Disponible en ligne sur
ScienceDirect www.sciencedirect.com Revue de micropaléontologie 58 (2015) 85–106
Original article
Late Cretaceous radiolarian biochronology of the Pedro Brand section, Tireo Group, eastern Central Cordillera, Dominican Republic: A contribution to the stratigraphy of the Caribbean Large Igneous Province Biochronologie des radiolaires du Crétacé supérieur de la coupe Pedro Brand, Tireo groupe, cordillère centrale, République Dominicaine : contribution à la stratigraphie du Plateau océanique caraïbe María Isabel Sandoval a,∗ , Peter O. Baumgartner a , Javier Escuder-Viruete b , Janet Gabites c , Bernard Mercier de Lépinay d a
Institut des Sciences de la Terre, Université de Lausanne, bâtiment Géopolis, CH 1015 Lausanne, Switzerland b Instituto Geológico y Minero de Espa˜ na, C/La Calera 1, 28760 Tres Cantos, Madrid, Spain c Pacific Center for Isotopic and Geochemical Research, University of British Columbia, 6339 Stores Road, Vancouver, BC V6T-1Z4, Canada d CNRS–Géoazur, Université de Nice-Sophia Antipolis, 250, rue Albert-Einstein, 06560 Valbonne, France
Abstract The Tireo Group in the eastern Central Cordillera (Dominican Republic) is part of the Jarabacoa Block, composed of a Pacific-type Jurassic ocean floor (Loma La Monja, overlain by the El Aguacate ribbon Chert), intruded and overlain by an early CLIP (Carribean Large Igneous Province)-type plateau, the Duarte Complex, which is in turn unconformably overlain by arc-type rocks of the Tireo Group. This group exhibits a 3-km thick sequence of arc-related volcanic and volcano-sedimentary rocks, including tuffaceous chert and mudstone studied for radiolarians in this paper. The Siete Cabezas Formation, considered to be the last Campanian–Maastrichtian CLIP-type volcano-sedimentary sequence, overlies the Tireo Group. A controversy about earlier radiolarian dating of the Tireo Group, considered until now as part of the Siete Cabezas Formation, encouraged us to study a well-exposed section located 3 km NE of Pedro Brand village. Seven samples of laminated siliceous mudstones and cherts yielded around 40 common and well-preserved radiolarian taxa. Based on maximum ranges of taxa published in several regional zonations and on a comparison with a Turonian–Coniacian sample calibrated by planktonic foraminifera (the Deva Beds from Romania), we determine a Turonian–Coniacian age for the Pedro Brand section. A 40 Ar–39 Ar whole rock age of 75.1 ± 1.1 Ma, obtained in a basalt dyke crosscutting the radiolarian bearing rocks, provides a Late Campanian consistent minimum age for the pelagic–hemipelagic Pedro Brand section. Including the re-interpretation of earlier radiolarian work, we conclude that the studied rocks of the Tireo Group are older than the Maastrichtian 40 Ar–39 Ar ages on plagioclase of the Siete Cabezas Formation. The studied dyke in the Pedro Brand section geochemically resembles the overlying Siete Cabezas and Pico Duarte basalts and could be a feeder dyke of those. However, a tectonic superposition of the Siete Cabezas cannot be excluded, since earlier 40 K–40 Ar basalt ages of this unit are Aptian–Albian and Cenomanian–Turonian. The Jarabacoa Block is considered as the most complete outcrop section of Pacific ocean crust overlain by a first (Aptian–Albian) phase of CLIP-type activity, followed by the development of a Cenomanian–Santonian intraoceanic arc, which is in turn overlain by a late Campanian–Maastrichtian CLIP-like phase. © 2015 Elsevier Masson SAS. All rights reserved. Keywords: Radiolaria; Late Cretaceous; Turonian; Coniacian; Dominican Republic; Tireo Group; Caribbean Large Igneous Province
Résumé Le groupe Tireo de la cordillère centrale orientale (République Dominicaine) fait partie du Bloc de Jarabacoa, composé d’un plancher océanique jurassique de type Pacifique (Loma La Monja) recouvert par le « El Aguacate Ribbon Chert ». Le complexe Loma La Monja est traversé et recouvert ∗
Corresponding author. E-mail addresses:
[email protected] (M.I. Sandoval),
[email protected] (P.O. Baumgartner),
[email protected] (J. Escuder-Viruete),
[email protected] (J. Gabites),
[email protected] (B. Mercier de Lépinay). http://dx.doi.org/10.1016/j.revmic.2015.02.002 0035-1598/© 2015 Elsevier Masson SAS. All rights reserved.
86
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
par un basalte de type CLIP (Plateau océanique caraïbe), le Duarte Complex, qui est à son tour recouvert par des roches discordantes de type arc, le Tireo Group. Ce groupe est composé d’une série de plus de 3 km de roches volcaniques et volcano-sedimentaires, incluant les roches siliceuses de la coupe Pedro Brand, dont nous présentons des faunes à radiolaires. Le Tireo Group est à son tour surmonté par la Formation Siete Cabezas, considérée comme étant la dernière séquence volcano-sédimentaire de type CLIP (Campanien–Maastrichtien). Une controverse à propos de précédentes datations biostratigraphiques de roches appartenant au groupe Tireo à l’aide de radiolaires, jusqu’ici considéré comme faisant partie de la Formation Siete Cabezas, nous a incité à étudier une section bien exposée située à 3 km au NE de Pedro Brand. Sept échantillons de pélites siliceuses laminées et de cherts ont donné environ 40 taxons communs de radiolaires bien préservés. Basé sur l’extension maximale des taxons de plusieurs zonations régionales publiées, ainsi que sur une comparaison avec des échantillons d’âge Turonien–Coniacien calibrés par des foraminifères planctoniques (Deva Beds, Roumanie), nous avons déterminé un âge Turonien–Coniacien pour la coupe pélagique-hemipélagique de Pedro Brand. Une datation 40 Ar–39 Ar sur roche totale à 75,1 ± 1,1 Ma, obtenue d’un filon recoupant ces dépôts à radiolaires donne un âge minimal concordant du Campanien supérieur. En incluant une réinterprétation des précédents travaux sur les radiolaires, nous concluons que la coupe de Pedro Brand représente des roches pélagiques bien plus anciennes que la Formation Siete Cabezas, datée du Maastrichien par la méthode 40 Ar–39 Ar sur les plagioclases. La géochimie du filon étudié sur la section de Pedro Brand le rapproche des coulées basaltiques supérieures de Siete Cabezas et Pico Duarte, dont il pourrait représenter un filon d’alimentation. Cependant, une superposition tectonique ne peut pas être exclue si l’on considère les anciennes datations Aptien–Albien et Cénomanien–Turonien de la Formation Siete Cabezas, obtenues par la méthode 40 K–40 Ar sur basaltes. Le bloque de Jarabacoa est considéré comme l’affleurement le plus complet d’une croûte océanique Pacifique recouverte par une première phase d’activité de type CLIP (Aptien–Albien), suivie par le développement d’un arc intra-océanique (Cénomanien–Turonien) recouvert à son tour par une deuxième phase de type CLIP (Campanien–Maastrichtien). © 2015 Elsevier Masson SAS. Tous droits réservés. Mots clés : Radiolaires ; Crétacé supérieur ; Turonien ; Coniacien ; République Dominicaine ; Groupe de Tireo, Caribbean Large Igneous Province
1. Introduction In the Hispaniola Island, more detailed palaeontological studies are still needed in order to clarify the origin and ages of the tectonic complexes. One example is the Duarte Complex (Bowin, 1975; Lewis, 1980; Draper and Lewis, 1991; Lapierre et al., 1999; Escuder-Viruete et al., 2007a), which has been considered as part of the Caribbean Large Igneous Province (CLIP) and, therefore, of Cretaceous age and Pacific provenance (Duncan and Hargraves, 1984; Pindell et al., 2005). The volcanic and sedimentary rocks near Pedro Brand, on which focuses this study, were considered as part of the Duarte complex (Bowin, 1975; Draper and Lewis, 1991), which crops out extensively in the eastern Central Cordillera of Dominican Republic (Fig. 1). Mercier de Lépinay (1987, radiolarian identifications by P. De Wever), initially assigned a Cenomanian–Early Turonian to Early “Senonian” age to the Pedro Brand section, while Montgomery and Pessagno (1999), who studied radiolarians from a close-by section advanced a Middle Campanian–Maastrichtian age. In both articles, authors included the sampled sections within the Siete Cabezas Formation (Fm). However, recent regional mapping of the area by the SYSMIN Project (1998; Los Alcarrizos Quadrangle) permits to integrate the studied Pedro Brand section, as well as the other studied section cited above, in the Tireo Group, probably in the Yujo Member. The sediments of this unit are poorly dated and regionally overlie metavolcanic rocks of the Lower Cretaceous Duarte Complex. During the last 30 years, radiolarian biozonations have been elaborated for most of the Mesozoic. However, existing Late Cretaceous zonations contain many discrepancies in radiolarian age ranges. In Appendix A of this report, we have listed the published ranges of all determined species. Many discrepancies result from incomplete local ranges, which are truncated
due to either insufficient preservation or palaeobiogeographic restrictions of taxa. In addition, methodological problems arise when dealing with a large number of taxa in many sections. Schaaf (1985) has used an early version of a software calculating Unitary Associations. Apparently, an error in the software resulted in systematically longer ranges for most Late Cretaceous taxa (Guex, 1991, p. 188). Sanfilippo and Riedel (1985) used a probabilistic method, which in turn tends to shorten the ranges of the included species. Although the ranges of many Late Cretaceous species now appear longer than first stated by Foreman (1975) and Pessagno (1976) (Bandini et al., 2008), these zonations remain widely used. Later, based on DSDP data and land-based sections from Japan and Northern Italy, Sanfilippo and Riedel (1985) proposed the first biostratigraphic synthesis for Cretaceous radiolarians. Since then, this synthesis is commonly considered as a standard for low-latitude radiolarian ranges. Our data show co-occurrences of species that are not compatible with the ranges displayed by Sanfilippo and Riedel (1985). Compilation of ranges from several local biozonations shows that hiatuses, patchy preservation, or paleobiogeographic/paleoecologic exclusions led to an incomplete radiolarian record (Bandini et al., 2006, 2008; Baumgartner et al., 2008). In combining the data from the literature, we can certainly obtain a more complete range for each taxon; however, we may introduce combined errors of calibration. Furthermore, radiolarian holotypes described in the early 20th century were illustrated by hand drawings, e.g. Squinabol (1904), allowing various interpretations that inevitably led to broadly defined taxa with longer ranges. The study of evolutionary lineages of Late Cretaceous multicyrtid radiolarians, using morphometry, hopefully will result in more precisely defined morphotypes with restricted ranges. The first purpose of the present contribution is to better constrain the age of the Tireo Group, based on the study
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
87
Fig. 1. (1) Map of the northeastern Caribbean plate margin. Box shows location of the study area. (2) Geological map of the Central Cordillera in Dominican Republica. Box shows location of the Fig. 3. SFZ, Septentrional fault zone; HFZ, Hispaniola fault zone; BGFZ, Bonao-La Guácara fault zone; SJRFZ, San José-Restauración fault zone; EPGFZ, Enriquillo-Plantain Garden fault zone.
