JOURNAL OF MOLECULAR
SPECTROSCOPY
116,458-498 (1986)
Laser-Induced-Fluorescence Fourier Transform Spectrometry of the X0: State of I*: Extensive Analysis of the SO,’ - X0: Fluorescence Spectrum of 1271’2gl and 12’12 D. CERNY,* R. BACKS,* AND J. VERGEst *Laboratoire de SpectromBrie Ionique et Moltkulaire, Universite’Claude Bernard (Lyon I), 43, Boulevard du 11 Novembre 1918, 69622 Vilkurbanne Cedex, France; and tLaboratoire Aime’Cotton(CNRS II), Bdtiment 505. 91405 Orsay Cedex. France An extensive rotational analysis of the vibrational levels of the X0,+ state of ‘*71’291 (5 G u’ G 110) and ‘9, (4 < u” G 108) has been done from laser-induced-fluorescence analyzed with a Fourier transform spectrometer. The usual Dunham relationships are checked. For the range explored the lines can be recalculated with an accuracy better than 0.010 cm-’ and even 0.005 cm-’ for low J values. Checks are done from absolute hype&me measurements. o 1986 Academic Fws, Inc. I.
INTRODUCTION
Numerous spectroscopic works have been devoted to the study of the BO:-X0: transition of the ‘*‘I2 molecule (see references in the previous part of this article (1) that we shall call paper I). There have also been several spectroscopic studies of this transition for the ‘2912molecule. One ofthe aims was to clarify the vibrational assignment of various electronic transitions or line determinations (2-9). Other studies were devoted to the hypetine structure which was compared to ‘*‘I2 (10-13) or used for the identification of lines as secondary reference standards for locking lasers at 5 14.5 (14-25), 618 (16-19), or 633 nm (20-22). By contrast very few spectroscopic studies have been devoted to the 1271’291 isotopic molecule. Two vibrational levels of the BO: state were observed in Ref. (5) and some hyperfine structure in the 633-nm range in Ref. (21). But for both the ‘27I129Iand L29I2isotopic species nothing has been done about the nonthermally populated vibrational levels of the ground state, mainly for the levels close to the dissociation limit where various perturbations may occur (paper I). So in order to complement and make clear the results obtained at the dissociation limit of and the ground state of the ‘*‘I2 molecule, we have undertaken the study of 12711291 129I2X0: state from laser-induced-fluorescence (LIF) analyzed with a Fourier transform spectrometer (FTS). Our main aims were an analysis of this state as close as possible to the dissociation limit, a comparison of the isotopic relations, and a determination of the usual long-range parameters for these two isotopes. It is now known from a priori calculations that all of the nine states dissociating at the same dissociation limit as the X0,+ state are bound (23,24). The main perturbations of the X state can occur due to interaction with the alg (D, = 406.0 cm-‘) and the a’0: states (0, = 243.8 cm-‘) (I, 25). The bottom of these wells are close to the u” = 84-85 and 2)”= 88-89 levels of the 12’12X state, respectively, so in our isotope 0022-2852/86 $3.00 Copyist 0 1986 by Academic Press, Inc. All ri&s of reproduction in any form rcservd.
458
B -
X SPECTRUM OF ‘27I’29IAND ‘29I2
459
studies, perturbations may occur from the related levels up to the dissociation limit. But smaller perturbations due to hyperfine mixing could occur at much lower vibrational levels since it is experimentally known that A’2u and A 1u are strongly bound: D,(A’2u) = 2505.7 cm-’ - u”(XO,+) N 57-58 (26) and D,(Alu) = 1639.8 cm-’ u”(XOi) N 66-67 (7, 27. 28). The electronic levels going to the BO: state dissociation limit are expected to be bound (23, 24, 26) and some hyperfine perturbations have recently been found and analyzed (13. 29). So in order to eliminate safely the influence of possible perturbations, we have compared potential curves, long-range behavior, etc., for the three isotopes studied, from separate analysis of their fluorescence spectra. The results of the extensive study of the ‘*‘I2 X0: state have been given in paper I. In the present paper referred to as II, we determine the rotational parameters of both isotopes and compare the determined values of those obtained from ‘*‘I*. In the following paper (to be referred to as III), we will examine and compare the long-range behavior of the three isotopes.’ 11. EXPERIMENTAL
DETAILS
The data are obtained in the same conditions as those reported in paper I. The laser-induced-fluorescence of I2 analyzed with a high-resolution Fourier transform spectrometer was obtained from multimode Kr+ (520.832 nm) or Ar+ (5 14.532 and 50 1.7 16 nm) excitation lines (Fig. 1). In order to have a good signal to noise ratio the entire spectral range of the fluorescence (0.5 - 1.35 pm) was obtained from five recordings for both isotopes. They are reported in Table I. The full-width half maximum (FWHM) of the apparatus function is of the order of 0.020 cm-’ in the visible to 0.010 cm-’ in the infrared; the FWHM of nonapodized recorded lines decreases from 0.030 to 0.0 15 cm-’ (Table I). The enlargement due to the hyperfine structure is lower than in ‘*‘I2 (see Sect. V) and the shift between the center of gravity G and the maximum M of a recorded line (see paper I, Sect. II) was neglected. III. FITTING PROCEDURE
AND ANALYSIS OF THE DATA
The J levels used in the fits for the X0; vibrational levels are shown in Figs. 2a ( ‘271’291) and b (‘2912).For ‘27I129Ithe range 30 < U”< 40 is poorly defined: this is also
true for some low u” levels (5-6 in ‘271’291 and for some levels with U” < 30 in ‘2912). The number of lines of each transition used in the fits are noted in Tables IIa (‘271’291) and b (‘2912). The fitting procedure is the same as in paper I. The fits were done in five groups (‘271’291,Fig. 3a) and eight groups (‘2912,Fig. 3b). Care has been taken to keep the same origin for all groups. With that aim, the data of the 9” = 7 and 72 levels ( r271’291) and V” = 6 and 73 (‘2912)were used in all the fits (Figs. 3a and b). For every group we found that the parameters of these reference levels had the same value to within less
‘Paper III: “Laser-Induced-Fluorescence Fourier Transform Spectrometry of the X0,+ State of 12: Tests of the Long-Range Behavior for Three Isotopes of I*,“ R. Bacis, D. Cemy. and F. Martin, J. Mol. Spectrosc.. submitted for publication.
460
CERNY, BACIS, AND VERGES
ul 127
0.100cm-' u t
45
'23
19429.73d
(501.716
nm)
L
5
34
(520.632
129 12
12
11
1942 '9.73cm-' (514.532
nm)
"Ill)
Lu
6 ,769 f
t 19194.71cm-'
I
6
1L Iw ,
12
129
t 19926.04cm-'
I
(514.532
I
"m)
13
t 19926.04cm-' (501.716
nm)
PIG. I. Lines excited from Kr+ or Ar” multimode laser line. Only lines from which the fluorescence was analyzed are reported. The height of bars is proportional to the observed relative Iluorescence intensities. The wavenumbers of excited lines are calculated from our determined parameters: 1271'291:
from 5 14.532 nm Ar+ (19429.73 cm-‘) 1 P22 (49-l) 19429.812cm2 P57 (51-1) 19429.819 cm-’ 3 R65 (45-O) 19429.861 cm-’
from 501.716 nm Ar+ (19926.04 cm-‘) 4 R 7 (61-O) 19925970cm-’ 5 P 6 (61-O) 19926.001 cm.-’ 6 R24 (62-O) 19926.055 cm-’
from 520.832 nm Kr+ (19194.71 cm-‘) 1 Rlll(43-0) 19194.595 cm-’ 2 R 71(40-O) 19194.651 cm-’ 3 Rl43(48-0) 19194.777 cm-’ 4 P149 (50-O) 19194.803 cm-’
‘2912: from 5 14.532 nm Ar+ (19429.73 cm-‘) 5 Rl03(49-0) 19429.658 cm-’ 6 Rl09(50-0) 19429.716 cm-’ 7 R 67(52-l) 19429.776 cm-’ 8 P 16 (49-l) 19429.810 cm-’ 9 R 43(50-l) 19429.838 cm-’
from 501.716 nm Ar+ (19926.04 cm-‘) 10 P21 (62-O) 19925.894 cm-’ 11 R31(63-0) 19925.914 cm-’ 12 R54(70-0) 19926.064 cm-’ 13 P52 (69-O) 19926.131 cm-’
than 2 SD (see Appendixes Ia and b) which ensure the homogeneity of the results. The G(u”) origin was fixed at G(u” = 7, J = 0) = 1568.1707 cm-’ (‘271’291)and G(u” = 6, J = 0) = 1357.884 1 cm-’ (L2912)calculated from isotopic relations from Luc and Gerstenkorn’s preliminary results on the X0,’ state of 12’12(v” = O-19) (see Appendix II). By doing this, we have defined the same origin of energy values for 1271’291 and ‘29I2to be that of ‘27I2(the u” = - l/2 level of the X0,’ state), which will allow a convenient way of comparing the behavior of the three isotopes. Checks from isotopic relations and direct determinations show that the differences in origin given in that way are negligible for the three isotopes (see Sect. IV).
B -
X SPECTRUM
461
OF ‘2’I’29I AND ‘32
TABLE I Full-Width Half Maximum (FWHM) of the Nonapodized Apparatus Function (Resolution) and of the Nonapodized Recorded Lines (I mK = 0.001 cm-‘) 127I1291
range
0.5
t.O 0.7
excitation 1 ine
514.532
resolution
0.0398
recorded line
pm
nm
cm-1
60 I&
0.5
to
I.1 urn
501.716
to
1.05
519.532
cm-1
0.0093
14 to
nm
0.8
0.015
20 UK
urn
nm
cm
I to
1.25 wl
5(11.71b nm
-I
0.0093
25 nK
cm
-I
1.25 to
1.33 WI
501.716
0.013
14 mK
nm
cm-'
20 nii
129 I2 range
0.54
t0
excitation line
520.832
resolution
0.0265
recorded 1 ine
0.9
nm
cm-’
40 0x
urn 0.7
to 0.8
501.716
0.0206
urn
nm
cm-’
30 Ia
0.8
to 0.98
520.832
0.0179
nm
cm-’
28 nx
pm
0.9
to
520.632
1.3 w
nm -I
0.0137
cm
20 to
22 I&
0.9
to
I.3 um
501.716
0.0093 15 IN (v’ 25 UK (v’ 30 ax (v’
nm
cm-’ = 62,631 = 69) = 70)
The iterative fitting procedure was done in the same way as for “‘12 as explained in paper I and for similar reasons. The results of the last iteration are gathered in Tables IIIa and b for the X0: state and Tables IVa and b for the BO: state. The expansion parameters of the 12’12as determined by Gerstenkom and Luc, used for isotopic relation calculations, are reported in Appendixes II and III. The Y, values (30) were calculated in the usual manner because the experimental fits cannot give these constants as explained in Appendix IV. The expansion parameters obtained from the last fit are reported in Tables Va (1271’291) and b (12912). As already noted at the start of this section, the examination of the data at our disposal (Figs. 2a and b) shows that almost no (or no) fluorescence lines were recorded for 0 c D”4 4 and 30 < U”< 39 in 127I129I and 0 < ~1”< 3 in 12912.Careful comparison of the experimental parameters with the parameters calculated from isotopic relations shows an excellent agreement for levels close to this range (see Sect. IV). Then in the determination of the expansion parameters of Tables Va and b the above-mentioned nonexperimentally determined constants were replaced by the isotopic calculated ones from the relations given in Appendix I for 0 < t? % 4 (1271’291) and 0 < D”< 3 (‘2912). It should be noted that a preliminary determination of the expansion parameters using only experimental values allows us to recalculate the missing rotational constants with a good accuracy; in most cases the recalculated constants are the same as the isotopic calculated ones to within 2 averaged SD. Moreover, we have not reported the standard deviations on the expansion parameters of Tables V, because from our point of view
462
CERNY, BACIS, AND VERGES
J’a 100 _
50 _
J 100
II I ’
50 1
:l’I IllI T
T
613
65
70
FIG. 2. (a) J values for lines used in the fits of the transitions involving a given uNlevel (‘271’2g1 molecule). (b) J values for lines used in the fits of the transitions involving a given u” level (lB12 molecule).
they do not have a clear significance here, these parameters being only effective constants allowing the calculation of G(u), B(u), etc., within the experimental precision. This needs a higher number of decimal places than those defined by the standard deviations. Moreover, these effective constants change within more than 2 SD when for instance one changes the number of terms in the polynomial expansion or uses a lower range of data. For example, for ‘*‘12, Y10 = 212.8520 cm-’ with 14 terms or 212.8612 cm-’ (15 terms in Table Vb) with 0 < u” 6 88 levels and Y,o = 212.8478 cm-* (3 terms) or 2 12.85 17 cm-’ (4 terms) with 0 f z)” < 10 levels only, the rms deviation for recalculated G(u”) values being the same (~0.002 cm-‘) in the four examples. In all fits relative to the BOZ state, as noted in Table IV, all nondetermined parameters in a given u’ level were held fixed to the value calculated from isotopic relations and Gerstenkom’s data. For clarity we recall briefly the iterative fitting procedure. The first iteration is made in the following way: the first fit is done with the parameters of X0: without standard deviations in Table III held fixed to zero. This gives a first X0,’ RKR curve for each isotope. From this first RKR curve we calculate the centrifugal distorsion constants
B -
150
463
X SPECTRUM OF ‘271’291 AND ‘2912
b
J
100
50
l’l:l:‘:l
5
10
15
20
1 1
: ill ’;lll:l:.:l:; I
30
25 1
35 I
40 I
1 1 1
::
: 45 1
55 I
50 1
* v”
150 J
/I
1oc
II I/l,’ I i
50
1 ::
60
1
I
65
70
I’ ’ 1’1i III( 1
1
75
60 FIG.
85
:I
I’ ‘:
II 1:
,
90
I
95
1
100
106
*
VW
2-Continued.
