Landau's Type Inequalities

Landau's Type Inequalities

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ARTICLE NO. 202, 280]301 Ž1996. 0317 Landau’s Type Inequalities John M. Rassias Pedagogical Depar...

204KB Sizes 4 Downloads 64 Views

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS ARTICLE NO.

202, 280]301 Ž1996.

0317

Landau’s Type Inequalities John M. Rassias Pedagogical Department, E. E. National Uni¨ ersity of Athens, 4, Agamemnonos Str., Aghia Paraske¨ i, Attikis 15342, Greece Submitted by A. M. Fink Received May 8, 1995

Let X be a complex Banach space, and let t ª T Ž t . Ž5 T Ž t .5 F 1, t G 0. be a strongly continuous contraction semigroup Žon X . with infinitesimal generator A. This paper proves that 5 Ax 5 4 F

1024 3

5 x 5 3 5 A4 x 5 ,

5 A2 x 5 4 F

10 4 9

5 x 5 2 5 A4 x 5 2 ,

5 A3 x 5 4 F 192 5 x 5 5 A4 x 5 3 hold for every x g DŽ A4 .. Inequalities are established also for uniformly bounded strongly continuous semigroups, groups, and cosine functions. Q 1996 Academic Press, Inc.

1. INTRODUCTION Edmund Landau w6x initiated the following extremum problem: The sharp inequality between the supremum-norms of derivatives of twice differentiable functions f such that 5 f 95 2 F 4 5 f 5 5 f 0 5

Ž q.

holds with norm referring to the space C w0, `x. Then R. R. Kallman and G.-C. Rota w3x found the more general result that inequality 5 Ax 5 2 F 4 5 x 5 5 A2 x 5

Ž 1.

holds for every x g DŽ A , and A the infinitesimal generator Ži.e., the strong right derivative of T at zero. of t ª T Ž t . Ž t G 0.: a semigroup of linear contractions on a complex Banach space X 2.

280 0022-247Xr96 $18.00 Copyright Q 1996 by Academic Press, Inc. All rights of reproduction in any form reserved.

LANDAU’S TYPE INEQUALITIES

281

Z. Ditzian w1x achieved the better inequality 5 Ax 5 2 F 2 5 x 5 5 A2 x 5

Ž 2.

for every x g DŽ A2 ., where A is the infinitesimal generator of a group t ª T Ž t . Ž5 T Ž t .5 s 1, t g R. of linear isometries on X. Moreover H. Kraljevic´ and S. Kurepa w4x established the even shaper inequality 5 Ax 5 2 F

4 3

5 x 5 5 A2 x 5

Ž 3.

for every x g DŽ A2 ., and A the infinitesimal generator Ži.e., the strong right second derivative of T at zero. of t ª T Ž t . Ž t G 0.: a strongly continuous cosine function of linear contractions on X. Therefore the best Landau’s type constant is 43 Žfor cosine functions.. The above-mentioned inequalities Ž1. ] Ž3. were extended by H. Kraljevic´ and J. Pecaric ˇ ´ w5x so that new Landau’s type inequalities hold. In particular, they proved that 5 Ax 5 3 F

243 8

5 x 5 2 5 A3 x 5 ,

5 A2 x 5 3 F 24 5 x 5 5 A3 x 5 2 .

Ž 19 .

hold for every x g DŽ A3 ., where A is the infinitesimal generator of a strongly continuous contraction semigroup on X, Besides they obtained the analogous but better inequalities 5 Ax 5 3 F

9 8

5 x 5 2 5 A3 x 5 ,

5 A2 x 5 3 F 3 5 x 5 5 A3 x 5 2

Ž 29 .

which hold for every x g DŽ A3 ., where A is the infinitesimal generator of a strongly continuous contraction group on X. Moreover they got the set of analogous inequalities 5 Ax 5 3 F

81 40

5 x 5 2 5 A3 x 5 ,

5 A2 x 5 3 F

72 25

5 x 5 5 A3 x 5 2

Ž 39 .

for every x g DŽ A3 ., where A is the infinitesimal generator of a strongly continuous cosine function on X. In this paper, we extend the above inequalities Ž19. ] Ž39. so that other Landau’s inequalities hold for every x g DŽ A4 ., where A is infinitesimal generator of a uniformly bounded continuous semigroup Žresp. group, or cosine function..

282

JOHN M. RASSIAS

2. SEMIGROUPS Let t ª T Ž t . be uniformly bounded Ž5 T Ž t .5 F M - `, t G 0. strongly continuous semigroup of linear operators on X with infinitesimal generator A, such that T Ž0. s I Ž[ Identity. in B Ž X . [ the Banach algebra of bounded linear operators on X, lim t x 0 T Ž t . x s x, for every x, and Ax s lim

T Ž t. y I t

t x0

Ž s T 9 Ž 0. x .

x

Ž 4.

for every x in a linear subspace DŽ A. Ž[ Domain of A., dense in X w2x. For every x g DŽ A., we have the formula T Ž t. x s x q

t

H0 T Ž u . Ax du.

Ž 5.

Using integration by parts, we get the formula t

ž

u

H0 H0

T¨ A2 x d¨ du s

/

t

H0 Ž t y u . TuA x du. 2

Ž 6.

Employing Ž6. and iterating Ž5., we find for every x g DŽ A2 . that T Ž t . x s x q tAx q

t

H0 Ž t y u . TuA x du. 2

Ž 59 .

Similarly iterating Ž59., we obtain for every x g DŽ A4 . that T Ž t . x s x q tAx q

t2 2

A2 x q

t3 6

1

A3 x q

t

3

H Ž t y u . TuA x du. 6 0 4

Ž 50 .

THEOREM 1. Let t ª T Ž t . be a uniformly bounded Ž5 T Ž t .5 F M - `, t G 0. strongly continuous semigroup of linear operators on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 5 Ax 5 F M

Ž Ž ts . 2 q Ž sr . 2 q Ž rt . 2 . q s 2 Ž rt y sr y st . tsr Ž t y s . Ž s y r . q

ts q sr q rt tsr

5 x5 q M

tsr 24

5 A4 x 5 ,

Ž 7.

