Kinetic resolution of chiral metallocenic aldehydes and alcohols with liver alcohol dehydrogenase

Kinetic resolution of chiral metallocenic aldehydes and alcohols with liver alcohol dehydrogenase

Tetrahedron Letters,Vo1.30,No.39,pp Printed in Great Britain 5313-5314,1989 oo40-4039/89 Pergamon $3.00 + .OO Press plc KINETIC~SOLUTIONOFMIRALM...

160KB Sizes 6 Downloads 43 Views

Tetrahedron Letters,Vo1.30,No.39,pp Printed in Great Britain

5313-5314,1989

oo40-4039/89 Pergamon

$3.00 + .OO

Press

plc

KINETIC~SOLUTIONOFMIRALMETAGLO~.NICALDEHYDESANDALCOHOISWITH~VER~COHOLDEHYCR~hTASE Yoshimitsu Yamazaki* and Kuniaki Hosono Fermentation ResearchInstitute,AIST, Tsukuba,Ibaralci 35, Japan Summary:Horse liveralcoholdehydrogenase-catalyzed oxidoraducticn was usefulto resolveracemic lformyl-Z-methyl derivatiws of tricarbonyl(cyclopentadienyl)manganese and (benzene)tricarbonylchromium and racemic 1-hydroxyethylferrocene, ruthenoceneand osmocme. Enzyme-mediated asymmetrictransformation is aueeful methodto prepareopticallyactiveorganometalliccompcurds,as recentlyshown by us with horse liver alcoholdehydrogenase (HLADH)for la lb& a ferrocenederivatives and severalother grcqs with hydrolasesfor l-ferrocenylethanol, le Id dienoate-iron complex, or silicon-containirlg esters. Microbialreductiormof aromaticketonesand If-h Mre we describe how HIADH is useful aldehydescomplexedwith Cr(CD)3have been also reported. in the bioconversim of more variousorganometallic compounds (~)-Tricarbmyl(~-1-formyl-2-methylcyclopentdienyl)manganese (L,2118 mg) was reducedwith HLADH (120U as assayedwith EtOH)and NADH at pH 7.5and 4"C3 When the TX monitor showed that the spots for l_and the product2_hadalmostthe same size at 2.5hr, the compoundswere extractedwith FtC&Acand isolatedby silicagel column chromatography as opticallyactiwsoils:A(36 mg, 31 % yield), ((u1~+101°(~2.2, benzene);and 2_(41 mg, 35 % yield),(a1~-8.7°(c=2.1, benzene).4The latterwas oxidizedwith MnD2 to give the lewrotatoryaldehydeAin 78 % yield, (a):-lC&'(c=2.1, benzene). Ihe absoluteconfigurationof (+)-Awas determinedto be (12, 2_R)by its oxidationwith Ag20 to the known (1~)-(+)-tricarbmyl(~5-l-carbox~2-methylcyclopentadienyl)manganese (76 % yield,mp 148-149"C, (crl;5+84'(c=0.50, EtOH); lit.!jmp 145-14S°C, (or)D+B3.3"(c=l.O, Eta)>. (t)-Tricarbmyl($-2-methylbenxaldehyde)chromium (L)6was also resolvedby the HLADl+catalyzed reductionto (ls)-(+)-3_ (28 % yield, mp 94-95"C, (al~654"(c=O.20,MC13); lit. mp 99-loO"C,7 (o)~"+6650(c=C.3, QICl3)')and (lR)-(-)-3_ (mp %-97-C,

(a1~5-6590(c=0.20, CHc13))via DMSO-Ac20

oxidationof the enzymicallyproducedBmethyltenzylalcoholcomplex (36 % yield,mp 97-98"C, benzene)).The enantiomericpuritywas almost 100 %.e. for all aldehydes((+)-and Cal:- 12"(c=l.9, (-)-l-and 3, as evidelredby the singlealdehydeprotonsignal in the PMR spectrummeasured with Fu(hfc)_.' .--‘J

H3C

OH

Mn02 Mn

CHO

H3C

HLADH

9

NADH OdMpCO

b w-1

Cr oc 'po

dr oc'pco (1&-k3

&+)-9

c

OH Mn oc 'pco 0

(W-(+)-t

5313

5314

(t)-L-Hydroxyethylferrocene (3, ruthenocene(.) and asmocene (5) were enanticselectively 9 oxidizedwith HI&H, NAD+ and FMN to give the ketonesaradlevorotatory alcohols:(-)-4_, 44 % yield, mp 76-77"C, (01)~9-290(c=0.51, benzene)(lit." mp 72-73"C, Co)? -30.5"(c=l.l, benzene));(-)--,44 % (e)23-21"(c=2.0, benzene)(lit." (u)~+20.7'(c=l.5, benzene)h and (-)-6,33 % 12 2 column yield,mp 90~91"C, to), -15"(c=2.0, benzene).HPLC analysiswith a Bcyclcdextrin-bonded