(CDC) together with G(u) and B(u) of the X0; state using Hutson’s method (31, 32). In the second iteration we make a second fit with the CDC (Hutson’s) constants held fixed at their smoothed values from the first iteration. We then determine a second RKR curve and a second set of Hutson’s constants. In the third iteration we obtain the results given in Tables III which correspond to the third fit, the fixed constants coming from the second set of Hutson’s constants. This third iteration gives RKR curves reported in Tables Via and b, and finally from these RKR curves we calculated again a third set of Hutson’s constants as a check of the convergence of the iterations. We have shown in Figs. 4a and b the differences between this third set of constants and the experimental determinations. We have reported in paper I various causes that can introduce differences between recalculated G(v) from an RKR curve and experimental values Gexp. The lack of precise data is an important point which is clearly shown here. We can see from Figs.
464
CERNY, BACIS, AND VERGES TABLE IIa ‘2711291 BO: + X0, Transition: Number of Lines in Each Transition ~‘-1)”Used in the Fits”
a,)
45
49
51
61
62
I
6
(14)
14 9
7
(68)
42
8
(40)
19
9
(69)
35
II
10
(42)
I
2:
I:
11
(56)
1
12
(48)
I
15
5
7
8
18
3
2
4
11
16
7
2 15
14
21
(35)
I
19
4
6
4
2
22
(27)
1
6
2
5
6
*
23
(26)
1
11
3
4
5
3
24
(17)
I
6
2
2
5
2
) 29 30
(6)
1
(2)
2
2
2
2
51
(28)
4
15
9
52
(64)
42
8
14
53
(22)
5
II
6
54
(60)
42
9
9
55
(20)
9
9
2
56
(68)
42
15
II 2
57
(28)
I8
8
58
(93)
1
43
14
19
59
(30)
I
25
3
2
51
61
62
2
9
13
10
(40)
12
15
5
6
2
(95)
40
8
15
20
12
45
14
16
20
10 9
(63)
64 65
(
2
6
19 7
49 29
63
8
9
66
(10)
67
(105)
2
8
68
(48)
15
2
6
16
69
(74)
38
15
I2
6
3
70
(95)
36
2
14
27
16
71
09)
14
13
2
4
6
72
(113)
45
17
19
21
II
73
(54)
5
10
22
17
74
(74)
40
21
II
75
(99)
42
8
19
19
II
76
(63)
II
6
5
26
15
77
(95)
54
22
13
2
4
78
(83)
30
4
17
20
12
2
79
(100)
34
10
6
29
21
80
(104)
55
18
10
10
11
81
(55)
18
7
23
5
2
82
(107)
42
5
13
28
19
83
(117)
59
12
2
26
18
84
(62)
17
14
18
4
9
85
(22)
13
7
2
26
17
2
25
22
17
13
86
(62)
87
(77)
I 19 14
14
88
(44)
14
89
(45)
22
19
90
(39)
8
l9
91
(35)
92
(64)
2
93
(53)
2
94
(39)
2
95
(10)
96
(4)
98
(20)
4 10 ~
2
25
10
25
20
17
13
22
16
2
I7
18
5
5 2
2 20
99
(4)
4
100
(4)
4
101
(15)
13
102
(14,
14
2
103
(26)
22
104
(21)
15
4 6
105
(16)
12
4
106
(20)
15
5
107
(15)
9
6
108
(7)
5
109
(8)
4
110
(4)
4
4
B -
X SPECTRUM
OF ‘27I’29IAND ‘*‘I2
465
TABLE IIb ‘2912
Bo:
-
X0; Transition: Number of Lines in Each Transition ~‘4’ Used in the Fits”
4a and b that G,,, - G(u) is most often positive and less than 0.090 cm-’ for 1271’291 and 0.040 cm-’ for ‘29I2 where the determinations are more precise. The agreement set of data. is still better in ‘27I2 (see paper I) where we have a more comprehensive
466
CERNY, BACIS, AND VERGES a
v’ 62
-
61
-
FIG. 3. (a) Scheme of the tluorescence transitions related to the global fitting procedure. The whole set of lines was fitted in five groups. In every group the five v’ levels are involved and also 1)”= 72 and 7* (reference level). For the other v” levels we have: groupI:fromu;= group 2: from v; = group 3: from VT= group 4: from v; = group 5: from v; =
5tov ‘; = 14 to II; = 42 to I$ = 64 to vz = 87 to ul =
28 (109 bands, 976 lines, rms = 3.05 mK) 42 excepting 32 < v” < 37 (95 bands, 671 lines, rms = 2.14 mK) 64 (95 bands, 1220 lines, rms = 1.25 mK) 87 (125 bands, 1863 lines, rms = 1.45 mK) 110 excepting1)”= 97 (63 bands, 765 lines, rms = 3.07 mK).
* G term held fixed in the fit. rms = root mean square deviation between observed and calculated lines. (b) Scheme of the tluorescence transitions related to the global fitting procedure. The whole set of lines was fitted in eight groups. In every group the ten v’ levels are involved and also u” = 73 and 6* (reference level). For the other v” levels we have: group group group group group group group group
1: from 2: from 3: from 4: from 5: from 6: from 7: from 8: from
u’i = v; = VT= u; = v’; = v; = 0’; = u’[ =
4 to 15 to 27 to 39 to 51 to 63 to 76 to 89 to
u; = v5 = v’$= vi = v; =
17 (62 bands, 589 lines, rrns = 1.43 mK) 27 (56 bands, 5 15 lines, rms = 1.18 mK) 39 (93 bands, 766 lines, rms = 1.26 mK) 51 (105 bands, 827 lines, rms = 2.10 mK) 63 (94 bands, 1118lines, rms = 1.31 mK). vl = 76 (125 bands, 2086 lines, rms = 1.55 mK) us = 88 (115 bands, 1810 lines, rms = 2.40 mK) us = 108 excepting U" = 97 and v,” = 105 (54 bands, 364 lines, rms = 2.36 mK).
G term held fixed in the fit. rms = root mean square deviation between observed and calculated lines. *
The relatively poorer recalculated G(V) values in 12’1’291 are due to two factors: (i) the precision of data is lower [rms deviations are less than 0.0031 cm-’ for ‘27I129Iand 0.0024 cm-’ for lz912in the various fits (Figs. 3)]; (ii) the absence of data in the
B -
X SPECTRUM
OF ‘27I’29I AND
I*912
467
FIG. 3-Continued.
30 < 2rx< 39 range (for ‘271’291) . Nevertheless it is easy to see that the differences in calculated G(u) - G(v + 1) are in excellent agreement with the measured values. This is also true for recalculated B(v) or D(u) which are found within the experimental errors (Figs. 4) except for a few high u” values. The differences in H (Fig. 5) or L calculated in the second and third iterations are small, showing that the convergence of the iterations cannot be improved given the present data. Finally, some slight perturbations appear in some recorded lines which have been eliminated in the fits (in 0” = 102, 105 for ‘27I’29Iand u” = 91, 92, 103, 105 for ‘2912). In contrast to 12’12,we had insufficient data to allow us to deperturb the related levels. The good rms deviations for the various groups of fits (Fig. 3) ensure that the possible perturbations have little influence on the experimental G and B values, and the good recalculated G(u) values for high u levels encourage us to undertake a long-range analysis for both isotopes (paper III). IV. ISOTOPIC
RELATIONS
The G(v) and B(u) values of both isotopes in the X0; and BO: states can be calculated from the usual polynomial expansion (33) as reported in Appendixes II and III. The relationship between the Dunham coefficients Yklfor the different isotopic molecules is then given approximately by yki
=
bl
-k + 21 ukl 2
(1)
where p is the reduced mass of the molecule and ukl is isotopically invariant. It is known that this approximation is inadequate for high-precision measurements. The
468
CERNY, BACKS, AND VERGES TABLE IIIa Parameter? of the ‘271’291 X0,+ State (in cm-‘) G
B x 10
Dx
-Lx1019 ('78) 0.61
5
1156.8213 (404) 0.3644779 (174) 0.4301
6
1363.1218 (294) 0.3633422 (51) 0.4635
0.66
(4') 0.46’5
(66) 0.66
I
7'
1568.1707
8
1771.9495
(40) 0.3610101 (80) 0.5060
(102) 0.71
9
'974.4587
(32) 0.3597940 (76) 0.4539
(90) 0.71
'0
2'75.6743
(32) 0.3585696 (78) 0.3893
(98) 0.75
11
2375.6045
(34) 0.3573699 (76) 0.4233
(90) 0.78
12
2574.2'75
(31) 0.3561817 (80) 0.4695
(106) 0.82
13
2771.5203
(35) 0.3549582 (76) 0.4729
(90) 0.84
14
2967.4926
(22) 0.3537125 (66) 0.4927
(83) 0.91
15
3162.1304
(26) 0.3524835 (66) 0.5339
(81) 0.94
16
3355.4'52
(22) 0.35'2493 (67) 0.5691
(89)
1.00
'7
3547.3434
128) 0.3499416 (66)
0.4785
(81)
1.06
18
3737.8945
(24) 0.3486789
(68) 0.5030
(92)
1.12
19
3927.0603
(29) 0.3473974 (66) 0.5202
(82)
1.17
20
4114.8258
(26) 0.3460965 (70) 0.5146
(99)
1.23
21
4301.1768
(30) 0.3447964 (68) 0.5368
(87)
1.30
22
4486.1006
(32) 0.3434736 (75) 0.5366
(104)
1.33
23
4669.5844
(37) 0.3421228 (75) 0.5177
(11')
1.41
24
4851.6058
(39) 0.3407891 (86) 0.5454
(144)
1.46
25
5032.1586
(42) 0.3393849 (86) 0.4642
(142) 1.54
26
5211.2155
158) 0.3380664
27
5388.77'2
(66) 0.3366544 (117) 0.5538
(218) 1.66
28
5564.8040 (129) 0.3352259 (180) 0.5473
(342) 1.73
29
5139.2927
(86) 0.3338070 (39) 0.5728
1.81
30
5912.1973
(29) 0.3324164 (65) 0.5807
1.91
3'
6083.6738
(29)
0.3306487 (67) 0.5891
2.00
0.3621626
(109) 0.5913
-
a
lo8
-
(202)
1.59
-1 The origin of the vu1levels was fixed from G(v" = 7, J = 0) - 1568.1707 cm 7 I k ; p = 0.9961126. calculated from the isotopic relation Gi(v") = 1 pk YkO(vM + $ k=l '27 The YkO coefficients are determined from I2 and are given in Appendix II. The number in parenthesis is the uncertainty in the last digits typed in upright characters and corresponds to two standard deviations. The digits given in italic characters correspond to a much higher precision than the standard deviation, but due to correlation effects they are needed in order to recalculate the measured lines with the precision noted in Figure 3-a. Parameters without uncertainty were determined from the R K R curve and Hutson's program (31.32) (see text) and held fixed in the fit.
b
For levels v" = 7 and 72 the reported parameters and errors (two SD) are the average of the results from the 5 groups of fit (given in Figure 3-a and in Appendix I-a).
* The values marked with * are calculated from a logarithmic extrapolation from the parameters of the preceding v" levels.
