
0
0
0
+ A Z , where 0 0 0
0 0 0
2 - 1
0
L! 0
0
01 OI 0
and 0 - 1 0 0 0 0 0’ 0 0 - 1 0 0 0 0 0 2 0 0 - 1 0 0 0 0 2 0 0 - 1 0 0 0 0 2 0 0 - 1 0 ‘ -1 0 0 2 0 0 - 1 0 - 1 0 0 2 0 0 0 0 - 1 0 0 2 0 0 0 0 - 1 0 0 2
l o
The e l l i p t i c p a r t i a l d i f f e r e n t i a l e q u a t i o n f r o m which t h i s arose was
when u(x,y) = 0 on t h e boundary o f t h e u n i t square 0
5
x
5
1, 0
5
y 5 1.
A f t e r u s i n g t h e f i n i t e d i f f e r e n c e d i s c r e t i z a t i o n and m u l t i p l y i n g by ( - h 2 ) , we can see t h a t A l i s d e r i v e d f r o m t h e a2u/ax2 term, and A; i s d e r i v e d f r o m a2u/ay2. I n a more general s i t u a t i o n , suppose we d i s c r e t i z e
on, say, a r e c t a n g u l a r r e g i o n . L e t t h e m a t r i c e s H, V, a
ax
+
c
N, ax
1respectively
c o n t a i n t h e terms corresponding t o
a2u + d au b 7 aY aY
and e u,
I
a f t e r m u l t i p l y i n g by ( - h 2 ) . Then A = H + V + 1. Assume i s a non-negative diagonal m a t r i x , and H, V a r e symmetric p o s i t i v e d e f i n i t e m a t r i c e s w i t h nonp o s i t i v e o f f - d i a g o n a l elements. Let
A1
= H +
%I, A Z = V + %,I, so t h a t A
I t i s w o r t h n o t i n g t h a t most o f t h e r i g o r o u s j u s t i f i c a t i o n o f t h e f o l l o w i n g method r e l i e s on H, V b e i n g s y m n e t r i c p o s i t i v e d e f i n i t e , being a m u l t i p l e o f t h e i d e n t i t y m a t r i x , and HV = VH. T h i s t h e n i m p l i e s t h a t A 1 and A P a r e symmetric p o s i t i v e d e f i n i t e , and AIAz = A2A1.
I
The e q u a t i o n Au_ =
i s c l e a r l y e q u i v a l e n t t o each o f t h e e q u a t i o n s
I t e r a t i v e Methods
(A1 +
un+lI)!
=
b-
(A2
-
o,+~
+
I)!
=
b -
(Ai
-
o,+~ I)!,
653
I)!
and (A2
f o r any
w"+~.
This suggests t h e Peaceman-Rachford AD1 method:
1
b-
( A , + W , + ~ I ) U _ ( " +=~ )b
(A2
( A 2 + O , + ~ I ) U _ ( " + ~ =)
(A,
-
W~+~I)U_(~) W,+~I)U("+~).
The % a r e a c c e l e r a t i o n parameters. Since A, + u,,+~I i s u s u a l l y a t r i d i a g o n a l matrix, and A 2 + w , , + ~ Ican be made t r i d i a g o n a l a f t e r a s u i t a b l e permutation, each of t h e i m p l i c i t s t e p s i n t h e i t e r a t i o n s can be c a r r i e d o u t u s i n g t h e wellknown Gaussian elimination a l g o r i t h m f o r tridiagonal systems. In e f f e c t , t h e f i r s t equation i s equivalent t o horizontal sweeps, whereas t h e second equation should be regarded a s v e r t i c a l sweeps; hence t h e category "A1 t e r n a t i n g Direction I m p l i c i t Methods". T h e a u x i l i a r y v e c t o r u _ ( " + ~ )i s not r e t a i n e d from one complete i t e r a t i o n t o t h e next. In p r a c t i c e , i t i s e f f i c i e n t t o use a c c e l e r a t i o n parameters in t h e manner y , .., 4 , wl, q , .., 3 ,o ~ w,z , .., i y , f o r a s u i t a b l e k . I f k=l, the process i s s t a t i o n a r y . rhe Peaceman-Rachford AD1 method can t h e o r e t i c a l l y be expressed i n t h e form
...
%,
-
U_("+l) -
B , + l ~( n ) +
kn+l.
where t h e i t e r a t i o n matrix B,+l B,+l
=
(A2
+
11 2
0,
i s given by
W , + ~ I ) - ' ( A I - U , + ~ I ) ( A+~o,+,I)-'(Az
-
W,+~I).
Fi
If p ( i i ) i s t h e s p e c t r a l r a d i u s of t h i s matrix product, then the average r a t e of convergence a f t e r n i t e r a t i o n s i s R, = - 1 ln(P(l!l B, 1). Although optimal a c c e l e r a t i o n parameters O, t o minimise t h i s average r a t e of convergence a r e not a v a i l a b l e , good ones, t h a t a r e simple t o c a l c u l a t e , have been found t o work q u i t e s a t i s f a c t o r i l y . Let a , 13 be found so t h a t 0 < s p 5 B and 0 < a I A s 6 f o r a l l eigenvalues of A l and eigenvalues A of A z . S u c h bounds on the eigenvalues can e a s i l y be determined using t h e r e l e v a n t t h e o r i e s . Then two commonly used parameters a r e t h e following: (1) Peaceman-Rachford Parameters Find the smalle:;ilr,t,egfr k such t h a t (&?-l)zk s a / B . Then, f o r i = l , Z , . . , k , l e t wi = a ( a / ~ ) These parameters a r e c l e a r l y n o t evenly spaced, but a r e geometrically spaced. ( I n t h e s p e c i a l case of t h e s t a t i o n a r y Peaceman-Rachford method, k = 1, and so o = / a @ . )
.
I t can then be shown t h a t
Len CoZgan
654
say, and so t h e average r a t e o f convergence
%
1
-
2
6.
The c o n d i t i o n (J2-1)2k s a/B i s used t o determine k because i t i s a consequence o f t h e r e s u l t t h a t Rk i s maximised when IS = J2-1. For example, c o n s i d e r t h e second model problem. Hence, = 4 s i n 2 n h / 2 and B = 4 cos1?h/2.
~1
E
a
i:
tan2
9,
and so we r e q u i r e (42-1)” Then we o b t a i n 0.01385,
WI z
(2)
~p
2
s tan
0.06986,
Wachspress Parameters Find t h e smallest integer k
6
a, = a(,)
(I-l)/(k-l)
2
F. For h 03
1
= 1/40,
0.35245,
10.006165,
, f o r i=1,2
w5 =
= 3.9938.
W?
1
04
this yields k
0.03110,
=
4.
1.7781.
2
2 such t h a t (J2-1)z‘k-”
s
.;
Then
,...,k .
For t h e second model problem w i t h h = 1/40, obtain WI = a
I t can b e shown t h a t
~g
t h i s y i e l d s k = 5.
0.1569,
~4
Then we
10.7916,
Numerical experiments suggest t h a t t h e Wachspress parameters a r e s u p e r i o r t o t h e Peaceman-Rachford parameters by a f a c t o r o f about 2, p r o v i d e d t h a t k i s determined as d e s c r i b e d . For b o t h s e t s o f parameters, t h e number o f i t e r a t i o n s r e q u i r e d t o o b t a i n t h e s p e c i f i e d accuracy v a r i e s a c c o r d i n g t o l n ( l / h ) as t h e mesh-size h tends t o zero. T h i s i s t o be compared w i t h l / h f o r b o t h (i) (ii)
t h e Successive O v e r r e l a x a t i o n method, and t h e Jacobi method w i t h Chebyshev a c c e l e r a t i o n
and w i t h 1/Jb f o r t h e a c c e l e r a t e d SSOR method. However, these o t h e r methods a r e perhaps a p p l i c a b l e o v e r a w i d e r range o f problems, and a l s o t h e e x t r a computations i n v o l v e d i n t h e i m p l i c i t s o l u t i o n s needed i n each i t e r a t i o n o f t h e Peaceman-Rachford method a r e a p p r e c i a b l e . Hence, t h i s AD1 method i s r e a l l y o n l y advantageous p r o v i d e d h i s v e r y small. I n f a c t , e x p e r i m e n t a t i o n suggests t h a t , p r o v i d i n g t h e A01 method i s a p p l i c a b l e , t h e r e e x i s t s a v a l u e o f h, say h*, such t h a t f o r h > h* t h e SOR-type methods a r e p r e f e r a b l e , b u t f o r h < h*, t h e Peaceman-Rachford method uses l e s s computer time. 9.
COMPARISON OF ITERATIVE METHODS Comments made a b o u t t h e convergence r a t e s o f t h e v a r i o u s i t e r a t i v e methods d e s c r i b e d i n t h e preceding s e c t i o n s g i v e a reasonable i n d i c a t i o n as t o t h e s u i t a b i l i t y o f each. O f course, t h e amount o f t i m e and machine s t o r a g e space necessary t o perform t h e i t e r a t i o n s themselves must be taken i n t o account. A number o f references i n t h e b i b l i o g r a p h y q u o t e numerical r e s u l t s f o r a range o f problems, and t h e r e i s a reasonable degree o f u n i f o r m i t y i n t h e i r conclusi o n s . For example, see B i r k h o f f , Varga and Young (1962); o r Westlake (1968).
I t e r a t i v e Methods
655
Most o f t h e i t e r a t i v e methods c o n s i d e r e d r e l y on t h e m a t r i x A b e i n g symmetric p o s i t i v e d e f i n i t e , o r else require ( t h e o r e t i c a l l y ) the existence o f a s y m m e t r i z a t i o n m a t r i x W. I f A i s n o t symmetric, newer methods t h a t a r e b a s i c a l l y e x t e n s i o n s o r v a r i a t i o n s o f t h e c l a s s i c methods have been f o r m u l a t e d . D e t a i l s can be found i n Hageman and Young (1981), o r M a n t e u f f e l (1975), o r Axelsson and Gustafsson (1977), o r Widlund ( 1 9 7 8 ) .