88
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Fig. 2. (1) Structural blocks in Central Hispaniola. SFZ, Septentrional fault zone; HFZ, Hispaniola fault zone; BGFZ, Bonao-La Guácara fault zone; SJRFZ, San José-Restauración fault zone; EPGFZ, Enriquillo-Plantain Garden fault zone., LMSZ, La Meseta shear zones; RBSZ, Río Baiguaque shear zones; HVFZ, Hato Viejo fault zone; BGFZ, Bonao-La Guácara fault zone; (2) Schematic lithostratigraphic columns of the three crustal domains or tectonic blocks in Central Hispaniola, namely Jicomé, Jarabacoa and Bonao. On Jicomé block: RBMb, Río Blanco Member; CFm, Constanza Fm; DC, Dajabón Chert; CMb; Constanza Member; RFm, Restauración Fm; LCG, La Cana gabbro; PBFM, Pe˜na Blanca Fm; PPDB, basalts of Pelona-Pico Duarte Fm; TRFm, Trois Rivières Fm; BLFm, Bois de Lawrence Fm. Age data from Escuder-Viruete et al. (2006a, 2007b, 2008). Adak, adakites; MB, Macutico batholith; LCB, Loma de Cabrera batholith;
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
of well-preserved radiolarian assemblages extracted from the Pedro Brand section. Comparison with other recent works in the area and elsewhere is also made (Mercier de Lépinay, 1987; Montgomery and Pessagno, 1999). The Cretaceous tectonostratigraphic context of the Jarabacoa Block of the eastern Central Cordillera is discussed on the basis of the ages determined by radiolarian biochronology, combined with whole rock geochemistry and 40 Ar–39 Ar geochronology of a crosscutting basaltic dyke. These data allow a better understanding of the Upper Cretaceous regional magmatic history. 2. Geological setting 2.1. The Caribbean Large Igneous Province (CLIP) The CLIP formed mainly during the Late Cretaceous, in a period of extreme magmatic activity. It produced multi-phase oceanic plateaus, of which the largest event became the core of the modern Caribbean plate (Kerr et al., 1997; Sinton et al., 1998; Hauff et al., 2000; Hoernle et al., 2002). The submerged portion of the Caribbean plateau, in the Caribbean Sea, was drilled and sampled during DSDP Leg 15 and ODP 163 (Donnelly et al., 1990). Land sections crop out in Jamaica, Hispaniola, Puerto Rico, coastal borderlands of Venezuela, Curac¸ao and Aruba islands, the Pacific coast of Southern Central America (Baumgartner et al., 2008) and western Colombia and Ecuador (Lapierre et al., 2000; Kerr et al., 2002). The CLIP includes three phases of volcanism that formed in different epochs: 124–112 Ma (Lapierre et al., 2000; Escuder-Viruete et al., 2007a, b), 94–83 Ma (the main magma production phase; Kerr et al., 1997; Sinton et al., 1998; Hastie et al., 2008), and 80–72 Ma (Révillon et al., 2000). These phases have been recognized in the Nicoya Plateau in Costa Rica (Hauff et al., 2000; Hoernle et al., 2004), and in other Cretaceous oceanic plateaus from the Western Pacific (Kerr, 2003), where plume magmatism occurred for 50 Ma or more at variable eruptive rates. The youngest CLIP-type rocks are found in the Dominican Republic (69 Ma). Thus, the CLIP magmatism occurred from the Aptian to Maastrichtian, with a peak of activity culminating around the Turonian–Coniacian (92–88 Ma). A Pacific origin for the Caribbean plateau is generally accepted (Duncan and Hargraves, 1984; Pindell et al., 2005). Evidence is based on the occurrence of oceanic crustal fragments accreted to the margins of the Caribbean region, covered by Jurassic radiolarian ribbon cherts e.g. in Hispaniola, Puerto Rico and La Désirade (Montgomery et al., 1994b; Jolly et al., 2007; Bandini et al., 2008; Escuder-Viruete et al., 2009). 2.2. Occurrences of the CLIP in Central Hispaniola Central Hispaniola is a composite of oceanic derived units bound by the left-lateral Hispaniola strike-slip fault zone and the San Juan Restauración fault zone (Fig. 1.2; Draper and Lewis,
89
1991; Lewis et al., 1991; Lapierre et al., 1997, 1999; EscuderViruete et al., 2007a, b, 2009). In Central Hispaniola, fragments of obducted/accreted oceanic plateau-like basalts include the Duarte Complex (Lewis et al., 1991; Lapierre et al., 1997, 2000; Lewis et al., 2002; Escuder-Viruete et al., 2007a, b), the Siete Cabezas Fm (Donnelly et al., 1990; Sinton et al., 1998), and the Pelona-Pico Duarte Fm (Escuder-Viruete et al., 2011) The Duarte Complex comprises a nearly 3-km thick sequence of heterogeneously deformed and metamorphosed mafic to ultramafic volcanic rocks, intruded by Upper Cretaceous arc-related batholiths (91–83 Ma; Escuder-Viruete et al., 2007a, 2008). This complex records an Early Cretaceous phase of the CLIP construction in Hispaniola. Locally, the Siete Cabezas Fm overlies unconformably the Duarte Complex (Escuder-Viruete et al., 2008). It is composed of massive and pillowed aphyric basalts, with minor pyroclastic breccias, vitric tuffs and cherts, intruded by dolerite dikes. The formation was initially dated as Cenomanian–Early Turonian to Early Senonian (Mercier de Lépinay, 1987), based on radiolarian assemblages actually sampled in the Tireo Group. Geochronologic 40 K–40 Ar dating of basalts yielded ages ranging in three different epochs: 104.26 ± 10.43 Ma (Aptian–Albian), 91.05 ± 4.55 Ma (Cenomanian–Turonian), and 75.84 ± 3.79 Ma (Campanian–Maastrichtian). Sinton et al. (1998) obtained consistent early Maastrichtian 40 Ar–39 Ar ages from whole rock (69.0 ± 0.7 Ma) and plagioclase (68.5 ± 0.5 Ma) analyses. These ages and the geochemical characteristics of the lavas led Lewis et al. (2002) to attribute this unit to the CLIP. The tectono-stratigraphy of Central Hispaniola is characterized by three tectonic blocks: Jicomé, Jarabacoa, and Bonao (Fig. 2) (Escuder-Viruete et al., 2008). The studied Pedro Brand section is located in the Jarabacoa block. This domain comprises the Loma La Monja volcano-plutonic assemblage, interpreted as a dismembered fragment of the Upper Jurassic oceanic crust (Escuder-Viruete et al., 2009), overlain by the El Aguacate Chert, representing the Upper Jurassic radiolarite cover. The probably Aptian Duarte Complex intrudes and covers unconformably the Loma La Monja. It represents the first phase of CLIP and is overlain by the Tireo Group. The Tireo Group consists of a 3-km thick sequence of arcrelated volcanic, subvolcanic, and volcano-sedimentary rocks of Cenomanian to Maastrichtian age (Lewis and Jiménez, 1991), which unconformably overlies the Duarte Complex. This group includes two principal formations: (a) The Lower Constanza Fm, including an Albian–Turonian island arc tholeitic suite, composed principally of submarine greenish tuffs and breccias. The age was assigned to Turonian based on foraminifer studies (Bowin, 1975; Lewis et al., 1991). This formation does not crop out in the area of the present study. (b) The Restauración Formation is composed of adakites, high-Mg andesites and basalts. Fossils and U–Pb/Ar–Ar geochronological data show that the upper sequence began to accumulate at the Turonian–Coniacian boundary (∼89 Ma) and continued during Santonian–Lower
On Jarabacoa block: EYMb, El Yujo Member; LVzG, Los Velazquitos gabbros; ABFm, Arroyo Bermejo Fm; SCFm, Siete Cabezas Fm. On Bonao block: LCGD, Loma Caribe related-gabbros/diorites; BABB, back-arc basin basalts; ATG, Arroyo Toro gabbros; PvSFm, Peralvillo Sur Fm. Box shows location of the Fig. 3.
90
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Campanian. The El Yujo Member is the basal unit of this formation, resting directly on the Duarte Complex in the study area. It consists of 20–35 m of interbedded fine-grained tuff, shale, limestone and cherts, overlain by rhyolitic flows (Escuder-Viruete et al., 2007c, 2008). 2.3. Stratigraphy of the Pedro Brand section The high-Mg metabasalts and metapicrites of the Lower Cretaceous Duarte Complex are overlain by intermediate to felsic lavas, pyroclastic rocks, dark green to light grey thin-bedded, laminated to mottled chert, dark green sandy siliceous mudstone, and mafic to intermediate pyroclastic rocks and flows of the Late Cretaceous Tireo Group. The Pedro Brand section, which yielded the radiolarian assemblages presented herein, is stratigraphically placed in the Tireo Group and may correspond to what has been called the El Yujo Member (Escuder-Viruete et al., 2007c). The succession locally culminates with the volcanic and sedimentary sequence of the Arroyo Bermejo Fm. In the northeast, the Siete Cabezas Fm forms a thick belt of massive and undeformed basalts. Their stratigraphic relationship with the previously described units is not clear, but dykes, chemically close to the mafic magmas of Siete Cabezas and Pelona-Pico Duarte Fms intruded the Duarte Complex, the Tireo Group and the Arroyo Bermejo Fm., suggesting an originally stratigraphic superposition of these units. The Pedro Brand section contains two informal lithological units (Fig. 3.3). The lower part of the section exposes about 45 m of dark green to light grey thin-bedded, laminated to mottled chert. The upper part of the section is about 50 m thick and consists of dark green sandy siliceous mudstone. A 2-m thick dyke of massive basalt (sample PB-2) intrudes the mudstones. 3. Methods Located 3 km northeast of Pedro Brand locality (base of section: N 18◦ 36.004 , W 070◦ C 04.733 ; top; N 18◦ 35.903 , W 070◦ 04.726 ; Fig. 3.3), we measured and sampled a 95 m thick section composed of pelagic–hemipelagic sediments. Seven samples collected from the entire section were crushed into cm-sized fragments. Siliceous tests of radiolarians were extracted by dissolving 40–50 g of material in dilute hydrofluoric acid (HF− ∼ 4%) (Pessagno and Newport, 1972). Deionised water was then used (3 times) to clean each sample. The obtained residue was washed through 300 and 60 m sieves. The residue was then rinsed and dried in an oven at 70◦ . Radiolarian picking was done under a binocular microscope, and stubs were prepared for the scanning electron microscope (SEM). A sample of the basaltic dyke (PB-2) was powdered in an agate mill and analysed for major and trace elements by inductively-coupled plasma-emission spectrometry (ICP-ES) and inductively-coupled plasma-mass spectrometry (ICP-MS) analysis, respectively, with a LiBO2 fusion. This analytical work was done at ACME Analytical Laboratories Ltd in Vancouver. To obtain the 40 Ar–39 Ar whole rock age of the basaltic dyke, a portion of the PB-2 sample was also rinsed in dilute nitric
acid, washed in deionized water, rinsed and then air-dried at room temperature. The sample was irradiated at the McMaster Nuclear Reactor in Hamilton, Ontario, for 56 MWH, with a neutron flux of 3 × 1016 neutrons/cm2 . Analyses (n = 54) of 18 neutron flux monitor positions produced errors of < 0.5% in the J value. The mineral separates were step-heated at incrementally higher powers in the defocused beam of a 10 W CO2 laser (New Wave Research MIR10) until fused, at the Noble Gas Laboratory of the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The gas evolved from each step was analyzed by a VG5400 mass spectrometer equipped with an ion-counting electron multiplier. All measurements were corrected for total system blank, mass spectrometer sensitivity, mass discrimination, and radioactive decay during and subsequent to irradiation, as well as interfering Ar from atmospheric contamination and the irradiation of Ca, Cl and K. The plateau and correlation ages are included in Table 1. Errors are quoted at the 95% confidence level and are propagated from all sources except mass spectrometer sensitivity and age of the flux monitor. 4. Radiolarian biochronology Relatively well-preserved radiolarians were found in every sample (sample PB-1 to PB-8). About 40 taxa have been identified (see Systematic palaeontology) and are illustrated in Plates 1 and 2. For taxa that were determined to the species level, their stratigraphic ranges are based on literature data (see Systematic palaeontology for ages and references). The observed radiolarians define a Turonian–Coniacian age, based on the co-ocurrence of the following species in the Turonian to Coniacian interval: Acaeniotyle rebellis, Acanthocircus hueyi, A. venetus, Alievium superbum, Amphipyndax stocki, Archaeospongoprunum cortinaensis, A. venadoensis, Dictyoprora tina, D. urna, Crucella euganea, C. messinae, Dactyliosphaera silviae, Dictyomitra densicostata, D. formosa, D. multicostata, Hemicryptocapsa polyhedra, Paranoella solanoensis, Praeconocaryomma universa, Pseudoaulophacus venadoensis, Eostichomitra perapedhia. The presence of D. silviae at the base and at the top of the sequence could suggest that the range of this species is more extended than the published ranges (Late Albian–Early Turonian). The lack of data concerning its probable last stratigraphic occurrence let us suppose that its extension reaches at least the Early Coniacian. With this assumptiom, it is possible to explain the coexistence of D. silviae with younger species, such as A. bipartitum in Sample PB-3 (Figs. 4 and 5). Other species of this assemblage do not permit to advance an age of a better resolution than Late Cretaceous: A. stocki, D. tina, D. urna, D. formosa, D. multicostata and P. universa. Turonian–Coniacian (93.9–86.3 Ma) seems to be the best probable age of the studied section (Fig. 4). Previous studies suggested a Middle Campanian–Maastrichtian age for the siliceous deposits of the Tireo Group (Montgomery and Pessagno, 1999), based on the single presence of D. multicostata, indicating, according to Pessagno (1976), a latest Cretaceous age. However, the species listed by those authors (collected at the Rio
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
91
Fig. 3. (1) Schematic geological map of the studied area in eastern Cordillera Central. Red stars show the location of the studied section and the location of the section studied by Montgomery and Pessagno (1999). (2) Schematic lithostratigraphic column of the Jarabacoa Block. (3) Pedro Brand stratigraphic column showing the samples collected for this study.
Isabela section; Montgomery and Pessagno, 1999: location indicated in Fig. 3) largely coincides with our species list (Fig. 5). The authors considered all the Turonian–Coniacian species as reworked. More recent literature shows that D. multicostata is observed all along the Cretaceous, and therefore, it cannot be used as species diagnostic of a Campanian–Maastrichtian age (For details of published ranges of all species see under Systematic Palaeontology and Appendix A). Our samples, as
well as the sample MB-8586 (Mercier de Lépinay, 1987), taken in a nearby locality, contain Middle Cretaceous–Campanian species (e.g. A. hueyi, A. bipartitum, D. tina, A. cortinanensis) excluding the Maastrichtian as a possible age (Figs. 4 and 5). Additionally, our radiolarians compare well with those studied by Dumitrica (pers. comm), from a Turonian–Coniacian Romanian section, the Deva Beds (Gherasi et al., 1968), calibrated by plaktonic foraminifera.