B + X SPECTRUM
469
OF ‘*7I’291AND ‘*912
TABLE IIIa-Continued
V”
G
B x
10
Dx
-Hx10'5
10'
-Lx1019
I 38
7236.9611
(86)
0.3199454
(188)
0.6614
3.17
39
7394.8038
(22)
0.3184377
(50)
0.6739
3.42
40
7550.9218
(28)
0.3167469
(55)
0.6870
41
7705.2186
(64)
0.3150028
(96)
0.6346
3.68 (166)
3.95
42
7857.6639
(55)
0.3133084
(31)
0.7009
(42)
4.26
cl.05
43
8008.2221
(25)
0.3115622
(31)
0.7372
(64)
4.59
0.06
B x
G
44
8156.8738
(46)
45
8303.5849
(20)
46
8448.3198
(33)
f
10
Dx
108
-HxlO
1'
LX10
0.3097711
(25)
0.7665
(31)
0.493
0.3079278
(26)
0.7666
(56)
0.529
0.08
0.3060607
(18)
0.7911
(22)
0.569
0.09
47
8591.0462
(18)
0.3041543
(24)
0.8201
(50)
0.610
0.10
8731.7279
(24)
0.3022005
(15)
0.8307
(16)
0.655
0.12
49
8870.3288
(16)
0.3002103
(22)
0.8551
(48)
0.703
0.13
SO
9006.8123
120)
0.2981694
(14)
0.8699
(14)
0.754
0.15
51
9141.1383
(16)
0.2960924
(23)
0.8989
(47)
0.809
0.16
52
9273.2698
(18)
0.2939670
(14)
0.9373
(16)
0.870
0.18
53
9403.1652
(18)
0.2917887
(24)
0.9681
(48)
0.936
0.21
54
9530.7839
(16)
0.2895600
(14)
1.0039
(15)
1.008
0.23
55
9656.0860
(20)
0.2872628
(28)
1.0195
(54)
1.086
0.26
56
9779.0268
(14)
0.2849183
(13)
1.0555
(14)
1.173
0.29
57
9899.5641
(20)
0.2825147
(27)
1.0952
(50)
1.268
0.32
58
10017.6538
(12)
0.2800476
(12)
1.1290
(14)
1.374
0.35
59
10133.2554
(26)
0.2775045
(22)
1.1511
(34)
1.490
0.39
60
10246.3212
(12)
0.2749184
(12)
1.2180
114)
1.618
0.44
61
10356.8115
(18)
0.2722336
(18)
1.2405
(30)
1.759
0.49
62
10464.6824
(12)
0.2694944
(14)
1.2939
(21)
1.915
0.55
63
10569.8924
(12)
0.2666872
(13)
1.3687
(16)
2.086
0.61
64
10672.4000
(13)
0.2637921
(18)
1.4159
(31)
2.275
0.69
(30)
65
lC772.1675
(16)
0.2608171
(24)
1.4656
10869.1514
(92)
0.2578477
(18)
1.5183
-t&i1023
0.07
48
66
1'
2.483
0.77
0.03
2.712
0.87
0.04
67
10963.3302
(18)
0.2546288
(23)
1.5959
(27)
2.964
0.98
0.04
68
11054.6593
(16)
0.2514097
(26)
1.6693
(37)
3.241
1.12
0.05
69
11143.1114
(16)
0.2481034
(24)
1.7400
(30)
3.547
1.28
0.06
70
11228.6635
(16)
0.2447090
(24)
1.8201
(30)
3.885
1.46
0.08
71
11311.2917
(20)
0.2412232
(32)
1.8940
(54)
4.259
1.67
0.09
7Zb
11390.9786
(21)
0.2376427
(42)
1.9742
(47)
4.674
1.93
0.11
73
11467.7111
(16)
0.2339893
(26)
2.0694
(42)
5.135
2.23
0.13
74
11541.4804
(17)
0.2302450
(24)
2.1797
(29)
5.652
2.59
0.16
75
11612.2835
(16)
0.2264009
(23)
2.2755
(28)
6.232
3.02
0.20
76
11680.1224
(16)
0.2224643
(26)
2.3742
(36)
6.887
3.54
0.25
introduction of correction terms was given originally by Dunham (30) and Van Neck (34). Such corrections were discussed later on, and after allowing for the breakdown of the Born-Oppenheimer approximation, cast in a form suitable for use in fitting
470
CERNY,
BACIS,
AND VERGES
TABLE IIIa-Continued
Y”
B x
G
10
Dx
IO7
-kixlO'
-LxlO'
+x1023
77
11745.0031
(16)
0.2184604
(24)
0.25274
(29)
0.7631
0.0418
0.31
78
11806.9385
(16)
0.2143482
(24)
0.26537
(30)
0.8483
0.0497
0.39
79
11865.9464
(16)
0.2101327
(24)
0.27595
(30)
0.9464
0.0594
0.50
80
11922.0463
(16)
0.2058519
(26)
0.29353
(5’)
0 .941(3f
0.0715
0.65
81
11975;2671
(18)
0.2014505
(25)
0.30549
(34)
1.193
0.0862
0.82
82
12025.6373
(16)
0.1969774
(24)
0.32444
(28)
1.345
0.1034
1.03
83
12073.1915
(16)
0.1924041
(25)
0.345’9
(46)
1 .358(3(
0.1304
1.84
84
12117.966
(17)
0.1877208
(25)
0.36403
(32)
1.784
0.1944
3.08 4.50
85
12160.00'3
(20)
0.1829140
(37)
0.38128
(87)
2.136
0.2034
86
12199.3364
(16)
0.1780276
(46)
0.40151
(48)
2.251
0.1603
5.97
87
12236.0160
(16)
0.1730176
(25)
0.44357
(36)
2.729
0.4903
9.16
0.3221
88
12270.0855
(39)
0.1677432
(120)
0.4'504
(133)
3.361
89
12301.5838
(36)
0.1625408
(57)
0.51288
('1)
3.993
0.83
90
12330.5572
(38)
0. ‘57’295
(63)
0.58476
(14)
4.929
0.57
91
12357.0656
(38)
0.1513290
(20)
0.65387
(25)
5.795
1.15
92
12381.1617
(35)
0.1457819
(44)
0.65956
(67)
6.455
1.02 1.24
93
12402.9’67
(36)
0.1398776
(57)
0.71060
('2)
7.465
94
12422.4680
(38)
0.1338801
(65)
0.69783
(18)
8.423
1.95
95
12439.9695
(74)
0.1280322
(60)
0.80312
(78)
9.358
1.97
96
‘2455.6067
(59)
0.122267
(91)
0.836
110.51
2.9
98
12481.9664
(40)
0.111288
(34)
0.948
116.07
6.4
99
'2492.9783
(15)
0.104985
(23)
1.025
!0.89
9.0
100
'2502.6770
(13)
0.099474
(20)
1.121
16.96
13.8
101
12511.1691
(42)
0.094103
(16)
1.240
$5.07
20.1
102
12518.5445
(43)
0.086153
(31)
1.383
1i6.40
31.1
103
12524.8491
(40)
0.082186
(34)
1.4375
(48)
f52.91
51.1
104
12530.1720
(41)
0.076247
(37)
1.5900
(5')
105
12534.6326
(45)
0.068760
(53)
1.7129
(75)
106
12538.1748
(40)
0.063637
(82)
2.344*
1;77.3
279.
107
12541.0259
(45)
0.056996
(86)
2.630*
2f i5.2
479.*
108
12543.2189
(54)
0.049755
(12)
2.951*
3f i3.0*
813.*
109
‘2544.8244
(66)
0.042683
(15)
3.350*
5111.0*
410.*
110
‘2545.9628
(‘71
0.035843
(27)
3.802*
7(38.0*
400.*
I17.77
1:z5.0
86.8 147.
data from several isotopes (35,36). The order of magnitude of the corrective terms to Uk, is mJM, where me is the electron mass and it4 the nuclear mass (-4 X lop6 in the present case). This means that the correction to the most precise experimental term ( Yio) is of the order of 0.00 1 cm-’ (= 1 mK), that is to say about 1 SD. Moreover we have seen in the discussion of the previous section that changing the range or the number of terms of the expansion can give changes within more than 2 SD, that is to say in Yro changes of the order of 5-10 mK. This can be seen in comparing three precise results obtained from “‘I* X0,’ FIS measurements: Yio = 2 14.5 186 cm-’ (0 c u” d 9) [Ref. (37)], YiO= 214.5268 cm-’ (0 G 0” G 19) (see Appendix II), and
E + X SPECTRUM
471
OF ‘27I’29IAND ‘29I2
TABLE IIIb Parameters’ of the lz912X0: State (in cm-‘) Dx
-
lo8
H x
4
945.5916
(41)
0.3628259
(17)
0.45304
(67)
5
1152.3564
(58)
0.3616882
(18)
0.45806
(69)
0.591
Sb
1357.8841
0.3605287
(17)
0.46096
(58)
0.639
10
15
-lx1020
0.593
7
1562.1603
(50)
0.3593809
(17)
0.46372
(65)
0.643
8
1765.1884
(31)
0.3582099
(16)
0.46584
(62)
0.697
9
1966.9434
(51)
0.3570361
(17)
0.46847
(64)
0.698
10
2167.4257
(30)
0.3558534
(16)
0.47128
(61)
0.751
11
2366.6208
(60)
0.3546653
(18)
0.47534
(66)
0.772
12
2564.5213
(30)
0.3534676
(18)
0.47914
(61)
0.814
13
2761.1162
(86)
0.3522602
(20)
0.48262
(75)
0.829
14
2956.3944
(30)
0.3510472
(16)
0.48793
(60)
0.886
15
3150.3522
(72)
0.3498004
(90)
0.48510
(26)
0.904
16
3342.9618
(25)
0.3485711
(14)
0.49158
(55)
0.945
17
3534.2249
(82)
0.3473257
(102)
0.49620
(300)
0.986
18
3724.1307
(25)
0.3460621
(14)
0.49856
(57)
1.035
19
3912.6572
(94)
0.3447949
(22)
0.50377
(84)
1.076
20
4099.7962
(26)
0.3435143
(14)
0.50826
(55)
1.135
21
4285.525
(25)
0.3422443
(60)
0.52182
(220)
1.196
22
4469.8566
(26)
0.3409174
(14)
0.51892
(58)
1.263
23
4652.7492
(26)
0.3395983
(63)
0.52403
(24)
1.332
24
4834.1996
(30)
0.3382597
(14)
0.52707
(58)
1.401
25
5014.1774
(36)
0.3369344
(67)
0.53699
26
5192.6939
(36)
0.3355630
(15)
0.54336
(60)
1.572
27
5369.7115
(45)
0.3341878
(120)
0.55136
(670)
1.666
28
5545.2192
(38)
0.3327944
(14)
0.55687
(60)
1.765
1.501
a The
origin
of
calculated
the
from
The
Yko
The
number
v”
the
in
are
and
correspond
lines
with
Parameters program
determined
the
is
corresponds
correlation
noted
text)
standard
are
= 6, 7
=
127
I2
uncertainty
in
and
C(v”
Gi(v”)
higher
they
uncertainty (see
from
from
two
a much
precision
(31,321
the
to
to effects
without
fixed
relation
parenthesis
characters
to
was
isotopic
coefficients
characters due
levels
= 0)
+ $
and
are
in
in
the
given
last
order
digits The
than
in
1357.8841
I
pk YkO(v”
deviations.
needed
=
1 k=l
precision
Figure
J
the
to
k
cm-’
; p = 0.992210.
Appendix
II
typed
upright
digits
in
given
standard
in
italic
deviation,
recalculate
the
but
measured
3-b.
were
determined
held
fixed
in
from the
the
R K R curve
and
Hutson’s
fit.
b For of c
The
levels the
level
tive *
The
v”
9’
constants values
meters
= 6 and
results
of
from =
103
is
because
marked the
73 the
the
with
preceding
reported
8 groups
perturbed the
data
* are 9’
of
and
and
the
given
constants
did
not
allow
a deperturbation
from
in
e,-ro,-s
(given
calculated levels.
parameters fit
Figure
a logarithmic
(two
3-b have
SD)
and to
in be
are
the
average
Appendix
I-b).