O f t h e methods o u t l i n e d i n t h e p r e c e d i n g s e c t i o n s , those t h a t can s e r i o u s l y be c o n s i d e r e d f o r implementation t o s o l v e l a r g e sparse l i n e a r systems a r e (1)
Successive O v e r r e l a x a t i o n method, which may need t o b e a d a p t i v e i f wont i s unknown.
(2)
Chebyshev a c c e l e r a t i o n o f t h e b a s i c Jacobi o r SSOR methods. Again, a d a p t i v e techniques w i l l be needed i f t h e eigenvalues o r r e l a x a t i o n parameters a r e n o t known beforehand.
(3)
Conjugate g r a d i e n t a c c e l e r a t i o n o f t h e Jacobi o r SSOR methods.
(4)
The reduced system concept, u s i n g a " r e d - b l a c k ' ' o r d e r i n g , i n c o n j u n c t i o n w i t h e i t h e r Chebyshev o r c o n j u g a t e g r a d i e n t a c c e l e r a t i o n .
(5)
Peaceman-Rachford A1 t e r n a t i n g D i r e c t i o n method.
I f t h e reduced system methods a r e a p p l i c a b l e , numerical r e s u l t s i n d i c a t e t h a t t h e y f r e q u e n t l y use fewer i t e r a t i o n s , l e s s t i m e and l e s s s t o r a g e than t h e o t h e r techniques. I n p a r t i c u l a r , t h e reduced system combined w i t h c o n j u g a t e g r a d i e n t a c c e l e r a t i o n has o f t e n proven t o be o p t i m a l i n each o f these c l a s s i f i c a t i o n s . The SSOR method, w i t h e i t h e r Chebyshev o r c o n j u g a t e g r a d i e n t a c c e l e r a t i o n a l s o produces f a v o u r a b l e r e s u l t s , and covers a w i d e r c l a s s o f problems. However, t h e a c t u a l programming i m p l e m e n t a t i o n i s more c o m p l i c a t e d . The Successive O v e r r e l a x a t i o n method i s p r e f e r r e d by many because o f i t s s i m p l i c i t y i n t h i s r e g a r d , b u t u s u a l l y c o n s i d e r a b l y more i t e r a t i o n s , and somewhat more e x e c u t i o n time, a r e r e q u i r e d . The Peaceman-Rachford method i s r e a l l y o n l y s u p e r i o r when t h e r e g i o n i s r e c t a n g u l a r ( o r s i m i l a r ) , t h e mesh-size i s s m a l l , and k > 1. I t i s a d v i s a b l e t o s e l e c t a v a l u e o f k, t h e number o f i t e r a t i o n parameters, which i s t o o l a r g e than t o use one which i s t o o s m a l l . Savings have been found by a c t u a l l y choosing a v a l u e o f k l a r g e r t h a n t h e ones produced by t h e f o r m u l a e d e s c r i b e d i n t h a t s e c t i o n .
Len Colgan
65 6
APPENDIX A LIST OF SYEIBOLS : c o e f f i c i e n t matrix of l i n e a r system : A = Al t A,
i n Peaceman-Rachford Plethod
: general i t e r a t i o n matrix : Jacobi i t e r a t i o n matrix
: Gauss-Seidel i t e r a t i o n matrix : Successive Overrelaxation i t e r a t i o n matrix
: Backward Successive Overrelaxation i t e r a t i o n matrix : Synmetric Successive Overrelaxation i t e r a t i o n matrix : Reduced system i t e r a t i o n matrix
: Peaceman-Rachford i t e r a t i o n matrices : diagonal p a r t o f A : submatrix of A i n "red-black" ordering : estimate f o r s p e c t r a l radius of BsoR
: submatrix of A i n "red-black" ordering : lower t r i a n g u l a r p a r t of A : l a r g e s t eigenvalue of B : estimate of El : order of matrix A
: transformed Chebyshev polynomials : general s p l i t t i n g matrix : v a r i a b l e used i n solving Chebyshev equation : variable used i n solving Chebyshev equation : asymptotic r a t e of convergence : average r a t e of convergence a f t e r n i t e r a t i o n s : r a t i o o f consecutive pseudo-residuals i n SOR method
: Chebyshev polynomials : upper t r i a n g u l a r p a r t of A : symnetrization matrix
: v a r i a b l e used i n solving Chebyshev equation : variable used i n solving Chebyshev equation : v a r i a b l e used i n s o l v i n g Chebyshev equation : right-hand s i d e of l i n e a r system
: mesh s i z e : vector i n general i t e r a t i o n : smallest eigenvalue of B : estimate of m : the number of the i t e r a t i o n
Iterative Methods
E(
")
: d i r e c t i o n v e c t o r s i n c o n j u g a t e g r a d i e n t method
r
: parameter i n Chebyshev a c c e l e r a t i o n
.U.
: s o l u t i o n o f l i n e a r system : estimate o f u a f t e r n i t e r a t i o n s
-r( n ) u( n)
I
l i
: residual vector a f t e r
n iterations
: lower e i g e n v a l u e bound i n Peaceman-Rachford method
(i
: c o n j u g a t e g r a d i e n t parameters
b
: upper e i g e n v a l u e bound i n Peaceman-Rachford method
B"
: c o n j u g a t e g r a d i e n t parameters
B Y
: Chebyshev a c c e l e r a t i o n c o n s t a n t
-
yn
- n)
: upper bound f o r (p(D"Ld'U)
: c o n j u g a t e g r a d i e n t a c c e l e r a t i o n parameters
(p(
: pseudo-residual v e c t o r
c x
: e r r o r vector
< n)
XJ
LJ
i n SSOR method
: general e i g e n v a l u e : l a r g e s t p o s i t i v e e i g e n v a l u e o f BJ : upper bound f o r XJ, i n SSOR method : eigenvalue o f BsoR
u
: s p e c t r a l r a d i u s o f BsoR
p(B)
: spectral radius o f B
0
: Chebyshev a c c e l e r a t i o n constant
w
: r e l a x a t i o n parameter
Ill
OPl
: o p t i m a l value f o r w i n SOR method
o*
: good v a l u e f o r w i n SSOR method
[I)
: Chebyshev a c c e l e r a t i o n parameters
n
: c o n j u g a t e g r a d i e n t a c c e l e r a t i o n parameters : Peaceman- Rac hf o r d acce 1e r a t i on parame t e r s
om
: l i m i t i n g value o f o
i n Chebyshev a c c e l e r a t i o n
657
Len Colgan
658
APPENDIX B SUBROUTINE JAC C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C
20
SUBROUTINE TO SOLVE LARGE SPARSE L I N E A R SYSTEMS USING JACOB1 I T E R A T I O N