92
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Plate 1. Radiolarians of the Pedro Brand Section. 1. Mita aff. M. guttiformis Bragina; Sample PB-3. 2. Dictyomitra densicostata Pessagno; Sample PB-5. 3. Dictyomitra multicostata Zittel; Sample PB-5. 4–5. Dictyomitra formosa Squinabol; 4. Sample PB-5; 5. PB-3. 6–7. Amphipyndax stocki (Campbell and Clark); 6. Sample PB-3; 7. Sample PB-5. 8. Hemicryptocapsa polyhedra Dumitrica; Sample PB-8. 9–12. Eostichomitra perapedhia (Bragina); 9, 10, 11, 12. Sample PB-3. 13–14. Foremanina sp., 13, 14; Sample PB-3. 15. Dictyoprora tina (Foreman); Sample PB-5. 16. Dictyoprora aff. D. tina (Foreman); Sample PB-5. 17–19. Dictyoprora urna (Foreman);
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
5. Systematic palaeontology The suprageneric classification presented here follows De Wever et al. (2001) and O’Dogherty et al. (2009). The synonymies given include the original description of each taxon and other synonymies and ranges from the following publications: Dumitrica (1970), Foreman (1975, 1977), Pessagno (1976), Taketani (1982), Thurow (1988), O’Dogherty (1994), Vishnevskaya (2001) and Bragina (2004). For further synonymies, the reader is referred to these publications. Note that O’Dogherty’s (1994) ranges do not extend beyond early Turonian, the youngest samples studied for his report. Subclass RADIOLARIA Müller, 1858 Superorder POLYCYSTINA Ehrenberg, 1838 Order ENTACTINARIA Kozur and Mostler, 1982 Family QUINQUECAPSULARIIDAE Dumitrica, 1995 Genus Quinquecapsularia Pessagno, 1971 Quinquecapsularia cf. Q. panacea O’Dogherty, 1994 (Plate 2, Fig. 9) cf. 1994. Quinquecapsularia panacea nov. sp. - O’Dogherty, p. 270, pl. 48, figs 6–10. Remarks: Meshwork with hexagonal pores in this specimen is not very well distinguished. Order SPUMELLARIA Ehrenberg, 1875 Family ACAENIOTYLIDAE Yang, 1993 Genus Acaeniotyle Foreman, 1973 Acaeniotyle rebellis O’Dogherty, 1994 (Plate 2, figs. 1, 2) 1994 Acaeniotyle rebellis nov. sp. O’Dogherty, p. 287, pl. 51, figs. 5–10. 2006 Acaeniotyle rebellis O’Dogherty. - Bandini et al., S10, fig. 4. Published Range: early Turonian (O’Dogherty, 1994), Turonian (Bandini et al., 2006). Acaeniotyle sp. (Plate 2, fig. 6) Remarks: Test with two long planar spines well preserved. Family XIPHOSTYLIDAE Haeckel, 1881, sensu Pessagno and Yang (1989) in Pessagno et al. (1989), emend. De Wever et al. (2001) Genus Triactoma Rüst, 1885 Triactoma cf. T. fragilis Bragina in Bragina and Bragin, 1996
93
(Plate 2, Fig. 6) cf. 1996. Triactoma fragilis nov. sp. - Bragina in Bragina and Bragin, p. 268, pl. I, fig. 11. Remarks: This specimen is similar to Triactoma fragilis (Bragina) but the spines are not well preserved. Triactoma? sp. (Plate 2, Figs. 5, 7; Plate 1, Fig. 38) Remarks: Test with three long spines, well preserved, presenting groves and spines radiating around 120 degrees. Family CONOCARYOMMIDAE Lipman, 1969 Genus Praeconocaryomma Pessagno, 1976 Praeconocaryomma universa Pessagno, 1976 (Plate 1, Figs. 39, 40) 1976 Praeconocaryomma universa nov. sp. Pessagno, p. 42, pl. 6, figs. 14–16. 1982 Praeconocaryomma universa Pessagno. - Taketani, p. 47, pl. 1, figs. 3 a–b, 4; pl. 9, fig. 4. 1988 Conocaryomma universum (Pessagno). - De Wever et al., p. 169, pl. 3, fig. 7. 2001 Praeconocaryomma universa Pessagno. - Vishnevskaya, p. 179, pl. 21, fig. 3; pl. 24, fig. 1; pl. 97, fig. 1; pl. 113, fig. 5; pl. 125, fig. 1–2; pl. 126, fig. 1. Published Range: earliest Coniacian to middle Campanian (Pessagno, 1976), Santonian–Campanian (Senonian, De Wever et al., 1988) Albian to Campanian (Vishnevskaya, 2001). Composite range: Albian to Campanian. Family DACTYLIOSPHAERIDAE Squinabol, 1904 Genus Dactyliosphaera Squinabol, 1904 Dactyliosphaera silviae Squinabol, 1904 (Plate 2, Fig. 15) 1904 Dactyliosphaera silviae nov. sp. Squinabol, p. 196, pl. 4, fig. 3. 1975 Dactyliosphaera silviae Squinabol. - Dumitrica, textfig. 2. 14. 1994 Dactyliosphaera silviae Squinabol. - O’Dogherty, p. 341, pl. 63, figs. 22–26. 2004 Dactyliosphaera silviae Squinabol. - Bragina, p. S429, pl. 25, figs. 5–8. Published Range: Late Albian–Early Turonian (Squinabol, 1904), Cenomanian (Dumitrica, 1975), Cenomanian (O’Dogherty, 1994), Late Albian–Late Cenomanian (Bragina, 2004). Composite range: Late Albian–Early Turonian. Dactyliosphaera cf. D. silviae Squinabol, 1904
17, 18. Sample PB-5, 19. Sample PB-8. 20. Dictyoprora ascalia (Foreman); Sample PB-3. 21. Dictyoprora ascalia (Foreman); Sample PB-5. 22–25 Acanthocircus venetus O’Dogherty; 22, 23. Sample PB-7; 24. Sample PB-5; 25. Sample PB-3. 26. Acanthocircus cf. A. impolitus O’Dogherty; Sample PB-5. 27–28. Acanthocircus hueyi Pessagno; 27. Sample PB-3; 28. PB-7. 29. Acanthocircus cf. A. tympanum O’Dogherty; Sample PB-3. 30–31. Spongodiscus sp. 30, 31. Sample PB-4. 32. Archaeospongoprunum venadoensis Pessagno; Sample PB-3. 33. Archaeospongoprunum cf. A. venadoensis Pessagno; Sample PB-7. 34–35. Archaeospongoprunum cortinaensis Pessagno. 34, 35 Sample PB-5. 36. Archaeospongoprunum bipartitum Pessagno; Sample PB-5. 37. Archaeospongoprunum cf. A. bipartitum Pessagno; Sample PB-3. 38. Triactoma? sp. Sample PB-3. 39–40. Praeconocaryomma universa Pessagno. 39. Sample PB-6; 40. Sample PB-8.
94
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Plate 2. Radiolarians of the Pedro Brand Section. 1–2. Acaeniotyle rebellis O’Dogherty. 1. Sample PB-5; 2. Sample PB-3. 3. Pseudoaulophacus? sp. Sample PB-3. 4. Acaeniotyle sp. Sample PB-5. 5. Triactoma? sp. Sample PB-3. 6. Triactoma cf. T. fragilis Bragina; Sample PB-3. 7. Triactoma? sp. Sample PB-3. 8. Spumellaria gen et sp. indet. Sample PB-4. 9. Quinquecapsularia cf. Q. panacea O’Dogherty; Sample PB-5. 10–11. Pyramispongia? sp. 10. Sample PB-5; 11. Sample PB3. 12. Microsciadocapsa sp. Sample PB-6. 13–14. Dactyliosphaera cf. D. silviae Squinabol. 13. Sample PB-5; 14. Sample PB-3. 15. Dactyliosphaera silviae Squinabol;
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
95
Lower Cret. Cenomanian Turonian Coniacian Santonian Campanian Maastrichtian Acaeniotyle rebellis Acanthocircus hueyi Acanthocircus venetus Alievium superbum Alievium gallowayi Amphipyndax stocki Archaeospongoprunum bipartitum Archaeospongoprunum cortinaensis Archaeospongoprunum venadoensis Dictyoprora tina Dictyoprora urna Crucella messinae Dactyliosphaera silviae Dictyomitra densicostata Dictyomitra formosa Dictyomitra multicostata Dictyoprora ascalia Eostichomitra perapedhia Hemicryptocapsa polyhedra Paronaella solanoensis Praeconocaryomma universa Pseudoaulophacus venadoensis
D.B D.B
D.B D.B
D.B D.B D.B D.B D.B D.B D.B
D.B D.B D.B D.B D.B D.B D.B
D.B D.B
D.B D.B
D.B D.B D.B D.B D.B
D.B D.B D.B D.B D.B
Age distribution by differents authors Presence of the species on Deva Beds (Turonian–Coniacian)
D.B
This study (Top of the section) This study This study This study This study This study This study (Base of the section) Mercier de Lepinay (1987) Montgomery and Pessagno (1999) * * No images shown in the publication
Theocampe ascalia
Thanarla pulchra
Eostichomitra peraphedia
Pseudoaulophacus venadoensis
Praeconocaryomma universa
Paronaella solanoensis
Microsciadiocapsa cortinaensis
Hemicryptocapsa polyhedra
Dictyoprora urna
Dictyoprora tina
Dictyomitra multicostata
Dictyomitra formosa
Dictyomitra densicostata
Dactylosphaera silviae
Crucella messinae
Archaeospongoprunum venadoensis
Archaeospongoprunum triplum
Archaeospongoprunum cortinaensis
Archaeospongoprunum bipartitum
Amphipyndax stocki
Alievium superbum
Alievium gallowayi
Acanthocircus venetus
Acanthocircus hueyi
Acaeniotyle rebellis
Fig. 4. Age ranges, from Early Cretaceous to Maastrichtian, defined by radiolarian species observed in the Pedro Brand section.
PB-1 PB-3 PB-4 PB-5 PB-6 PB-7 PB-8 MB-8586 DR 96.6
Fig. 5. Distribution of radiolarian species through the Pedro Brand section. Also is shown the species cited by Mercier de Lépinay (1987) and Montgomery and Pessagno (1999).
Sample PB-6. 16. Multastrum sp. Sample PB-7. 17–18. Microsciadocapsa sp. 17. Sample PB-3; 18. PB-7. 19. Paronaella solanoensis Pessagno; Sample PB-3. 20. Higumastra? sp. Sample PB-4. 21. Multastrum sp. Sample PB-5. 22–24. Alievium superbum Pessagno. 22. Sample PB-8; 23. Sample PB-4; 24. Sample PB-7. 25–26 Alievium gallowayi (Squinabol); Sample PB-3. 27. Alievium cf. gallowayi (Squinabol); Sample PB-4. 28. Pseudoaulophacus venadoensis Pessagno; Sample PB-3 29. Pseudoaulophacus cf. P. venadoensis Pessagno; Sample PB-6. 30. Pseudoaulophacus? sp; Sample PB-3. 31. Alievium? sp; Sample PB-5. 32. Spongosaturninus aff. S. ellipticus Campbell and Clark; Sample PB-8. 33. Spumellaria gen et sp. indet; Sample PB-8. 34. Alievium? sp.; Sample PB-8. 35. Pessagnobrachia sp.; Sample PB-7. 36. Pessagnobrachia sp.; Sample PB-3. 37. Crucella messinae Pessagno; Sample PB-3. 38. Paronaella aff. P.communis Pessagno; Sample PB-3. 39. Crucella messinae Pessagno; Sample PB-4.
