Kummer congruence for the Bernoulli numbers of higher order

Kummer congruence for the Bernoulli numbers of higher order

Applied Mathematics and Computation 151 (2004) 589–593 www.elsevier.com/locate/amc Kummer congruence for the Bernoulli numbers of higher order Leecha...

173KB Sizes 4 Downloads 71 Views

Applied Mathematics and Computation 151 (2004) 589–593 www.elsevier.com/locate/amc

Kummer congruence for the Bernoulli numbers of higher order Leechae Jang a, Taekyun Kim

b,*

, Dal-Won Park

c

a

b

Department of Mathematics and Computer Science, KonKuk University, Chungju 380-701, South Korea Institute of Science Education, Kongju National University, Konju 314-701, South Korea c Department of Mathematics, Education Kongju National University, South Korea

Abstract The authors studied the properties of Bernoulli numbers of higher order [Appl. Math. Comput., in press; Bull. Aust. Math. 65 (2002) 59]. For q ¼ 1, we can also find their results [Proc. Jangjeon Math. Soc. 1 (2000) 97; Arch. Math. 76 (2001) 190; Proc. Jangjeon Math. Soc. 1 (2000) 161; Adv. Stud. Contemp. Math. 2 (2000) 9; Proc. Jangjeon Math. Soc. 2 (2001) 23; J. Math. Phys. A 34 (2001) L643; Proc. Jangjeon Math. Soc. 2 (2001) 19; Proc. Jangjeon Math. Soc. 2 (2001) 9; Proc. Jangjeon Math. Soc. 3 (2001) 63]. The authors suggested the question to inquire the proof of Kummer congruence for Bernoulli numbers of higher order [Appl. Math. Comput., in press]. In this paper we give a proof of Kummer type congruence for the Bernoulli numbers of higher order, which is an answer to a part of the question in [Appl. Math. Comput., in press]. Ó 2003 Elsevier Inc. All rights reserved. Keywords: Kummer congruences; Non-Archimedean integration; Volkenborn integrals; Bernoulli numbers

*

Corresponding author. E-mail addresses: [email protected] (L. Jang), [email protected], taekyun64@hotmail. com (T. Kim), [email protected] (D.-W. Park). 0096-3003/$ - see front matter Ó 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0096-3003(03)00314-X

590

L. Jang et al. / Appl. Math. Comput. 151 (2004) 589–593

1. Introduction Throughout this paper Zp , Qp and Cp will respectively denote the ring of padic rational integers, the field of p-adic rational numbers and the completion of algebraic closure of Qp . Let vp be the normalized exponential valuation of Cp with jpjp ¼ pvp ðpÞ ¼ p1 . Let l be a fixed integer and let p be a fixed prime number. We set X ¼ limðZ=lpN ZÞ; N 

X ¼

[

ða þ lpZp Þ;

0
a þ lpN Zp ¼ fx 2 X j x  aðmod lpN g; where a 2 Z lies in 0 6 a < lpN . For any positive integer N , we set l1 ða þ lpN ZÞ ¼

1 lpN

and this can be extended to a distribution on X (see [3–5]). This distribution yields an integral for non-negative integer m: Z xm dl1 ðxÞ ¼ Bm ; X

where Bm is called Bernoulli number. The Bernoulli numbers with order k, BðkÞ n , were defined by 1  t k X n t ; cf: ½5; 6: ¼ BðkÞ n t e 1 n! n¼0

ð1Þ

In [1,2], the authors studied the properties of Bernoulli numbers of higher order. But their results are special case for q ¼ 1 in [4–11]. In [1], the authors suggested the question which is related to Kummer congruence for Bernoulli numbers of higher order. In this paper we give a proof of Kummer type congruence for the Bernoulli numbers of higher order, which is an answer to a part of the their question for authors in [1]. 2. Kummer congruence for the Bernoulli numbers of higher order By using Volkenborn integral, it was well known that 1 Z X t tn n ¼ ; cf: ½4–11: x dl ðxÞ 0 et  1 n¼0 Zp n!

L. Jang et al. / Appl. Math. Comput. 151 (2004) 589–593

591

In [4], note that 

1 t k X ¼ et  1 n¼0

Z Z

Z tn    ðx þ x1 þ    þ xk Þn dl1 ðx1 Þ dl1 ðx2 Þ    dl1 ðxk Þ : n! X X X |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} ktimes

ð2Þ The Bernoulli polynomials with order k, BðkÞ n ðxÞ, were defined by BðkÞ n ðxÞ

¼

Z Z

Z

   ðx þ x1 þ    þ xk Þn dl1 ðx1 Þ dl1 ðx2 Þ    dl1 ðxk Þ; X X X |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} ktimes

cf: ½3–7: ðkÞ In the case x ¼ 0, we write BðkÞ n ð0Þ ¼ Bn , cf. [4]. In [1], it was remained to prove the Kummer type congruence for the Bernoulli numbers of higher order. Now, we give the proof of Kummer type congruence for BðkÞ n by using T. KimÕs multidimensional q-Volkenborn integral at q ¼ 1 [3–11]. Let v be a Dirichlet character with conductor f . We set p ¼ p for p P 2, and  p ¼ 4 for p ¼ 2. Let f ¼ ðf ; p Þ be denoted by the least common multiple of the conductor f of v and p . We define the generalized Bernoulli numbers of higher order with v as Z Z n BðmÞ ¼    vðx1 þ    þ xm Þðx1 þ    þ xm Þ dl1 ðx1 Þ    dl1 ðxm Þ: ð3Þ n;v X