THE COEFFICIENT MATRIX IS STORED IN 'UNSYMMETRIC SPARSE FORM SUBROUTINE JAC( A,JA,ISTART,N ,NP1 ,IADIM,B ,U ,ZETA, tSR, IADAPT, ITMAX,NUMITS ,V,D) GLOSSARY OF TERMS ~NON-ZERO ELEMENTS OF SPARSE COEFF. MATRIX (INPUT) A( ) :COLUMN POSITIONS OF ELEMENTS I N A ( I N P U T ) JA( I S T A R T ( I) :POSITION I N A & J A OF THE F I R S T ENTRY FROM :ROW I . LAST ENTRY IS I A D I M + l ( I N P U T ) :NO. OF EQUATIONS ( I N P U T ) N :N+1 ( I N P U T ) NP1 :DIMENSION OF A & J A ( I N P U T ) IADIM :RIGHT HAND S I D E OF EQUATIONS ( I N P U T ) B( 1 :SOLUTION. ON I N P U T CONTAINS I N I T I A L GUESS U( 1 :WHICH MAY B E ZERO VECTOR (INPUT,OUTPUT) :STOPPING TEST. RELATIVE ERRORcZETA ( I N P U T ) ZETA :SPECTRAL RADIUS OF I T E R A T I O N MATRIX SR :(MUST B E I N P U T I F ADAPT=O) IADAPT :=0 DOES NOT ADAPT TO ESTIMATE SR :=1 WILL ADAPT ( I N P U T ) :MAX NO. OF I T E R A T I O N S ( I N P U T ) I TMAX :NO. OF ITERATIONS PERFORMED (OUTPUT) NUMITS :TEMPORARY STORAGE WORK AREA OF S I Z E N V( 1 :DIAGONAL STORAGE WORK AREA D F S I Z E N D( :PREVIOUS PSEUDO-RESIDUAL NORM PSPREV PSNDRM :CURRENT PSEUDO-RESIDUAL NORM :CURRENT SOLUTION NORM VNORM :STOPPING TEST TEST REAL A( I A D I M ) ,B(N) ,U(N) ,ZETA,SR INTEGER J A ( I A D I M .) ..ISTART( .NP1). .N I A D I M , IADAPT, _ ,NP1, . +NUMITS ,ITMAX REAL V(N) ,PSPREV,PSNDRM,D(N) ,VNDRM,SUM,TEST
****
SET UP DIAGONAL ELEMENTS F I N D O R I G I N A L PSEUDO-RESIDUAL NORM CALCULATE F I R S T ITERATES
****
PSPREV=O. DO 10 I = l . N SUM=B( I ) ' DO 20 J=ISTART( I ) ,ISTART( I+l)-l IF(JA(J) .EQ.I)THEN D( I)=A(. J). ELSE SUM=SUM-A( J)*u(JA(J ) ) ENDIF CONTINUE
Iterative Methods
10
30 C C C C C 40
60
50
70 C C C C C C
C C C
659
V ( I)=SUM/D( I ) PSPREV=PSPREV+( V( I)-U( I ) )**2 CONTINUE PSPREV=SQRT( PSPREV) NUMITS=l DO 30 I = I , N U( I)=v( I) CONTINUE
****
PERFORM THE NEXT I T E R A T I O N CALCULATE THE NORMS OF THE ESTIMATE AND THE PSEUDO-RESIDUAL
****
NUMITS=NUMITS+l IF( NUMITS.GT.ITMAX)RETURN PSNORM=O. VNORM=O. DO 50 I = I , N SUM=B( I) 00 60 J = I S T A R T ( I),ISTAR I F ( J A ( J ) .NE.I)SUM=SUM=A CONTINUE V( I ) = S U M / D ( I ) PSNORM=PSNORM+( V( I ) - U ( I ) **2 VNORM=VNORM+V( I ) **2 CONTINUE PSNORM=SQRT( PSNORM) VNORM=SQRT( VNORM) DO 70 I = l . N U( I ) =v( I ) . CONTINUE
****
STOPPING TEST I F IADAPT=I,USE R A T I O OF CONSECUTIVE PSEUDO-RESIDUALS AS AN ESTIMATE FOR THE SPECTRAL RADIUS OF THE I T E R A T I O N MATRIX
****
I F ( I A D A P T . EQ. l)SR=PSNORM/PSPREV TEST=SR*PSNORM/( 1.-SR)/VNORM I F ( A B S ( T E S T ) .LT.ZETA)RETURN
****
PERFORM ANOTHER I T E R A T I O N
****
PSPREV=PSNORM GOT040 END
OUTPUT
The subroutine JAC, w i t h a p p r o p r i a t e P R I N T statements, y C o ’ = Q , and a c a l l i n g PROGRAM t o implement the s o l u t i o n of the f i r s t model problem ( N = 1 6 ) , y i e l d s t h e following o u t p u t : (showing t h e number o f t h e i t e r a t i o n , NUMITS; progressive estimate of the s p e c t r a l radius, SR; and t h e 16 v a r i a b l e values, U1, . . . , UI6. Only some o f the i t e r a t i o n s have been e x h i b i t e d . ) NUMITS = 1 .0100000 .0100000 .0100000 .0100000 .0100000 .0100000 SR = 0 (has n o t changed)
.0100000 .0100000
.0100000 .0100000
.0100000 .0100000
.0100000 .0100000
.0100000 .0100000
Len C o l g m
660
NUMITS = 2 .0150000 .0175000 .0175000 .0200000 SR = 770552
.0175000
.0200000 .0175000
.0150000
.0175000 .0150000
.0200000 .0175000
.0200000 .0175000
.0175000 .0150000
NUMITS = 3 .0187500 .0231250 .0231250 .0287500 SR = .805001
,0231250 .0287500
.0187500 .0231250
.0231250 .0187500
.0287500 .0231250
.0287500 .0231250
.0231250 .0187500
NUMITS = 4 .0215625 .0276563 .0276563 .0359375 SR = .a08623
.0276563 .0359375
.0215625 .0276563
.0276563 .0215625
.0359375 .0276563
.0359375 .0276563
.0276563 .0215625
NUMITS = 5 .0238281 .0312891 .0312891 .0417969 SR = .808978
.0312891 .0417969
.0238281 .0312891
.0312891 .0238281
.0417969 .0312891
.0417969 .0312891
.0312891 .0238281
NUMITS = 10 .0300404 .0413385 .0413385 .0580456 SR = .809017
.0413385 .0580456
.0300404 ,0413385
.0413385 .0300404
.0580456 .0413385
.0580456 .0413385
.0413385 .0300404
NUMITS = 15 ,0321921 .0448201 .0448201 .0636789 SR = .809017
.0448201 .0636789
.0321921 .0448201
.0448201 .0321921
.0636789 .0448201
.0636789 .0448201
.0448201 .0321921
NUMITS = 20 .0329378 .0460267 .0460267 .0656312 SR = .809017
.0460267 .0656312
.0329378 .0460267
.0460267 ,0329378
.0656312 .0460267
.0656312 .0460267
.0460267 .0329378
NUMITS = 60 ,0333333 .0466665 .0466665 .0666665 SR = .809017
.0466665 .0666665
.0333333 .0466665
.0466665 .0333333
.0666665 .0466665
.0666665 .0466665
.0466665 .0333333
NUMITS = 66 ,0333333 .0466666 .0466666 .0666666 SR = .809017
.0466666 .0666666
.0333333 .0466666
.(I466666 .0333333
.0666666 .0466666
.(I666666 .0466666
.0466666 .0333333
I t e r a t i v e Methods
APPENDIX C SUBROUTINE GS C C
SUBROUTINE TO SOLVE LARGE SPARSE L I N E A R SYSTEMS USING GAUSS-SEIDEL I T E R A T I O N
C C C C
THE COEFFICIENT SPARSE FORM
C
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C
20
GLOSSARY
OF
MATRIX
IS STORED NI
'UNSYMMETRIC
TERMS
:NON-ZERO ELEMENTS OF SPARSE COEFF. MATRIX ( I N P U T ) A( ) :COLUMN POSITIONS OF ELEMENTS I N A ( I N P U T ) JA( ) I S T A R T ( ) : P O S I T I O N I N A & J A OF THE F I R S T ENTRY FROM :ROW I. L A S T ENTRY IS I A D I M + l ( I N P U T ) N :NO. OF EQUATIONS ( I N P U T ) NP1 :N+1 ( I N P U T ) IADIM :DIMENSION OF A & J A ( I N P U T ) :RIGHT HAND S I D E OF EQUATIONS ( I N P U T ) B( ) :SOLUTION. ON INPUT CONTAINS I N I T I A L GUESS u( 1 :WHICH MAY B E ZERO VECTOR (INPUT,OUTPUT) ZETA :STOPPING TEST. R E L A T I V E ERROR
****
SET UP DIAGONAL ELEMENTS F I N D O R I G I N A L PSEUDO-RESIDUAL NORM CALCULATE F I R S T ITERATES
****
PSPREV=O. DO 10 I = l , N SUM=B( I ) DO 20 J = I S T A R T ( I) ,ISTART( I+l)-I I F ( J A ( J) .EQ. 1)THEN D( I ) = A ( J ) ELSE SUM=SUM-A(J)*U(JA(J)) ENDIF CONTINUE
661
Len CoZgan
662
10 C C C C C 40
60
50 C C C C C C
C C C
TEMP=SUM/D( 1) PSPREV=PSPREV+(TEMP-U(I ) ) * * 2 U( I)=TEMP CONTINUE PSPREV=SQRT(PSPREV) NUMITS=l
****
PERFORM THE NEXT ITERATION CALCULATE THE NORMS OF THE ESTIMATE AND THE PSEUDO-RESIDUAL
****
NUMITS=NUMITS+l I F ( NUM I T S . GT I TMAX RETURN PSNORM=O. UNORM=O. DO 50 I=l,N SUM=B ( I) 00 60 J=ISTART( I ) ,ISTART( I + l ) - 1 I F ( JA ( 3 ) .NE .I ) SUM=SUM-A( J)*U( JA( 3 ) ) CONTINUE TEMP=SUM/D( I ) PSNORM=PSNORM+(TEMP-U( I ) ) * * 2 UNORM=UNORM+TEMP**2 U( I)=TEMP CONTINUE PSNORM=SQRT(PSNORM) UNORM=SQRT(UNORM)
.