LANDAU’S TYPE INEQUALITIES

5 A2 x 5 F 2 M

tqsqr Ž tr 2 q sr 2 q t 2 s q t 2 r . q s Ž rt y s 2 . 5 x5 q tsr Ž t y s . Ž s y r . tsr

qM 5 A3 x 5 F 6 M

283

ts q sr q rt 12

5 A4 x 5 ,

Ž 79 .

1 tqsqr Ž ts q sr q rt . y s 2 5 x5 q M 5 A4 x 5 , Ž 70 . q tsr Ž t y s . Ž s y r . tsr 4

hold for e¨ ery x g DŽ A4 . and for e¨ ery t, s, r g Rqs Ž0, `., 0 - t - s - r. THEOREM 2. Let t ª T Ž t . be a uniformly bounded Ž5 T Ž t .5 F M - `, t G 0. strongly continuous semigroup of linear operators on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 32 5 Ax 5 4 F Mg 1 Ž m1 , m 2 . 5 x 5 3 5 A4 x 5 , Ž 8. 81 5 A2 x 5 4 F 5 A3 x 5 4 F

4 9

M 2 g 2 Ž m 1 , m 2 . 5 x 5 2 5 A4 x 5 2 ,

Ž 89 .

8

M 3 g 3 Ž m1 , m 2 . 5 x 5 5 A4 x 5 3 , Ž 80 . 9 hold for e¨ ery x g DŽ A4 ., and for some m1 , m 2 g Rq, m 2 ) m1 ) 1, where g 1 Ž m1 , m 2 . s Ž m1 m 2 . =

2 m12 q Ž m1 m 2 . q m22 . q m12 Ž m 2 y m1 m 2 y m1 . Ž M

m1 m 2 Ž m1 y 1 . Ž m 2 y m1 . q

g 2 Ž m1 , m 2 . s Ž m1 q m1 m 2 q m 2 . = M

m1 q m1 m 2 q m 2 m1 m 2

3

,

2

Ž m22 q m1 m22 q m1 q m 2 . q m1 Ž m 2 y m12 . m1 m 2 Ž m1 y 1 . Ž m 2 y m1 . q

g 3 Ž m1 , m 2 . s Ž 1 q m1 q m 2 .

3

M

1 q m1 q m 2 m1 m 2

2

,

1 Ž m1 q m1 m 2 q m 2 . y m12 q . m1 m 2 Ž m1 y 1 . Ž m 2 y m1 . m1 m 2

284

JOHN M. RASSIAS

THEOREM 3. Let t ª T Ž t . be a strongly continuous contraction Ž5 T Ž t .5 F 1, t G 0. semigroup of linear operators on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 5 Ax 5 4 F 5 A2 x 5 4 F

1024

5 x 5 3 5 A4 x 5 ,

Ž 9.

5 x 5 2 5 A4 x 5 2 ,

Ž 99 .

3 10 4 9

5 A3 x 5 4 F 192 5 x 5 5 A4 x 5 3 ,

Ž 90 .

hold for e¨ ery x g DŽ A4 .. Proof of Theorem 1. In fact, formula Ž50 . yields the system

H0 Ž t y u . T Ž u . A x du¦ s 6 sAx q 3s A x q s A x s 6T Ž s . x y 6 x y H Ž s y u . T Ž u . A x du¥ t

6 tAx q 3t 2A2 x q t 3A3 x s 6T Ž t . x y 6 x y 2

2

3

3

3

4

3

4

0

6 rAx q 3r 2A2 x q r 3A3 x s 6T Ž r . x y 6 x y

H0 Ž r y u . T Ž u . A x du.§ r

3

4

Ž 10 . The coefficient determinant D of system Ž10. is D s 18tsr Ž t y s . Ž s y r . Ž r y t . .

Ž 11 .

It is clear that D is positive because of the hypothesis 0 - t - s - r. Therefore there is a unique solution of system Ž10. of the form 2

2

2

Ž sr . Ž r y s . T Ž t . x y Ž tr . Ž r y t . T Ž s . x q Ž ts . Ž s y t . T Ž r . x Ax s tsr Ž t y s . Ž s y r . Ž r y t . y

ts q sr q rt tsr

x y

r

4

H0 K Ž t , s, r ; u . T Ž u . A x du, 1

Ž 12 .

LANDAU’S TYPE INEQUALITIES

A2 x s 2

y Ž sr . Ž r 2 y s 2 . T Ž t . x q Ž tr . Ž r 2 y t 2 . T Ž s . x tsr Ž t y s . Ž s y r . Ž r y t . y q

A3 x s 6

285

Ž ts . Ž s 2 y t 2 . T Ž r . x tsr Ž t y s . Ž s y r . Ž r y t . tqsqr

x q

tsr

r

H0 K

2

Ž t , s, r ; u . T Ž u . A4 x du,

Ž 129.

Ž sr . Ž r y s . T Ž t . x y Ž tr . Ž r y t . T Ž s . x q Ž ts . Ž s y t . T Ž r . x y tsr Ž t y s . Ž s y r . Ž r y t . 1 tsr

x y

r

4

H0 K Ž t , s, r ; u . T Ž u . A x du, 3

Ž 120 .

where

¡ Ž sr . Ž r y s . Ž t y u. 2

3

2

y Ž tr . Ž r y t . Ž s y u .

3

6 tsr Ž t y s . Ž s y r . Ž r y t . 2

K1

s~

3

Ž ts . Ž s y t . Ž r y u . q , 6 tsr Ž t y s . Ž s y r . Ž r y t . 2

3

2

0FuFt

y Ž tr . Ž r y t . Ž s y u . q Ž ts . Ž s y t . Ž r y u .

3

6 tsr Ž t y s . Ž s y r . Ž r y t . 2

t F u F s,

,

3

Ž ts . Ž s y t . Ž r y u . , 6 tsr Ž t y s . Ž s y r . Ž r y t .