96
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Table 1 Major and trace elements data of PB-2 dyke of Pedro Brand Section. Quadrangle
Los Alcarrizos
Field data X(UTM) Y(UTM) Unit Lithology Sample Major elements (%) SiO2 TiO2 Al2 O3 Fe2 O3 MgO CaO Na2 O K2 O P2 O5 MnO Cr2 O3 LOI C/TOT S/TOT SUM Mg# High-Mg TAS Trace elements (ppm) Cs TI Rb Ba W Th U Nb Ta K La Ce Pb Pr Mo Sr P Nd Sm Zr Hf Eu Sn Sb Ti Gd Tb Dy Y Ho Er Tm Yb Lu Se As Be Ga
Dyke in cherts –70.079 18.600 ABF Basalt PbO2 49.35 0.67 10.5 8.33 12.17 6.95 1.51 0.81 0.12 0.12 0.149 9.1 0.55 0.06 99.8 74 HMA Basalt 0.6 < 0.1 15.7 856 < 0.5 1 0.3 5 0.3 3362 7.8 14.9 2.8 2.08 0.2 148.8 262 9.4 1.96 58.5 1.3 0.67 <1 < 0.1 4017 2.14 0.34 1.89 13.1 0.42 1.29 0.18 1.31 0.18 < 0.5 3.8 <1 9.6
Table 1 (Continued) Quadrangle V Cr Co Ni Cu Zn Cd Sc Ni Ag Bi Hg Au
Los Alcarrizos 154 1019 39.4 522.6 48.8 60 < 0.1 25 493 < 0.1 < 0.1 0.14 0.5
(Plate 2, Figs 13, 14) cf. 1904. Dactyliosphaera silviae nov. sp. - Squinabol, p. 196, pl. 4, fig. 3. Remarks: Similar to Dactyliosphaera silviae (Squinabol, 1904), but is not well preserved. Family HAGIASTRIDAE Riedel, 1971 Genus Crucella Pessagno, 1971 Crucella messinae Pessagno, 1971 (Plate 2, Figs. 36, 39) 1971 Crucella messinae nov. sp. Pessagno, p. 56, pl. 6, figs. 1–3. 1994 Crucella messinae Pessagno. - O’Dogherty, p. 368, pl. 70, figs. 21–24, pl. 71, figs. 1–6. 1998 Crucella messinae Pessagno. - Thurow, p. 399, pl. 5, fig. 22. 2005 Crucella messinae Pessagno. - Popova-Goll et al., p. 11, pl. 4, fig. 13. 2006 Crucella messinae Pessagno. - Bragina and Bragin, 2006, p. 518, pl. 1, fig. 6. Range: Early Cenomanian (Pessagno, 1971), Aptian?–Cenomanian (Thurow, 1988), Early Turonian (O’Dogherty, 1994), Santonian–Early Campanian (PopovaGoll et al., 2005) Turonian–Coniacian (Bragina and Bragin, 2006). Composite range: Early Cenomanian–Early Campanian. Higumastra? sp. (Plate 2, Fig. 20) Remarks: This specimen differs from Crucella euganea by having visible medullary shell and large circular pores in longitudinal rows. Family ANGULOBRACCHIIDAE Baumgartner, 1980 emend. De Wever, 2001 Genus Paronaella Pessagno, 1971 Paronaella solanoensis Pessagno, 1971 (Plate 2, Fig. 19) 1971 Paronaella sp. - Pessagno, p. 51, pl. 17, fig. 2. 1971 Paronaella solanoensis nov. sp. Pessagno, p. 48, pl. 10, figs. 2, 3.
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
1994 Paronaella solanoensis Pessagno. - O’Dogherty, p. 354, pl. 66, figs. 19–24. 2004 Paronaella solanoensis Pessagno. - Bragina, p. S411, pl. 39, fig. 12. Published Range: Late Turonian–Coniacian (Pessagno, 1971), Early Turonian (O’Dogherty, 1994), Late Cenomanian–Late Turonian (Bragina, 2004). Composite range: Late Cenomanian–Coniacian. Paronaella aff. P. communis (Squinabol, 1903) (Plate 2, Fig. 38)aff. 1903. Spongotripus communis nov. sp. - Squinabol, p. 123, pl. 9, fig. 7. Remarks: Test relatively flattened with concave lateral sides. Meshwork circular to polygonal pore frames. Only one ray preserved in this specimen. Family PATULIBRACCHIIDAE Pessagno, 1971 emend. De Wever et al., 2001 Genus Pessagnobracchia Pessagno, 1971 Pessagnobrachia sp. (Plate 2, Figs. 35 and 36) Remarks: Spongy specimens with three rays with irregular to regular arrangement of pores on rays. Family PSEUDOAULOPHACIIDAE Riedel, 1967 Genus Alievium Pessagno, 1972 Alievium superbum (Squinabol, 1914) sensu Pessagno, 1972 (Plate 2, Figs. 22–24) 1914 Theodiscus superbus nov. sp. Squinabol, p. 271, pl. 20, fig. 4. 1972 Alievium superbus (Squinabol). - Pessagno, p. 302, textfig. 1, pl. 24, figs. 5, 6; pl. 25, fig. 1. 1974 Pseudoaulophacus superbus (Squinabol). - Riedel and Sanfilippo, p. 780, pl. 3, figs. 1–3. 1975 Alievium superbum (Squinabol). - Dumitrica, text-fig. 2.42. 1976 Alievium superbum (Squinabol). - Pessagno, p. 27, pl. 3, fig. 12. 1977 Alievium superbum (Squinabol). - Foreman, p. 315. 1982 Alievium superbum (Squinabol). - Taketani, p. 51, pl. 10, fig. 8. 1985 Alievium superbum (Squinabol). - Sanfilippo and Riedel, p. 594, text-fig. 6.2. 1985 Alievium superbum (Squinabol). - Thurow, p. 397, pl. 2, fig. 2. 1994 Alievium superbum (Squinabol). - O’Dogherty, p. 322, pl. 57, figs. 14–18. 2001 Alievium superbum (Squinabol). - Vishnevskaya, p. 144, 145, pl. 98, fig. 5; pl. 100, figs. 1, 2; pl. 115, fig. 7. Published range: Late Cenomanian (Dumitrica, 1975), Middle Turonian–Late Cenomanian (Pessagno, 1976), Cenomanian (Foreman, 1977), Turonian–Coniacian (Taketani, 1982), Turonian–Campanian (Sanfilippo and Riedel, 1985), Late Cenomanian–Early Turonian to Middle Campanian (Thurow, 1988), Early Turonian (O’Dogherty, 1994), Late Albian–Campanian (Vishnevskaya, 2001).
97
Composite range: Late Albian–Campanian. Alievium gallowayi (White, 1928) sensu Pessagno, 1972 (Plate 2, Figs. 25, 26) 1928 Baculogypsina (?) gallowayi nov. sp. White, p. 305, pl. 41, figs. 9, 10 1972 Alievium gallowayi (White). - Pessagno, p. 299, pl. 25, figs. 4–6; pl. 26, fig. 5, pl. 31, figs. 2, 3. 1975 Alievium gallowayi (White). - Foreman, p. 613, pl. 1D, figs. 2, 3; pl. 5, fig. 11. 1976 Alievium gallowayi (White). - Pessagno, p. 27, pl. 8, fig. 13,14; pl. 9, fig. 1. 1977 Alievium gallowayi (White). - Foreman, p. 313, fig. 6. 1985 Alievium gallowayi (White). - Sanfilippo and Riedel, p. 594, text-fig. 6 (1). 1988 Alievium gallowayi (White). - Thurow, p. 396, pl. 2, fig. 3. 2001 Alievium gallowayi (White). - Vishnevskaya p. 144, pl. 97, fig. 3. Remarks: Base of spines is circular in cross section. Published ranges: Middle Turonian to Santonian (Foreman, 1975), Early Santonian to Late Campanian (Pessagno, 1976), Santonian–Campanian to Maastrichtian (Foreman, 1977), Campanian to Maastrichtian (Sanfilippo and Riedel, 1985), Middle Campanian to Maastrichtian (Thurow, 1988) Coniacian to Campanian (Vishnevskaya, 2001). Composite range: Middle Turonian–Maastrichtian. Alievium cf. A. gallowayi (White, 1928) sensu Pessagno, 1972 (Plate 2, Fig. 27) cf. 1928. Baculogypsina (?) gallowayi nov. sp. - White, p. 305, pl. 41, figs. 9, 10. Remarks: Test triangular, probably with three short spines, not entirely visible in cross section. Genus Pseudoaulophacus Pessagno, 1972 Pseudoaulophacus venadoensis Pessagno, 1972 (Plate 2, Fig. 28) 1972 Pseudoaulophacus venadoensis nov. sp. Pessagno, p. 311, pl. 28, figs. 13 Published range: Late Turonian–Early Santonian (Pessagno, 1972), Coniacian–Santonian (Pessagno, 1976), Turonian–Coniacian (Bragina and Bragin, 2006; no images of this species). Composite range: Turonian–Santonian. Pseudoaulophacus aff. P. venadoensis Pessagno, 1972 (Plate 2, Fig. 29)aff. 1972. Pseudoaulophacus venadoensis nov. sp. -Pessagno, p. 311, pl. 28, figs. 1–3. Remarks: Test subtriangular, with three short spines, not visible in cross section. Tholi makes one third of the test. Pseudoaulophacus? sp. (Plate 2, Fig. 3)
98
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Remarks: Test with three long and planar well-preserved spines.
Published range: Middle Turonian to Early Coniacian (Pessagno, 1973).
Pseudoaulophacus sp. (Plate 2, Fig. 30) Remarks: Triangular shape, test with three spines. Meshwork is not clear in this specimen.
Archaeospongoprunum cf. A. venadoensis Pessagno, 1973 (Plate 1, Fig. 33) cf. 1973. Archaeospongoprunum venadoensis nov. sp. Pessagno, p. 68, pl. 10, figs. 2,3. Remarks: Spines are not visible, making difficult to assign directly to A. venadoensis.
Family SPONGODISCIDAE Haeckel, 1862 Genus Spongodiscus Ehrenberg, 1854 Spongodiscus sp. (Plate 1, Figs. 30, 31) Remarks: Spongy meshwork arranged irregularly. Family ARCHAEOSPONGOPRUNIDAE Pessagno, 1973 Genus Archaeospongoprunum Pessagno, 1973 Archaeospongoprunum cortinaensis Pessagno, 1973 (Plate 1, Figs. 34, 35) 1973 Archaeospongoprunum cortinaensis nov. sp. Pessagno, p. 60, pl. 9, figs. 4–6. 1981 Archaeospongoprunum cortinaensis Pessagno. Nakaseko and Nishimura, 1981, p. 147, pl. 1, fig. 9. 2004 Archaeospongoprunum cortinaensis Pessagno. - Bragina, p. S407, pl. 18, figs. 5, 10, 11, 13, and 14; pl. 35, figs. 11, 12, 15 and 20. Published range: lower Cenomanian to lower Coniacian (Pessagno, 1973), Albian–Coniacian (Nakaseko and Nishimura, 1981), Cenomanian–Coniacian (Bragina, 2004). Composite range: Cenomanian to Coniacian. Archaeospongoprunum bipartitum Pessagno, 1973 (Plate 1, Fig. 36) 1973 Archaeospongoprunum bipartitum nov. sp. Pessagno, p. 59, pl. 11, figs. 4–6. 1982 Archaeospongoprunum bipartitum Pessagno. - Taketani, p. 33, pl. 6, fig. 3. 1998 Archaeospongoprunum bipartitum Pessagno. - Vishnevskaya and De Wever, p. 253, pl. 2, figs. 7–12. Published range: Coniacian–Santonian (Pessagno, 1973), Coniacian to Campanian (Taketani, 1982), Coniacian–Early Campanian (Vishnevskaya and De Wever, 1998). Composite range: Coniacian–Campanian. Archaeospongoprunum cf. A. bipartitum Pessagno, 1973 (Plate 1, Fig. 37) cf. 1973. Archaeospongoprunum bipartitum nov. sp. - Pessagno, p. 59, pl. 11, figs. 4–6. Remarks: Bilobate structure is not very well developed. Archaeospongoprunum venadoensis Pessagno, 1973 (Plate 1, Fig. 32) 1973 Archaeospongoprunum venadoensis nov. sp. Pessagno, p. 68, pl. 10, figs. 2–3.
Family PYRAMISPONGIIDAE Kozur and Mostler, 1978 emend. De Wever et al., 2001 Genus Pyramispongia Pessagno, 1973 Pyramispongia? sp. (Plate 2, Figs. 10, 11) Remarks: Spongy test with a variable number of massive spines. Family SATURNALIDAE Deflandre, 1953 Genus Acanthocircus Squinabol, 1903 Acanthocircus hueyi (Pessagno, 1976) sensu O’Dogherty, 1994 (Plate 1, Figs. 27, 28) 1975 Spongosaturnalis hueyi (Pessagno). - Foreman, p. 611, pl. 1A, fig. 6; pl. 4, fig. 10. 1976 Spongosaturninus hueyi nov. sp. Pessagno, p. 39, pl. 12, fig. 1. 1977 Spongosaturnalis hueyi (Pessagno). - Foreman, p. 313, no figure. 1994 Acanthocircus hueyi (Pessagno). - O’Dogherty, p. 260, pl. 46, figs. 1–5. 2001 Spongosaturnalis hueyi Pessagno. - Vishnevskaya, p. 186, pl. 122, fig. 2. Published range: Early Turonian (O’Dogherty, 1994), Late Campanian (Pessagno, 1976), Turonian to Coniacian (Foreman, 1975, 1977), Coniacian to Santonian (Vishnevskaya, 2001). Composite range: Early Turonian–Late Campanian. Acanthocircus cf. A. tympanum O’Dogherty, 1994 (Plate 1, Fig. 29) cf. 1994. Acanthocircus tympanum nov. sp. - O’Dogherty, p. 259, pl. 45, figs. 17–24. Remarks: Similar to Acanthocircus tympanum (O’Dogherty, 1994), but the specimen is missing the complete ring structure of this species. Acanthocircus cf. A. impolitus O’Dogherty, 1994 (Plate 1, Fig. 26) cf. 1994. Acanthocircus impolitus nov. sp. - O’Dogherty pl. 46, figs. 6–9. Remarks: Similar to Acanthocircus impolitus (O’Dogherty, 1994), but characteristics of the cortical shell are not observed, due to poor preservation.