****
STOPPING TEST I F IAOAPT=l,USE RATIO OF CONSECUTIVE PSEUDO-RESIDUALS AS AN ESTIMATE FOR THE SPECTRAL RAOIUS OF THE ITERATION MATRIX
****
I F ( 1ADAPT.EQ. l)SR=PSNORM/PSPREV TEST=SR*PSNORM/( 1.-SR)/UNORM IF(ABS(TEST) .LT .ZETA)RETURN
****
PERFORM ANOTHER ITERATION
****
PSPREV=PSNORM GOT040 EN0
OUTPUT
The subroutine GS yields the following output, under the same conditions as in Appendix 8. I t i s found t h a t a b o u t half as many i t e r a t i o n s are required f o r the f i r s t model problem being considered. NUM ITS = 1 .0100000 .0125000 .0131250 .0173438 SR=0.000000
.0131250 .0186719
.0132813 .0190820
.0125000 .0132813
,0162500 .0176563
.0173438 .0190820
.0176563 .0195410
NUMITS= 2 .0162500 .0214063 .0230078 .0321777 SR=.684742
.0230078 .0356299
.0201660 .0307568
.0214063 .0201660
.0293750 .0278564
.0321777 .0307568
.0278564 .0253784
I t e r a t i v e Methods
663
NUMITS=3 .@07031 .0282715 .0301538 .0434662 SR=.700422
.0301538 .0471115
.(I245026 .0367928
.0282715 .0245026
.(I402246 .0346814
.0434662 .0367928
,0346814 .0283964
NUMITS=4 .0241357 .(I336285 .0353993 .0514349 SR=.696357
.0353993 .0541139
.0275202 .0403618
.0336285 .0275202
.0485474 .0389370
.0514349 .0403618
.0389370 .0301809
NUMITS=5 .0268143 .0376902 .0391613 .0566937 SR=.686504
.0391613 .0585277
.0295246 .0425884
.0376902 .0295246
.0545626 .0416450
.0566937 .0425884
.0416450 .0312942
NUMITS=10 .0324713 .(I455369 .0457519 .0654688 SR=.655921
.0457519 .0656973
.(I328758 .0461820
.0455369 .0328758
.0651866 .0460676
.(I654688 .0461820
.0460676 .0330910
NUMI TS= 15 .0332296 .0465308 .0465568 .0665228 SR=. 654544
.0465568 .0665503
.0332784 .0466085
.0465308 .(I332784
.0664888 .0465947
.0665228 .0466085
.0465947 .0333042
NUMITS=20 .0333209 .0466503 .0466535 .(I666494 SR=.654509
.0466535 .OM6527
.0333267 .0466597
.0466503 .0333267
.0666453 .0466580
.0666494 .0466597
.0466580 .0333298
NUMI TS = 2 5 .0333318 ,0466647 .0466651 .0666646 SR=.654509
.0466651 .0666650
.0333325 .0466658
.0466647 .0333325
.0666641 .0466656
.(I666646 .0466658
.0466656 .0333329
NUMITS=30 .0333332 .0466664 .0466665 .Of566664 SR=.654508
.0466665 .0666665
.0333332 .0466666
.0466664 .0333332
.0666664 .0466665
.0666664 .0466666
.0466665 ,0333333
NUM ITS.34 .0333333 .0466666 .0466666 .0666666 SR=.654508
.0466666 .0666666
.0333333 .0466666
.0466666 .0333333
.OM6666 .0466666
,0666666 .0466666
.0466666 .0333333
Len CoZgan
684
APPENDIX 0 SUBROUTINE SOR C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
C C C C C
SUBROUTINE TO SOLVE LARGE SPARSE LINEAR SYSTEMS USING SOR I T E R A T I O N WRITTEN BY L.COLGAN 1983 SOLVES SYSTEMS OF N SPARSE L I N E A R EQUATIONS WHERE THE COEFFICIENT MATRIX I S STORED I N UNSYMMETRIC SPARSE FORM SUBROUTINE SOR( A ,JA, I S T A R T ,N ,NP1 ,IAOIM,B ,U ,ZETA, +SR,OMEGA, IAOAPT, ITMAX ,NUMITS ,0) GLOSSARY OF TERMS
SR OMEGA IAOAPT ITMAX NUMITS
O( 1
PSPREV PSNORM UNORM TEST
H
TEMP SRJ T(I) IEST NEWITS CHANGE
:NON-ZERO ELEMENTS OF SPARSE COEFF. MATRIX ( I N P U T ) :COLUMN P O S I T I O N S OF ELEMENTS I N A ( I N P U T ) I ) : P O S I T I O N I N A & J A OF THE F I R S T ENTRY FROM :ROW I . LAST ENTRY IS I A O I M t l ( I N P U T ) :NO. OF EQUATIONS ( I N P U T ) : N t l (INPUT) :DIMENSIONS OF A & J A ( I N P U T ) :RIGHT HANO S I D E OF EQUATIONS ( I N P U T ) :SOLUTION. ON I N P U T CONTAINS I N I T I A L GUESS :WHICH MAY BE ZERO VECTOR (INPUT,OUTPUT) :STOPPING TEST. RELATIVE ERRORcZETA ( I N P U T ) :SPECTRAL RAOIUS OF I T E R A T I O N MATRIX :(MUST BE I N P U T I F IADAPT=O) :OVER-RELAXATION PARAMETER : (MUST BE INPUT I F IAOAPT=O) :=0 DOES NOT ADAPT TO ESTIMATE SR.OMEGA :=1 W I L L ADAPT ( I N P U T ) :MAX NO. OF I T E R A T I O N S ( I N P U T ) :NO. OF I T E R A T I O N S PERFORMED (OUTPUT) :DIAGONAL STORAGE WORK AREA O i S I Z E N :PREVIOUS PSEUDO-RESIDUAL NORM :CURRENT PSEUDO-RESIDUAL NORM :CURRENT SOLUTION NORM :STOPPING TEST :USED I N STOPPING TEST :TEMPORARY STORAGE OF NEW SOLUTION ELEMENT :SPECTRAL RADIUS OF JACOB1 MATRIX :UPPER BOUND FOR THE I ' T H ESTIMATE OF OMEGA :NUMBER OF DIFFERENT ESTIMATES OF OMEGA :NUMBER OF ITERATIONS USING THE NEW ESTIMATE :TEST I F SR IS REASONABLE ESTIMATE
REAL A ( I A D I M ) ,B(N) ,U(N) ,ZETA,SR,OMEGA INTEGER J A ( I A D I M ) , I S T A R T ( N P l ) ,N,NPl,IAOIM,IADAPT, +NUMITS.ITMAX REAL PSPREV ,PSNORM, O ( N) ,UNORM,SUM,TEST ,TEMP ,H ,SRJ, ~ ( 9 ,CHANGE ) INTEGER IEST,NEWITS DATA T/1.5,1.8,1.85,1.9,1.94,1.96,1.975,1.985,1.992/
****
SET UP DIAGONAL ELEMENTS F I N D O R I G I N A L PSEUDO-RESIDUAL NORM CALCULATE F I R S T ITERATES
****
I t e r a t i v e Methods
20
10
C C C C C 40
60
50 C C C C C C C C
I F ( IADAPT .EQ . 1)THEN IEST=l OMEGA=MIN ( OMEGA ,T ( 1) ) ENDIF PSPREV=O. DO 10 I = l , N SUM=B ( I ) DO 20 J=ISTART(I),ISTART(I+l)-1 I F ( J A ( J) .EQ. 1)THEN D( I ) = A ( J ) ELSE SUM=SUM-A( J)*U(JA( J ) ) ENDIF CONTINUE TEMP=OMEGA*SUM/D( I ) + ( 1.0-OMEGA)*U( PSPREV=PSPREV+(TEMP-U(1))**2 u( I )=TEMP CONTINUE PSPREV=SQRT( PSPREV ) NUMITS=l NEWITS-1
I)
****
PERFORM THE NEXT I T E R A T I O N CALCULATE THE NORMS OF THE ESTIMATE AND THE PSEUDO-RESIDUAL
****
NUMITS=NUMITStl IF(NUM1TS. GT. 1TMAX)RETURN NEWITS=NEWITS+l PSNORM=O. UNORM=D . DO 5 0 I = l , N SUM=B ( I ) DO 60 J = I S T A R T ( I ) ,I S T A R T ( I + l ) - l IF(JA( J ) .NE. I)SUM=SUM-A( J)*u(JA( J) ) CONTINUE TEMP=OMEGA*SUM/D( I ) + I 1.O-OMEGA)*U( 1) PSNORM=PSNORM+(TEMP-U ( I) ) **2 UNORM=UNORM+TEMP**Z U ( I )=TEMP CONTINUE PSNORM=SQRT( PSNORM) UNORM=SQRT( UNORM)
****
STOPPING TEST I F IADAPTZ1,USE R A T I O OF CONSECUTIVE PSEUDO-RESIDUALS AS AN ESTIMATE FOR THE SPECTRAL RADIUS OF THE I T E R A T I O N MATRIX MUST PERFORM A T LEAST TWO ITERATIONS WITH NEW VALUE OF OMEGA BEFORE STOPPING
****
I F ( IADAPT .EQ.O)THEN TEST=PSNORM/( 1.-SR)/UNORM I F ( A B S ( TEST) :LT .ZETAIRETURN GOT0 80 ENDIF I F ( NEW I T S . L T . 2)GOTO 80 IF(ABS(SR-PSNORM/PSPREV 1. GT. 0.01 ITHEN CHANGELO. ELSE
665
Len Colgan
666
C C C C
C C C 80
CHANGE.1. ENOIF SR=PSNORM/PSPREV I F ( SR .GE. l.O)GOT080 I F ( SR.LT.OMEGA-1.O)THEN H-OMEGA-1.0 ELSE H=SR ENDIF TEST=PSNORM/( 1.-H)/UNORM IF(ABS( TEST) LT .ZETA)RETURN
****
’
.