¢ ¡ Ž sr . Ž r

2

sFuFr

3

y s 2 . Ž t y u . y Ž tr . Ž r 2 y t 2 . Ž s y u .

3

3tsr Ž t y s . Ž s y r . Ž r y t . 3

K2

s~

Ž ts . Ž s 2 y t 2 . Ž r y u . q , 3tsr Ž t y s . Ž s y r . Ž r y t . 3

y Ž tr . Ž r 2 y t 2 . Ž s y u . q Ž ts . Ž s 2 y t 2 . Ž r y u . 3tsr Ž t y s . Ž s y r . Ž r y t .

¢

0FuFt 3

,

t F u F s,

3

Ž ts . Ž s 2 y t 2 . Ž r y u . , 3tsr Ž t y s . Ž s y r . Ž r y t .

sFuFr

286

JOHN M. RASSIAS

¡ Ž sr . Ž r y s . Ž t y u.

3

y Ž tr . Ž r y t . Ž s y u .

3

tsr Ž t y s . Ž s y r . Ž r y t . 3

K3 s

~

q

Ž ts . Ž s y t . Ž r y u . , tsr Ž t y s . Ž s y r . Ž r y t .

0FuFt

3

y Ž tr . Ž r y t . Ž s y u . q Ž ts . Ž s y t . Ž r y u .

3

,

tsr Ž t y s . Ž s y r . Ž r y t .

¢

t F u F s,

3

Ž ts . Ž s y t . Ž r y u . , tsr Ž t y s . Ž s y r . Ž r y t .

s F u F r.

It is obvious that K i s K i Ž t, s, r; u. G 0, i s 1, 2, 3, for every u g w0, r x Ž0 - t - s - r ., and that the following equalities r

H0 K

1

du s

tsr 24

r

,

H0 K

2

du s

ts q sr q rt 12

r

,

H0 K

3

du s

tqsqr 4

,

Ž 13 . hold. Note that Ž12. ] Ž120 . hold because the identities 2

2

¦

2

Ž sr . Ž r y s . y Ž tr . Ž r y t . q Ž ts . Ž s y t . s Ž t y s . Ž s y r . Ž r y t . Ž ts q sr q rt . , y Ž sr . Ž r 2 y s 2 . q Ž tr . Ž r 2 y t 2 . y Ž ts . Ž s 2 y t 2 . ¥ s yŽ t y s . Ž s y r . Ž r y t . Ž t q s q r . , Ž sr . Ž r y s . y Ž tr . Ž r y t . q Ž ts . Ž s y t . s Ž t y s. Ž s y r . Ž r y t .

Ž 14 .

§

hold. Therefore from formulas Ž12. ] Ž120 ., Ž13., and the triangle inequality, we get inequalities Ž7. ] Ž70 .. This completes the proof of Theorem 1. Proof of Theorem 2. Setting s s m1 t ,

r s m2 t ,

m 2 ) m1 ) 1,

t)0

Ž 15 .

in Ž7. ] Ž70 ., we obtain the following inequalities 5 Ax 5 F a1

1 t

q b1 t 3 ,

5 A2 x 5 F a 2

1 t

2

q b2 t 2 ,

5 A3 x 5 F a 3

1 t3

q b3 t ,

Ž 16 .

LANDAU’S TYPE INEQUALITIES

287

where a1 s

2 m12 q Ž m1 m 2 . q m22 . q m12 Ž m 2 y m1 m 2 y m1 . Ž M

m1 m 2 Ž m1 y 1 . Ž m 2 y m1 . q b1 s M

a2 s 2 M

m1 m 2 24

m1 q m1 m 2 q m 2 m1 m 2

5 x 5,

5 A4 x 5 ,

Ž m22 q m1 m22 q m1 q m 2 . q m1 Ž m 2 y m12 . m1 m 2 Ž m1 y 1 . Ž m 2 y m1 . q b2 s M

a3 s 6 M

m1 q m1 m 2 q m 2 12

1 q m1 q m 2 m1 m 2

5 x 5,

5 A4 x 5 ,

1 Ž m1 q m1 m 2 q m 2 . y m12 5 x 5, q m1 m 2 Ž m1 y 1 . Ž m 2 y m1 . m1 m 2 b3 s M

1 q m1 q m 2 4

5 A4 x 5 .

Minimizing the right-hand side functions of t of Ž16., we get the sharper inequalities 5 Ax 5 4 F

256 27

a13 b1 ,

5 A2 x 5 4 F 16 a22 b 22 ,

5 A3 x 5 4 F

256 27

a3 b 33 . Ž 17 .

But a13 b1 s

M 24

g 1 Ž m1 , m 2 . 5 x 5 3 5 A4 x 5 ,

a22 b 22 s

M2 36

g 2 Ž m1 , m 2 . 5 x 5 2 5 A4 x 5 2 ,

and a3 b 33 s

3M 3 32

g 3 Ž m1 , m 2 . 5 x 5 5 A4 x 5 3 .

Therefore from Ž15. ] Ž17., we obtain inequalities Ž8. ] Ž80 .. This completes the proof of Theorem 2.

288

JOHN M. RASSIAS

Proof of Theorem 3. Taking M s 1, we have g 1 Ž m 1 , m 2 . s 8 gq 1 Ž m1 , m 2 . ,

g 2 Ž m1 , m 2 . s 4 gq 2 Ž m1 , m 2 . ,

g 3 Ž m 1 , m 2 . s 2 gq 3 Ž m1 , m 2 . , where gq 1

m1 Ž 1 q m 2 q m22 y m1 y m1 m 2 .

Ž m1 , m 2 . s Ž m1 m 2 .

3

,

m 2 Ž m1 y 1 . Ž m 2 y m1 .

gq 2 Ž m1 , m 2 . s Ž m1 q m1 m 2 q m 2 . gq 3 Ž m1 , m 2 . s Ž 1 q m1 q m 2 .

2

1 q m 2 q m22 y m12

2

,

m 2 Ž m1 y 1 . Ž m 2 y m1 . 1 q m 2 y m1

3

m 2 Ž m1 y 1 . Ž m 2 y m1 .