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Acanthocircus venetus (Squinabol, 1914) (Plate 1, Figs. 22–25) 1914 Saturnalis venetus nov. sp. Squinabol, p. 269, pl. 20, fig. 2; pl. 24, fig. I. 1975 Spongosaturnalis hueyi group Pessagno. - Foreman, p. 611, pl. 1B, figs. 1–3. 1994 Acanthocircus venetus (Squinabol). - O’Dogherty, p. 256, pl. 45, figs. 1–8. Published range: Late Albian to Early Turonian (O’Dogherty, 1994), Turonian to Coniacian (Foreman, 1975). Composite range: Late Albian–Coniacian. Genus Spongosaturninus Campbell and Clark, 1944 Spongosaturninus aff. S. ellipticus Campbell and Clark, 1944 (Plate 2, Fig. 32)aff. 1944. Spongosaturninus ellipticus nov. sp. - Campbell and Clark, p. 8, pl. 1, figs. 8, 9, 12, 14,16. Remarks: Our specimen differs from the original description by having a triradiate spine. SPUMELLARIA incertae sedis Genus Multastrum Vishnevskaya, 1991 Multastrum spp. Vishnevskaya, 1991 (Plate 2, Figs. 16, 21) Remarks: These specimens have six rays. Order NASSELLARIA Ehrenberg, 1875 Family ARCHAEODICTYOMITRIDAE Pessagno, 1976 Genus Dictyomitra Zittel, 1876 Dictyomitra formosa Squinabol, 1904 sensu Pessagno, 1976 (Plate 1, Figs. 4, 5) non 1904 Dictyomitra formosa nov. sp. Squinabol, p. 232, pl. 10, fig. 4. 1975 Dictyomitra duodecimcostata Squinabol. - Foreman, p. 614, pl. 7, fig. 8, pl. 1G. 1976 Dictyomitra formosa Squinabol. - Pessagno, p. 51, pl. 14, figs. 10–12. 1982 Dictyomitra formosa Squinabol. - Taketani, p. 58, pl. 4, figs. 6a–b; pl. 11, fig. 13.non 1994 Dictyomitra formosa Squinabol. - O’Dogherty, p. 80, pl. 4, figs. 8–12. 2001 Dictyomitra formosa Squinabol. - Vishnevskaya, p. 160, pl. 25, fig. 10. Published range: Early Coniacian–Early Campanian (Pessagno, 1976), Late Turonian (Taketani, 1982), Turonian–Santonian (Foreman, 1975), Albian–Turonian (Vishnevskaya, 2001). Composite range: Albian–Early Campanian. Dictyomitra multicostata Zittel, 1876 sensu Pessagno, 1976 (Plate 1, Fig. 3) 1876 Dictyomitra multicostata nov. sp. Zittel, p. 81, pl. 2, figs, 24 1976 Dictyomitra multicostata Zittel. - Pessagno, p. 52, pl. 14, figs. 4–9. 1994 Dictyomitra multicostata Zittel. - O’Dogherty, p. 82 pl. 4, figs. 17–19.
99
2001 Dictyomitra multicostata Zittel. - Vishnevskaya, p. 160, pl. 20, figs. 4, 6. Published range: Middle Campanian–Maastrichtian (Pessagno, 1976), Albian–Maastrichtian (Vishnevskaya, 2001). Composite range: Albian–Maastrichtian. Dictyomitra densicostata Pessagno, 1976 (Plate 1, Fig. 2) 1976 Dictyomitra densicostata nov. sp. Pessagno, p. 51, pl. 14, figs, 10–14, 16. 1998 Dictyomitra densicostata Pessagno. - Erbacher, p. 369, pl. 1, fig. 4. 2001 Dictyomitra densicostata Pessagno. - Vishnevskaya, p. 160, pl. 7, fig. 8, pl. 20, fig. 7, pl. 116, fig. 8, pl. 123, fig. 24, pl. 16, fig. 11–16. Published range: Late Coniacian to latest Campanian (Pessagno, 1976), Coniacian–Campanian (Vishnevskaya, 2001), Late Turonian–Campanian (Erbacher, 1998). Ranges from Early Maastrichtian (Bragina and Bragin, 2006) and lower–Middle Turonian (Bragina et al., 2014) are used, but not listed in the synonymy, because no images of the species are available. Composite range: lower Turonian–Early Maastrichtian. Genus Mita Pessagno, 1977 Mita aff. M. guttiformis Bragina, 2014 (Plate 1, Fig. 1)aff. 2014. Mita guttiformis nov. sp. - Bragina, p. 106, pl. 1, figs. 9–11. Remarks: Our specimen is more lobate than the holotype. Family ARTOSTROBIIDAE Riedel, 1967 Genus Dictyoprora Haeckel, 1881 Dictyoprora urna (Foreman, 1971) (Plate 1, Figs. 17–9) 1971 Artostrobium urna nov. sp. Foreman, p. 1677, pl. 4, figs. 1, 2. 1975 Artostrobium urna Foreman. - Foreman, p. 613, pl. 1F, figs 6,7, pl. 6, fig. 6. 1982 Artostrobium urna Foreman. - Taketani, p. 53, pl. 2, fig. 12, pl. 10. fig. 17 1985 Theocampe urna (Foreman). - Sanfilippo and Riedel, p. 605, figs. 9.7a–c. Published range: Early Santonian–Late Campanian (Foreman, 1971), Late Turonian–Santonian (Foreman, 1975), Campanian (Taketani, 1982), Coniacian–Campanian (Sanfilippo and Riedel, 1985). Composite range: Late Turonian–Late Campanian. Dictyoprora tina (Foreman, 1971) (Plate 1, Fig. 15) 1971 Artostrobium tina nov. sp. Foreman, p. 1677, pl. 4, fig. 3. 1975 Artostrobium tina Foreman. - Foreman, p. 613, pl. 1F, figs. 3–5, pl. 6, fig. 5. 1982 Artostrobium tina Foreman. - Taketani, p. 53, pl. 2, figs. 11 a, b.
100
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
1985 Theocampe tina (Foreman). - Sanfilippo and Riedel, p. 605, figs. 9.5 a–c. 1988 Artostrobium tina Foreman. - Thurow, p. 40, pl 1, fig. 6. 1994 Pseudotheocampe tina (Foreman). - O’Dogherty, p. 171, pl. 24, figs 3–5. Published range: Santonian–Campanian (Foreman, 1971), Early Turonian–Santonian (Foreman, 1975), Campanian (Taketani, 1982), Turonian–Campanian (Sanfilippo and Riedel, 1985), Turonian–Campanian (Thurow, 1988), Early Turonian (O’Dogherty, 1994). Composite range: Turonian–Campanian. Dictyoprora sp. aff. D. tina (Foreman, 1971) (Plate 1, Fig. 16) aff. 1971. Artostrobium tina nov. sp. - Foreman, p. 1677, pl. 4, fig. 3. Remarks: Test more elongated compared to that of the holotype. Dictyoprora ascalia (Foreman, 1971) (Plate 1, Figs. 20, 21) 1971 Theocampe ascalia nov. sp. Foreman, p. 1677, pl. 4, fig. 4 1977 Theocampe ascalia Foreman. - Foreman, p. 316. 1979 Theocampe ascalia Foreman. - Garg and Jain, p. 166, pl. 4, fig. 64. 1985 Theocampe ascalia Foreman. - Sanfilippo and Riedel, p. 605, figs. 9, 6. 2010 Theocampe ascalia Foreman. - Robin et al., p. 196, pl. 5 fig. 22. Published range: Santonian–Campanian (Foreman, 1971), Early Santonian–Campanian (Foreman, 1977), Cenomanian? (Garg and Jain, 1979), Late Coniacian–Campanian (Sanfilippo and Riedel, 1985), Turonian–Coniacian (Robin et al., 2010). Composite range: Turonian–Campanian. Family NEOSCIADIOCAPSIDAE Pessagno, 1969 Genus Microsciadiocapsa Pessagno, 1969 Microsciadocapsa? spp. (Plate 2, Figs. 12, 17, 18) Remarks: Specimens with a hat-shape, not well preserved. Family AMPHIPYNDACIDAE Riedel, 1967 Genus Amphipyndax Foreman, 1966 Amphipyndax stocki (Campbell and Clark, 1944) (Plate 1, Figs. 6, 7) 1944 Stichocapsa (?) stocki nov. sp. Campbell and Clark, p. 44, pl. 8, figs. 31–33 1968 Amphipyndax stocki (Campbell and Clark). - Foreman, p. 78, pl. 8, figs. 12 a–c. 1977 Amphipyndax stocki (Campbell and Clark). - Foreman, p. 315.pars 1994 Stichomitra stocki (Campbell and Clark). O’Dogherty, p. 147, pl. 18, figs. 13–15.
1996 Stichomitra stocki (Campbell and Clark). - Bak, p. 106 pl. 8, fig. B. 2001 Amphipyndax stocki (Campbell and Clark). - Vishnevskaya, p. 146, pl. 1, fig. 13; pl. 4, fig. 11–13; pl. 6, fig. 12; pl. 16, fig. 1; pl. 93, fig. 4–5; pl. 94, fig. 8 and 10; pl. 99, fig. 1–3 and 8; pl. 114, fig. 12. 2004 Amphipyndax stocki (Campbell and Clark). - Bragina, p. S375, pl. 9, figs. 9, 11. Remarks: We keep the genus as Amphipyndax as proposed by Foreman (1973). Published range: Late Maastrichtian (Foreman, 1968), Cenomanian?–Maastrichtian (Foreman, 1977), Cenomanian– Early Turonian (O’Dogherty, 1994), Late Cenomanian?–Late Turonian (Bak, 1996), Barremian–Santonian or Middle Campanian (Vishnevskaya, 2001), Early Turonian (Bragina, 2004). Composite range: Barremian–Maastrichtian. Family EUCYRTIDIIDAE Ehrenberg, 1847 Genus Eostichomitra Empson-Morin, 1981 Eostichomitra perapedhia (Bragina, 1996) (Plate 1, Figs. 9–12) 1988 Stichomitra sp.-De Wever et al., p. 171, pl. 1, fig. 6. 1996 Stichomitra perapedhia nov. sp. Bragina in Bragina and Bragin, p. 251, pl. 2, fig. 5, 6. Published range: Santonian–Campanian (Senonian, De Wever et al., 1988), Late Santonian–Early Campanian (Bragina and Bragin, 1996), Middle–Late Turonian (Bragina, 2012), no images. Composite range: Middle Turonian–Campanian. Family XITIDAE Pessagno, 1977 Genus Foremanina Empson-Morin, 1981 Foremanina sp. (Plate 1, Figs. 13, 14) Remarks: Test conical, with nodular ridges at joints of post abdominal chambers. Cephalis small without horn. Family WILLIRIEDELLIDAE Dumitrica, 1970 Genus Hemicryptocapsa Dumitrica, 1970 Hemicryptocapsa polyhedra Dumitrica, 1970 (Plate 1, Fig. 8) 1970 Hemicryptocapsa polyhedra nov. sp. Dumitrica p. 72, pl. 14, figs. 85a–c. 1982 Hemicryptocapsa polyhedra Dumitrica. - Taketani, p. 66, pl. 7, figs. 5a, 5b. 1988 Hemicryptocapsa polyhedra Dumitrica. - Thurow, p. 401, pl. 1, fig. 1. 1994 Hemicryptocapsa polyhedra Dumitrica. - O’Dogherty, p. 215, pl. 35, fig. 26. 2008 Hemicryptocapsa polyhedra Dumitrica. - Bandini, p. 21, pl. fig. 17; pl. 3, fig. 15. Published range: Early Turonian (Dumitrica, 1970), Early Turonian (O’Dogherty, 1994), Early Turonian (Thurow, 1988) Cenomanian to Coniacian (Taketani, 1982), Coniacian to Santonian (Bandini et al., 2008).
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
101
Fig. 6. MORB-normalized multi-element plot for the basaltic dyke (sample PB-2) intruding the sediments of the Tireo Group. The fields for geographically nearest CLIP units, particularly those of the basalts of the Pelona-Pico Duarte Fm and the OIB dykes intruding the Tireo Group, are shown for comparison (data from Révillon et al., 2000; Sen et al., 1988; Sinton et al., 1998; Escuder-Viruete et al., 2008, 2011). Normalization values are taken from Sun and McDonough (1989).