yield, mp ?7-78"C,

indicatedthat the enantiomericpuritywas 100 % e.e.for (-)-L(with I'Ddetectableantipodepeak)and 92 f 1 %e.e. for (-)-- and (-)---.I3 such The presentenzymaticresolutionmethod is very facile,as it needsneitherderivatization 11,14 as the semioxamaxoneformationused for 37 nor temporaryconversionto amine or carboxylicacid. Jaouen-et al.lgresolvedan organometallic aldebyderesembling3 by baker'syeast reduction,but the pre.sentHLAMmethod is more promisingfor high enantiomericpurity and experimentalconvenience.

Referencesand &tes 1. (a)Y. Yamasaki and K. Hosono,TetrahedronLett.,2, 5769 (1988);(b) Y.-F.Wang, J. 3. Lalonde. M. Momongan,D. E. Bergbreiterand C.-K Wong, J. Am. &em. Sec.,E, 7.200(1988);(c) N.W. Boas, TetrahedronLett.,3$, 2061 (1989);(d)N. W. Alccck, D. H G. Crcmt, C M. Hendersonand S. E. Thomas, J. Chem. Sm., Chem. Commun, 746 (1988);(e) C Syldatk,A Stoffregen, A. Brans, K. Fritsche,H. Andree,F. Wagper, H. Hengelsberg,A. Tafel, F. Wuttke, H. Zilch and R Tacke,& New York Acad.Sci.,542, 330 (1988);(f)J. Gillois,D. Buisson,R. Azerad and G Jaouen,J. Chem Sot.,Chem. Commun, 1224 (1988);(g) S. Top, G. Jaouen,J. Gillois,C. Baldoli and S. Maiorana, J. Chem. Sot.,Chem. Commun, 1284 (1988);(h)Y. Yamazaki and K Hosono,Agric.Biol. Chem, 2, 3239 (1988)(and referencescited therein). 2. H. Eager and A. Nikiforov,Monatsh.Chem.,99, 2311 (1968).

3. _l_wasdissolvedin the medium (60 ml of 0.1M phosphatebuffer,@-I7.5,containing2 % EtMl and 25 % Tween 80) by sonicatim before additionof HLADH and NADH (85 pmol). 4. MS for (+)-Lm/z: 245.9717(M+);talc.C10H7Mn04=245.9725. MS for (-FL m/z: 247.9960(M+);talc. C10HgMn04=247.9881. PMR (ben~ene-~~) for (-)-2:The aldehydeproton signal (6 9.18)of (+)-Lhad disappearedami two coupleddoubletswere found at 6 3.73and 3.83 (IH each,5~13 Hz, C@$H). 5. H. Gwal and K. Schl'&l,Mcmatsh.Chmn.,E, 2302 (1967). 6. Preparedby the complexationof 2-methylbknzyl alcoholwith Cr(CO)6and oxidationof the alcohol complex with DMSO-Ac20 (S.G Levine and B. Gcpalakrishnan, TetrahedronLett.,E, 1239 (1982)). 7. A. Solladii-Cavallo, G. Solladieand E. Tsmno,J. Org. Chem.,%, 4189 (1979). 8. A. SolladiCCavalloand J. Suffert,Magn. Reson.Chum.,23, 739 (1985). 9. Typicalreacticmmixture: 180 ml of 0.1M phosphatebuffer (pH 8.3)containing260 prnolb&D+, 3.3mmol FNN, 1.7ml Tween 80 and 170 mg (?)--5_. 800 U, 400 U and 400 U of the enzyme were added at 0, 30, and 53 hr, respectively.'Ihemixturewas stirredat 30 'C for 69 hr. 10. G. W. Gokel,D. Marquarddngand I. K. Ugi, J. Org. Chem.,z, 3052 (1972). 11. T. D. Xrbitt and W. E. Watts,J. Chem. Sot., PerkinTrans. 2, 177 (1974). 12. D. W. Amstrong, W. D&XXI and B. P. Czech,Anal. &em., 2, 481 (1985). 13. Each (-)-enantiomer moved fasterthan the antipode. Althoughthe sterecchemistry for (-)-Aand (-)-_6_has Mt ken reported,the common chromatographic behaviorand the common enzymic unreactitity suggestthat both levorotatoryenantiomershave the same& configuration as (-)-441° 14. A. Ratajczakand B. MLsterldewicz, J. Organornetal. Chem.,9l,

(Received

in Japan

19 Jurie 1989)

73 (1975).