.

Hence inequalities Ž8. ] Ž80 . are written, as 5 Ax 5 4 F 5 A2 x 5 4 F 5 A3 x 5 4 F

256 81 16 9 16 9

5 5 3 5 A4 x 5 , gq 1 Ž m1 , m 2 . x

Ž 18 .

5 5 2 5 A4 x 5 2 , gq 2 Ž m1 , m 2 . x

Ž 189.

5 5 5 A4 x 5 3 , gq 3 Ž m1 , m 2 . x

Ž 180 .

for some m1 , m 2 g Rq: m 2 ) m1 ) 1. qŽ . All functions gq i s g i m1 , m 2 , i s 1, 2, 3, attain their minimum at the same m1 , m 2 : m1 s 2 q '2 , m 2 s 3 q 2'2 , so that q min gq 1 Ž m1 , m 2 . s 108 s min g 3 Ž m1 , m 2 . ,

min gq 2 Ž m1 , m 2 . s 625.

Ž 19 . Therefore inequalities Ž18. ] Ž180 . and minima Ž19. yield the even sharper inequalities Ž9. ] Ž90 .. This completes the proof of Theorem 3.

3. GROUPS Let t ª T Ž t . be a uniformly bounded Ž5 T Ž t .5 F M - `, t g R s Žy`, `.. strongly continuous group of linear operators on X with infinitesimal generator A. It is clear that analogous inequalities Žas those in

LANDAU’S TYPE INEQUALITIES

289

the aforementioned Theorems 1]3. hold for every t, s, r g Rys Žy`, 0., t - s - r - 0. s - 0 - t - r. Denote

Case I.

s s m1 t ,

r s m2 t ,

m1 - 0,

m 2 ) 1,

t ) 0,

Ž 159.

and x 1 s 6 tAx,

x 2 s 3t 2A2 x,

x 3 s t 3A3 x,

Ž 20 .

as well as a s 6T Ž t . x y 6 x y b s 6T Ž m1 t . x y 6 x y

ž

3

m1 t

H0

s 6T Ž m1 t . x y 6 x y m14

c s 6T Ž m 2 t . x y 6 x y

t

H0 Ž t y u . T Ž u . A x du, t

4

3 Ž m1 t y u . T Ž u . A4 x du

3

H0 Ž t y u . T Ž m u . A x du 4

1

m2 t

H0

/

,

3 Ž m 2 t y u . T Ž u . A4 x du.

Then system Ž10. takes the form x 1 q x 2 q x 3 s a,

m1 x 1 q m12 x 2 q m13 x 3 s b,

m 2 x 1 q m22 x 2 q m32 x 3 s c.

Ž 109.

Solving system Ž109., we find the unique solution 2

x1 s x2 s x3 s

Ž m1 m 2 . Ž m 2 y m1 . a y m22 Ž m 2 y 1 . b q m12 Ž m1 y 1 . c m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . y Ž m1 m 2 . Ž m22 y m12 . a q m 2 Ž m22 y 1 . b y m1 Ž m12 y 1 . c m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

Ž m1 m 2 . Ž m 2 y m1 . a y m 2 Ž m 2 y 1 . b q m1 Ž m1 y 1 . c . m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

Ž 21 . Ž 219. Ž 210 .

THEOREM 4. Let t ª T Ž t . be a uniformly bounded Ž5 T Ž t .5 F M - `, t g R. strongly continuous group of linear operators on complex Banach space

290

JOHN M. RASSIAS

X with infinitesimal generator A, such that A4 x / 0. Then 5 Ax 5 F M

2 Ž m1 m 2 . q m12 q m22 y m1 q m1 m 2 y m 2 m1 m 2 Ž m1 y 1 . Ž m 2 y 1 .

q qM

ž

M 12

5 A3 x 5 F 6 M

5 x5

m1 m 2

1 t

Ž m1 m 2 . Ž 1 q m1 y m1 m 2 q m 2 . 4 3 5 A x5t , 24 Ž m1 y 1 . Ž m 2 y 1 .

5 A2 x 5 F 2 Ž M q 1 . y q

m1 q m1 m 2 q m 2

1 q m1 q m 2 m1 m 2

/

5 x5

1 t2

Ž y Ž m 1 q m 1 m 2 q m 2 . . 5 A4 x 5 t 2 , m1 q m1 m 2 q m 2 y m22

m1 m 2 Ž m 2 y 1 . Ž m 2 y m1 .

Ž 22 .

y

1 m1 m 2

Ž 229. 5 x5

1 t3

2

qM

ym12 m 2 y m1 m 2 q m1 m22 q Ž m1 m 2 . q m22 q m42 4 m 2 Ž m 2 y 1 . Ž m 2 y m1 .

5 A4 x 5 t ,

Ž 220 . hold for e¨ ery x g DŽ A , for e¨ ery t g R , and for some m1 g Ry, m 2 g Rq, m2 y Ž m 2 q 1 . - m1 - y , m 2 ) 1. m2 q 1 THEOREM 5. Let t ª T Ž t . be a contraction Ž5 T Ž t .5 F 1, t g R. strongly continuous group of linear operators on complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 256 5 Ax 5 4 F f Ž m , m . 5 x 5 3 5 A4 x 5 , Ž 23 . 81 1 1 2 16 5 A2 x 5 4 F f Ž m , m . 5 x 5 2 5 A4 x 5 2 , Ž 239. 9 2 1 2 16 5 A3 x 5 4 F f Ž m , m . 5 x 5 5 A4 x 5 3 , Ž 230 . 9 3 1 2 hold for e¨ ery x g DŽ A4 ., and for some m1 g Ry, m 2 g Rq, m2 y Ž m 2 q 1 . - m1 - y , m 2 ) 1, m2 q 1 4.

q

LANDAU’S TYPE INEQUALITIES

291

where f 1 Ž m1 , m 2 . s

žŽ

4

m1 m 2



m1 y 1 . Ž m 2 y 1 .

f 2 Ž m1 , m 2 . s

ž

1 q m1 q m 2 m1 m 2

1 q m1 y m1 m 2 q m 2 . ,

2

/

2 Ž m1 q m1 m 2 q m 2 . ,

f 3 Ž m1 , m 2 . s

2 Ž 1 q m1 y m 2 . Ž ym12 m 2 y m1 m 2 q m1 m22 q Ž m1 m 2 . q m22 q m42 .