Composite range: Cenomanian to Santonian. 6. Geochemistry and geochronology of the Dyke 6.1. Major and trace element composition Sample PB-02 of massive basalt shows low SiO2 and TiO2 contents, of respectively 54.42 wt% and 0.74 wt% (anhydrous basis, Table 1). On the basis of its high-MgO content (13.48 wt%), the sample can be classified as a picritic high-Mg basalt. The Mg # values of 74 indicate that the melt has undergone very low amounts of fractionation. It shows relatively low contents in CaO (7.66 wt%) and Al2 O3 (11.58 wt%), and relatively high contents in alkalis (2.56 wt%), P2 O5 (0.13 wt%) and Fe2 O3T (9.19 wt%). The sample contains microphenocrysts of olivine, clinopyroxene, orthopyroxene, plagioclase and Fe-Ti oxides, suggesting a tholeiitic affinity. It is olivine normative, with diopside, hyperstene and Cr-spinel. Based on an immobile trace element classification scheme, the sample is transitional to alkalic basalt (Nb/Y = 0.38), which is compatible with their major element compositions, norm and mineralogy. In a MORB-normalized multi-element plot (Fig. 6), the PB-02 high-Mg basalt has LREE enriched ([La/Nd]PM = 1.8) and depleted HREE ([Sm/Yb]PM = 1.7) patterns, with high Nb contents (5 ppm). Those patterns do not have positive Pb, K and Sr spikes, and negative Nb-Ta anomalies, typical of subductionrelated rocks. However, the sample could have a small selective enrichment in some fluid-mobile LILE (Rb, Ba and U), which probably results from seafloor alteration. The absence of negative Eu and positive Ti anomalies suggest that the basalt is primitive in composition, without plagioclase and Fe-Ti oxide fractionation/accumulation. These patterns and the values of the trace element ratios Ti/V > 20 (26.8) and Zr/Nb < 12 (11.7), are characteristic of modern day transitional and alkaline oceanicisland basalts (Pearce, 2008). The (Sm/Yb)N ratio suggests that the mantle source of this basalt was relatively enriched and contained garnet (Greene et al., 2009). The sampled dyke is
interpreted as derived from partial melts of a plume-related, deep enriched source that has not been contaminated by active subduction. The composition of the dyke is similar to those of the OIB dykes intruding the Tireo Group and the basalts of the Pelona-Pico Duarte Fm (Fig. 6). 6.2.
40 Ar–39 Ar
geochronology
The obtained whole rock plateau age for sample PB-02 is 75.1 ± 1.1 Ma (MSWD = 1.7) for five steps (4 − 8) and 69.7% of the 39 Ar released (Fig. 7, Table 2). The inverse isochron age on seven points is 76.1 ± 1.8 Ma (MSWD = 2.4), with an initial 40 Ar–36 Ar intercept at 282 ± 23. The PB-02 sample yield release spectra with plateau and inverse isochron 40 Ar/36 Ar intercepts equivalent to the atmosphere (295.5). The plateau and inverse isochron 40 Ar/36 Ar ages are similar within the uncertainty. Therefore, the plateau age is the best-accepted age for this sample. The 75.1 ± 1.1 Ma age reflects the rapid crystallization of the basaltic dyke. This age is consistent with the Turonian – Coniacian older age of the host Pedro Brand section. The OIB geochemical signature and late Campanian age of the basalt dyke strongly suggest that it is related to the magmatism of the Pelona-Pico Duarte Fm. 7. Discussion 7.1. Paleogeographic origin of the Tireo Group The rocks of the Pedro Brand section are not red ribbonbedded (Pacific-type) radiolarites. Laminated to mottled grey chert with shale interbeds in the lower part of the section grade upsection into siliceous mudstone. Red ribbon-bedded radiolarites have been described from terranes around the Pacific, typical for the Panthalassa Ocean and from MediterraneanHimalayan sequences representing remnants of the Tethys Ocean (Montgomery et al., 1994a, b; Baumgartner, 2013). The lithology of the studied section clearly indicates an
102
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Table 2 40 Ar–39 Ar
data from dyke PB-2 of Pedro Brand Section.
Laser
Isotope ratios
Power (%)
39 Ar/40 Ar
2s
36 Ar/40 Ar
2s
r.i.
Ca/K
40 Ar
2.30 2.80 3.00 3.30 3.50 3.90 4.30 4.70 5.50
168.25 61.61 44.51 24.50 20.80 17.54 17.50 17.80 17.88
1.30 0.83 0.61 0.41 0.19 0.10 0.53 0.12 0.11
0.55 0.14 0.09 0.03 0.02 0.01 0.01 0.01 0.01
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.012 0.069 0.059 0.332 0.135 0.004 0.224 0.008 0.006
0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
96.37 68.41 57.99 37.72 27.90 15.92 15.48 14.62 14.67
J = 0.00283600 ± 0.00001418 Integrated date = 75.75 ± 0.68 Ma Plateau age = 75.1 ± 1.1 Ma (2s, including J-error of 1 MSWD = 1.7, probability = 0.15) Inverse isochron (correlation age results, plateau steps: Model 1 solution [± 95%-conf.] on 7 points) Age = 76.1 ± 1.8 Ma
atm
39 Ar
40 Ar* /39 ArK
Age
2σ
1.54 13.21 7.67 18.87 9.62 16.09 17.85 7.25 7.91
6.104 19.461 18.701 15.259 14.996 14.750 14.795 15.197 15.259
31.03 97.15 93.45 76.61 75.31 74.10 74.33 76.30 76.61
± ± ± ± ± ± ± ± ±
34.86 10.22 7.90 3.89 2.33 1.18 5.80 1.36 1.32
Volume 39 Ar 0.095×10−13 cm3 NPT Includes 69.7% of the 39 Ar steps 4 through 8
Initial 40 Ar/36 Ar = 282 ± 23 conf. on 7 points
upward-increasing detrital input, probably derived from a distant intermediate to acidic arc source. On the other hand, stratigraphic relationships indicate that the Tireo Group uncomfortably encroaches on an early CLIP-type plateau (Duarte
Fig. 7. 40 Ar/39 Ar spectrum of whole rock and hornblende of dyke PB-2 of Pedro Brand Section.
MSWD = 2.4
Probability = 0.034
Complex), which in turn intruded into a Pacific-type ocean floor (Loma La Monja), overlain by El Aguacate Chert (EscuderViruete et al., 2008). Hence, the Tireo Group stratigraphically rests on a Pacific composite basement that has drifted half way between the Americas during Late Cretaceous (Flores, 2009) and came within the reach of an arc (Caribbean Island Arc, Escuder-Viruete et al., 2008). In Central America, CLIP-like plateaus continue to form prior to and during the Coniacian, and associated ribbon-radiolarites contain radiolarian assemblages very similar to the ones described here: 1. Red hematitic radiolarites, interbedded with the latest phases of a CLIP-like plateau in the Pacific Nicoya Complex in Costa Rica (Denyer and Baumgartner, 2006; Baumgartner et al., 2008). 2. The Azuero Plateau in Panama, also considered to be part of the CLIP (Buchs et al., 2010) was dated by Kolarsky et al. (1995) with a similar radiolarian assemblage extracted from ribbon cherts (typical species among others: A. gallowayi, A. praegallowayi, H. polyhedra, P. universa, P. venadoensis). Similar Late Cretaceous radiolarian assemblages have been described from intermediate-arc-derived sediments of the Berrugate Fm, Manzanillo Terrane in Northern Costa Rica (Bandini et al., 2006; Andjic, 2011). Although this fact clearly indicates that arc-development and continued formation of CLIP-type plateaus are coeval, they did not form in the same area. In Costa Rica, Late Cretaceous ribbon-bedded radiolarites associated with youngest plateau intrusions and extrusions of the Nicoya Complex (Denyer and Baumgartner, 2006) are exotic with respect to coeval arc-derived sediments that formed along the trailing edge of the CLIP. In general, the juxtaposition of arc-type and CLIP-type terranes within the Caribbean Plate may be tectonic. Additional precision in radiolarian biochronology is required to solve the exact temporal/spatial relationships of CLIP-like, plume-related and arc-related terranes.
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
7.2. Relationship between the Tireo Group and the Siete Cabezas Formation The siliceous mudstones and cherts of the Tireo Group are clearly older than the youngest volcanic rocks of the Siete Cabezas Fm. The latter previously dated by 40 Ar–39 Ar on plagioclase as Maastrichtian (Sinton et al., 1998). The 40 Ar–39 Ar ages for the intrusion of the basaltic dyke in the Pedro Brand section studied here is 75.1 ± 1.1 Ma, which consistently indicates that the sequence is older than late Campanian. In addidion, our radiolarian assemblages differ from those dated as late Maastrichtian in the Caribbean Colombia Basin (Aumond et al., 2009; Kochhann et al., 2013). The tectonostragraphically overlying Siete Cabezas Fm was interpreted by Escuder-Viruete et al. (2008) as an E-MORBtype plateau that formed in a back-arc basin, but was influenced by Caribbean mantle plume rather than supra-subduction mantle. In this context, the Pedro Brand section is stratigraphically underlying the Campanian–Maastrichtian Caribbean plumerelated rocks of the Siete Cabezas and Pelona-Pico Duarte Fms. The Tireo Group records an episode of pelagic to hemipelagic, intermediate to acidic arc-derived sedimentation previous to the youngest magmatic phase of the CLIP. The basaltic dyke crosscutting the Pedro Brand section has a plume-related geochemistry, very similar to the Siete Cabezas and Pico Duarte basalts. It corresponds also in terms of its Late Campanian age. We interpret this dyke as a small feeder dyke of the overlying Siete Cabezas or Pico Duarte CLIP-related basalts. This interpretation would confirm the generally stratigraphic superposition of units in the Jarabacoa block. However, we cannot exclude a tectonic emplacement of the Siete Cabezas Fm. onto the Tireo Group, especially if we take into account that the oldest 40 Ar–39 Ar ages determined in the Siete Cabezas Fm. date from Aptian–Albian and Cenomanian–Turonian. 8. Conclusions The Duarte Complex, the Tireo Group, the Arroyo Bermejo, Siete Cabezas and the Pelona-Pico Duarte Fms. most probably represent a stratigraphic suite that composes the Jarabacoa block of Central Hispaniola. It represents one of the most complete sequences of original Pacific Ocean crust and overlying CLIP and arc-related formations in the Caribbean basin. Diverse radiolarian assemblages of the Tireo Group, probably assignable to the El Yujo Member indicate a Turonian–Coniacian age in the section of Pedro Brand, highlighted by the co-ocurrence of many species treated in this chapter. Similar assemblages are typically found in coeval deposits of Pacific and Tethyan origin. The present state of radiolarian biozonations of Late Cretaceous does not permit a more precise age assignment for the studied assemblage. Turonian–Coniacian pelagic–hemipelagicThe sedimentation of the Pedro Brand section records the distant influence of the “Late Cretaceous Caribbean Arc” and forms part of the arc-type suites of the Tireo Group intercalated between the Caribbean Plume-related magmatism in the Jarabacoa block of Central Hispaniola. In this sense, the Tireo
103
Group (Yujo Member) records an episode of pelagic to distal arc-derived sedimentation previous to the youngest Campanian magmatic phase of the CLIP. The 40 Ar–39 Ar age of the basaltic dyke in the Pedro Brand section is 75.1 ± 1.1 Ma, indicating that the host sediments are older than late Campanian. The dyke basalts revealed a transitional to alkaline OIB geochemical signature, similar to those of the Pelona-Pico Duarte basalts. The basalt is probably a feeder dyke of the middle Campanian to Maastrichtian plume-related OIB magmatism at the top of the Jarabocoa block. Disclosure of interest The authors declare that they have no conflicts of interest concerning this article. Acknowledgements The authors are grateful to L.G. Bragina from Geological Institute, Russian Academy of Sciences (Russia) and L. O’Dogherty, Universidad de Cádiz (Spain) who have kindly accepted to review this study and for their invaluable comments. Thanks to Dr. Paulian Dumitrica for comments and suggestions with the radiolarians classification. We are thankful to Pierre Vonlanthen (University of Lausanne) for his assistance during SEM and laboratory works. This research was supported by Swiss National Science Foundation project No.200021-134873 and 200020-143894 granted to P. O. Baumgartner. Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.revmic. 2015.02.002. References Andjic, G., 2011. Sédimentation pélagique et détritique d’arc du Crétacé supérieur dans le nord-ouest du Costa Rica (Côte Pacifique, sud de l’Amerique Centrale). Mémoire de Master en Géologie. Université de Lausanne, Suisse, pp. 103 (unpublished). Aumond, G.N., Kochhann, K.G.D., Florisbal, L.S., Baecker-Fauth, S., Bergue, C.T., Fauth, G., 2009. Maastrichtian–Early Danian radiolarians and Ostracodes from ODP Site 1001B, Caribbean Sea. Revista Brasileira de Paleontologia 12 (3), 195–210. B˛ak, M., 1996. Cretaceous Radiolaria from the Niedzica Succession, Pieniny Klippen Belt, Polish Carpathians. Acta Palaeontologica Polonica 41, 91–110. Bandini, A.N., Baumgartner, P.O., Caron, M., 2006. Turonian Radiolarians from Karnezeika, Argolis Peninsula, Peloponnesus (Greece). Eclogae Geologicae Helvetiae 99 (1), 1–20. Bandini, A.N., Flores, K., Baumgartner, P.O., Jackett, S.-J., Denyer, P., 2008. Late Cretaceous and Paleogene Radiolaria from the Nicoya Peninsula, Costa Rica: a tectonostratigraphic application. Stratigraphy 5 (1), 3–21. Baumgartner, P.O., 1980. Late Jurassic Hagiastridae and Patulibracchiidae (Radiolaria) from the Argolis Peninsula (Peleponnescus, Greece). Micropaleontology 26 (3), 274–322.
