>, we m e a n that the c o n d i t i o n Log (UdATP ( t ) ] / [dATP ( O ) l ) / L o g ([dGTP ( t ) ! / [ d G T P (O)]) = c o n s t a n t held true t h r o u g h o u t the reaction. Furthermore, the c o n s t a n c y of the ratio [ d A D P ] / ([dAMP i n c o r p o r a t e d ] + [dAMP released]) was also verified to a very good a p p r o x i m a t i o n . This a n d other evidence suggest that nueleoside incorp o r a t i o n and c o n v e r s i o n of nucleoside triphosphate into nueleoside d i p h o s p h a t e or monophosphate are alternative outcomes of the i n t e r a c t i o n of a nucleoside t r i p h o s p h a t e v:ith the polymerasetemplate complex in the course of p o l y m e r i z a t i o n . They do not prove yet that Hopfield's i n c o r p o r a tion scheme is correct. The possibility r e m a i n s that nucleoside mono and d i p h o s p h a t e formation are due to a p a r a s i t i c abortive b r a n c h of the p o l y m e r i z a t i o n reaction. DISCUSSION. The p r o b a b i l i s t i c a p p r o a c h that we have used a n d the steady-state t r e a t m e n t of enzyme kinetics are strictly equivalent in their consequences. T h e y are two `ways of expressing the same basic p h e n o m e n a . I n that respect, w h e n G o o d m a n e t al. [28] compute by two different methods errorfrequencies, and then <
J. Ninio.
594
steady-state t r e a l m e n t of the Michaelis equation one w o u l d obtain for i n s t a n c e : VS __~ IS] [E.] k s k s (k~ + k~)
+ kSO
+ (27)
W h e n m a k i n g the ratio vS/vA, most of the terms cancel out a n d we are left with just the terms that we o b t a i n e d directly by p r o b a b i l i t y reasonnings. P r o b a b i l i s t i c equations were developped b y K n o r r e and Malyguine [20] for c o m p a r i n g the rates of two reactions o c c u r r i n g on a same enzyme (for i n s t a n c e the p y r o p h o s p h a t e exchange r e a c t i o n versus the formation of the a m i n o a c y l a d e n y l a t e on an aminoacyl-tRNA ligasc). However, K n o r r e ' s group did not deal w i t h d i s c r i m i n a t i o n problems. A n u m b e r of reports, often misleading, a p p e a r e d r e c e n t l y l i n k i n g a c c u r a c y to kinetics. Thus, Yarus [31] claimed that <
BIOCHIMIE, 1975, 57, n ° 5.
their E q u a t i o n (2). The source of their e r r o r can be traced back to a confusion i n the theoretical p a p e r [28]. W h e n w r i t i n g (p. 425) R(Bj) = t u r n B i / ( i n c Bj + t u r n Bj), the authors identified a p r o b a b i l i t y of h y d r o l y s i s in the e l e m e n t a r y step w i t h an overall p r o b a b i l i t y of h y d r o l y s i s i n the complete process. It is difficult to judge at the onset w h e t h e r or not some e n z y m a t i c systems take advantage of the amplification possibilities that "we have discussed. F o r one t h i n g our analysis stresses the fact that a c c u r a c y m a y d e p e n d c r i t i c a l l y u p o n details to w h i c h no attention w o u l d be paid n o r m a l l y . F o r instance, a n y analysis of the h y d r o l y t i c activity in the aminoacyl-tRNA ligases should take into c o n s i d e r a t i o n the sequence of the events that lead to the d e ? a r t u r e of the tRNA from the enzyme. The reaction of d e g r a d a t i o n of ATP described in E q u a t i o n (8) if observed w o u l d be c o n s i d e r e d as ~'aste, or as due to in vitro artifacts~ One may ask w h y the cell is not w o r k i n g at the highest achievable level of accuracy. A possible a n s w e r is that efficiency a n d a c c u r a c y a p p e a r s o m e h o w a n t i n o m i c . Consider the case of Equation (10). T h e r e is a good d i s c r i m i n a t i o n w h e n k~ is large c o m p a r e d to k 3 and k_~ a n d k2[$2]. T h e n a c c u r a c y may be controlled t h r o u g h the c o n c e n t r a t i o n of S 2. By lo:wering it one makes the reaction more accurate, but at the same time it appears less e f f i c i e n t : it takes more trials i n order to have a successful i n c o r p o r a t i o n . All the reaction schemes that we have consid e r e d involve a last i r r e v e r s i b l e step. T a k i n g into a c c o u n t the terminal r e v e r s i b i l i t y makes the analysis far m o r e complicated, but is a necessity for a valid evaluation of the energetic cost of accuracy. A p a r t i a l solution to the p r o b l e m m a y be p r o v i d e d by m a k i n g the last step of the reaction reversible and i n c l u d i n g an a d d i t i o n a l irreversible step w h i c h represents the net consumption of the p r o d u c t by the next step of the metabolic net into w h i c h the c o n s i d e r e d r e a c t i o n is imbedded.