considered
as
effec-
analysis. extrapolation
from
the
para-
CERNY, BACIS, AND VERGES
472
TABLE IIIb-Continued
V”
B x
G
10
DX
I----
10'
-HxlO
15
-Lx10
20
29
5719.1822
(140)
0.3314305
(40)
0.59018
(220)
30
5891.6315
(27)
0.3299576
(14)
0.57116
(58)
1.978
0.216
31
6062.4974
(28)
0.3285140
(14)
0.57986
(64)
2.080
0.243
32
6231.7773
(26)
0.3270503
(14)
0.58798
(58)
2.202
0.243
33
6399.4515
(29)
0.3255660
(14)
0.59677
(65)
2.333
0.278
34
6565.4968
(28)
0.3240607
(14)
0.60523
(58)
2.468
0.310
35
6729.8924
(29)
0.3225350
(14)
0.61552
(65)
2.608
0.349
36
6892.6141
(30)
0.3209852
(14)
0.62522
(58)
2.759
0.364
37
7053.6385
(29)
0.3194142
(14)
0.63697
(65)
2.932
0.397
B x
10
i: x
106
1.863
-HxlO
14
-Lx1019
38
7212.9401
(32)
).3178168
(14)
0.64792
(59)
0.3109
0.0448
39
737c.4954
(29)
I.3161951
(14)
0.66123
(65)
0.3305
0.0475
40
7526.2810
(50)
I.3145523
(22)
0.68127
(88)
0.3518
0.0537
41
7630.2618
(42)
I.3128668
(22)
0.68973
(97)
0.3743
0.0571
42
7832.4105
(49)
).3111607
(22)
0.70551
(88)
0.4008
0.0585
43
7982.7006
(40)
I.3094211
(21)
0.72005
(90)
0.4298
0.0680
44
8131.1023
(46)
3.3076491
(22)
0.73687
(88)
0.4595
0.0755
45
8277.5803
(39)
3.3058455
(21)
0.75504
(69)
0.4933
0.0780
46
8422.1042
(51)
3.3040067
(22)
0.77403
(90)
0.5315
0.0853
47
9564.6417
(40)
D.3021308
(21)
0.79435
(89)
0.5726
0.0949
48
8705.1742
(59)
3.3001748
(23)
0.80058
(91)
0.6174
0.105
49
8843.6167
(43)
3.2982500
(22)
0.83446
(91)
0.6660
0.117
50
8980.0659
(110)
3.2960417
(311
0.77953
(120)
0.7186
0.129
51
9114.2070
(40)
3.2942101
(13)
0.88431
(58)
0.7764
0.142
0.3
52
9246.2662
(170)
3.2921120
(40)
0.90703
(160)
0.8390
0.160
0.4
53
9376.1277
(136)
0.2899453
(36)
0.92368
(300)
0.9064
0.181
0.4
54
9503.7250
(71)
3.2877638
(23)
0.96093
(22)
0.9065
0.203
0.5
55
9629.0361
(571
0.2855142
(161
0.99029
(8)
1.0586
0.231
0.5
56
9752.0135
(59)
0.2832140
(181
1.02927
(17)
0.9053
(50)
0.260
0.7
57
9872.6177
(60)
D.2808490
(19)
1.06298
(16)
1.0177
(43)
0.289
0.8
58
9990.8031
(58)
0.2784221
(18)
1.09522
(16)
1.2728
(45)
0.326
0.8
59
10106.5277
(61)
0.2759362
(18)
1.13751
(16)
1.2738
(43)
0.370
1. 0
60
10219.749;
(58)
0.2733813
(18)
1.17763
(15)
.4282
(40)
0.417
1.3
61
10330.4250
(62)
0.2707565
(19)
1.21927
(16)
1 .6233
(43)
0.467
1.5
62
10438.5102
(58)
0.2680651
(16)
1.26471
(15)
.8458
(40)
0.525
1.8
63
10543.9739
(58)
0.2652772
(18)
1.29667
(14)
2 .4249
(40)
0.590
2.1
64
10646.7464
(59)
0.2624693
(16)
1.38157
(14)
1 .7238
(40)
0.662
2.6
65
10746.8214
(59)
0.2595519
(16)
1.43805
(14)
.9034
(39)
0.742
3.0
66
10844.1488
(59)
0.2565537
(16)
1.49600
(14)
2.1689
(40)
0.836
3.5
67
10938.6936
(59)
0.2534755
(16)
1.55936
(14)
2.3983
(40)
0.946
4.1
68
11030.4229
(60)
0.2503147
(16)
1.62636
(15)
2.6596
(40)
1.070
5.0
69
11119.3056
(59)
0.247072
7 (16)
1.70017
(14)
2.8790
(39)
1.211
6.0
70
11205.3171
(59)
0.2437431
(16)
1.77863
(14)
3.0738
(40)
1.376
7.0
71
11288.4345
(591
0.2403173
116)
1.84665
(141
3.7467
(40)
1.572
a.4
(61)
B -
473
X SPECTRUM OF 12’1’291AND I2912 TABLE IIIb-Continued
V-I
Dx
B x lo
G
10'
-
1013'
Ii x
-Lx1o17
-Mx10z3
72
11368.6364
(58)
0.2368202
(II5)
0.194028
(14)
0.35054
(38)
0.0181
1.100
79
11445.9151
(53)
0.2332151
(2(If
0.201365
(13)
0.48587
(34)
0.0208
1.122
74
11520.247a
(59)
0.2295404
(115)
0.211042
(11)
0.55113
(64)
0.0241
I.150
75
11591.6416
(59)
0.2251746
(lt5)
0.222032
(14:
0.55396
(39)
0.0281
I.184
76
11660.0938
(39)
0.2219161
(lf5)
0.232192
(14:
0.61111
(38)
0.0329
I.227
77
11125.6019
(78)
0.2179808
(21b)
0.244449
(22)
0.10131
(58)
0.0388
I.283
78
117aa.19i4
(80)
0.2139435
(21i)
0.256652
(22)
0.77702
(58)
0.0460
1.355
79
lla47.a65a
(78)
0.2098272
(21i)
0.210301
(22)
0.85486
(60)
0.0547
I.450
a0
11904.6511
(78)
0.2056140
(2:3)
0.284326
(20)
0.96129
(56)
0.0656
I.575
81
11958.5698
(80)
0.2013035
(2li)
0.298595
(22)
1.11379
(58)
0.0790
8.741
a2
12009.6520
(18)
0.1969047
(21i)
0.314722
(22)
1.27377
(58)
0.0960
I.969
a3
12051.9395
(78)
0.1923534
(21i)
0.326161
(22)
1.63951
(59)
0.1175
.2ao
a4
12103.4340
(80)
0.1878147
(21b)
0.350653
(22)
1.73612
(60)
0.1445
.610
a5
12146.2092
(80)
0.1931087
(21i)
0.310138
(22)
2.09703
(62)
0.1784
.2ao
86
12186.2931
(78)
0.1782929
(2~i)
0.391370
(22)
2.56837
(58)
0.2387
.1611
a7
12223.7263
(78)
0.1733716
(21b)
0.418873
(22)
2.81252
(60)
0.3661
.470
aa
12258.5669
(85)
0.1682221
(2Li)
0.433035
4.126ll
(77)
0.3662
-310
a9
12290.8333
(64)
0.162886
(lO(1)
0.46030
(27) (440)
3.436
0.411 0.968
90
12320.5910
(64)
0.156846
(3f1)
0.31378
(28)
4.486
91
12347.8420
(110)
0.152330
(26(1)
0.61944
(250)
5.299
92
12372.7107
(84)
0.146180
(ll[
0.36052
(130)
93
12395.1666
(76)
0.141874
94
12415.4150
(140)
0.13528
(21
)
0.8630
95
12433.6540
(690)
0.12919
(64
)
0.76091
)I
(a:5)
38.1 6.846
0.66902 (780)
0.621 (20.2)
1.31 0.990
7.94
1.48
8.64
2.11
96
12449.9120
(820)
0.12321
(11
)
0.80665
9.88
2.35
98
12471.3320
(140)
0.11225
(16
)
0.90707
14.26
5.39
99
12488.8240
(280)
0.10691
(93
)
1.0616
(660)
17.98
100
12499.0010
(210)
0.10126
(19
)
1.1430
(530)
23.64
101
12501.9420
(140)
0.09564
(15
)
1.1744
32.52
18.5
102
i2515.7280
(600)
0.08997
(190
)
1.3947(1.300)
$3.28
26.2
7.78 12.2
103(
12522.7180
(120)
0.01611
(13
)
1.4055
53.45
32.0
104
12528.0670
(620)
0.01909
(200
)
2.1544C1.400)
62.76
46.1
106
12536.7750
1540)
0.06610
(170
)
2.4576C1.160)
141.2*
101."
107
12539.9330
(590)
0.05919
(190
) ,2.6378(1.300)
199.0"
155."
108
12542.3580
(150)
0.05294
(21
) 13.4600'
269.0*
219.*
Y,O = 214.5208 cm-’ (0 G 0” G 89) (Table IV of paper I). Then, only very precise data for the first vibrational levels of isotopes of Iz could allow us to calculate the corrections to relation (1) in the X0: state. We think that they could be obtained from LIF FTS, but the related spectra were not recorded because they were of no practical importance to the long-range analysis (paper III). The precision obtained from the approximation (1) was checked directly by comparison with our data. An example is given for some X0: vibrational levels (v” -C20)
474
CERNY, BACIS, AND VERGES TABLE IVa Parameter9 of the ‘27I’29IBO: State
(cm-‘)
G
v’
B x
lO’(cm-‘)
DxlO’(cm-‘)
-H~lO’~krn-‘)
-1
-LxlO”(cm
0.086
0.205 I
I
/
I
51
19821.199
(17)
19821.1960
61
0.15716
I
(10)
0.379
0.15713
20033.9068
(22)
20033.9019
62
I
0.11605
(56)
20047.7266
0.22109
0.2342
0.326
0.649
0.78012
1.7886
5.3
0.90452
2.2797
7.3
(10)
0.11610
20047.7339
(17)
0.373
0.11168
(13)
0.63
0.11174
(10)
0.69
a For
each
global
v' vibrational
fits
uncertainty
The
values
level
(given
in
in
last
digits
second
row
in
the
the
Figure
the 3-a
first and
and
are
in
row
is the
Appendix
corresponds
calculated
average
I-a). to
from
value
The
two
standard
isotopic
determined
number
in
from
the
parenthesis
is
five the
deviations.
relations
(see
G(v’
= - $)
Appendix
III).
In
15 particular
:
Gi(v’)
= 15 769.0588
15 769.0588 When non
there
were
determined
= Te + p2
insufficient constants
+
CY,B, -
excited were
held
1 k=I
pk
Yoi)
levels fixed
yko(v’
is to
at
the
+
the
i)“,
distance
detemine value
the given
parameters in
the
second
^ G(v” of
= - ;).
a given
v’,
the
row.
in Table VII where it is seen that the constants calculated from ‘27I2 of Luc and Gerstenkorn’s polynomial expansion are in excellent agreement with our direct determination. This allows us to suppose that fixing the common origin for the tree isotopes (Sect. IV) has introduced an error which is lower than 2 SD. For the low t)” levels of the ‘27I’291and 12912isotopes, this corresponds to an error less than 0.004 cm-‘. We have also checked our directly determined G(v”) values with those calculated from isotopic relations from the results for ‘27I2(Table IV of paper I). Examples are given in Fig. 6 where one can see that for the range 0 < 0” < 85 the differences between isotopically calculated and experimentally determined constants do not differ by more than 2 SD. The agreement is better for B constants than for G constants. The best way of comparing results for different isotopes is to introduce the mass-
B -
475
X SPECTRUM OF ‘27I’29IAND ‘*‘I2 TABLE IVb Parameters’ of the ‘29I2Xl: State
20044.4511
63
20057.3466
(96)
20113.0183
69
0.0310
0.131580
0.152
0.155633
0.189
0.184486
0.237
0.2610
0.38
2.08
6.
2.66
9.
(22)
0.80
0.107595
0.7150
0.991
0.0807707
1.095
2.760
0.076196
1.185
3.347
(52)
20113.0183 70
(75)
0.107608
20057.3439
0.038803
20119.1712
13.5
90.
19.2
140.
(54)
20119.1716
-
I
a For
each
eight is
The
v’
vibrational
global
the
fits
uncertainty
values
in
level
(given in
the
in the
second
the
first
Figure
3-b
last
row
row
digits
are
and and
is in
the
average
Appendix
corresponds
calculated
from
to
: Ci(v’) =
particular
15 769.0589
+
1
pk YkO(V’
The
two
isotopic
15 In
value
1-b).
determined number
standard
relations
I
+ 7’
k
from
in
the
parenthesis
deviations.
(see
Appendix
III).
*
k=l with Wha the
the
same
there non
origin
were
determined
as
in
insufficient constants
Table
IV-a
excited were
(C(v” levels
held
fixed
= - +u. to at
determine the
value
the
parameters
given
in
the
of
a given
second
v’,
row.
reduced vibrational quantum number v = (v’ + $)/pLf as shown by W. G. Stwalley (38). Following King (5), we use relative values as 17= (u” + 4)~ with p = 1 (“‘I*), p = 0.9961126 (‘271’291),and p = 0.9922 10 (‘2912).Then we can directly compare the
476
CERNY, BACKS, AND VERGES TABLE Va Expansion’ Parameter Coefficients of the 1*71’2gI X0, State (in cm-‘)
k C" 1 2 3 4 5 6 7 8 9 10 1, 12 13
%co
(0 4 Y”E
871
k
-0.26, C-02) O.Z13697,655 c+031 -0.608925708 (too) 0.,40,,,7 C-04) -0.174184231, C-03) 0.13**416,548 C-04, -0.69772557779 C-06) 0.246944545764c-071 -0.601209414147l-09) 0.1006204863338(-10) -0.1,36056*6001*~-12) 0.824632555609C-15) -0.34611578069,C-17) 0.63603802597 t-20)
0 1 * 3 4 5 6 I 8 9 10 1, 12 13
?41
(0 : "" I 87)
0.3707827 C-01) -0.1114639 C-03) -0.1066429 C-05) 0.20665506 C-06) -0.297629828 C-07) 0.24913,0*56 ~-OB~ -0.13311582486c-091 0.4,30,529680C-11) -0.11‘*405819 C-12) 0.18.9171795856(-14) -0.*080403,,441~-161 0.,4,6*405,04*~-181 -".60,*54,68,,C-2,) 0.11004114964C-23)
k 0 1 2 3 4 5 6 7 8 9 10 1, 12
dk
(0 I Y" 6 87)
-0.83500954 (+Ot) 0.*18,7*3 C-02) 0.7011603 C-04) -0.73769209 C-05) 0.776913826 C-06) -0.4168501498C-07) 0.12281815136(-08) -0.16*375*55*3~-10~ -0.7522464626c-131 0.590,893639*(-14) -0.86334319766(-16) 0.56,9480,64*(-18) -0.,4596008,04(-20)
k 0 1 * 3 4 5 6 7 8 9 10 I, 12 k 0 1
k
C" I 2 3 4 5 6 7 8 9 10 I, 12
YkO
(83 < "" 6 109)
-0.1*,,034* c*o31 0.829939512 (+o*) -0.1562844228 (to*) 0.42816336826 (*ol) -0.82208265734 C+OO, 0.106*378031680(*00) -0.947500053659C-02) 0.589066538,9,6(-03) -0.2542535535377~-04) 0.746,**389,996~-06) -0.,1*08969661*6~-071 0.,58*5,36453,,(-09) -0.78290087540 C-12)
lo*
(+f(““))
-,E,\(V”
+
k
Yk,(83 t Y" .' 109)
k
0 1 * 3 4 5 6 7 8 9
0.1612998 C-01) 0.38534941 C-02) -0.161233864 C-02) 0.3252709130C-03) -0.3928612830C-04) 0.29540232251(-05) -0.13934519845(-06) 0.40068878493(-08) -0.6415384380C-10) 0.4381135405C-12)
0 I * 3 4 5 6 7 :
4)” far 65 $ v"
4, (83 s 1" 6 109)
-0.632285 (+ol) -0.12035543 (*oI) 0.5101368, (+00) -0.,163446839~+oo~ 0.,6200886,6(-0,) -0.14466174374~-0*~ 0.8456569225C-04) -0.3**34*,*063~-051 0.7,*7,51386C-0,) -0.10589693347(-08) 10 0.633035901 C-11)
* 3 4 5 6
0 : 3 4 5 6
hk
(0s "" s 109)
-0.153189 (a*) 0.347156 t-011 -0.6943128 (-02) 0.117099216 (-02) -0.1046367690(-03) 0.5642081429C-05) -0.19549729148(-06) 0.44959555431(-08) -0.69264984623(-10) 0.705,,,65860(-12) -0.4556‘464,*,(-14) 0.168656,,3,4(-161 -0.2723668299C-19) lk
(0 s Y" < 109)
-0.2158269 (*O*) 0.165944 t-0,) 0.,*3068*0(-02) -0.46156305(-04) 0.9**8*009(-06) -0.86655895(-081 0.3**17593~-10~
-0.532468581 (+05) 0.4275367158(~24) -0.14*81**6134(+03) 0.*5389480432(*01) -0.*53,6*84*61~-0,) 0.13455313115(-03) -0.2970817469C-06)
< 87 (from third iterarioo).