104
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Baumgartner, P.O., Flores, K., Bandini, A.N., Girault, F., Cruz, D., 2008. Late Triassic to Cretaceous Radiolaria from Nicaragua and Northern Costa Rica. The Mesquito Oceanic terrane. Ophioliti 33, 1–19. Baumgartner, P.O., 2013. Mesozoic radiolarites-accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology 60, 292–318. Bowin, C., 1975. The geology of Hispaniola. In: Nairn, A., Stehli, F. (Eds.), The Ocean Basins and Margins. Volume Plenum Press, New York, pp. 501–552. Bragina, L.G., Bragin, N.Yu., 1996. Stratigraphy and Radiolarians from the Type Section of Perapedhi Formation (Upper Cretaceous of Cyprus). Stratigraphy and Geological Correlation 4 (3), 246–253. Bragina, L.G., 2004. Cenomanian–Turonian Radiolarians of Northern Turkey and the Crimean Mountains. Paleontological Journal 38 (4), 325–456. Bragina, L.G., Bragin, N., 2006. Stratigraphy and Radiolarians of Upper Cretaceous Sedimentary cover of the Arakapas Ophiolite Massif (Cyprus). Stratigraphy and Geological Correlation 14 (5), 507–523. Bragina, L.G., 2012. Radiolarian biostratigraphy of the Perapedhi Formation (Cyprus): implications for the geological evolution of the Troodos Ophiolite. Bulletin de la Société géologique de France 183 (4), 343–348. Bragina, L.G., 2014. New radiolarian species from the Upper Cretaceous sections of the Crimean Mountains (Ukraine). Paleontological Journal 48 (1), 7–16. Buchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner-Mora, C., Ulianov, A., 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: insights from the Golfo Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophysics, Geosystems 11, 1–35. Campbell, A.S., Clark, B.L., 1944. Radiolaria from Upper Cretaceous of Middle California. Geological Society of America Special Paper 57, 1–61. De Wever, P., Bourdillon-de Grissac, C., Beurrier, M., 1988. Radiolaires Sénoniens de la Nappe de Samail (Oman) Senonian Radiolarians from Samail Nappe (Oman). Revue de Micropaléontologie 31 (3), 166–179. De Wever, P., Dumitrica, P., Caulet, J.P., Nigrini, C., Caridroit, M., 2001. Radiolarians in the sedimentary record. Gordon and Breach Science Publication, Amsterdan, pp. 533. Deflandre, G., 1953. Radiolaires fossiles. In: Grasse, P.P. (Ed.), Traité de Zoologie 1, 2. Masson, Paris, pp. 389–436. Denyer, P., Baumgartner, P.O., 2006. Emplacement of Jurassic-Lower Cretaceous radiolarites of the Nicoya Complex (Costa Rica). Geologica Acta 4 (1–2), 203–218. Donnelly, T., Beets, W., Carr, D., Jackson, M.J., Klaver, T., Lewis, G., Maury, J., Schellenkens, R., Smith, H., Wadge, A.L., Westercamp, G.D., 1990. History and tectonic setting of Caribbean magmatism. In: Dengo, G., Case, J.E. (Eds.), The geology of North America, The Caribbean Region. Geological Society of America, pp. 339–374 (Chapter 13). Draper, G., Lewis, J.F., 1991. Metamorphic belts in Central Espa˜nola. In: Mann, P., Draper, G., Lewis, J.F. (Eds.), Geologic and Tectonic Development of the North America – Caribbean Plate Boundary in Espa˜nola, 262. Geological Society of America Special Paper, pp. 29–46. Dumitrica, P., 1970. Cryptocephalic and cryptothoracic Nassellaria in sorne Mesozoic deposits of Romania. Revue Roumaine de Geologie, Geophysique et Geographie, seoie Geologie 14 (1), 45–124. Dumitrica, P., 1975. Cenomanian Radiolaria at Podul Dimbovitei. Micropaleontological guide to the Mesozoic and Tertiary of the Romanian Carpathians. In: 14th European Micropaleontological Colloquium, Romania, Institute of Geology, Geophysics, Bucarest, pp. 87–89. Dumitrica, P., 1995. Upper Jurassic and Lower Cretaceous radiolarians at Svinita (Romania). In: Baumgartner, P.O., O’Dogherty, L., Gorican, S. (Eds.), Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: occurrences, systematics, biochronology. Mémoires de Géologie, Lausanne, Switzerland, pp. 897–905. Duncan, R., Hargraves, R.B., 1984. Plate Tectonic evolution of the Caribbean region in the mantle reference frame. In: Bonini, W., Hargraves, R., Shagam, R. (Eds.), The Caribbean-South American Plate Boundary and Regional Tectonics, 162. Geological Society of America Memoir, pp. 81–93. Ehrenberg, C.G., 1838. Über die Bildung der Krei-defelsen und des Kreidemergels durch unsichtbare Organismen. Abhandlungen der königlichen preussichen Akademie der Wissenschaften zu Berlin, 59–147.
Ehrenberg, C.G., 1847. Über die mikroskopischen kieselschaligen Polycystinen als mächtige Gebirgsmasse von Barbados und über das Verhältniss deraus mehr als 300 neuen Arten bestehenden ganz eigenthum- lichen Formengruppe jener Felsmasse zu den jetzt lebenden Th ieren und zur Kreidebildung Eine neue Anregung zur Erforschung des Erdlebens. Bericht der königlichen preussichen Akademie der Wissenschaften zu Berlin, 40–60. Ehrenberg, C.G., 1854. Die systematische Charakteristik del neuen mikroskopischen Organismen des tiefen atlantischen Oceans. Konigliche Preussische Akademie de Wissenschaften zu Berlin, 236–250. Ehrenberg, C.G., 1875. Fortsetzung der mikrogeologischen Studien als Gesammt-Uebersichtder mikroskopischen Palaontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rucksicht auf den Polycystinen-Mergel von Barbados. Konigliche Akademie der Wissenschaften zu Berlin, Abhandlungen, 12–25. Empson-Morin, K., 1981. Campanian Radiolaria from DSDP Site 313, MidPacific Mountains. Micropaleontology 27 (3), 249–292. Erbacher, J., 1998. Mid-Cretaceous Radiolarians from the Eastern Equatorial Atlantic and their paleoceanography. In: Mascle, J., Lohmann, G.P., Moullade, M. (Eds.), Proc. ODP, Sci. Results 159, College Station. , pp. 363–373. Escuder-Viruete, J., Pérez-Estaún, A., Contreras, F., Joubert, M., Weis, D., Ullrich, T., Spadea, P., 2007a. Plume mantle source heterogeneity through time: insights from the Duarte Complex, Central Hispaniola. Journal of Geophysical Research Solid Earth 112, B04203. Escuder-Viruete, J., Contreras, F., Joubert, M., Urien, P., Stein, G., Weis, D., Pérez-Estaún, A., 2007b. Tectónica y geoquímica de la Formación Amina: registro del arco isla caribe˜no primitivo en la Cordillera Central, República Dominicana. Boletín Geológico y Minero 118 (2), 221–242. Escuder-Viruete, J., Contreras, F., Stein, G., Urien, P., Joubert, M., Pérez-Estaún, A., Friedman, R., Ullrich, T., 2007c. Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: record of a major change in the Caribbean island arc magma sources. Lithos 99, 151–177. Escuder-Viruete, J., Joubert, M., Urien, P., Friedman, R., Weis, D., Ullrich, T., Pérez-Estaún, A., 2008. Caribbean island-arc rifting and back-arc basin development in the Late Cretaceous: geochemical, isotopic and geochronological evidence from Central Hispaniola. Lithos 104, 378–404. Escuder-Viruete, J., Pérez-Estaún, A., Weis, D., 2009. Geochemical constraints on the origin of the Late Jurassic proto-Caribbean oceanic crust in Hispaniola. International Journal of Earth Sciences 98 (2), 407–425. Escuder-Viruete, J., Pérez-Estaún, A., Joubert, M., Weis, D., 2011. The PelonaPico Duarte basalts Formation. Central Hispaniola. An on-land section of Late Cretaceous volcanism related to the Caribbean large-igneous province. Geologica Acta 9 (3–4), 1–22. Flores, K., (Thèse de doctorat, unpublished) 2009. Mesozoic Oceanic Terranes of Southern Central America-Geology, Geochemistry and Geodynamics. Université de Lausanne. Foreman, H.P., 1966. Two Cretaceous radiolarian genera. Micropaleontology 12 (3), 355–359. Foreman, H.P., 1971. Cretaceous Radiolaria, Leg 7, DSDP. In: Winterer, E.L., Riedel, W.R. (Eds.), Initial Reports of the Deep Sea Drilling Project, 7, pp. 1673–1693. Foreman, H.P., 1973. Radiolaria of Leg 10 with systematics and ranges for the families Amphipyndacidae, Artostrobiidae, and Theoperidae. In: Worzel, J.L., Bryant, W. (Eds.), Initial Reports of the Deep Sea Drilling Project, Washington 10, 407–474. Foreman, H.P., 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32. In: Larson, R.L. (Ed.), Initial Reports of the Deep Sea Drilling Project 32, Hakodate, Japan to Honolulu, Hawaii, 1973, Washington. , pp. 579–676. Foreman, H.P., 1977. Mesozoic Radiolaria from the Atlantic Basin and its Borderlands. In: Swain, F. (Ed.), Stratigraphic Micropaleontology of Atlantic Basin and Borderlands. Elsevier Scientific Publishing Company, Amsterdam, pp. 305–313. Garg, R., Jain, K., 1979. Polycystine Radiolaria from Phosphatic nodules of the Uttatur Formation, South India, Part-1, Nassellaria. Biological Memoirs 3 (2), 131–175.
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106 Gherasi, N., Muresan, M., Lupu, M., Stancu, J., Savu, H., 1968. Note explicative de la carte géologique échelle 1:200000 L-34XXIII Deva. In: Comité d’État pour la géologie, Bucarest. Greene, A.R., Scoates, J.S., Weis, D., Nixon, G.T., Kieffer, B., 2009. Melting history and magmatic evolution of basalts and and picrites from the accreted Wrangellia oceanic plateau on Vancouver Island, Canada. Journal of Petrology 50, 467–505. Guex, J., 1991. Biochronological correlations. Springer Verlag, Berlin, pp. 250. Haeckel, E., 1862. Die Radiolarien (Rhizopoda Radiaria). Eine monographie, Reimer Berlin, pp. 572. Haeckel, E., 1881. Entwurf eines Radiolarien-Systems auf Grund von Studien der ChallengerRadiolarien (Basis for a radiolarian classification from the study of Radiolaria of the Challenger collection). Jenaische Zeitschrift für Naturwissenschaft 15, 418–472. Hastie, A.R., Kerr, A.C., Mitchell, S.F., Millar, I.L., 2008. Geochemistry and petrogenesis of Cretaceous oceanic plateau lavas in eastern Jamaica. Lithos 101, 323–343. Hauff, F., Hoernle, K., Tilton, G., Graham, D.W., Kerr, A.C., 2000. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean large igneous province. Earth and Planetary Science Letter 174, 247–263. Hoernle, K., Van der Bogaard, P., Werner, R., Lissinna, B., Hauff, V., Alvarado, G., Garbe-Schönberg, D., 2002. Missing history (16–71 Ma) of the Galapagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology 30, 795–798. Hoernle, K., Hauff, F., Van den Bogaard, P., 2004. 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology 32, 697–700. Jolly, W.T., Schellekens, J.H., Dickin, A.P., 2007. High-Mg andesites and related lavas from southwestern Puerto Rico (Greater Antilles Island Arc): petrogenetic links with emplacement of the Caribbean mantle plume. Lithos 98, 1–26. Kerr, A.C., Tarney, J., Marriner, G.F., Nivia, A., Saunders, A.D., 1997. The Caribbean–Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In: Mahoney, J.J., Coffin, M.F. (Eds.), Large Igneous provinces. AGU, Washington D.C., pp. 123–144. Kerr, A.C., Tarney, J., Kempton, P.D., Spadea, P., Nivia, A., Marriner, G.F., Duncan, R.A., 2002. Pervasive mantle plume head heterogeneity: evidence from the late Cretaceous Caribbean–Colombian oceanic plateau. Journal of Geophysical Research 107, B7. Kerr, A.C., 2003. Oceanic plateaus. In: Carlson, R.W. (Ed.), Treatise on geochemistry. The mantle and core, 2. Elsevier, Amsterdam, pp. 537–565. Kochhann, K., Baecker-Fauth, S., Fauth, G., 2013. Late Maastrichtian Radiolaria from ODP Leg 165 Site 999B, Colombian Basin. Geodiversitas 35, 5–20. Kolarsky, R.A., Mann, P., Monechi, S., Meyerhoff-Hull, D., Pessagno, E.A., 1995. Geological Society of America Special Paper, 295., pp. 159–200. Kozur, H., Mostler, H., 1978. Beitrage zur Erforschung der mesozoischen Radiolarien Teil II: Oberfamilie Trematodiscacea Haeckel, 1862 emend. und Beschreibung ihrer triassischen Vertreter. Geologie und Paläontologie Mitteilungen Innsbruck 8, 123–182. Kozur, H., Mostler, H., 1982. Entactinaria subordo nov. a new radiolarian suborder. Geol. Paleontol. Mitt. Innsbruck 11 (12), 399–414. Lapierre, H., Dupui, V., Mercier de Lépinay, B., Tardy, M., Ruiz, J., Maury, R.C., Hernandez, J., Loubert, M., 1997. Is the Lower Duarte Complex (Hispa˜niola) a remnant of the Caribbean plume generated oceanic plateau? Journal of Geology 105, 111–120. Lapierre, H., Dupuis, V., Mercier de Lépinay, B., Bosch, D., Monie, P., Tardy, M., Maury, R.C., Hernandez, J., Polve, M., Yeghicheyan, D., Cotten, J., 1999. Late Jurassic oceanic crust and Upper Cretaceous Caribbean plateau picritic basalts exposed in the Duarte igneous complex, Hispaniola. Journal of Geology 107, 193–207. Lapierre, H., Bosch, D., Dupuis, V., Polvé, M., Maury, R., Hernandez, J., Monié, P., Yeghicheyan, D., Jaillard, E., Tardy, M., Mercier de Lépinay, B., Mamberti, M., Desmet, A., Keller, F., Senebier, F., 2000. Multiple plume events in the genesis of the peri-Caribbean Cretaceous oceanic plateau province. Journal of Geophysical Research 105, 8403–8421. Lewis, J.F., 1980. Resume of the geology of Hispaniola. In: Field guide table 9th Caribean Geological Conference, Santo Domingo, Dominican Republic, Amigo del Morgan Publisher, pp. 5–31.