Acknolwledgments. I am indebted to L. E. Orgel for the discussions from which this paper stemmed, and for going patiently through many of its earlier versions. The work was supported by the Edna MeConnell Clark Foundation and by the C.N.R.S. (France). R~sn~r~. On a 6tudi6 par une approehe probabiliste la relation entre la pr6cision dont un syst6me enzymatique est capable et le m6canisme r6actionnel. Certains rod-
Enzyme Discrimination. eanislnes dans lesquels nne des 6tapes est r e t a r d e r agissent comme des amplificateurs ein6tiques des d i s c r i m i n a t i o n s mol6culaires. La relation entre notre schema de r6action retard6e (1) et le sch6ma de Hopfield (2) est diseut6e. REFERENCES. 1. Ninio, J. (1975) in <(L'Evolution des Macromoldcures Biologiques )> (C. Sadron, Ed.) Editions du C.N.R.S., Paris, in the press. 2. Hopfield, J. J. (1974) Proc. Nut. Acad. Sci., USA, 71, 4135-4139. 3. Koshland, D. E. (1958) Proc. Nat. Acad. Sci., USA, 44, 98-104. 4. W o l t e n d e n , R. (1972) Accounts Chem. Res., 5, 1018. 5. Spryer, J. F., Karam, J. D. ,¢ Lenny, A. B. (1966) Cold Sprin 9 Harbor Syrup. Ouant. Biol., 31, 693-697. 6. Drake, J. W. & Allen, E. F. (1968) Cold Sprinff Harbor Sgmp. Quant. Biol., 33, 339-344. 7. Freese, E. B. & Freese, E. (1967) Proc. Nat. Acad. Sci., USA, 67, 650-657. 8. de Vries, F. A. J., S'wart-Idenburg, Ch. J. H. & de V~Zaard, A. (1972) Molec. Gen. Genet., 117, 60-71. 9. Drake, J. W. (1973) Genetics Supplement, 73, 45-64. 10. Hershfield, M. S. (1973) J. Biol. Chem., 248, 14171423. 11. Nossal, N. G. & Hershfield, M. S. (1973) in DATA Synthesis in Vitro (Wells, R. D. & Inman, R. B., eds.), pp. 47-62, University P a r k Press, Baltimore. 12. Muzyezka, N., Poland, R. L. ~ Bessman, M. J. (1972) J. Biol. Chem., 247, 7116-7122. 13. Bessman, M. J., Muzyczka, N., Goodman, M. F. z: Schnaar, R. L. (1974) J. Mol. Biol., 88, 409-421.
BIOCHIMIE, 1975, 57, n ° 5.
595
14. Rosset, R. ,~ Gorini, L. (1969) J. Mol. Biol., 39, 95112. 15. Strigini, P. ~ Gorini, L. (1970) J. Mol. Biol., 47, 517-530. 16. Biswas, D. K. ~ Gorini, L. (1972) J. Mol. Biol., 64, 119-134. 17. Gorini, L. (1971) Nature New Biol., 234, 261-264. 18. Ninio, J. (1973) Pro9 r. Nucleic Acid Res. Mol. Biol., 13, 301-337. 19. Ninio, J. (1974) Y. Mol. Biol., 84, 297-313. 20. Knorre, D. G. a Malyguine, E. G. (1972) Dokl. Akad. Nauk SSSR, 207, 1391-1393. 21. Brutlag, D. ~ Kornberg, A. (1972) J. Biol. Chem., 247, 241-248. 22. Hamilton, L., Mahler, I. ~ Grossman, L. (1974) Biochemistry, 13, 1888-1896. 23. Eldred, E. W. ~ Schimmel, R. J. (1972) J. Biol. Chem., 247, 2961-2964. 24. Yarus, M. (1972) Proc. Nat. Acad. Sci., USA, 69, 1915-1919. 25. Bonnet, J., Gieg~, R. a Ebel, J. P. (1972) FEBS Letters, 27, 139-144. 26. Yarus, M. a Berg, P. (1969) J. Mol. Biol., 42, 171189. 27. Eldred, E. W. & Sehimmel, P. R. (1972) Biochemistry, 11, 17-23. 28. Goodman, M. F., Gore, W. C., Muzyezka, N. a Bessman, M. J. (1974) J. Mol. Biol., 88, 423-435. 29. Hall, Z. W. ~ Lehman, I. R. (1968) J. Mol. Biol., 36, 321-333. 30. Howard, B. D. ~ Tessman, I. (1964) J. Mol. Biol., 9, 364-371. 31. Yarus, M. (1972) Nature Now Biol., 239, 106-108. 32. Bonnet, J. a Ebel, J. P. (1974) FEBS Letters, 39, 259-262. 33. Sourgoutchov, A., Blanqnet, S., Fayat, G. a Waller, J. P. (1974) Eur. J. Biochem., 46, 431-438.