X

We easily get in (3) nm BðmÞ n;v ¼ l

l1 X x1 ;;xm ¼0

BðmÞ n

x þ  þ x  1 m vðx1 þ    þ xm Þ; l

ð4Þ

where Bn;v is the generalized ordinary Bernoulli number with v. By (3), we have 1 lim  q m BðmÞ n;v ¼ q!1 ðf p Þ

X 1 6 x1 6 f pq



X

n

vðx1 þ    þ xm Þðx1 þ    þ xm Þ ;

1 6 xm 6 f pq

ð5Þ holds for n P 0. Herein as usual we set vðx1 þ    þ xm Þ ¼ 0 if x1 þ    þ xm is not prime to the conductor f . Thus

592

L. Jang et al. / Appl. Math. Comput. 151 (2004) 589–593

1 ð1  pnm vðpÞÞBðmÞ lim  q m n;v ¼ q!1 ðf p Þ

X

X



1 6 x1 6 f pq

vðx1 þ    þ xm Þ

1 6 xm 6 f pq

 ðx1 þ    þ xm Þn :

ð6Þ

We choose a rational number c 2 Z with ðc; f pÞ ¼ 1, c 6¼ 1. m Let x1 þ x2 þ    þ xm run over the range 1 6 x1 þ    þ xm 6 ðf pq Þ , ðx1 þ    þ xm ; pÞ ¼ 1, xq1 þ xq2 þ    þ xqm run over the range 1 6 xq1 þ m xq2 þ    þ xqm 6 ðf pq Þ , ðxq1 þ xq2 þ    þ xqm ; pÞ ¼ 1, and determine a number m rq ðxÞ 2 Z by xq1 þ xq2 þ    þ xqm ¼ cx1 þ    þ cxm þ rq ðxÞðf pq Þ . In [4], it is not difficult to prove that n n m ðxq þ    þ xq Þ  ðx1 þ    þ xm Þ þ ðf pq Þ rq ðxÞ  ððcx1 þ    1

m

þ cxm Þn þ nðcx1 þ    þ cxm Þn1 Þ ðmodðf pq Þ2m Þ: Hence, we have X 1  ðf pq Þm 1 6 xq1 6 f pq

vðcÞ   q m ðf p Þ þ

X

1 6 xq1



X



6 f pq

1 6 xq1 6 f pq

vðxq1 þ    þ xqm Þðxq1 þ    þ xqm Þn

1 6 xqm 6 f pq

X

X

ð7Þ

1 6 xqm

X

vðx1 þ    þ xm Þðcx1 þ    þ cxm Þ

n

6 f pq

vðcÞvðx1 þ    þ xm Þrq ðxÞ

1 6 xqm 6 f pq

 nðcx1 þ    þ cxm Þ

n1

2m

ðmodðf pq Þ Þ:

ð8Þ

Now we define hxi ¼ x=wðxÞ, where wðxÞ nis the Teichm€ uller character. It is P easy to see that hxi  1 (mod p). Hence hxi  1 (mod pn ). We set vk ¼ vwk . By using (6)–(8) we have X

ð1  vn ðpÞÞð1  cm vm ðcÞÞBðmÞ n;vn ¼ lim

q!1

1 6 x1 6 f pq



X

rq ðxÞnvw1

1 6 xm 6 f pq

 ððcx1 þ    þ cxm Þhcx1 þ    þ cxm i

n1 n1

Þ

:

ð9Þ By (9), we obtain the following congruence: Theorem A. For k1  k (mod pn ), we have ðmÞ

ð1  vk ðpÞÞð1  cm vk ðcÞÞ ðmod pnmp ðkk1 Þ Þ:

ðmÞ

Bk1 ;vk Bk;vk 1  ð1  vk1 ðpÞÞð1  cm vk1 ðcÞÞ k k1

L. Jang et al. / Appl. Math. Comput. 151 (2004) 589–593

593

Remark. The question to prove p-adic congruence of Kummer type for Bernoulli numbers of higher order in [1] is still open. Theorem A is an answer to a part of question in [1].

Acknowledgement This work was supported by KonKuk University in 2002.

References [1] Y. Jang, D.S. Kim, On higher order generalized Bernoulli numbers, Appl. Math. Comput. 137 (2003) 387–398. [2] M.S. Kim, J.W. Son, On a multidimensional Volkenborn integral and higher order Bernoulli numbers, Bull. Aust. Math. 65 (2002) 59–71. [3] T. Kim, S.H. Rim, Explicit formulas for the q-Bernoulli numbers of higher order, Proc. Jangjeon Math. Soc. 1 (2000) 97–107. [4] T. Kim, Sums of products of q-Bernoulli numbers, Arch. Math. 76 (2001) 190–195. [5] T. Kim, Remark on p-adic q-L-functions, Proc. Jangjeon Math. Soc. 1 (2000) 161–169. [6] T. Kim, S.H. Rim, Generalized CarlitzÕs q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. 2 (2000) 9–19. [7] T. Kim, Some q-Bernoulli numbers of higher order associated with the p-adic q-integrals, Proc. Jangjeon Math. Soc. 2 (2001) 23–34. [8] T. Kim, A note on q-multiple zeta functions, J. Math. Phys. A 34 (2001) L643–L646. [9] T. Kim, A note on the q-analogs of Genocchu numbers, Proc. Jangjeon Math. Soc. 2 (2001) 19–22. [10] T. Kim, Remark on p-adic proofs for q-Bernoulli and Eulerian numbers of higher order, Proc. Jangjeon Math. Soc. 2 (2001) 9–15. [11] T. Kim, A note on the values of p-adic q-L-functions, Proc. Jangjeon Math. Soc. 3 (2001) 63– 68.