105
Lewis, J.F., Jiménez, J.G., 1991. Duarte Complex in the La Vega-JarabacoaJánico Area, central Hispaniola: Geological and geochemical features of the sea floor during the early stages of arc evolution, in Geologic and Tectonic Development of the North America-Caribbean Plate Boundary in Hispaniola. In: Mann, P., Draper, G., Lewis, J. (Eds.), Geological Society of America Special Paper, 262, pp. 115–142. Lewis, J.F., Amarante, A., Bloise, G., Jimenez, J.G., Dominguez, J., 1991. Lithology and stratigraphy of Cretaceous rocks volcanic and volcaniclastic rocks of the Tireo Group, Dominican Republic and correlations with the Massif du Nord in Haiti. In: Mann, P., Draper, G., Lewis, J.F. (Eds.), Geologic and tectonic development of the North America-Caribbean plate boundary in Hispaniola, 262. Geological Society of America Special Paper, pp. 143–163. Lewis, J.F., Escuder-Viruete, J., Hernaiz Huerta, P.P., Gutiérrez, G., Draper, G., 2002. Subdivisión Geoquímica del Arco Isla Circum-Caribe˜no, Cordillera Central Dominicana: implicaciones para la formación, acreción y crecimiento cortical en un ambiente intraoceánico. Acta Geológica Hispánica 37, 81–122. Lipman, R., 1969. A new Genus and new species of Eocene Radiolarian in the USSR. Biostratigraphic Collection of Articles 4 (130), 182–202. Mercier de Lépinay, B., (Thèse d’État, unpublished) 1987. L’évolution géologique de la bordure nord-caraïbe : L’exemple de la transversale del’île d’Hispaniola (Grandes Antilles). Université Pierre et Marie Curie, pp. 366. Montgomery, H., Pessagno, E.A., Pindell, J., 1994a. A 195 Ma Terrane in a 165 Ma Sea: Pacific origin of the Caribbean Plate. GSA Today 4 (1), 1–6. Montgomery, H., Pessagno, E.A., Lewis, J.F., Schellekens, J., 1994b. Paleogeography of Jurassic fragments in the Caribbean. Tectonics 13, 725–732. Montgomery, H., Pessagno, E.A., 1999. Cretaceous microfaunas of the Blue mountains, Jamaica, and of the Northern and Central Basement Complexes of Hispaniola. Caribbean. In: Mann, P. (Ed.), Caribbean Basins. Sedimentary Basins of the Word 4 (10), 237–246. Müller, J., 1858. Uber die Thallassicollen, Polycystinen und Acanthometren des Mittelmeeres. Konigliche Preussische Akademie der Wissenchatfen zu Berlin. Abhandlungen, 1–62. Nakaseko, K., Nishimura, A., 1981. Upper Jurassic and Cretaceous Radiolaria from the Shimanto Group in Southwest Japan. Sci. Rep., College gen. Educ. Osaka Univ. 3012, 133–203. O’Dogherty, L., 1994. Biochronology and Palaeontology of Mid-Cretaceous radiolarians from Northern Apennines (Italy) and beltic Cordillera (Spain). Mémoires de Géologie (Lausanne) 21, 1–415. O’Dogherty, L., Carter, E., Dumitrica, P., Gorican, S., De Wever, P., Bandini, A., Baumgartner, P., Matsouka, T., 2009. Catalogue of Mesozoic radiolarian genera. Part 2: Jurassic–Cretaceous. Geodiversitas 31 (2), 271–356. Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14–48. Pessagno, E.A., 1969. The Neosciadiocapsidae, a new family of Upper Cretaceous Radiolaria. Bulletins of American Paleontology 56 (253), 377–439. Pessagno, E.A., 1971. Jurassic and Cretaceous Hagiastridae from the BlakeBahama Basin (Site 5A, JOIDES Leg 1) and the Great Valley Sequence, California Coast Ranges. Bulletins of American Paleontology 60 (264), 5–83. Pessagno, E.A., 1972. Cretaceous Radiolaria. Part I: The Phaseliformidae, new family, and other Spongodiscacea from the Upper Cretaceous portion of the Great Valley Sequence, part II; Pseudoaulophacidae Riedel from the Cretaceous of California and the B1ake-Bahama Basin (JOIDES leg I). Bulletins of American Paleontology 61 (270), 269–328. Pessagno, E.A., Newport, L.R., 1972. A technique for extracting Radiolaria from radiolarian cherts. Micropaleontology 18 (2), 231–234. Pessagno, E.A., 1973. Upper Cretaceous Spumellariina from the Great Valley Sequence, California Coast Ranges. Bulletins of American Paleontology 63 (276), 49–102. Pessagno, E.A., 1976. Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley Sequence, California Coast Ranges. Micropaleontology Special Publication 2, 1–95. Pessagno, E.A., 1977. Lower Cretaceous radiolarian biostratigraphy of the Great Valley Sequence and Franciscan Complex, California Coast Ranges. Cushman Foundation for Foraminiferal Research Special Publication 15, 1–87.
106
M.I. Sandoval et al. / Revue de micropaléontologie 58 (2015) 85–106
Pessagno, E.A., Six, W.M., Yang, Q., 1989. The Xiphostylidae Haeckel and Parvivaccidae, n. fam, (Radiolaria) from the North American Jurassic. Micropaleontology 35 (3), 193–255. Pindell, J.L., Kennan, L., Maresch, W.V., Stanek, K.P., Draper, G., Higgs, R., 2005. Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: tectonic controls on basin development in proto-Caribbean margins. In: Ave Lallemant, H.G., Sisson, V.B. (Eds.), Caribbean-South American plate interactions, Venezuela, 394. Geological Society of America Special Paper, pp. 7–52. Popova-Goll, I., Vishnevskaya, V., Baumgartner, P.O., 2005. Upper Cretaceous (Santonian–Campanian) radiolarians from Voronesh Anticline, southwestern. Micropaleontology 51 (1), 1–37. Révillon, S., Hallot, E., Arndt, N., Chauvel, C., Duncan, R.A., 2000. A complex history for the Caribbean plateau: petrology, geochemistry, and geochronology of the Beata Ridge, South Hispaniola. Journal of Geology 108, 641–661. Riedel, W.R., 1967. Subclass Radiolaria. In: Harland, W.B., Holland, C.H., House, M.R., Hughes, M.F., Reynolds, A.B., Rudwick, M.J.S., Satterthwaite, G.E., Tarlo, L.B.H., Willey, E.C. (Eds.), The fossil record. A symposium with documentation, 120. Geological Society of London, pp. 305–368. Riedel, W.R., 1971. Systematic classification of polycystine Radiolaria. In: Funnel, B.M., Riedel, W.R. (Eds.), The Micropaleontology of Oceans. Cambridge University Press, Cambridge, pp. 649–660. Riedel, W.R., Sanfilippo, A., 1974. Radiolaria from the southern Indian Ocean, DSDP Leg 26. In: Davies, T.A., Luyendyk, B.P. (Eds.), Initial Reports of the Deep Sea Drilling Project, 26. U.S. Government Printing Office, Washington D.C, pp. 771–814. Robin, C., Gorican, S., Guillocheau, F., Razin, P., Dromart, G., Mosaffa, H., 2010. Mesozoic deep-water carbonate deposits from the southern Tethyan passive margin in Iran (Pichakun nappes, Neyriz area): biostratigraphy, facies sedimentology and sequence stratigraphy. In: Leturmy, P., Robin, C. (Eds.), Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic, 330. Geological Society of London Special Publications, pp. 179–210. Rüst, D., 1885. Beitrage zur kenntniss der fossilen Radiolarien aus Gesteinen des Jura. Palaeontographica 3l (3), 269–321. Sanfilippo, A., Riedel, W.R., 1985. Cretaceous Radiolaria. In: Bolli, H.M., Sauders, J.B., Perch-Nielsen, K. (Eds.), Plankton stratigraphy. Cambridge University Press, Cambridge, pp. 631–712. Schaaf, A., 1985. Un nouveau canevas biochronologique du Crétacé inférieur et moy, les biozones à radiolaires. Sci. Géol. Bull. (Strasbourg) 38 (3,), 227–269. Sen, Hickey-Vargas, G., Waggoner, D.G., Maurasse, F.F., 1988. Geochemistry of basalts from the Dumisseau Formation, Southern Haiti: Implications for
the origin of the Caribbean Sea crust. Earth Planetary Science Letters 87, 423–437. Sinton, C.W., Duncan, R.A., Storey, M., Lewis, J., Estrada, J.J., 1998. An oceanic and flood basalt province within the Caribbean plate. Earth Planetary Science Letters 155, 221–235. Squinabol, S., 1903. Radiolarie fossile di Teolo (Euganei). Atti e Memorie della reale Accademie di Scienze. Lettere ed Arti in Padova, nouva serie 19, 127–130. Squinabol, S., 1904. Radiolarie cretacee degli Euganei. Atti e memorie dell’Accademia di scienze, lettere ed arti. Padova. nouva serie 20, 171–244. Squinabol, S., 1914. Contributo alia conoscenza dei Radiolarii fossili del Veneto. Appendice, Di un genera di Radiolari caratteristico del Secondario. Mem. 1st. geol. R. Univ. Padova 2, 249–306. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, 42. Geological Society of London Special Publication, pp. 313–345. Project SYSMIN, 1998. Mapa Geológico de la Hoja 1:50 000 no 6171-I (Los Alcarrizos). Cartografía Geológica de la República Dominicana. Cooperación BGR-DGM. Dirección General de Minería, Santo Domingo. Taketani, Y., 1982. Cretaceous radiolarian biostratigraphy of the Urakawaand Obira areas, Hokkaido. Science Reports of the Tohoku University 52 (1–2), 1–75. Thurow, J., 1988. Cretaceous radiolarians of the North Atlantic Ocean; ODP Leg 103 (sites 638, 640, and 641) and DSDP legs 93 (Site 603) and 47B (Site 398). In: Boillot, G., Winterer, E.L. (Eds.), Proceedings of the Ocean Drilling Program, Scientific results (Galicia margin; covering Leg 103 of the cruises of the drilling vessel JOIDES Resolution, Ponta Delgada, Azores, to Bremerhaven, Germany, 25 April 1985–19 June 1985). Texas A and M. University, Ocean Drilling Program, College Station, TX, pp. 379–418. Vishnevskaya, V., 1991. New representatives of Mesozoic radiolarian: in Paleontological and Stratigraphical Studies of the Phanerozoic in the Far Eastern Region. Collected Proceedings, 89–99. Vishnevskaya, V.S., De Wever, P., 1998. Upper Cretaceous Radiolaria from the Russian platform (Moscow basin). Revue de Micropaléontologie 41, 235–265. Vishnevskaya, V.S., 2001. Jurassic to Cretaceous radiolarian biostratigraphy of Russia. GEOS, Moscow, pp. 376. White, M.P., 1928. Some index foraminifera of the Tampico embayment area of Mexico. Jounal of Paleontology 2 (4), 280–317. Yang, Q., 1993. Taxonomic Studies of Upper Jurassic (Tithonian) Radiolaria from the Taman Formation, East–Central Mexico. Paleoworld 3, 1–164. Zittel, K.A., 1876. Ueber einige fossile Radiolarien aus der norddeutschen Kreiden. Zeitschrift der deutschen geologischen Gesellschaft 28, 75–87.