Ž m1 m32 . Ž Ž m 2 y 1. Ž m 2 y m1 . .

4

3

.

THEOREM 6. Let t ª T Ž t . be a strongly continuous contraction Ž5 T Ž t .5 F 1, t g R. group of linear operators on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 5 4 5 Ax 5 4 F 10 5 x 5 3 5 A4 x 5 , Ž 24 . 6

ž /

5 A2 x 5 4 F

16 9

5 A3 x 5 4 F 10

5 x 5 2 5 A4 x 5 2 , 54 13 3 2 5 36

5 x 5 5 A4 x 5 3 ,

Ž 249. Ž 240 .

hold for e¨ ery x g DŽ A4 .. THEOREM 7. Let t ª T Ž t . be a strongly continuous contraction Ž5 T Ž t .5 F 1, t g R. group of linear operators on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 5 Ax 5 4 F 5 A2 x 5 4 F 5 A x5 F 3

4

m520

32

81 Ž m 20 y 1 . 4 16 9

5 x 5 3 5 A4 x 5 ,

5 x 5 2 5 A4 x 5 2 ,

16 m420 Ž 1 q m220 . 9

Ž

m220

m 20 s

(

y 1.

Ž 259. 3

4

5 x 5 5 A4 x 5 3 ,

hold for e¨ ery x g DŽ A4 ., where 7 q '57 2

Ž 25 .

.

Ž 250 .

292

JOHN M. RASSIAS

Proof of Theorem 4. In fact, from Ž20. and Ž21. ] Ž210 ., we get x1 Ax s 6t 2

Ž m1 m 2 . Ž m 2 y m1 . T Ž t . x y m22 Ž m 2 y 1 . T Ž m1 t . x s m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

ž

q

m12 Ž m1 y 1 . T Ž m 2 t . x m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . 2

Ž m1 m 2 . Ž m 2 y m1 . y m22 Ž m 2 y 1 . q m12 Ž m1 y 1 . 1 y x m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . t

/

2

t

y

H0 Ž t y u .

3

Ž m1 m 2 . Ž m 2 y m1 . T Ž u . 6 m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

ž

y q A2 x s

m22 Ž m 2 y 1 . m14 T Ž m1 u . 6 m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

m12 Ž m1 y 1 . m42 T Ž m 2 u . 6 m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

/

1

A4 x du

t

, Ž 26 .

x2 3t 2

s2

ym1 m 2 Ž m22 y m12 . T Ž t . x q m 2 Ž m22 y 1 . T Ž m1 t . x

ž

m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . y y

y

m1 Ž m12 y 1 . T Ž m 2 t . x m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . ym1 m 2 Ž m22 y m12 . q m 2 Ž m22 y 1 . y m1 Ž m12 y 1 . m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . t

H0 Ž t y u .

3

ž

/

1 t2

ym1 m 2 Ž m22 y m12 . T Ž u . 3m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . q

y

x

m 2 Ž m22 y 1 . m14 T Ž m1 u . 3m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

m1 Ž m12 y 1 . m42 T Ž m 2 u . 3m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

/

A4 x du

1 t2

, Ž 269 .

LANDAU’S TYPE INEQUALITIES

A3 x s

293

x3 t3

s6

m1 m 2 Ž m 2 y m1 . T Ž t . x y m 2 Ž m 2 y 1 . T Ž m1 t . x

ž

m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . q y

y

m1 Ž m1 y 1 . T Ž m 2 t . x m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . m 1 m 2 Ž m 2 y m 1 . y m 2 Ž m 2 y 1 . q m1 Ž m1 y 1 . m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . t

H0

Ž t y u. q

3

ž

x

/

1 t3

m1 m 2 Ž m 2 y m1 . T Ž u . y m 2 Ž m 2 y 1 . m14 T Ž m1 u . m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

m1 Ž m1 y 1 . m42 T Ž m 2 u . m1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 .

/

A4 x du

1 t3

.

Ž 260 .

But it is clear that the following identities 2

Ž m1 m 2 . Ž m 2 y m1 . y m22 Ž m 2 y 1 . q m12 Ž m1 y 1 . s Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . Ž m1 q m1 m 2 q m 2 . , ym1 m 2 Ž m22 y m12 . q m 2 Ž m22 y 1 . y m1 Ž m12 y 1 . s y Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . Ž 1 q m1 q m 2 . , ym1 m 2 Ž m22 y m12 . q m 2 Ž m22 y 1 . m14 y m1 Ž m12 y 1 . m42 s ym1 m 2 Ž m1 y 1 . Ž m 2 y 1 . Ž m 2 y m1 . Ž m1 q m1 m 2 q m 2 . hold. Applying these identities and formulas Ž26. ] Ž260 ., we obtain inequalities Ž22. ] Ž220 .. This completes the proof of Theorem 4. Proof of Theorem 5. In fact, from inequalities Ž22. ] Ž220 . we get 1 1 3 q 2 5 Ax 5 F a1q q bq 5 A2 x 5 F aq 1 t , 2 2 q b2 t , t t 5 A3 x 5 F aq 3 where a1q s 2 bq 1 s

1 t3

q bq 3 t,

m1 m 2

Ž m1 y 1 . Ž m 2 y 1 .

Ž 27 . 5 x 5,

Ž m1 m 2 . Ž 1 q m1 y m1 m 2 q m 2 . 4 5 A x 5, 24 Ž m1 y 1 . Ž m 2 y 1 .

294

JOHN M. RASSIAS

aq 2 s Ž y4 . bq 2 sy

1 12

aq 3 s 12

1 q m1 q m 2 m1 m 2

5 x 5,

Ž m1 q m1 m 2 q m 2 . 5 A4 x 5 , 1 q m1 y m 2

m1 Ž m 2 y 1 . Ž m 2 y m1 .