CHANGE OMEGA I F NECESSARY MUST BE AT LEAST FIVE ITERATIONS USING PREVIOUS OMEGA
****
I F ( NEW I T S .LT. 5.0R.SR.LT. (OMEGA-1. )**O. 75 .OR.CHANGE .EQ.O. )GOTO 80 IEST=I E S T + ~ NEWITS=O SRJ=(SR+OMEGA-l.O)/OMEGA/SQRT(SR) OMEGA=P.O/( l.O+SQRT( l.O-SRJ**Z)) I F ( IEST. LE .9 ITHEN OMEGA=MIN(OMEGA,T( IEST) ) ELSE OMEGA=MIN(OMEGA ,T( 9 ) ) ENDIF
****
PERFORM ANOTHER ITERATION
****
PSPREV=PSNORM GOT040 EN0
OUTPUT
The subroutine SOR y i e Is t h e fol.Jwing output f o r the f i r s t model problem. I n i t i a l l y t h e relaxation parameter w i s given t h e value 1, and the subroutine changes i t a t appropriate times only. T h i s occurs a f t e r t h e f i f t h i t e r a t i o n only. The value of H, used in t h e stopping t e s t , i s a l s o shown. NUM ITS=1 w=1.000000 .0100000 .0125000 .0131250 .0131250 .0173438 .0186719 H not y e t a p p l i c a b l e NUMITS=2 w=1.000000 .0162500 .0214063 .0230078 .0321777 H= A84742
.0132813 .0190820
.0125000 .0132813
.0162500 .0176563
.0173438 .0190820
.0176563 .0195410
.0230078 .0356299
.0201660 .0307568
.0214063 .0201660
.0293750 .0278564
.0321777 .0307568
.0278564 .0253784
,0301538 ,0471115
.0245026 ,0367928
.0282715 .0245026
.0402246 .0346814
.0434662 .0367928
.0346814 .0283964
NUMITS.3
w= 1.000000
.0207031 .0282715 .0301538 ,0434662 H=. 700422
I t e r a t i v e Methods
NUMITS=4 w=1.000000 .0241357 .0336285 .0353993 .0514349 H=.696357 NUMITS=5 w=1.000000 ,0268143 .0376902 .0391613 .0566937 H=. 686504
NUMITS=7 ~1.282128 .0312275 .0441691 .0449078 .0648243 H= .534703
NUMITS=9 u=1.282128 .0329194 .0462823 .0464766 .0665409 H=.434433
NUMITS=11 ~1.282128 .0333109 .0466583 .0466609 .0666648 H=. 282128
NUMITS=13 0=1.282128 0.333320 .0466667 .0466671 .0666673 H = . 282128
NUMITS= 15 u=1.282128 .0333335 .0466668 .0466668 .Of366667 H=. 367594
NUMI TS= 17 w=1.282128 .0333333 .0466667 ,0466667 .0666667 H=. 300329
667
.0353993 .0541139
.0275202 .04036 18
.03362a5 .0275202
.04a5474 .0389370
.0514349 .0403618
.0389370 ,0301809
.0391613 .0585277
.0295246 .0425884
.0376902 .0295246
.0545626 .0416450
.0566937 .0425884
.0416450 .0312942
.0449078 .0656558
.0326485 .0464129
.0441691 .0326485
.0638370 .0460275
.0648243 .0464129
.0460275 .0332224
,0464766 .0665959
,0332860 .0466478
.0462823 .0332860
.0663611 .0466257
.0665409 .0466478
.0466257 .0333289
.0466609 .0666674
.0333322 .0466675
.04665a3 .0333322
.0666587 .0466671
.0666648 .0466675
.0466671 .0333338
.0466671 .0666670
.0333335 .0466668
.0466667 .0333335
.0666673 .0466669
.0666673 .0466668
.0466669 .0333334
.0466668 .0666667
.0333334 .0466667
.0466668 .0333334
.0666668 .0466667
.0666667 .0466667
.0466667 .0333333
.0466667 .0666667
.0333333 .0466667
.0466667 .0333333
-0666667 .0466667
.0666667 .0466667
.0466667 .0333333
Len Colgan
668
APPENDIX E SUBROUTINE J S I C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
C
C
SUBROUTINE TO SOLVE LARGE SPARSE LINEAR SYSTEMS USING JACOBI I T E R A T I O N WITH CHEBYSHEV ACCELERATION WRITTEN BY L.COLGAN 1983 SOLVES SYSTEMS OF N SPARSE L I N E A R EQUATIONS WHERE THE COEFFICIENT MATRIX I S STORED I N UNSYMMETRIC SPARSE FORM SUBROUTINE J S I(A, JA, ISTART ,N ,NP1, IADIM ,B ,U ,ZETA, +SRJ ,SRNJ, ICASE, IADAPT, ITMAX,NUMITS ,V,W ,0) GLOSSARY OF TERMS A( 1 JA( ) ISTART(I) N NP1 IADIM B( ) U( 1 ZETA SRJ SRNJ ICASE IADAPT ITMAX NUMITS V( ) W( 1 D( 1 PSORIG PSNORM UNORM TEST GAMMA SIGMA R OMEGA TEMP QA QT NEWITS
:IION-ZERO ELEMENTS OF SPARSE COEFF. MATRIX ( I N P U T ) :COLUMN POSITIONS OF ELEMENTS I N A ( I N P U T ) :POSITION IN A & JA OF THE FIRST ENTRY FROM :ROW I.LAST ENTRY I S I A D I M + l ( I N P U T ) :NO. OF EOUATIONS [ I N P U T ) :~ (INPUT) +i :DIMENSION OF A & J A ( I N P U T ) :RIGHT HAND S I D E OF EQUATIONS ( I N P U T ) :SOLUTION. ON INPUT CONTAINS I N I T I A L GUESS :WHICH MAY B E ZERO VECTOR (INPUT.OUTPUT1 :STOPPING TEST. RELATIVE ERRORCZETA (INPUT) :SPECTRAL RADIUS OF B A S I C JACOBI I T E R A T I O N MATRIX :(MUST BE INPUT) :LEAST EIGENVALUE ;MOST NEGATIVE ( INPUT) :=D DO NOT CHANGE SRNJ : = 1 L E T SRNJ=-SRJ ( I N P U T ) :=0 DOES NOT ADAPT TO ESTIMATE SRJ,SRNJ : = 1 WILL ADAPT ( I N P U T ) :MAX NO. OF ITERATIONS (INPUT) :NO. OF ITERATIONS PERFORMED (OUTPUT) :TEMPORARY STORAGE WORK AREA OF SIZE' N :STORAGE FOR PREVIOUS I T E R A T I O N OF S I Z E N :DIAGONAL STORAGE WORK AREA OF S I Z E N :ORIGINAL PSEUDO-RESIDUAL NORM WITH CURRENT SRJ :CURRENT PSEUDO-RESIDUAL NORM :CURRENT SOLUTION NORM :STOPPING TEST :PARAMETER :PARAMETER :PARAMETER :ACCELERATION PARAMETER :VARIOUS TEMPORARY STORAGES :ACTUAL RESIDUAL OUOTIENT :THEORETICAL RESIDUAL QUOTIENT :NUMBER OF ITERATIONS U S I N G THE NEW ESTIMATE
REAL GAMMA, SIGMA,R ,OMEGA,QA,QT INTEGER NEWITS
I t e r a t i v e Methods
C C C
20 10 C C C 25
**** SET UP DIAGONAL ELEMENTS
****
DO 10 I = I , N 00 20 J=ISTART(I),ISTART(I+l)-1
I F ( J A ( J) .EQ. 1)THEN O( I ) = A ( J ) GOT0 10 END1 F CONTINUE CONTINUE NUMITS=O
****
CALCULATE OTHER PARAMETERS
****
G A W A = 2 . 0 / ( 2 .O-SRJ-SRNJ) S I GMA=( S RJ-S RNJ ) / ( 2.0-SRJ-S RNJ ) R=SORT( 1.O-SIGMA**Z)
R=(i.O:R)/(l.O+R)
C
C 30
40
60
50 C C C
'
NEW ITS=O
****
CALCULATE THE ACCELERATION PARAMETER PERFORM THE NEXT I T E R A T I O N I F N E W I T S = l , F I N D O R I G I N A L PSEUDO-RESIDUAL NORM USING THE NEW VALUES OF SRJ,SRNJ
****
NUMITS=NUMITS+l I F ( NUMITS. GT. 1TMAX)RETURN NEWITS=NEWITS+l PSNORM=O. UNORM=O. I F ( NEWITS. EQ. 1)GOT040 I F ( NEWITS .EQ .PITHEN OMEGA=1.0/( 1.0-0.5*SIGMAX*2) ELSE OMEGAz1 . O / ( l.O-O.Z5*0MEGA*SIGMA**2) ENOIF 00 50 I = l . N SUM=B(I) ' DO 60 J=ISTART(I),ISTART(I+l)-l IF(JA(J) .NE. I)SUM=SUM-A(J)*U(JA( J)) CONTINUE TEMP=SUM/O( I) - u ( I I PSNORM=PSNORM+TEMP**Z IF( NEWITS. EQ. ITH HEN V( I)=GAMMA*TEMP+U( I ) ELSE V( I)=OMEGA*(GAMMA*TEMP+U(I))+(l.O-OMEGA)*W(I) E N 0 1F UNORM=UNORM+V( 1)**2 CONTINUE UNORM=SQRT( UNORM) PSNORM=SQRT( PSNORM)
****
STOPPING TEST
****
TEST=PSNORM/( 1.O-SRJ)/UNORM I F ( A B S ( TEST) . L T .ZETAIRETURN IF( NEWITS. EQ. 1 )PSORIG=PSNORM
669
Len Colgan
670
C C C
70 C
c
C
**** INTERCHANGE ARRAYS
****
00 70 I=l,N W( I)=U(I) U ( I )=Vi I ) CONTINUE
****
CHANGE PARAMETERS
****
IF NECESSARY
IF(IAOAPT.EQ.O.OR.NEWITS.EQ.1)GOT030
QA=PSNORM/PSORIG TEMP=R**( NEWITS-1) QT=2.0*SQRT(TEMP)/( l.O+TEMP) C C C C
IF(QA.LT.QT**0.75)GOTO30
****
SOLVE CHEBYSHEV EQUATION TO FINO A NEW ESTIMATE FOR SRJ
****
TEMP=0.5*( l.O+TEMP)*( QA+SQRT(QA*QA-QT*QT)) TEMPTEMP**( 1.O/(NEWITS-l .O). . TEMP=(TEMP+R/TEMP)/( 1.o+R)
SRJ=0.5*(SRJtSRNJtTEMP*(2.0-SRJ-SRNJ)) I F( ICASE .EQ .1) SRNJ=-SRJ GOT025 EN 0
OUTPUT The subroutine JSI y i e l d s t h e f o l l o w i n g o u t p u t f o r t h e f i r s t model problem. I t usesthe n o t a t i o n SRJ, SRNJ f o r M, m r e s p e c t i v e l y , s t a r t i n g w i t h SRJ=O, SRNJ=-1, adapting when convenient t o f i n d a b e t t e r SRJ, and t h e r e a f t e r l e t t i n g SRNJ=-SRJ. This occurred a f t e r the second and s i x t h i t e r a t i o n s o n l y . NUMITS=1 .0066667 .0066667 .0066667 .0066667 SRJ=0.000000
.0066667 .0066667
.0066667 .0066667
.0066667 .0066667
.0066667 .0066667
.0066667 .0066667
.0066667 .0066667
NUMITS=2 .0117467 .0129412 .0129412 .0141176 SRJ=O .OOOOOO