RKR curves (Fig. 7) and B,/p’ values (Fig. 8) where it is Seen that no systematic difference appears. Also it is possible to show the high precision obtained in the calculation of the differences in G values (see Table VIII), which is important for the comparison of extrapolations at long range.
B -
X SPECTRUM
477
OF ‘27I’29IAND ‘29I2
TABLE Vb Expansion’ Parameter Coefficients of the ‘29I2X0: State (in cm-‘)
k % 0 1 2 3 4 5 6
(5,
Y”
s 881
0.76511722 c+o31 -“.,“92”“,,4 ct021 “.263491358”~+“1~ -“.51999,346,(-“11 “.5,52624”91~-“3) -“.,,81953984~-“51 “.82558,,11 C-08)
Some constants were also directly experimentally determined for the BO: state. They are in agreement with the isotopic calculations as is seen in Tables IVa and b. In this comparison we have to remember that fixing some rotational constants in a v
478
CERNY, BACIS, AND VERGES TABLE Via RKR Potential Turning Points’ for the 1271’291 XO,CState
level gives unrealistically small standard deviations in the floated parameters. Indeed the uncertainty in the fixed constants is not taken into account (see also Sect. IV (iv) and Table II in paper I). The direct determination of G(v’) has given T, = 15 769.078 cm-’ (see Appendix IV), which is in perfect agreement with the value obtained from ‘27I2(see Sect. V). V. DETERMINATION
OF LINES IN THE BO:-X0,+
TRANSITION
We have checked the precision of our work in recalculating the position of our recorded lines from the polynomial expansion of Table Va or b for the X0,’ state and
B -
479
X SPECTRUM OF ‘271’291 AND ‘29I2 TABLE VIb
RKR Potential Turning Points’ for the I2912 X0: State d’
G(““)
CC”“)
R -I
(cm
max(l)
)
(Cm-3
%i”
$.bl"'L
.5056?
I::%9 :*::m
2:roaac
2.49369
:A:%: ::::::4
,;gp;:g
10219:lilS 103~0.4158 lC435.5~14 10543.9569 13646.7415 19746.8162 1 .44.1434 1 8 938.6383 11030.4173 11119.~034 11205.3115 1123 .4260 1136 i .63X 114LS.1044
12415.4667 12433.6450 CI9.OOPl L64.&J32 1 077.3246 1 t 488.8131
1 1
from isotopic relations applied to preliminary parameters of Gerstenkom and Luc (Appendix III). For the range of 2)”-C90 where no perturbation was observed and for J -c 100, the wavenumbers of lines are recalculated with an error lower than 0.0 10 cm-’ and even 0.005 cm-’ if J < 35. In the same u” range but with 100 < J < 150 ( 12912), the precision decreases with increasing Jand is generally lower than 0.100 cm-’ for J z 150. For 2)”> 90, the lines observed have J < 35 and the precision is better than 0.005 cm-’ for nonperturbed vibrational levels (for more details about the perturbed 0” levels, see the end of Sect. III). The precision in the recalculations of lines is not as good as the rms deviation of the fits and becomes progressively worse as J increases. The reason is that we used separate global fits (because of our computer limitation) which, when recombining
480
CERNY, BACK, AND VERGES
20
40
60
00
100
\I”
FIG. 4. (a) Comparison of ‘27I’291 XO,Cparameters obtained using Hutson’s program (31, 32) from the RKR curve of Table Via, with the experimental determination (Table IIIa): AG = Gn,,. - GErp, - DExp cm-‘. The symmetrical full lines for All and AD correspond AB = &uUo. - BEXP, AD = Dmm to k2 SD of the experimental determination. (b) Comparison of IT)&X0, parameters obtained using Hutson’s program (31, 32) from the RKR curve of Table VIb, with the experimental determination (Table IIIb): AG AD = Du,,. - l& cm -I. The symmetrical full lines for = GM.,, - G~xpr AB = BuvUan- Ba,,, AB and AD correspond to +2 SD of the experimental determination.
the results in order to determine the expansion parameters, do not allow the correlations between the constants of BO: and X0,’ to be taken fully into account. The interferometric accuracy on the measurements of the main fluorescence lines gives the maximum of these lines to within 0.002-0.003 cm-‘. If we want to recalculate the measured lines with the same accuracy, it is necessary to use the results of the separate global fits. That is why these results have been reported in Appendix I and in Tables III. Now the general relations used in the recalculation of lines (in paper I and in this paper) are in principle valid in the region of the absorption spectrum of iodine (visible). Our determinations have been extrapolated to this region using the preliminary results of Gerstenkom and Luc. This gives another way of checking our general relations: we can compare the wavenumbers they give to the absolute values of some lines determined
B -
481
X SPECTRUM OF ‘271’291 AND ‘29I2
b i AG (10”) 129
-25_
I
I
1
20
60
40
1
I
60
100
Y"
w
FIG. 4-Continued.
127
An (~6’~)
AAH (16’~)
I
129
I
AA”(lO-15I 129
A/AH(r6141
1 AA
10 _ 0
c
I 20
l
1
I
1
I
40
60
I30
100
"“
b
FIG. 5. Comparison of H constants obtained with Hutson’s program in the second and third iteration: AH = Hz - H, cm-‘. H2 = H obtained from the second iteration fit (Table III). H3 = H obtained from the third iteration fit that is to say from the RKR curve (Table VI) of the third iteration results. The symmetrical full lines correspond to +2 SD of the experimental determination.
482
CERNY, BACIS, AND VERGES TABLE VII Typical Comparison of Parameter Experimental Values (First RoWP) and Calculated Values (Second Rowb) (in cm-‘) 127I129I
VT’
B x
G
Of g
x
10
Dx
IO8
-x x
1015
5
1156.8213 1156.8153
(404)
0.364478 0.364497
(174)
0.430 0.461
(178)
0.6126 0.6119
IO
2175.6743 2175.6741
(32)
0.358570 0.358597
(78)
0.389 0.476
(98)
0.7494 0.7498
I5
3162.1304 3162.1289
(26)
0.352483 0.352484
166)
0.534 0.495
(81)
0.9437 0.9378
19
3927.0603 3927.0577
(29)
0.347397 0.347413
(66)
0.520 0.512
(82)
1.172 1.060
129
x o+ g
I2 B x
G
v”
IO
Dx
-H
IO8
x
IO’5
5
1152.3564 1152.3560
(58)
0.361688 0.361671
(18)
0.4581 0.4534
(69)
0.5912 0.5971
IO
2167.4257 2167.4220
(30)
0.355853 0.355842
(16)
0.4713 0.4685
(61)
0.7511 0.7310
I5
3150.3522 3150.3476
(72)
0.349800 0.349802
(90)
0.4851 0.4868
(26)
0.9038 0.9135
I9
3912.6572 3912.6550
(94)
0.344795 0.344794
(22)
0.5038 0.5041
(84)
I .076 1.035
a In
parenthesis
The
H values
program, b
The
were
second
calculated
expansion
: two standard fixed
in
iteration
values
parameters
deviations.
the
fit
to
the
value
obtained
from
Hutson’s
(31.32).
come of
the
from I27
isotopic I2
X0;
relations state
(see
applied
to
the
polynomial
AppendixII).
from hypertine structure measurements. Unfortunately while numerous measurements have been made for “‘12, there are very few for lz912and we have found only an (22). All these absolute isotope meaincomplete measurement of a line for 1271’291 surements have been made for lines coinciding with the 5 14.5~nm Ar+ or 611.8 and 632.8-nm He-Ne laser lines. We have recalculated from our parameters the lines expected to lie in these regions in Fig. 1 (5 14.5 nm) and Table IX. We have compared these recalculations to the absolute values of the expected position of the center of gravity G of the lines calculated from hyperfine measurements. We have also compared some ‘27I2absolute lines from paper I results. In particular we
B -
X SPECTRUM
483
OF ‘271’291 AND ‘2912
5_ .---.____/ 0
’
dB (16’) -\ ‘.
I
0
I
20
I
40
I
60
I
_,
6OV” 0
I
20
t
1
40
60
,
+I
80~”
t
dD(lO-“) \
; /, 0
I
I
20
40
I
60
1
.
60 V ”
FIG. 6. Comparison of the rotational constants of the X0: states calculated (Cal) from isotopic relations and determined from experiment (exp) (polynomial expansion, Tables Va and b) (in cm-‘). l
With isotopic calculations applied to the rotational constants of “‘I2 molecule (polynomial expansion, Table IV in paper I): = G& - G,,, dG 1~~1~~,
(from Table Va)
dB1~~,l~ = L&, - Bcxp (from Table Va), and similar relationships for dG1z911 and
dB1s12 (experi-
mental values from Table Vb). l
With isotopic calculations applied to the rotational constants of ‘271’291 using the mass reduced ratio p,29,,2,_,29= 0.996082, compared t0 eXp&lMtal VaheS ‘2912: dG = G& - G,,, (from Table Vb) dB = &,,, - Be, (from Table Vb) dD = D& - Dcxp(from Table Vb).
The symmetrical full lines correspond to k2 SD of the experimental determination of the related isotope.
have regrouped the various measurements at the 612-nm wavelength of the He-Ne laser because the relative frequency differences between “‘12 and 129I2have been directly measured at this wavelength. They are shown in Fig. 9. The center of gravity G of the
CERNY, BACIS, AND VERGES
1254 5
G(v
1t
cm-’
d 0’
1234
.O
12535 _
A 0
0’
105
. A
12530 _
r’ .o
0
d
.
A
.
.
12525 -
127I2 127
129
A1
I
,o 0 0
129
.
0
12
12520 _
:
> ,
. 102
I __ 3.3
1214
1 ..r ,. 3
12515q
^_
b.3
1 ^_ 0.3
I n.? t9.a
r(A)
FIG. 7. RKR outer limb curve for higher vibration levels of the ground state of the three isotopes of iodine.
1
I
5
P2 .Ol! 5_
+b.
1
1
O*. OQo ‘A
O. -0
,011 O-
Q
O*.
OY 0
A 0
O-n
-0
OY
127 .
12 129
.oo5_
A 127 0
I
OI O*0
12 129
I
l0 0
L 90
100
95
105
110
P (v41/2) FIG. 8. Comparison of B, values of the ground state of the three isotopes of iodine in mass-reduced coordinates (‘*‘I2:p = 1, ‘27112~:p = 0.9961126, ‘*qz:p = 0.9922 10).