5 x 5,

2

bq 3 s

ym12 m 2 y m1 m 2 q m1 m22 q Ž m1 m 2 . q m22 q m42 4 m 2 Ž m 2 y 1 . Ž m 2 y m1 .

5 A4 x 5 ,

and new identities m1 m 2 Ž m1 y m 2 . q m 2 Ž m 2 y 1 . q m1 Ž m1 y 1 . s Ž m1 y 1 . Ž m1 q m1 m 2 q m 2 y m22 . , m1 m 2 Ž m1 y m 2 . q m 2 Ž m 2 y 1 . m14 q m1 Ž m1 y 1 . m42 2

s m1 Ž m1 y 1 . Ž ym12 m 2 y m1 m 2 q m1 m22 q Ž m1 m 2 . q m22 q m42 . . Minimizing the right-hand side of Ž27., we find 5 Ax 5 4 F

256 27

2 q 2 5 A2 x 5 4 F 16 Ž aq 2 . Ž b2 . ,

3

Ž a1q . Ž bq 1 ., 5 A3 x 5 4 F

256 27

q 3 Ž aq 3 . Ž b3 . ,

Ž 28 .

where 3

Ž a1q . Ž bq 1 . s

8 24

f 1 Ž m1 , m 2 . ,

1

2 q 2 f 2 Ž m1 , m 2 . , Ž aq 2 . Ž b2 . s

9

q 3 Ž aq 3 . Ž b3 . s

3 16

f 3 Ž m1 , m 2 . .

Therefore inequalities Ž28. yield inequalities Ž23. ] Ž230 .. This completes the proof of Theorem 5. Proof of Theorem 6. Setting m1 s y1, we get min f 1Žy1, m 2 . s 10Ž 58 . 4 at m 2 s 5. Hence f 2 Žy1, 5. s 1, f 3 Žy1, 5. s 5 4 Ž13. 3r2 9 3 4 . Therefore from formulas Ž23. ] Ž230 . and m1 s y1, m 2 s 5, we get inequalities Ž24. ] Ž240 .. This completes the proof of Theorem 6.

LANDAU’S TYPE INEQUALITIES

295

Proof of Theorem 7. In fact, min f 3 Žy1, m 2 . s f 3 Žy1, m 20 . s m420 Ž1 q m 20 s Ž 7 q '57 . r2 Žs root Ž) 1. of equaWe have

'

m220 . 3rŽ m220 y 1. 4 , where tion m42 y 7m22 y 2 s 0..

f 1 Ž y1, m 20 . s

m520

1

8 Ž m 20 y 1 . 4

.

Therefore from formulas Ž24. ] Ž240 ., and m1 s y1, m 2 s m 20 , we obtain inequalities Ž25. ] Ž250 .. This completes the proof of Theorem 7. Case II. r - s - 0 - t. Denote s s m1 t, r s m 2 t, m 2 s m - y1, m1 s y1, t ) 0. From Ž21. ] Ž210 ., we have m2 Ž m q 1 . a y m2 Ž m y 1 . b y 2 c

x1 s

2 m Ž m2 y 1 . x2 s

aqb

, 2 ym Ž m q 1 . a y m Ž m y 1 . b q 2 c

x3 s

,

2 m Ž m2 y 1 .

.

Ž 29 .

Therefore from Ž29. and Ž20., we obtain Ax s

ž

ym2 Ž m q1 . T Ž t . x q m2 Ž m y1 . T Ž y t . x q 2T Ž mt . x 2 m Ž 1 ym2 .

q

t

žH

Ž t y u.

0

3

ž

y A3 x s 6

ž

q

2 t

0

Ž t y u.

3

yx

/

2 m4 T Ž mu . 12 m Ž 1 y m . 2

A4 x du

T Ž u . q T Ž yu . 6

A4 x du

/

1 t2

3

/

1 t

,

, Ž 30 .

,

Ž 309.

2 mŽ 1 y m .

ž

t

t2

2

t

/

1

1

m Ž m q 1 . T Ž t . x q m Ž m y 1 . T Ž yt . x y 2T Ž mt . x

H0 Ž t y u .

m

x

12 m Ž 1 y m2 .

T Ž t . x q T Ž yt . x

žH

1

m2 Ž m q 1 . T Ž u . y m2 Ž m y 1 . T Ž yu .

y A2 x s 2

y

q

1 m

x

/

1 t3

ym Ž m q 1 . T Ž u . y m Ž m y 1 . T Ž yu . 2 m Ž 1 y m2 . q

2 m4 T Ž mu . 2 mŽ 1 y m . 2

A4 x du

/

1 t3

. Ž 300 .

296

JOHN M. RASSIAS

Thus from formulas Ž30. ] Ž300 . we get 5 Ax 5 F

m mq1

5 A2 x 5 F 4 5 x 5 5 A3 x 5 F 12

5 x5

1 t

2

q

m

1 t

ž

q y

1 12

m2 24 Ž m q 1 .

/

5 A4 x 5 t 3 ,

5 A4 x 5 t 2 , 1

Ž 319.

1 m Ž 1 q m2 .

5 A4 x 5 t. Ž 310 . 1 y m2 Minimizing the right-hand side of inequalities Ž31. ] Ž310 ., we find 1ym

5 x5 2

Ž 31 .

5 Ax 5 4 F 5 A2 x 5 4 F 5 A3 x 5 4 F

32 81 16 9 16 9

t3

q

4

h 1 Ž m . 5 x 5 3 5 A4 x 5 ,

Ž 32 .

5 x 5 2 5 A4 x 5 2 ,

Ž 329.

h 3 Ž m . 5 x 5 5 A4 x 5 3 ,

Ž 320 .

where h1 Ž m . s y

m5

Ž m q 1.

4

,

h3 Ž m. s

m4 Ž 1 q m2 .

Ž 1 y m2 .

3

4

,

m - y1.