.0129412 .0141176
.0117647 .0129412
.0123412 .0117647
.0141176 .0123412
.0141176 .0129412
.0129412 .0117647
NUMITS=3 .0164706 ,0137059 .0197059 .0235294 SRJ=.762438
.0197053 .0235234
,0164706 .0187059
.0197059 .0164706
.0235294 .0197059
‘0235234 .0137059
.0197059 .0164706
NUMITS=4 .0231671 .0298375 .0298375 .0387883 SRJ=.762438
.0238375 .0387883
.0231671 .0298375
.0238375 .0231671
.0387883 .0238375
.0387883 .0298375
.0298375 .0231671
NUMITS.5 .0270955 .0363603 .0363603 .0496681 SRJ=.762438
.0363603 .0436681
.0270955 .0363603
.0363603 .0270355
.0436681 .0363603
.0436681 .0363603
.0363603 .0370955
Iberative Methods
671
NUMITS=6 .0293013 .0401694 .0401694 .0293013 .0401694 .0561959 .0561959 .0401694 .0401694 .0561959 .0561959 .0401694 .0293013 .0401694 .0401694 .0293013 SRJ=.762438
NUM ITS= 7
.0300847 .0414167 .0414167 .0300847 .0414167 .0581826 .0581826 .0414167 .0414167 .0581826 .0581826 .0414167 .0300847 .0414167 .0414167 .0300847 SRJ=.808666
NUMITS=8 .0313919 .0435149 .0435149 .0313919 .0435149 .0615504 .0615504 .0435149 .0435149 .0615504 .0615504 .0435149 .0313919 .0435149 .0435149 .0313919 SRJ=.808666 NUMITS=9 .0322941 .0449798 .0449798 .0322941 .0449798 .0639283 .0639283 .0449798 .0449798 .0639283 .0639283 .0449798 .0322941 .0449798 .0449798 .0322941 SRJ=.808666 NUMITS-10 .0327923 .0457924 .0457924 .0327923 .0457924 .0652538 .0652538 .0457924 .0457924 .0652538 .0652538 .0457924 .0327923 .0457924 .0457924 .0327923 SRJ=.808666 NUMITS=11 0.330548 .0462177 .0462177 .0330548 .0462177 .0659432 .0659432 .0462177 .0462177 .0659432 .0659432 .0462177 .0330548 .0462177 .0462177 .0330548 SRJ=.808666
N UMITS= 12
.0331913 .0464371 .0464371 .0331913 .0464371 .0662957 .0662957 .0464371 .0464371 .0662957 .0662957 .0464371 .0331913 .0464371 .0464371 .0331913 SRJ=.808666
NUMITS= 13 .0332610 .0465493 .0465493 .0332610 .0465493 .0664762 .0664762 .0465493 .0465493 .0664762 .0664762 .0465493 .0332610 .0465493 .0465493 .0332610 SRJ=.808666 NUMITS=14 .0332963 .0466065 .0466065 .0332963 .0466065 .0665691 .0665691 .0466065 .0466065 .0665691 .0665691 .0466065 .0332963 .0466065 .0466065 .0332963 SRJ=.808666 NUMITS=15 .0333142 -0466358 .0466358 .0333142 .0466358 .0666167 .0666167 .0466358 .0466358 -0666167 .0666167 .0466358 .0333142 .0466358 .0466358 .033142 SRJ=.808666 NUMITS=16 .0333235 .0466508 .0466508 .0333235 .0466508 .0666411 .0666411 .0466508 .0466508 .0666411 .0666411 .0466508 .0333235 .0466508 .0466508 .0333235 SRJ=.808666 NUMITS=17 .0333283 .0466585 .0466585 ,0333283 .0466585 .0666535 .0666535 .0466585 .0466585 .0666535 .0666535 ,0466585 .0333283 .0466585 .0466585 .0333283 SRJ=.808666
Len CoZgan
672
NUMITS=18 .0333308 .0466625 .0466625 .0666599 SRJ=.808666
.0466625 .0666599
.0333308 .0466625
.0466625 .0333308
.0666599 .0466625
.0666599 .0466255
,0466625 ,0333308
NUMITS=19 .0333320 ,0466645 .0466645 .Of566632 SRJ=. 808666
,0466645 .Of566632
.0333320 .0466645
.0466645 .0333320
.0666632 .0466645
.0666632 .0466645
.0466645 .03333?0
NUMITS=20 .0333326 .0466656 .0466656 .0666649 SRJ=.808666
.0466656 .0666649
.0333326 .0466656
.0466656 .0333326
,0666649 .0466656
.0666649 .0466656
.0466656 .0333326
NUM ITS=2 1 .0333330 ,0466661 .0466661 .0666657 SRJ=.808666
.0466661 .Of366657
.0333330 .0466661 .046666 1 .0333330
.0466661 .0466661 ,0333330
,0666657
.0666657
.0466661
NUMITS=22 .0333332 .0466664 .0466664 .Of366662 SRJ=.808666
.0466664 .Of366662
.0333332 .0466664
.0466664 .0333332
.0666662 .0466664
.0666662 .0466664
.0466664 .0333332
NUMITS=23 .0333332 .0466665 .0466665 .0666664 SRJ=.808666
.0466665 .0666664
.0333332 .0466665
.0466665 .0333332
.Of566664 .0466665
.Of366664 .0466665
.0466665 .0333332
NUM ITS=24 .0333333 .0466666 .0466666 .0666665 SRJ=.808666
.0466666 .Of566665
.0333333 .0466666
.0466666 .0333333
.0666665 .0466666
,0666665 .0466666
.0466666 .0333333
NUMITS=25 .0333333 .0466666 .0466666 .0666666 SRJ=.808666
.0466666 .0466666
.0333333 .0466666
.0466666 .0333333
.0666666 .0466666
.0666666 .0466666
.0466666 .0333333
I t e r a t i v e Methods
APPENDIX F SUBROUTINE JCG C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
SUBROUTINE TO SOLVE LARGE SPARSE L I N E A R SYSTEMS U S I N G JACOBI I T E R A T I O N W I T H CONJUGATE GRADIENT ACCELERATION WRITTEN BY L.COLGAN 1983 SOLVES SYSTEMS OF N SPARSE L I N E A R EQUATIONS WHERE THE COEFFICIENT MATRIX I S STORED I N UNSYPMETRIC SPARSE FORM SUBROUTINE JCG(A,JA, I S T A R T ,N ,NP1 ,IADIM,B ,U,ZETA, +SRJ, IADAPT, ITMAX,NUMITS .W ,D ,PSU ,PSV ,PSW) GLOSSARY OF TERMS :NON-ZERO ELEMENTS OF SPARSE COEFF. MATRIX ( I N P U T ) A( ) :COLUMN POSITIONS O F ELEMENTS I N A ( I N P U T ) JA( ) I S T A R T ( I) : P O S I T I O N I N A & J A OF THE F I R S T ENTRY FROM :ROW I. LAST ENTRY I S I A D I M + l ( I N P U T ) N :NO. OF EQUATIONS ( I N P U T ) NP1 :N+1 ( I N P U T ) IADIM :DIMENSION OF A & JA (INPUT) :RIGHT HAND S I D E O F EQUATIONS ( I N P U T ) B( 1 :SOLUTION. ON INPUT CONTAINS I N I T I A L GUESS U( 1 :WHICH MAY BE ZERO VECTOR (INPUT,OUTPUT) ZETA :STOPPING TEST. R E L A T I V E ERRORcZETA ( I N P U T ) :SPECTRAL RADIUS O F B A S I C JACOBI I T E R A T I O N MATRIX SRJ :(MUST BE I N P U T ) IADAPT :=0 DOES NOT ADAPT TO ESTIMATE S R J :=1 W I L L ADAPT ( I N P U T ) ITMAX :MAX NO. OF ITERATIONS ( I N P U T ) NUMITS :NO. OF ITERATIONS PERFORMEO (OUTPUT) :STORAGE FOR PREVIOUS I T E R A T I O N OF S I Z E N W( 1 :DIAGONAL STORAGE WORK AREA OF S I Z E N D( PSNORM :CURRENT PSEUDO-RESIDUAL NORM UNORM :CURRENT SOLUTION NORM TEST :STOPPING TEST :STORAGE FOR CURRENT PSEUDO-RESIDUAL VECTOR PSU( ) :STORAGE FOR NEW PSEUDO-RESIDUAL VECTOR PSV( ) STORAGE FOR PREVIOUS PSEUDO-RESIDUAL VECTOR PSW( ) PSUPSV : I N N E R PRODUCT PSUPSU :INNER PRODUCT PSWPSW : I N N E R PRODUCT GAMMAU :PARAMETER GAMMAW :PARAMETER OMEGAU :CURRENT ACCELERATION PARAMETER OMEGAW :PREVIOUS ACCELERATION PARAMETER ALPHA( ) :DIAGONAL ELEMENTS OF TRIDIAGONAL MATRIX BETA( ) :SQUARE OF OFF-DIAGONAL ELEMENTS CHANGE :=0 I F SRJ IS ACCURATE ENOUGH TEMP :VARIOUS TEMPORARY STORAGES REAL A ( I A D I M ) , B ( N ) ,U(N) ,ZETA,SRJ INTEGER J A ( I A D I M ) , I S T A R T ( N P l ) ,N,NPl,IADIM,IADAPT, +NUMITS,ITMAX REAL PSNORM,W(N) ,D(N) ,PSU(N) ,PSV(N) ,PSW(N) ,UNORM,SUM, +TEST,TEMP ,PSUPSV ,PSUPSU ,PSWPSW ,GAMMAU ,GAMMAW, +OMEGAU ,OMEGAW,ALPHA( 200) ,BETA( 200)
67 3
Len CoZgan
674
INTEGER CHANGE
****
SET UP DIAGONAL ELEMENTS F I N O O R I G I N A L PSEUDO-RESIDUAL AND I T S INNER PRODUCT
****
20 10
C C C 30
PsuPsu=o.o DO 10 I = l , N SUM=B( I) DO 20 J = I S T A R T ( I ) , I S T A R T ( I + l ) - 1 I F ( J A ( J ) . E Q . 1)THEN D ( I ) = A ( J) ELSE SUM=SUM-A(J)*U(JA(J)) ENDIF CONTINUE PSU(I)=SUM/D(I)-U(I) PSUPSU=PSUPSU+D( I ) * P S U ( I)**2 CONTINUE CHANGE= 1 NUMITS=O GAMMAU=O. 0 GOT050
****
ESTIMATE SRJ
****
I F ( CHANGE .EQ .O.OR. TADAPT. EQ.O)GOT040
IF"JMITS.GT.2ITHEN CALL NEWTON( S R J ,CHANGE ,ZETA ,ALPHA,BETA,NUMITS) E L S E I F ( NUMITS .EQ. 1)THEN SRJ=ALPHA( 1) ELSE SRJ=ALPHA( l ) + A L P H A ( 2 ) TEMP=ALPHA( 1)-ALPHA( 2) SRJ=0.5*(SRJ+SQRT(TEMP**2+4.0*BETA( 2 ) ) ) ENDIF P R I N T 35,NUMITS,SRJ FORMAT( l X , ' N U M I T S = ' , I 4 / 1 X , , ' S R J =',E12.6/) .