B -
X SPECTRUM
485
OF ‘271’291AND ‘29I2
TABLE VIII Comparison. of the Variations in G at Different Vibrational u” Levels l27I129I
v”
IO
I
(-;j;ii-)p,* dG127
212.6950
+,212.6957
20
40
60
80
85
201.3555
187.7907
155.8112
112.2221
54.8688
40.8366
201.3556
187.7912
155.8116
112.2221
54.8688
40.8372
40
60
80
85
129 I2 v”
I
dG127 ( dv” )pv,,
+(Y&,,, dG129
IO
20
212.7021
201.4090
187.9047
156.1008
112.8340
55.7822
41.7467
212.7025
201.4090
187.9046
156.1013
112.8336
55.7825
41.7461
a For
every
G(v”)
isotope,
1
=
G(v”)
(v”
yko
+
and
the
dv”
from
Table
Table those
VIII
the
taken
V-b
for
compares
deduced
vibrational of
data
from quantum
vibrational
from
Table
dG(v”) dv”
derivative
;)“, ac(v”) = 1
kbl with
its
kYkO
are
(v”
written
:
1 k-l
+ y’
k,,l
IV paper
127
I for
12,
from
Table
V-a
for
127112yI
and
129 Iz. dG(v”) dv” 127
12.
number quantum
for It of
different is
easy 127
number
I2 of
integer to
must I29
see be 12,
v”
that(T the with
values
dG127
same
)
for
of the
127I129
value dG -+f
as -!--( 0129 similar relationships
I
129
or P v” or for
of
the
I2
to
the value
v”
127Il29I.
hyperhne structure was calculated assuming the same intensity for every calculated hyperfme line. We have verified, where possible, that this approximation does not give a significant error in the range of J values involved. When hyperhne lines were missing for ‘*‘I*, we have used a total width W(first to last hyperIme component) of 9 10 MHz with G at 0.44 W of the last violet side hyperfine component (G4 of Fig. 9 was estimated in this way). We have determined and checked this approximation from the various hyperhne measurements cited in the references. This is very close to the G position at 4 W/9 used in Ref. (42). The same type of approximation was used for ‘29I2with W = 600 MHz and G at 0.41 W of the last high-frequency line [average of the three measured lines at 612 and 633 nm, used for R67(52-1) and P69( 12-6) (Table X)]. The
CERNY, BACIS, AND VERGES
486
TABLE IX ‘271’291 and lz912Absorption Lines’ in the Range of He-Ne Laser Lines 127Il29
in
the
in
632.81646 nm regionb (15798.027 cm-‘)
P 33(
6-
3)
R 44(20-10)
15798.021
(2.2)
15798.073
(0.003)
Pl48(
7-
the
632.81646 nm regionb_, (15798.002 cm
the
lines
6 Il.8027
16340.675
0)
129
in
I absorption
(0.04)
I2 absorption
in
ntn regionb (16340.616 cm-‘)
lines
the
61 I .8027
)
nm regionb (16340.616 cm-‘)
R 60(
8-
4)
15797.990
(4. I)
P110(10-
2)
16340.658
(5.5)
R107(
0)
16340.594
P 54(
8-
4)
15798.006
(4.2)
Rll3(14-
4)
16340.635
(0.08)
R 45(15-
5)
16340.593
(0.6)
P 69(12-
6)
15798.025
(0.2)
P l4(
I)
16340.610
(7.3)
R 20(
I)
16340.587
(10.0)
P 33(
3)
15798.057
(2.2)
PlO3(16-
5)
16340.596
(0.4)
Pl48(13-
3)
16340.564
(1.0)
6-
7-
6-
7-
(0.07)
a The wavenumbers are
given
in
most
intense
lines
whose
line
b
-I cm
0.060
in
Neon
are
for
nm line
S.J.
Bennett
the
R47 (9-2)
of
(Fig.1
The 632.8
nm line
reference
(22))
of
;
it
of
are
intensity -3 IO
are
our
was
Their
new parameters.
relative
to
the
arbitrarly
R20(7-I)
set
equal
predicted
line, to
intensities
(expected
10.0.
to
be the
We report
only
the
.
than
of
from
given
-I cm
0.045-0.050 the
and we have
reported
Iodine
lines
in
the
range
Ne lines.
Sventitskii Neutral
and Ionized
Atoms
1968 22 Ne. 22 in
‘27 I2
calculated
whose
lines
and N.S. Lines
are
greater
wavenumber
New York
values
are
the
Striganov
These
spectrum)
the
Spectral
The 611.8
the
around
From A.R.
IFI/Plenum,
lines
The intensities
FWM of
Tables
of
absorption
intensities
The Doppler f
of
parenthesis.
line
22 is
Ne is
centered
reference which
Ne is
at
(39)). is
the It
I6 340.6548
-I .
cm
of
the
.
range
of
this
(within
3 MHz) with
Sfriganov’s
value
-I at - 0.003 cm from -1 cm Striganov’s value
centered
I5 798.032
middle
coincides
the is
A line still
is
of too
line Cl too
129 high
explored
by P.
(Fig.9)
centre
high
by 0.0014
I2 P33(6-3) by 0.0012
Cerez
of
nm
(from
and
gravity
of
!
Fig.5
of
nm.
iodine lines recorded with the help of the 3He- 22Ne 633 laser line [Fig. 5 in (22)] were not identified. From our determinations (Table IX) the most intense components (A, B, C, D) are from ‘29I2P33(6-3). The lowest intensity lines in the middle of Fig. 5 are from ‘29I2P69( 12-6) and some lines of relatively high intensity on the lower frequency side correspond to the end of the ‘27I’29IP33(6-3) line. The first components of this line were observed in Ref. (21) from the 3He-20Ne line; so the ‘27I’29Iline was W N 750 MHz average of 12’12and 129I2widths. We have not used all of the numerous absolute measurements from ‘*‘12, but we have compared our values to some of them (Table X) and also with the absolute
B + X SPECTRUM
OF ‘271’291 AND ‘2912
487
FIG. 9. Center of gravity G of iodine lines calculated from hyperfme measurements. The origin (0) of relative frequencies in MHz is the o component of the R47(9-2) ‘*‘I2line. Gl = Center of gravity of R47(9-2) [12’12,calculated from Ref. (39)], Gl is 16 340.6548 cm-’ [R47(9-2) i = 16 340.6581 cm-‘; see references in (40)]. G2 = Center of gravity of Pl 10( 10-2) [‘2912rcalculated from Refs. (18, 19)], G2 is 16 340.6486 cm-’ obtained from frequency separation with the component o of the R47(9-2) transition of 12’12(19). G3 = Center of gravity of RI 13(14-4) [‘2912,calculated from reference (19)], G3 is 16 340.6352 cm-’ obtained from frequency separation with the component o of the R47(9-2) transition of 12’12(19). G4 = Estimated center of gravity of P48( 1l-3) [12’12(800 MHz below the i component of R47(9-2) (18))], G4 is 16 340.631 cm-‘. l Full line: measured range with the lowest and highest observed relative frequency. l Dashed line: calculated nonobserved range. l The hatched lines show the limits of the scanning on gain curve of the laser at 6 12 nm from P. Ctrez and S. J. Bennett (39). of Ref. (40). In the latter case our determinations are shifted by +0.0060 to +0.0072 cm-’ relative to the absolute frequencies in the range 16 340-l 7 360 cm-‘. On the average, these results and those of Table X show that the polynomial expansion and T,used in paper I give absolute values of ‘*‘I2 lines which are on average too high by +0.008 cm-’ in the visible absorption region of the spectrum. An examination of the other results regrouped in Table X shows that the same shift is expected in that range for ‘29I2and 1271’291. Thus it appears that the extrapolation of our data with the preliminary results of Luc and Gerstenkom has given a slight shift in our determination of T,which is too high by +0.008 cm-‘. Nevertheless, for the range of the fluorescence lines we have measured in the present paper, the use of this T,value does not reproduce this shift; the accuracy of our parameters relative to these lines (for instance in Table XI) has been given at the start of this section. Finally, as in Section V of paper I, we have looked for coincidences between possible I2 laser frequencies and the hyperfine lines of the I 1,2-1~,2transition at 1.3 15 pm. The results are shown in Table XI. We see that there are a few coincidences for every atomic line. For instance with the most intense F'= 3 --+ F" = 4 hyperfine line it is possible to use: (i) the 12912P84(33-72) lasing line pumped in the 5300 A (2)” = 0 - v’ = 30) range; (ii) the 127I’29IP72(21-62) pumped in 5560 A (u” = 0 - o’ = 21) or 5630 A (v” = 1 - 2)’ = 21) range. values
488
CERNY, BACIS, AND VERGES TABLE X Comparison of Our Calculated Wavenumbers (Last Column) with the Calculated Center of Gravity of the Line Obtained from Hypertine Measurements
127 12
R 47 (9-Z)
(6 340.65d
16 340.6655(+,0.7)
12912
P 33 (6-3)
I5 798.045 e
I5 lSS.057(+,2. )
129 12
P,,OC10-2)
16 340.6486a
16 340.658 (t9. 1
,271 12g1 2 2
P 33 (6-3)
15 798.013 f
15 798.021 c+!3.)
,2g12 127 12
R113(,4-4)
16 340.635Za
16 340.635
,2912
P 69(,2-6)
15 798.022 g
15 798.025 (+3. )
P 48(,1-3)
16 340.6314a
16 340.6420('10.6)
12712
P 13(43-O)
19 429.8086h
19 429.8,72(+8.6)
127I2
P 33 (6-3)
15 797.97626
I5 797.9841(+ 7.9)
12712
R 15(43-O)
19 429.818Zh
19 429.8264(+8.2)
R127(11-5)
I5 797.9997=
15 798.0084(r8.7)
12912
R 67(52-l)
19 429.7668'
19 429.776 (r9.2)
P 54 (8-4)
15 797.9980d
15 798.006 (t8.0)
12712
P 62(,7-l)
,I 352.2476j
15 352.2539Ct6.3)
127 I2 129 12
(0)
a See Fig.6
d
Calculated
from Table
Estimated from
I”
Fig.5of
of reference
reference
(21,
and k or
n component of
reference
(22).
(22).
VI. CONCLUSION
Our extensive analysis of the vibrational levels of the ground state of ‘271’291and lz912isotopes has allowed us to determine vibrational levels close to the dissociation limit. Their long-range behavior will be compared in paper III. We have checked the usual isotopic Dunham relationships. They allow us to calculate precisely the rotational constants of the three isotopes of iodine (i2’12, L2711291, ‘2912).Using these Dunham parameters for the BO: state and the determined polynomial expansion for the X0,’ state, we obtain the BO:-X0: lines with an accuracy better than 0.010 cm-’ at least for the range 0 d 2)’G 70 for BO: .
5s2
5p5
3
4
1
3
3
3
2
2
F”
5s2 5p
2
cf
++
3
F’
T
2 P,
Iodine
52
?
P3
7602.6245
7602.6903
7602.7145
7603.1429
7603.2837
7603.3495
Ref.
Wavenumbers -1 (cm )
from
transition
(50)
B 0;
R P P R P
R R R P P P R R P P R P P R P
7603.161 7603.159 7603.151 7603.143 7603.124
7602.736 7602.732 7602.716 7602.707 7602.690 7602.690 7602.679 7602.678 7602.677 7602.660 7602,630 7602.619 7602.603 7602.594 7602.594
58(33-72) 66(48-84) 81 i52-87j 58(43-80) 92(42-79) 89(51-86) 48(53-88) 98(21-62) 32(53-88) 62(27-67) 86(27-67) 95(37-75) 49(48-84) 7808-76) 66(52-87)
64(48-84) 64(52-87) 72(21-62) 97(47-83) 80(47-83)
27(53-88) 63(48-84) 96(21-62) 75(38-76) 75(43-80) 85(32-71) 79(52-87) 32(33-72) 54(38-76) 55(33-72)
Identification
P R R R R P R P P R
3.10e3)
I
7603.380 7603.370 7603.360 7603.344 7603.327 7603.323 7603.278 7603.270 7603.263 7603.255
(FCF>
wavenumbers
Calculated
127Il29 +
“lasing
10 7 125 125 41 9 43 9
103 9 9 15 16 11
9 9 10 11 11
9 10 43 15 181 9 103 43 103
for
FCFx
x 0;
lines”
103
Calculated Coincidences of BO: - X0; Lines with Hyperfine 11,2and Related X0,+ - BO: Pumping Band9
TABLE XI
42 42 43 43 47 47 48 48
32 32 33 33 37 37 38 38
21 21 27 27
-c BO:
Band
I 52 0 53 1 53
0 51 1 51 0 52
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1
X0;
Pumping
-1
382 170 427 214 585 373 620 408
826 614 891 678 130 918 185 972
19 715 19 502 19 743 19 530 19 769 19 556
19 19 19 19 19 19 19 19
18 18 18 18 19 18 19 18
)
band
17 975 17 763 18 470 18 257
(cm
”
I3,2Transitions
for
FCFx
5071 5126 5063 5119 5057 5112
5158 5215 5146 5203 5104 5160 5095 5151
9.3 5.4 8.6 5.4 7.7 5.3
19.1 3.0 18.0 3.5 13.2 5.0 12.2 5.2
31.5 2.3 30.8 1.3 25.7 0.4 24.9 0.7
bands
lo3
5310 5371 5292 5352 5226 5284 5211 5269
pumping
BO:
19.2 36.6 30.8 16.2
+
5562 5628 5413 5476
(L
X (air)
X 0;
5s’
5p5
a
3
2
molecule
is
obtained
2
2
pressure
7603.7145
1
2
At a given
7603.1429
4
3
Ref.
by
the
(50)
mixing
density
7602.6245
7603.6903
7603.2837
7603.3495
from
Wavenumbers -1 (cm )
3
T
2P3
3
5p5
2
5s2
3
u
CL F”
T
transition
P’
‘P,
Iodine
of I2
and
“‘12.