First, minimizing h1Ž m., m - y1, we get m s y5. Then inequalities Ž32. ] Ž320 . Žwith m s y5. are the same as the inequalities Ž24. ] Ž240 .. Finally, minimizing h 3 Ž m., m - y1, we obtain m s m 0 s y Ž 7 q '57 . r2 . Then inequalities Ž32. ] Ž320 . Žwith m s m 0 . are the same as the inequalities Ž25. ] Ž250 ..

'

4. COSINE FUNCTIONS Let t ª T Ž t . Ž t G 0. be a uniformly bounded Ž5 T Ž t .5 F M - `, t G 0. strongly continuous cosine function with infinitesimal operator A, such that T Ž0. s I Ž[ identity. in B Ž X ., lim t x 0 T Ž t . x s x, ; x, and A is defined as the strong second derivatives of T at zero, Ax s T 0 Ž 0 . x

Ž 33 .

for every x in a linear subspace DŽ A., which is dense in X w5x. For every x g DŽ A., we have the formula T Ž t. x s x q

t

H0 Ž t y u . T Ž u . Ax du.

Ž 34 .

LANDAU’S TYPE INEQUALITIES

297

Using integration by parts, we get from Ž34. the formula t

u

H0 Ž t y u . H0

ž

Ž u y ¨ . f Ž ¨ . d¨ du s

/

1

t

H Žty¨. 6 0

3

f Ž ¨ . d¨ ,

Ž 35 .

where f Ž ¨ . s T¨ A2 x. Note the Leibniz formula: d du

u

žH Ž 0

n

u

u y ¨ . f Ž ¨ . d¨ s n

/ žH Ž 0

uy¨.

ny1

f Ž ¨ . d¨ .

/

Ž 36 .

Employing Ž35. ] Ž36. and iterating Ž34., we find for every x g DŽ A2 . that

T Ž t. x s x q

t2 2!

Ax q

1

t

3

H Ž t y u . T Ž u . A x dx. 3! 0 2

Ž 349.

Similarly iterating Ž349. we obtain for every x g DŽ A4 . that

T Ž t. x s x q

t2 2!

Ax q

t4 4!

A2 x q

t6 6!

A3 x q

1 7!

t

H0 Ž t y u .

7

T Ž u . A4 x du.

Ž 340 . THEOREM 8. Let t ª T Ž t . be a uniformly bounded Ž5 T Ž t . F- M - `, t G 0. strongly continuous cosine function on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 2 2 2 ts q sr q rt Ž ts . q Ž sr . q Ž rt . q s 2 Ž rt y sr y st . 5 Ax 5 F 2 M 5 x5 q tsr Ž t y s . Ž s y r . tsr

qM 5 A2 x 5 F 24 M qM

tsr 20160

5 A4 x 5 ,

Ž 37 .

tqsqr Ž ts 2 q sr 2 q t 2 s q t 2 r . q s Ž rt y s 2 . 5 x5 q tsr Ž t y s . Ž s y r . tsr ts q sr q rt 1680

5 A4 x 5 ,

Ž 379.

298

JOHN M. RASSIAS

5 A3 x 5 F 720 M qM

1 Ž ts q sr q rt . y s 2 5 x5 q tsr Ž t y s . Ž s y r . tsr

tqsqr 56

5 A4 x 5 ,

Ž 370 .

hold for e¨ ery x g DŽ A4 ., and for e¨ ery t, s, r g Rq, 0 - t - s - r. THEOREM 9. Let t ª T Ž t . be a uniformly bounded Ž5 T Ž t .5 F M - `, t G 0. strongly continuous cosine function on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 5 Ax 5 4 F 5 A2 x 5 4 F 5 A3 x 5 4 F

32 8505 4 1225 40 1029

Mg 1 Ž m1 , m 2 . 5 x 5 3 5 A4 x 5 ,

Ž 38 .

M 2 g 2 Ž m1 , m 2 . 5 x 5 2 5 A4 x 5 2 ,

Ž 389.

M 3 g 3 Ž m1 , m 2 . 5 x 5 5 A4 x 5 3 ,

Ž 380 .

hold for e¨ ery x g DŽ A4 ., and for some m1 , m 2 g Rq, m 2 ) m1 ) 1, where g i s g i Ž m1 , m 2 . are the same as those g i , i s 1, 2, 3, in Theorem 2. THEOREM 10. Let t ª T Ž t . be a strongly continuous contraction Ž5 T Ž t .5 F 1, t G 0. cosine function on a complex Banach space X with infinitesimal generator A, such that A4 x / 0. Then the following inequalities 5 Ax 5 4 F 5 A2 x 5 4 F 5 A3 x 5 4 F

1024

5 x 5 3 5 A4 x 5 ,

Ž 39 .

5 x 5 2 5 A4 x 5 2 ,

Ž 399.

315 400 49

2880 343

5 x 5 5 A4 x 5 3 ,

Ž 390 .

hold for e¨ ery x g DŽ A4 .. Proof of Theorem 8. In fact, setting t Ž) 0. instead of t 2 in Ž340 ., we get T Ž 't . x s x q q

t 2 1

Ax q

t2 24

A2 x q 7

t3 720

A3 x

H't Ž't y u . T Ž u . A x du. 5040 0 4

Ž 34-.

LANDAU’S TYPE INEQUALITIES

299

Formula Ž34-. yields 2520tAx q 210t 2A2 x q 7t 3A3 x s 5040T Ž 't . x y 5040 x y

7

H0't Ž't y u . T Ž u . A x du 4

2520 sAx q 210 s 2A2 x q 7s 3A3 x s 5040T Ž 's . x y 5040 x y

H0's Ž's y u . T Ž u . A x du 7

4

Ž 109.

2520rAx q 210r 2A2 x q 7r 3A3 x s 5040T Ž 'r . x y 5040 x y

H0'r Ž'r y u . T Ž u . A x du. 7

4

The coefficient determinant Dq of system Ž109. is Dqs 3704400tsr Ž t y s . Ž s y r . Ž r y t . Ž s Dr205800. .