35 C C C 40 C C C C 50
70 60
I
****
STOPPING TEST
****
TEST=PSNORM/( 1.O-SRJ)/UNORM I F ( ABS(TEST) . L T . ZETA) RETURN
****
CALCULATE NEW PARAMETERS NEEOS TO F I N D ( I T E R A T I O N M A T R I X ) * ( PSU)
****
NUMITS=NUMITS+l I F ( N U M I T S . G T . 1TMAX)RETURN PSUPSV=O .o DO 60 I = l , N SUM=O. 0 DO 70 J=ISTART( I 1, ISTART( I+ 1)- 1 IF( JA(J) .NE.I)SUM=SUM-A( J)*PSU( JA( J)) CONTINUE PSV( I ) = S U M / D ( I ) P s u P s v = P s u P s v + P s u ( I )*D( I )*PSV( I ) CONTINUE
I t e r a t i v e Methods
C C C
C C C C C
80
90
C C C L
GAMMAW=GAMMAU GAMMAUzl .O/( 1.0-PSUPSV/PSUPSU)
****
CALCULATE NEW ACCELERATION PARAMETERS
****
I F ( NUMITS. EQ. 1)THEN OMEGAU=1.0 ELSE TEMP=l .O/ ( 1.O-PSUPSU*GAMMAU/(OMEGAU*GAMMAW*PSWPSW)) OMEGAW=OMEGAU OMEGAU=TEMP END1 F
****
F I N D NEW SOLUTION ESTIMATE AND NORM F I N D NEW PSEUDO-RESIDUAL AND NORM INTERCHANGE ARRAYS FOR NEXT I T E R A T I O N
****
UNORM=O .O PSNORM=O.O PswPsw=PsuPsu PsuPsu=o.o I F ( N U M I T S . E Q . 1)THEN DO 80 I = l , N TEMP=GAMMAU*PSU( I )+u( I ) W(I)=U(I) U( I)=TEMP UNORM=UNORM+TEMP**Z TEMP=GAMMAU*PSV( I ) + ( l . O - G A M M A U ) * P S U ( I ) PSW( I ) = P S U ( I ) PSU( I )=TEMP TEMP=TEMP**Z PSNORM=PSNORM+TEMP PSUPSU=PSUPSU+D( I )*TEMP CONTINUE ALPHA( 1 ) z l . O - 1.O/GAMMAU ELSE DO 90 I = l , N TEMP=OMEGAU*( GAMMAU*PSU( I ) + U ( I ) ) + ( 1.O-OMEGAU)*W( I ) W( I ) = U ( I ) U( I ) = T E M P UNORM=UNORM+TEMP**Z TEMP=OMEGAU*(GAMMAU*PSV( I ) + (1.O-GAMMAU)*PSU( I ) ) t+( 1.0-OMEGAU)*PSW( I ) PSW(I)=PSU( I ) PSU( I )=TEMP . TEMP=TEMP**Z PSNORM=PSNORM+TEMP PSUPSU=PSUPSU+D( I )*TEMP CONTINUE ALPHA( N U M I T S ) = l . 0- 1.O/GAMMAU B E T A ( N U M I T S ) = ( OMEGAU-1 .O)/( GAMMAW*GAMMAU*OMEGAW*OMEGAU) ENDIF UNORM=SQRT( UNORM) PSNORM=SQRT( PSNORM) GOT030 END
****
SUBROUTINE TO F I N D NEW SRJ ESTIMATE LARGEST EIGENVALUE OF A TRIDIAGONAL MATRIX USES NEWTON'S METHOD
****
675
Len CoZgan
676
100
110
SUBROUTINE NEWTON( SRJ ,CHANGE ,ZETA,ALPHA,BETA,NUMITS) REAL SRJ ,ZETA,ALPHA( 200) ,BETA( 200) +,X,FX( 200) ,DFX(200) ,DELTAX INTEGER CHANGE,NUMITS X=SRJ FX( l)=ALPHA( 1)-X DFX( 1)=-1.0 FX(P)=FX( l)*(ALPHA(2)-X)-BETA(2) OFX(2)=DFX( l)*(ALPHA(2)-X)-FX( 1 ) 00 110 I=3,NUMITS FX( I ) = F X ( I-l)*(ALPHA( I)-X)-FX( I-2)*BETA( I ) DFX( I)=DFX( I-l)*(ALPHA( I ) - X ) - F X ( I-1)-DFX( 1-2)*BETA( I ) CONTINUE OELTAX=FX ( NUMITS) /DFX ( NUMITS) X=X-DELTAX IF( ABS(D E L T A X ~ G TZETA)GOTO~OO . IF(ABS (X-SRJ) .LT. ZETA) CHANGE=O SRJ=X RETURN END
OUTPUT The s u b r o u t i n e JCG y i e l d s t h e f o l l o w i n g o u t p u t f o r t h e f i r s t model problem. I t does n o t r e q u i r e any parameters d u r i n g t h e a c t u a l i t e r a t i o n s , b u t must e s t i m a t e M ( c a l l e d SRJ i n t h e s u b r o u t i n e ) f o r t h e s t o p p i n g t e s t . T h i s i s done i n s i d e t h e a d d i t i o n a l s u b r o u t i n e NEWTON. NUMITS=l .0400000 .0400000 .0400000 .0400000 SRJ=.750000
.0400000 .0400000
.0400000 .0400000
.0400000 .0400000
.0400000 .0400000
.0400000 .0400000
.0400000 .0400000
NUMITS=2 .0320000 .0480000 .0480000 .0640000 SRJ=.806186
.0480000 .0640000
.0320000 .0480000
.0480000 .0320000
.0640000 .0480000
.0640000 .0480000
.0480000 .0320000
NUMITS=3 .0333333 .0466667 .0466667 .0666667 SRJ=.809017
.0466667 .0666667
.0333333 .0466667
.0466667 .0333333
.0666667 .0466667
.0666667 .0466667
.0466667 .0333333
Iterative Methods
677
BIBLIOGRAPHY Axelsson, O . , (1977) " S o l u t i o n o f l i n e a r systems o f equations: i t e r a t i v e methods", i n L e c t u r e Notes i n Math.: Sparse m a t r i x techniques 572 (V.A. B a r k e r , ed.) Springer-Verlag, N.Y. Axelsson, 0. and Gustafsson, I . , (1977) "A m o d i f i e d upwind scheme f o r c o n v e c t i v e t r a n s p o r t e q u a t i o n and t h e use o f t h e c o n j u g a t e g r a d i e n t method f o r t h e s o l u t i o n o f nonsymmetric systems o f equations", Computer Sciences Dept. Report 77-12R, Chalmers Univ.Tech., Goteborg, Sweden. B a r t e l s , R . and D a n i e l , J.W., (1973) "A c o n j u g a t e g r a d i e n t approach t o n o n l i n e a r e l l i p t i c boundary v a l u e problems i n i r r e g u l a r r e g i o n s " , L e c t u r e Notes i n Math.363, S p r i n g e r - V e r l a g , N.Y. B i r k h o f f , G. and Varga, R.S., Trans.Amer.Math.Soc. 92.
(1959)
" I m p l i c i t a l t e r n a t i n g d i r e c t i o n methods",
B i r k h o f f , G., Varga, R.S. and Young, D., methods", Advances i n Computers 3 .