1s
expected
P 92(38-76) P 33(34-73) P 61(53-W) R 56(34-73) R 86(28-68) R 60(49-85) R 74(39-77) P 53(39-77) Rl00(22-63) P 77(48-04)
7603.733 7603.728 7603.699 7603.694 7603.674 7603.668 7603.655 7603.634 7603.609 7603.608
I
P P P R P P
7603.158 7603.147 7603.146 7603.125 7603.125 7603.121
127I129
P 60(2a-68) R 98(22-63) P 100(47-83) P 75(4B-84)
7603.314 7603.299 7603.269 7603.265
to
be
40(49-85) B7(43-80) 84(33-72) 72(39-77) 91(3B-76) 74(22-63)
P R P P R
29(34-73) 71(39-77) 39(49-G) 50(39-77) 52(34-73)
Identification
B 0;
7603.374 7603.355 7603.340 7603.338 7603.331
> 3.10b3)
wavenumbers (FCF
127
I2
Calculated
129
at
most
85 36 10 36 85
for
x
lo3
the
lines”
half
38 a5 84 85 142 10 36 36 3 12
10 20 86 36 38 3
142 3 14 12
“lasing
FCF
TABLE XI-Continued
value
X0;
for
129
0 53 1 53
I2
)
420 208 579 367 614 402 647 436
883 671 946 734 177 965 229 018
056 a44 537 326
-1
since
this
band
19 764 19 552
19 19 19 19 19 19 19 19
1
0 43 43 47 47 48 48 49 49
18 17 18 18
18 18 18 18 19 18 19 19
0 1 0 1 0 1
” (cm
33 33 34 34 38 38 39 39
0 1 0 1 0 1 0 1
1
0 22 1 22 0 28 28
-c BO:
Band
Pumping +
80:
heteronuclear
5058 5113
5148 5205 5106 5162 5097 5153 5088 5144
5294 5354 5277 5336 5213 5271 5199 5257
5537 5603 5393 5455
ct
h (air)
X0;
for
x
8.0 5.3
18.0 3.5 13.2 5.0 12.2 5.2 11.2 5.4
30.8 1.6 29.9 0.8 24.9 0.8 23.5 1.2
21.5 34.8 31.5 13.0
pumping
FCF
bands
lo3
+ + -t + -
+ + + +
*
YOl
19 19 19 19 19
19 19 19 19 19
C(v’
the
stat?.
average
8,:
The
value
held
of
fixed
effects
digits
correlation
Parameters
all
tbc
in
they
= 45)
51)x
10
(33) (28) (31) (65) (77)
x 10
is
fits
fit.
needed
x107
(47) (62) (76) (89)
x107
order
in
to
characters
in
20 20 20 20 20
this
table
recalculate
can
-I
in
found
measured
a much
x
10
upright
in
Table
lines
higher
III-a
with
the
precision
for
the
precision
(33) (21) (24) (21) (29)
X0:
state
noted
standard
corresponds
x 10
(48) (56) (82) (57) (71)
10
two
in
Figure
(37) (23) (12) (63) (74)
3-a.
IV-a
but
standard
Table
deviation,
to
0.2376387 0.2376575 0.2376545 0.2376106 0.237652C
B(v" = 72) x 10
0.1117421 (53) 0.1117328 (72) 0.1117665 (45) 0.1115285(210) 0.1116522(244)
B(v'=62)
0.1647455 0.1648574 0.1648253 0.1648130 0.1648437
B(v’=49)x
and
in
III.
(33) (16) (12) (19) (27)
72)
(41) (30) (31) (83) (97)
62)
49)
section
the
and
in
390.9792 390.9783 390.9783 390.9784 390.9788
C(v"=
047.7320 047.7324 047.7320 047.7388 047.7343
G(v'=
760.0600 760.0552 760.0556 760.0548 760.0552
than
explained
characters
as
11 11 11 I1 11
20 20 20 20 20
19 19 19 19 IV
C(v'=
of Lines Given in Fig. 3a
0.1159997 (94) 0.1160193 (31) 0.1160450* 0.1159774(134) 0.1161839(140)
B(v'=61)
calculated
(34) (15) (11) (21) (29)
(28) (42)
typed
be
to the
digits
cm
033.9083 033.9065 033.9063 033.9066 033.9063
G(v'=61)
0.11932* 0.12024 0.15376 0.11932* 0.11932*
-H(v'=45)x'o'2
1568.1707
last
=
Ia
from Fits of the Five Groups
correspond
the
J = 0)
(75) (91)
(33)
7) x 108
0.46905* 0.47452 0.46905* 0.43462 0.475fid
D(v"=
0.373080* 0.375337 (68) 0.382447 (98) 0.375349(274) 0.383161(254)
D(v'=Sl)
reported
in
45)
Obtained
0.280437* 0.283637 0.278624 0.280091 0.279334
D(v’=
= 7,
uncertainty
G (v”
italic
parameters
the
are
in
the
was
(32) (25) (8) (64) (76)
7) x 10
0.3621694 0.3621741 0.3621690 0.3621274 0.3621732
B(v"=
0.1571222 (37) 0.1571593 (46) 0.1572020 (65) 0.1571121(190) 0.1572156(180)
B(v'=
0.1795382 0.179558fi 0.1795332 0.1795161 0.1795150
B(v’
given
the
parenthesis
The
in
deviations.
The number
of
1568.1707* 1568.1707* 1568.1707* 1568.1707* 1568.1707*
C(v" = 7)
821.2082 (77) 821.1995 (69) 821.1925(106) 821.2041(312) 821.1893(290)
G(v'=
(59) (26) (46) (49) (63)
51)
= 45)
616.4741 616.4726 616.4757 616.4715 616.4825
G origin
110 87 64 42 28
"I'
110 87 64 42 28
“lV
110 87 64 42 28
a The
145,
87 + 64 42 +
range
87 64 42 14 5
range
87 64 42 14 5
range
‘*7I’291Parameters’
APPENDIX
(42) (68)
for
due
to
0.195781(32) 0.199032 (29) 0.198946(14) 0.195022 (74) 0.198332 (88)
D(v"=72)x107
0.691698* 0.658452 (46) 0.691698* 0.585300(121) 0.630707038)
D(v'= 62)x107
0.33836* 0.35604 0.32784 0.33836* 0.33836*
D(v'=49)x107
v”
108 88 76 63 51 39 27 17
89 + 76 + 63 + 51+ 39+ 27 + 15 + 4+
108 88 76 63 51 39 27 17
“I’
range
ranpe
108 88 76 63 51 39 27 17
89 + 26 + 63 + 51-t 3927+ 15, 4+
89 * 76+ 63 * 51+ 39+ 27+ 15 + 4-
“IV
range
(82) (79) (59) (59) (52)
(35) (113) (136)
IV 785.4108 19 785.3720 19 785.3963
50)
0.1605OlP (39) 0.1604833 (25) 0.160495,4 (17) 0.1604977 (20) 0.1604679 (31) 0.1604167 (19) 0.1605018(240) 0.1604L6.9(290)
10
B("' =50)x
IO
(30) (19) (22) (35) (24) (31) (32) (40)
C(v'=
B("' =48)x
0.1957750 0.1957988 0.19S8024 0.1957880 0.1957884 0.1957858 0.1958433 0.1957832
10
0.1679279= 0.1677902 (22) 0.168029:(630) 0.1678224(154) 0.1678621 (40) 0.1678363 (88) 0.1678694 (63) 0.1687529(320)
(86) (74) (65) (83) (54) (62) (65) (85)
B(v' =40)x
720.2798 (40) 720.5729 (43) 720.3162 (654) 720.563OCl.60) 720.4324 (84) 720.4988 (185) 720.4308 (131) 719.5576(3.34)
C(v'=48)
386.3060 386.2982 386.3006 386.3062 386.3074 386.3050 386.2899 386.3100
40)
785.3695 785.3917 785.3937 785.3963 785.4095
19 19 19 19 19
19 19 19 19 19 19 19 19
19 19 19 19 19 19 19 19
C(v'= (17) (12) (27) (51) (13) (46) (47) (57)
(76)
(15) (37)
0.346012 (35) 0.34516-I (22) 0.34727+ (15) 0.347140 (18) 0.34430% (24) 0.338978 (16) 0.345006(170) 0.339953(200)
D(v*=50h107
0.31471; 0.31471 0.31996 0.31561, 0.31471, 0.31471, 0.31471 0.33675
D("'=48h107
0.220265 0.220904 0.223397 0.220736 0.220073 0.220728 0.227462 0.219917
D(v'=40)x,07
13
753.7630 753.7656 753.7510 753.7548 753.7655 753.7600 753.7470 753.7641
(62) (i8) (59) (58) (42) (29) (49) (62)
0.20859 (99) 0.21027 (59) 0.20190 (40) 0.20288 (47) 0.21161 (64) 0.22405 (41) 0.21045(370) 0.22360(440)
-H(~'=50h.l0'~
19 19 19 19 19 19 19 '9
G(v'=49)
0.7124: 0.7124 0.5158 (12) 0.6709,(25) 0.7'24 0.6605 (22) 0.4067 (23) 0.6878 (28)
-H(v'=40)xlO
B(v'=49)xlO
525.9529 526.0400 526.0023 525.9387 526.0231 525.9652 525.9870 525.9339
(71) (33) (26) (34) (67) (37) (44) (54)
(62) (14) (15) (23) (23) (23) (23) (29)
843.6118(600) 843.5967(130) 843.6086 (91) 843.6164(170) 843.5967(390) 843.6038(220) 843.6013(250) 843.6168(300)
G("' =521
0.1640432 0.1641975 0.1642455 0.1642630 0.1641645 0.1641584 0.1642068 0.1641624
19 19 19 19 19 19 19 19
19 19 19 19 19 19 19 19
G(v'=43) (98) (22) (25) (37) (43) (37) (38) (46)
x 10
(28) (48) (32) (72) (19) (10) (12) (14)
~("'=52)xlO~ 0.38559 0.38736 0.38514 0.38258 0.39564 0.38822 0.38710 0.38462
B(v'=52)
0.152847EC260) 0.1528908 (49) 0.1528587 (33) 0.1528366 (69) 0.1529507(170) 0.152886t (96) 0.152883.Z(110) O.l5285lZ(130)
x 10
0.30979 0.23918 0.18306 0.17187 0.23382 0.23307 0.21893 0.23247
(49) (19) (15) (23) (46) (25) (29) (35)
-H("'=49b.1012
0.256081 (36) 0.251038 (86) 0.252215 (97) 0.256290(140) 0.252067(170) 0.255004(140) 0.254236(150) 0.256854(180)
D(v'=43h107
0.299872(114) 0.319541 (45) 0.330496 (36) 0.333258 (53) 0.318094(107) 0.317573 (58) 0.322396 (69) 0.317685 (83)
D("'=49)x107
0.1858323 0.1857065 0.1857523 0.1858582 0.1857388 0.1858198 0.1857932 0.1858755
B(v'=43)
12912 Parameters’ Obtained from Fits of the Eight Groups of Lines Given in Fig. 3b
APPENDIX Ib
VP!
108 88 76 63 51 39 27 17
range
89 + 76 + 63 + 51+ 39+ 27 15+ 4+
z
average
BO+ state. ”
The
value
held
digits
of
fixed
effects
Parameters
the
the
is
fits
x 10
(21) (23) (13) (25) (17) (16) (23) (28)
x 10
fit.
= 6,
italic order
reported
in
in
in
to
last
this
table
recalculate
can
B(vl.63)
be
found
measured
a much
in
in
Table
lines
higher
upright
calculated
the
III-b
with
than
the
X06
(40) (49) (55)
(46) (36) (63) (46)
(80)
state
noted
standard
to
two
in
Figure
119.1701 119.1686 119.1765
119.1702 119.1652 119.1762 119.1734
119.1695
3-b.
IV-b
but
for
due
0.4868* 0.4556 0.4657 0.4989 0.5350 0.4960 0.4153 0.5346
(44) (51) (58)
(46) (35) (69) (47)
(83)
the
to
(56) (39) (39) (20) (16) (31) (39)
-ki(v”=73)x1013
20 20 20
20 20 20
20
C(v' = 70)
standard
Table
deviation,
and
in
III.
0.201122 (52) 0.203208(220) 0.201944(140) 0.200886(150) 0.200091(110) 0.200593 (78) 0.203705(130) 0.199367(160)
D(““=73)xloJ
113.0172 113.0143 113.0231
113.0166 113.0145 113.0237 113.0208
113.0164
C(v' = 69)
corresponds
section
the
and
in
(22) (24) (17) (18) (22) (14) (19) (23)
x 10
precision
for
characters
explained
0.2331998 0.2332381 0.2332198 0.2332113 0.2332047 0.2332061 0.2332415 0.2331994
B(v”=73)
20 20 20
0.798154, 0.714957, 0.714957
(22)
20 20 20
20
0.714957* 0.714957* 0.714957*
0.714957*
D(v'=63)xlO'
precision
as
(54) (80) (59) (58) (41) (29) (46) (58)
(62) (47) (70) (69) (460) (71) (85)
(120)
x 10
= 73)
445.9174 445.9053 445.9122 445.9174 445.9226 445.9172 445.9058 445.9230
typed
-1
I1 11 11 11 11 11 11 11
C(v”
0.1076284 0.107630; 0.1076008 0.1075825 0.1076026 0.1077606 0.1076219 0.1075883
cm
to the
digits
1357.8841
(30) (49) (52) (91) (59) (59) (64)
(140) (98) (74) (91) (80) (240) (86) (100)
correspond
the
=
0.46100* 0.46261 0.45892 0.46159 0.46722 0.45757 0.45750 0.46131
D(v”=6~x108
057.3645 057.3368 057.3451 057.3520 057.3540 057.3412 057.3387 057.3554
G(v' = 63)
J = 0)
20 20 20 20 20 20 20 20
characters
uncertainty
G (v”
needed
in
the
was
0.3605190,(28) 0.3605265 0.3605242 (12) 0.3605315 (12) 0.3605395 (22) 0.3605253 (14) 0.3605257 (15) 0.360537ti (16)
B(v”=6)
0.1117439 0.1118888 0.1119945 0.1119615 0.1119384 0.1120407 0.1119840 0.1119400
B(v'=62)
parawters
the
are
given
in
they
parenthesis
all
correlation
in
of
The
number
= 6)
(110) (120) (79 (120) (84) (72) (110) (130)
62)
1357.8841; 1357.8841, 1357.8841, 1357.8841, 1357.8841, 1357.8841, 1357.8841, 1357.8841
C(v”
044.4652 044.4478 044.4489 044.4556 044.4617 044.4515 044.4441 044.4613
CC+=
deviations.