Ž 119.

It is clear that Dq) 0 because 0 - t - s - r. Therefore there is a unique solution of system Ž109. of the form 2

Ax s 2

2

Ž sr . Ž r y s . T Ž 't . x y Ž tr . Ž r y t . T Ž 's . x tsr Ž t y s . Ž s y r . Ž r y t .

ž

q

H0'r K

q 1

y A x s 24 2

ž

2 ts q sr q rt Ž ts . Ž s y t . T Ž 'r . x y x tsr Ž t y s . Ž s y r . Ž r y t . tsr

Ž t , s, r ; u . T Ž u . A4 x du,

ysr Ž r 2 y s 2 . T Ž 't . x q tr Ž r 2 y t 2 . T Ž 's . x tsr Ž t y s . Ž s y r . Ž r y t . ts Ž s 2 y t 2 . T Ž 'r . x

y

tsr Ž t y s . Ž s y r . Ž r y t .

H0'r K

q 2

q

A3 x s 720

Ž 40 .

ž

q

tqsqr tsr

x

/

Ž t , s, r ; u . T Ž u . A4 x du,

Ž 409.

sr Ž r y s . T Ž 't . x y tr Ž r y t . T Ž 's . x q ts Ž s y t . T Ž 'r . x tsr Ž t y s . Ž s y r . Ž r y t . y

1 tsr

/

x y

H0'r K

q 3

Ž t , s, r ; u . T Ž u . A4 x du, Ž 400 .

/

300

JOHN M. RASSIAS

where

¡ Ž sr . Ž r y s . Ž't y u . 2

7

2

y Ž tr . Ž r y t . Ž 's y u .

7

2520tsr Ž t y s . Ž s y r . Ž r y t . 7

2

Kq 1

s

Ž ts . Ž s y t . Ž 'r y u . q , ~ 2520tsr Ž t y s . Ž s y r . Ž r y t . 7

2

0 F u F 't ,

2

y Ž tr . Ž r y t . Ž 's y u . q Ž ts . Ž s y t . Ž 'r y u . 2520tsr Ž t y s . Ž s y r . Ž r y t .

¢

2

,

't F u F 's ,

7

2

Ž ts . Ž s y t . Ž 'r y u . , 2520tsr Ž t y s . Ž s y r . Ž r y t .

¡sr Ž r

7

's F u F 'r ,

7

y s 2 . Ž 't y u . y Ž tr . Ž r 2 y t 2 . Ž 's y u .

7

210tsr Ž t y s . Ž s y r . Ž r y t .

Kq 2

s

~

q

ts Ž s 2 y t 2 . Ž 'r y u .

7

210tsr Ž t y s . Ž s y r . Ž r y t .

0 F u F 't ,

,

7

ytr Ž r 2 y t 2 . Ž 's y u . q ts Ž s 2 y t 2 . Ž 'r y u . 210tsr Ž t y s . Ž s y r . Ž r y t . ts Ž s 2 y t 2 . Ž 'r y u .

7

,

't F u F 's ,

7

¢210tsr Ž t y s . Ž s y r . Ž r y t . , ¡sr Ž r y s . Ž't y u .

7

's F u F 'r ,

y tr Ž r y t . Ž 's y u .

7

7tsr Ž t y s . Ž s y r . Ž r y t .

Kq 3 s

~

q

ts Ž s y t . Ž 'r y u .

7

7tsr Ž t y s . Ž s y r . Ž r y t . 7

ytr Ž r y t . Ž 's y u . q ts Ž s y t . Ž 'r y u . 7tsr Ž t y s . Ž s y r . Ž r y t . ts Ž s y t . Ž 'r y u .

0 F u F 't ,

, 7

,

't F u F 's ,

7

¢7tsr Ž t y s . Ž s y r . Ž r y t . ,

's F u F 'r .

LANDAU’S TYPE INEQUALITIES

301

w ' x Ž0 - t - s - r . and Note that Kq i G 0, i s 1, 2, 3, for every u g 0, r

H0'r K

q 1

du s

tsr 20160

H0'r K

,

q 3

H0'r K

q 2

du s

du s

tqsqr 56

.

ts q sr q rt 1680

,

Ž 139.

From Ž40. ] Ž400 ., triangle inequality, Ž139., Ž15. and similarly as in the previous Section 2 on semigroups, we get inequalities Ž37. ] Ž370 .. This completes the proof of Theorem 8. Proof of Theorem 9. From Ž15. and Ž37. ] Ž370 . and similar calculations as in Section 2 on semigroups, we find inequalities Ž38. ] Ž380 .. This completes the proof of Theorem 9. Proof of Theorem 10. Setting M s 1, using Ž38. ] Ž380 ., and minimizing Ž g i m1 , m 2 ., i s 1, 2, 3, as in Section 2 on semigroups, we obtain inequalities Ž39. ] Ž390 .. This completes the proof of Theorem 10.

REFERENCES 1. Z. Ditzian, Some remarks on inequalities of Landau and Kolmogorov, Aequationes Math. 12 Ž1975., 145]151. 2. E. Hille and R. S. Phillips, ‘‘Functional Analysis and Semigroups,’’ Amer. Math. Soc. Colloq. Publ., Vol. 31, AMS, Providence, Rhode Island, 1957. 3. R. R. Kallman and G.-C. Rota, On the inequality 5 f 9 5 2 F 4 5 f 5 5 f 0 5, in ‘‘Inequalities, II’ ŽO. Shisha, Ed.., pp. 187]192, Academic Press, New YorkrLondon, 1970. 4. H. Kraljevic´ and S. Kurepa, Semigroups on Banach spaces, Glas. Mat. 5 Ž1970., 109]117. 5. H. Kraljevic´ and J. Pecaric, ˇ ´ Some Landau’s type inequalities for infinitesimal generators, Aequationes Math. 40 Ž1990., 147]153. 6. E. Landau, Einige Ungleichungen fur ¨ zweimal differentzierbare Funktionen, Proc. London Math. Soc. (2) 13 Ž1913., 43]49.