(1962)
"Alternating direction i m p l i c i t
Buzbee, B.L., Golub, G.H. and N i e l s o n , C.W., (1970) "The method o f odd/even r e d u c t i o n and f a c t o r i z a t i o n w i t h a p p l i c a t i o n t o P o i s s o n ' s e q u a t i o n " , Siam J.Numer. Anal. 7. Carre, B.A., (1961) "The d e t e r m i n a t i o n o f t h e o p t i m a l a c c e l e r a t i n g f a c t o r f o r successive o v e r r e l a x a t i o n " , t h e Computer J o u r n a l 4. Chandra, R., (1977) "Conjugate g r a d i e n t methods f o r p a r t i a l d i f f e r e n t i a l e q u a t i o n s " , d o c t o r a l t h e s i s , Yale U n i v e r s i t y , New Haven, C o n n e c t i c u t . Concus, P. and Golub, G.H., (1976) "A g e n e r a l i z e d c o n j u g a t e g r a d i e n t method f o r n o n s y m e t r i c systems o f l i n e a r equations", Stan-CS-76-536, Computer Science Dept., Stanford University, Palo Alto, C a l i f o r n i a . Concus, P . , Golub, G.H. and O'Leary, D.R., (1976) "A g e n e r a l i z e d c o n j u g a t e g r a d i e n t method f o r t h e numerical s o l u t i o n o f e l l i p t i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s " , i n Sparse M a t r i x Computation (J.R. Bunch and D.J. Rose, eds.), Academic Press.
a2u a2u - au Douglas, J . Jr., (1955) "On t h e numerical i n t e g r a t i o n o f 7+ 7 - - by ay at a x i m p l i c i t methods , J.Soc.Ind.App1 .Math.3. Douglas, J . Jr., (1961) "A survey o f numerical methods f o r p a r a b o l i c d i f f e r e n t i a l e q u a t i o n s " Advances i n Computers, Vol.2, (F.L. A l t , ed.), Academic Press, N.Y. Douglas, J. J r . and Rachford, H.H. Jr., (1956) "On t h e numerical s o l u t i o n o f h e a t c o n d u c t i o n problems i n two o r t h r e e space v a r i a b l e s " , Trans.Amer.Math.Soc.82. E h r l i c h , L.W., (1963) "The B l o c k symmetric successive o v e r r e l a x a t i o n method", d o c t o r a l t h e s i s , Univ.Texas a t A u s t i n , A u s t i n , Texas. E n g e l i , M., Ginsburg, T., Rutishauser, H. and S t i e f e l , E., (1959) "Refined i t e r a t i v e methods f o r t h e computation o f t h e s o l u t i o n and t h e eigenvalues o f s e l f - a d j o i n t boundary v a l u e problems", M i t t . I n s t . f . a n g e w . Math.ETH Z u r i c h , No. 8. Evans, D.J., (1967) "The use o f p r e c o n d i t i o n i n g i n i t e r a t i v e methods f o r s o l v i n g l i n e a r equations w i t h symmetric p o s i t i v e d e f i n i t e m a t r i c e s " , J.Inst.Math.Appl.4. Forsythe, G.E. and Wasow, W.R., (1960) " F i n i t e D i f f e r e n c e Methods f o r P a r t i a l D i f f e r e n t i a l Equations", Wiley, N.Y.
Len CoZgan
678
Ginsburg, T.,
(1963)
"The c o n j u g a t e g r a d i e n t method", Numer.Math.5.
Golub, G.H., (1959) "The use o f Chebyshev m a t r i x p o l y n o m i a l s i n t h e i t e r a t i v e s o l u t i o n o f 1 i n e a r systems compared w i t h t h e methods o f successive o v e r r e l a x a t i o n " , d o c t o r a l t h e s i s , U n i v . I l l i n o i s , Urbana, I l l i n o i s . Golub, G.H. and Varga, R.S., (1961) "Chebyshev s e m i - i t e r a t i v e methods, successive o v e r r e l a x a t i o n methods, and second-order Richardson i t e r a t i v e methods, P a r t I and P a r t I I " , Numer.Math.3. Grimes, R.G., K i n c a i d , D.R., MacGregor, W . I . and'Young, D.M., (1978) "ITPACK Report: Adaptive I t e r a t i v e A l g o r i t h m s u s i n g Symmetric Sparse Storage", CNA-139, Center f o r Numerical A n a l y s i s , U n i v . o f Texas a t A u s t i n , A u s t i n , Texas. H a b e t l e r , G.J. and Wachspress, E.L., (1961) "Symmetric successive o v e r r e l a x a t i o n i n s o l v i n g d i f f u s i o n d i f f e r e n c e equations" , Math .Comp. 15. Hageman, L.A., (1972) "The e s t i m a t i o n o f a c c e l e r a t i o n parameters f o r t h e Chebyshev polynomials and t h e successive o v e r r e l a x a t i o n methods", WAPD-TM-1038, B e t t i s Atomic Power Laboratory, P i t t s b u r g h , Pennsylvania. Hageman, L.A. and Young, D.M., N.Y.
(1981)
" A p p l i e d i t e r a t i v e methods", Academic Press,
Hageman, L.A., Luk, F. and Young, D.M., (1977) "The a c c e l e r a t i o n o f i t e r a t i v e methods: p r e l i m i n a r y r e p o r t " , CNA-129, Center f o r Numerical A n a l y s i s , U n i v . o f Texas a t A u s t i n , A u s t i n , Texas. H e l l e r , J., (1960) "Simultaneous successive and a1 t e r n a t i n g d i r e c t i o n schemes", J. SOC. Indust.App1 .Math.8. H e n r i c i , P., (1962) " D i s c r e t e v a r i a b l e methods i n O r d i n a r y D i f f e r e n t i a l Equations", John W i l e y & Sons I n c . , N.Y. Hestenes, M.R. and S t i e f e l , E.L., (1952) s o l v i n g l i n e a r systems", NBS J.Res. 49.
"Methods o f c o n j u g a t e g r a d i e n t s f o r
Kahan, W., (1958) "Gauss-Seidel methods o f s o l v i n g l a r g e systems o f l i n e a r equations", d o c t o r a l t h e s i s , U n i v . o f Toronto, T o r o n t o . K i n c a i d , D.R., (1971) "An a n a l y s i s of a c l a s s o f norms o f i t e r a t i v e methods f o r systems of l i n e a r equations", d o c t o r a l t h e s i s , U n i v . o f Texas a t A u s t i n , A u s t i n , Texas. K i n c a i d , D.R. and Young, D.M. (1978) "Survey o f i t e r a t i v e methods", CNA-135, Center f o r Numerical A n a l y s i s , Univ. o f Texas a t A u s t i n , A u s t i n , Texas. M a n t e u f f e l , T.A., (1975) "An i t e r a t i v e method f o r s o l v i n g nonsymmetric l i n e a r systems w i t h dynamic e s t i m a t i o n o f parameters", d o c t o r a l t h e s i s , Univ. I l l i n o i s , Urbana , I1 1i n o i s . Peaceman, D.W. and Rachford, H.H. Jr., (1955) "The numerical s o l u t i o n of p a r a b o l i c and e l l i p t i c d i f f e r e n t i a l e q u a t i o n s " J.Soc.Indus.App1. Math. 3 . P r i c e , H. and Varga, R.S., (1962) "Recent numerical experiments comparing successive o v e r r e l a x a t i o n i t e r a t i v e methods w i t h i m p l i c i t a1 t e r n a t i n g d i r e c t i o n methods", Report No. 91, Gulf Research and Development Co., P i t t s b u r g h , Pennsylvania. Schwarz, H.R., Rutishauser, H. and S t i e f e l , E., Symmetric M a t r i c e s " , P r e n t i c e - H a l l Inc., N.J.
(1973) "Numerical a n a l y s i s o f
I t e r a t i v e Methods
679
Stone, H.L., (1968) " I t e r a t i v e S o l u t i o n s o f i m p l i c i t a p p r o x i m a t i o n s o f m u l t i dimensional p a r t i a l d i f f e r e n t i a l equations", Siam J.Num.Ana1. 5. Tee, G.J., (1963) " E i g e n v e c t o r s o f t h e successive o v e r r e l a x a t i o n process and i t s c o m b i n a t i o n w i t h Chebyshev s e m i - i t e r a t i o n " , C0mput.J. 6. Varga, R.S.,
(1962)
" M a t r i x I t e r a t i v e A n a l y s i s " , P r e n t i c e - H a l l , N.J.
Wachspress, E . L . , (1966) " I t e r a t i v e s o l u t i o n o f e l l i p t i c systems and a p p l i c a t i o n s t o t h e Neutron d i f f u s i o n equations o f r e a c t o r p h y s i c s " , P r e n t i c e - H a l l . N.J. Westlake, J.R., (1968) "A handbook o f numerical m a t r i x i n v e r s i o n s and s o l u t i o n o f l i n e a r e q u a t i o n s " , John W i l e y & Sons I n c . , N.Y. Widlund, O., (1978) "A Lanczos method f o r a c l a s s o f n o n s y m e t r i c systems o f l i n e a r equations", Siam J.Numer.Ana1. No. 4. Wrigley, H.E., (1963) "On a c c e l e r a t i n g t h e Jacobi method f o r s o l v i n g simultaneous equations by Chebyshev e x t r a p o l a t i o n when t h e eigenvalues o f t h e i t e r a t i o n m a t r i x a r e complex", Comput J. 6.
.
Young, D.M. (1950) " I t e r a t i v e methods f o r s o l v i n g p a r t i a l d i f f e r e n c e e q u a t i o n s o f e l l i p t i c type", d o c t o r a l t h e s i s , Harvard Univ., Cambridge, Massachusetts. Young, D.M. (1954) "On R i c h a r d s o n ' s method f o r s o l v i n g l i n e a r systems w i t h p o s i t i v e d e f i n i t e m a t r i c e s " , J .Ma t h .Phys X X X I I .
.
Young, D.M. (1970) "Convergence p r o p e r t i e s o f t h e s y m n e t r i c and unsymmetric successive o v e r r e l a x a t i o n methods and r e l a t e d methods", Math.Comp. 24. Young, D.M. N.Y.
(1971)
" I t e r a t i v e s o l u t i o n o f l a r g e l i n e a r systems" Academic Press,
Young, D.M. (1977) "On t h e a c c e l e r a t e d SSOR method f o r s o l v i n g l a r g e l i n e a r systems", i n Advances i n Math. 23.