The
20 20 20 20 20 20 20 20
G origin
108 88 76 63 51 39 27 17
89 + 76 .+ 63 + 51 + 39+ 27+ 15 + 4+
a The
v”
range
494
CERNY, BACIS, AND VERGES APPENDIX II
Polynomial Expansion’ Parameter Coefficients of the 12712 X0, State Obtained from 0 < Y”c 19 Levels (The Values of the Coefficients Given in the Table Come from a Private Communication from Gerstenkom and Luc) ‘kl
‘k0
Q
4
+ .214 526 155 + 03
+ .373 682 334 - 001
+ .453 518 as
- 008
- .510 152 790 - 015
- .611 938 186 + 00
- .I13 922 247 - 003
+ .245 172 014 - 010
- .924 728 688 - 017
- .235 606 136 - 03
- .283 866 568 - 006
- .428 646 554 - 013
- .451 982 759 - 017
- .I40 816 912 - 03
- .521 237 377 - 003
+ .I08 340 667 - 012
+ .618 671 293 - 018
+ .943 318 488 - 05
+ .582 010 316 - 010
- .I09 632 90
- 013
- .416 460 060 - 019
- .344 433 981 - 06
- .195 761 456 - 011
+ .554 529 09!3- 015
+ .976 640 426 - 021
+ .490 ns a
344 - 08
G(v") =
1
Y
k:,
(v" + +)",
B(v")
k"
; h (v" + +k : = k:O ' implies that the origin
H(F) This These for
- .103 723 995 - 016
coefficients
comparison
with
were
fitted
expansion
of 'Iables V-a
Ci(v")
7 1
=
ok Yko(v"
of
used
and +
for
=
P6 ; ok hk(v" k=O
1 Y (v"+ k:, k1
the G(v") the
parameters V-b,
’ k, 7)
k=l
Hi(V”)
=
+ 3"
from
Bi(v")
+k,
is C(v"
calculation (Table the = 0'
D(v")
i k=O
with
= - 4)
and
for sane
relations
pk Ykl(v"
PC ‘27~‘2pI)
dk(""
+ i)",
= 0 cm'. isotope
of the
VIII)
usual
= ,lo
parameters v"
levels
of the X0+ State g in the polynomial
: + ;)k,
=
Di(v")
0.9961126,
= p4
f k=O
ok dk(v"
,,('2g,2) = 0.992210.
+ ;)k
B -
X SPECTRUM
OF ‘*7I’29IAND ‘=I2
495
APPENDIX III Expansion’ Parameter Coefficients of the 12’12BO: State from Gerstenkom and Luc’s Data
2
5 6
lk
k 0
k
0.9641549422252 2
-0.28342771S1906 0.8514947485751 -0.14601726116~0
5
0.1555475181‘11
6
-0.10985069~6171 O.‘J139751676406 -0.1624604439117 O.lC1,,42928443 -0.7531666172655 0.88,1566823264
12
-0.84306Lt6292289
x10-'9 I,
0.,,61946390023
Gi(“‘)’
Te +
o*u;- Yo$+
-0.619014726357*
x10-'>
13
0.30743666~5601
x10-"
1*
-0.6211959154851
12
r,u-‘7
1
DkY,,(“’
l
x10-2O
4)”
k=l
0.C”‘)
14
M.(“‘) log
I
“‘0
% 0
-0.*096779,986,2
=
-0.2633300
2 rlOf
496
CERNY,
BACIS,
AND VERGES
APPENDIX
IV
The Dunham coefficients representing the origins of the vibrational levels of the X0,+ state are written following the expression G(u”) = Y&,+ YTO
(1)
and those of the excited BO: state follow (2) These coefficients are determined from a least-squares fit to the G(u”) and G(v’) determined from fits to the measured lines. But then it is impossible to determine Y& and Y&. Indeed the lines L are given by expressions such that L= *,+
Y&-Y&+
Y$(d+$-
Yfi(v’+f)+
**a +rotationalterms.
Only the quantity T, + Yoo B - Y& can be determined directly from experiment. The value of T, can be obtained only after calculation of Y& and Y& from the usual relation (30, 33)
( Yl I)?ylo)2
ym+‘-~+ 01
y20
144(Yo1)3 + 4
+ ”
-*
So in the fits an origin in the ground state is fixed and usually G(v” = 0) = 0 cm-’ is chosen. This implies that (1) is written
For the excited state the usual convention is G(u’ = 0) - G(u” = 0) = T,-,,,,then G(u’)
=
Too
_
q
_
:
.
.
.
+Y,(,+;)+Y?o(U~+;)2+
***.
(4)
For instance, in paper I (Table IV) G(u”) is represented by the relation (3) and the constant C is just -( Y10/2) - (Y20/4) * * - . For BO: , G(d) are represented by (4) and C’ in Table VIIIa (paper I) is TOO - ( Yfo/2) - ( Yfo/4) - * - . From this we can calculate for 12’12Too = 15 724.595 cm-’ (=C’ + 62.6466) and T, = 15 769.095 cm-‘, [=C - Y& - (C + Y&)1. In the present paper we have taken G(v” = - l/2) = 0 cm-’ which gives directly the isotopic Dunham relation. Then fitting the expression G(u”) = C” + z,,Y&u” + 1/2)k to the experimental G(u”) (Tables III) must give C” = 0. We have found -0.0026 cm-’ (12711291) and -0.0029 cm-’ (lz912)which is of the order of the standard error on c”. It is therefore clear that C” has nothing to do with Y”,. In Appendix III the G(u’) have their origin at u’ = -l/2 (as in paper I) but the reported value of T, is 15 769.078 cm-’ which is different from 15 769.076 (10) cm-’ determined from “‘12. This value was calculated from the fits of Tables IVa and b. It is easy to see that in Table IVa this T, value gives a weighted average difference of
B -
X SPECTRUM OF ‘*‘I’291 AND lz912
497
-0.0042cm-’ in isotopic calculated G (second row of G) with respect to the experimental value (first row of G). In Table IVb this difference is f0.0015 cm-‘. That means that the absolute value of the ‘27I’29Ilines would be better recalculated with T, = 15 759.0822 cm-’ and for 12’12with T, = 15 769.0764 cm-’ for the u’ range of BO: levels used in the fits. The various causes of errors in this determination can explain this difference between the two isotopes. We have taken the same value T, = 15 769.078 cm-’ for both isotopes which is a weighted average taking into account the more precise and extended data for ‘2912.This is exactly the same result as in paper I because the difference in 0.002 cm-’ is due to the difference in the calculation of G(v” = -l/2): in paper I (Table IV) we used - 107.1082 cm-’ and here (from Appendix II) - 107.1103 cm-’ giving +0.002 cm-’ in T,.It is shown in Section V of this paper that T,from 12’12in paper I is too high (+0.0083 cm-‘) when using constants of paper I for calculating lines in the range of the absorption spectrum of the BO: - X0,’ transition. The reasons for these small systematic differences in the absolute value of line wavenumbers are not clear (see Sect. V). VII. ACKNOWLEDGMENTS We thank F. Hartmannand J. P. Pique for useful information concerning the hypertine structure of IZ. RECEIVED:
April 23, 1985 REFERENCES
1. F. R. K. K.
2. 3. 4. 5.
6. 7. 8. 9. 10. II. 12. 13.
MARTIN,R. BACIS,S. CHURASSY,AND J. VERGES,J. Mol. Specfrosc.. submitted for publication. L. BROWNAND TH. C. JAMES,J. Chem. Phys. 42,33-35 (1965). WIELAND,J. B. TELLINGHUISEN, AND A. NOBS,J. Mol. Spectrosc. 41,69-83 (1972). K. YEE, J. Chem. Sot. Faraday II 72,2113-2126 (1975). G. W. KING, I. M. LITTLEWOOD, J. R. ROBINS,AND N. T. WIJERATNE,Chem. Phys. 50, 291-299
( 1980). G. W. KING, I. M. LITTLEWOOD, AND J. R. ROBINS,Chem. Phys. 56, 145-146 (1981). K. S. VISWANATHAN, A. SUR, AND J. TELLINGHUISEN, J. Mol. Spectrosc. 86, 393-405 (198 1). J. TELLINGHUISEN, J. Mol. Spectrosc. 94, 23 l-252 ( 1982). K. S. VISWANATHAN AND J. TELLINGHUISEN, J. Mol. Spectrosc. 101, 285-299 (1983). M. KROLLAND K. K. INNES,J. Mol. Spectrosc. 36,295-309 (1970). M. D. LEVEN~~NAND A. L. SZHAWLOW,Phys. Rev. 6A, lo-20 (1972). J. P. PIQUE,F. STOECKEL, AND F. HARTMANN,Opt. Commun. 33,23-25 (1980).
J. P. PIQUE,Th&e Universittde Grenoble, France, 1984, unpublished. 14. F. SPIEWECK, Metrologia 12,43-46 (I 976). 15. F. SPIEWECK, “Opt0 Electronics,”pp. 130-135, IPC SC. and Techn. Press, 1977. 16. J. HELMCKEAND F. BAYER-HELMS, Metrologia 10, 69-71 (1974). 17. K. DXHAO, M. GLKSER,AND J. HELMCKE,IEEE Trans. Instrum. Meas. IM29, 354-357 (1980). 18. P. E. CIDWR AND N. BROWN,Opt. Commun. 34, 53-56 (1980). 19. M. GLKSER,D. KEGUNG,AND H. J. FOTH,Opt. Commun. 38, 119-l 23 ( 198 I). 20. J. D. KNOX AND Y. H. PAO,Appf. Phys. Lett. 18, 360-362 (197 1). 21. M. TEsICANDY. H. PAO, J. Mol. Spectrosc. 57, 75-96 (1975). 22. W. G. SCHWEITZER, JR., E. G. KESSLER, JR., R. D. DESLATTES. H. P. LAYER,ANDJ. R. WHETSTONE.
Appi. Opt. 12,2927-2938 (1973). 23. M. SAUTEANDM. AUBERT-FRECON, Chem. Phys. Left. 86, 59-65 (1982). 24. M. SAUTEAND M. AUBERT-FRECON, J. Chem. Phys. 77,5639-5646 (1982). 25. S. CHURASSY,F. MARTIN,R. BACIS,J. VERGES.AND R. W. FIELD,J. Chem. Phys. 75, 4863-4868 (1981).
498 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.
CERNY, BACIS, AND VERGES J. B. KOFFEND,A. M. SIBAI, AND R. BACIS,J. Whys.(Paris) 43, 1639-165 I (1982). R. A, ASHBYANDC. W. JOHNSON,J. MO/. Spectrosc. 84,41-48 (1980). S. GERSTENKORN, P. Luc, AND J. VERGES,J. Phys. B14, L193-L196 (198 I). J. P. PIQUE,F. HARTMANN,R. BACIS,S. CHURASSY,AND J. B. KOFFEND,Phys. Rev. Lett. 52, 267270 (1984). J.L. DuNHAM,~~~~. Rev. 41,721-731 (1932). J. M. HUTSONAND B. J. HOWARD,Mol. Phys. 41, 1113-l 122 (1980). J. M. HUTSON,J. Phys. 814,851-857 (1981). G. HERZBERG,“Spectraof Diatomic Molecules,” Van Nostrand, Princeton,N. J., 1950. J. H. VAN VLECK,J. Chem. Phys. 4,327-338 (1936). P. R. BUNKER,J. Mol. Spectrosc. 68, 367-371 (1977). J. K. G. WATSON,J. Mol. Spectrosc. 80,411-42 I (1980). P. LUC, J. Moi. Spectrosc. 80, 41-55 (1980). W. C. STWALLEY,J. Chem. Phys. 63,3062-3080 (1975). P. CCREZAND S. J. BENNETT,Appl. Opt. 18, 1079-1083 (1979). L. HLOUSEKAND W. M. FAIRBANK,JR., Opt. Lett. 8, 322-323 (1983). S. GER~TENKORN AND P. Luc, Rev. Phys. Appl. 14, 791-794 (1979). J. E. M. GOLDSMITH,E. W. WEBER,F. V. KOWALSKI,AND A. L. S~HAWLOW,Appl. 0p1. 18, 19831987 (1979). A. MORINAGA,Japan. J. Appl. Phys. 23,774-775 (1984). A. MORINAGAAND K. TANAKA,Appl. Phys. Lett. 32, 114-l 16 (1978). D. A. JENNINGS, C. R. POLLOCK,F. R. PETERSEN, R. E. DRULLINGER, K. M. EVENSON,J. S. WELLS, J. L. HALL, AND H. P. LAYER,Opt. Lett. 8, 136-138 (1983). L. A. HACKEL,K. H. CASLETON,S. G. KUKOLICH,AND S. EZEKIEL,Phys. Rev. Lett. 35, 568-571 (1975). CH. J. BORDB,G. CAMY, B. DECOMPS, J. P. DESCOUBES, ANDJ. VIGUE,J. Phys. 42,1393-1411(198 I). G. R. HANES,Appl. Opt. 18, 3970-3974 (1979). C. R. POLLOCK,D. A. JENNINGS, F. R. PETERSEN, J. S. WELLS,R. E. DRULLINGER, E. C. BEATY,AND K. M. EVENSON,Opt. Lett. 8, 133- 135 (1983). E. LUC-KOENIG,C. MORILLON,ANDJ. VERGES,Physica 70, 175-189 (1973).