Appendix D JOINT DISTRIBUTIONS OF RANDOM PROCESSES WITH NON-GAUSSIAN HEIGHT DISTRIBUTIONS A general single-variable Langevin equation takes the form [D.1, D.2],
dx d-T = h(x, r) + g(x, r)~(r),
(D.1)
where ~(r) is a Gaussian-Markov process, satisfying < ~(r) > = 0,
(D.2)
< ~(r)~(~') > - 2~(~- r'). Here we adopt the Stratonovich interpretation of Equation (D.1). The corresponding Fokker-Planck equation for Equation (D.1) is Op(xlxo ; ~)
Or
=
o
o~
Ox [A(x,r)p(x[x0;r)] + ~
[B(x,r)p(xlx0;r)],
(D.3)
where
A(x, r) - h(x, r) + g(x r) Og(x, r) '
(D.4)
(~X
B(x, r) = g2(x, r),
(D.5)
and p(x[xo; r) is the conditional probability density, and x and x0 are separated by distance r. We now consider the solution of Equation (D.3) corresponding to an initial value, p(xjxo; r = o) = 5(x - xo),
(D.6)
and the reflecting barriers' boundary conditions,
0 [B(x, r)p] - A(x, r)p - O, at x - xl, x2. Ox
(D.7)
A further assumption can be made concerning the coefficient A(x, r) and B(x,r): A(x, r) - A(x)F(r), B(x, r) - B(x)F(r).
(D.8)
Then Equation (D.3) can be solved by separation of variables. Letting
p(x[xo ;r) = X (x) T (r), 387
(D.9)
388
JOINT DISTRIBUTIONS OF RANDOM PROCESSES
we have dT =-,~F(r)T(r), dr d2
and
d
dx 2 [B(x)X(x)] - -~x [A(x)X(x)] + A X ( x ) - O.
(D.10)
(D.11)
The solution for Equation (D.10) is obvious: T(r) - T(O) exp[-A
~0r F(r)dr].
(D.12)
The solution for Equation (D.11) is an eigenvalue problem of a secondorder ordinary differential equation. We can give some special form of A(x) and B(x), and Equation (D.11) can be changed to a Sturm-Liouville equation. Letting B(x)
-
/3(cx 2 + dx + e),
(D.13)
A(x)
=
dB(x_____~)+/~(ax + b)
(D.14)
dx
and d W (x) ax + b = W(x). dx cx 2 + dx + c
(D.15)
Equation (D.11) becomes a standard Sturm-Liouville equation, d [ B ( x ) W ( x ) d~X dx
+ A W ( x ) X - O,
(D.16)
with the boundary condition dX B(x)W(x)-~-~x - O , x - xl, x2.
(D.17)
Therefore, the general solution for Equation (D.3) is p(xlxo;t ) - W ( x ) E
e -)~'~ f0~F (t)dtQn(x)Qn(xo),
(D.18)
n
where Qn (x) is the eigenfunction of Equations (D.16) and (D.17), and An is the corresponding eigenvalue. The Q~ satisfy the following orthonormalization relation" f x2 W ( x ) Q n ( x ) Q m ( x ) d x - 5urn. 1
(D.19)
JOINT DISTRIBUTIONSOF RANDOM PROCESSES
389
In fact, Qn (x) are the classic orthogonal polynomials. If the probability density for xo is given as W (x0), then the joint distribution for x and x0 is
p(x, xo;r)
-
W (x) W(xo) ~ R~Q~(x)Qn(xo), n
(D.20)
where
R(r) - exp [- for F(r)drl . The correlation function
(D.21)
R(r) is given as R (r) -
(D.22)
References D.1 H. Risken, The Fokker-Planck Equations: Methods of Solution and Applications (Springer-Verlag, New York, 1984). D.2 J. Honerkamp, Stochastic Dynamical System: Concepts, Numerical Methods, Data Analysis, translated by K. Lindenberg (VCH, New York, 1994).