Least Square Solution of Non Linear Problems in Fluid Dynamics

Least Square Solution of Non Linear Problems in Fluid Dynamics

G.M. de La Penha. L.A. Medeiros (eds.) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations @North-Ho...

1MB Sizes 0 Downloads 31 Views

G.M. de La Penha. L.A. Medeiros (eds.) Contemporary Developments i n Continuum Mechanics and P a r t i a l D i f f e r e n t i a l Equations @North-Holland P u b l i s h i n g Company (1978)

LEA.I;T SQUARE SOLUTION O F NON L I N E A R PROBLEMS

I N F L U I D DYNAMICS

R.

GLOWINSKI* and

Universitb de P a r i s Iria-Laboria,

0.

PIRONNEAU

6 and

Iria-Laboria, 78150 le Chesnay

France

France

1. I n t r o d u c t i o n . Many problems i n Mathematical P h y s i c s a r e of

the

following forms, e i t h e r A(u)u = f,

+ B(u)

Au

In

(l.l), A ( v )

i s in (1.2)

v

i s for

=

f.

g i v e n a l_i _ n e_a_ r . o p e r a t o r and

B

a non l i n___ e a r operator.

This suggests obviously the following algorithms: F o r s o l v i n g (1.1)

(1.3)

uo

then f o r

n

2

0

we o b t a i n

u n+l

given from

u

n

by

I

A(un)un+' = f ,

For s o l v i n g ( 1 . 2 )

we may use an a l g o r i t h m s i m i l a r t o

(1.5)

(1.4)1 i s r e p l a c e d by

*

except t h a t

(1.3)-

~.

V i s i t i n g P r o f e s s o r IJF'RJ,

R i o d e J a n e i r o , July-August

1977.

172

R. GLOWINSKI and 0. P I R O N N E A U

There are some applications in which (l.3), (resp. ( 1 . 3 ) , ( 1 . 4 ) 2 , (resp. (1.2)).

-

(1.5))

( 1 . 4 ) 1’ (1.5)

converges to a solution o f (1.1)

Unfortunately these are important applications

mathematically modelled by equations like (1.1) or (1.2)

-

f o r which the above algorithms can not be used, therefore one

has to use more sophisticated methods.

In some cases (cf., e.g., Glowinski-Marocco Ell) these problems may be reduced to a saddle-point problem by introduc-. ~

ing an artificia-1 constraint and the corresponding Lagran* multiplier. - __ -..~

In some other situation such an approach is not suitable (by lack o f monotonicity usually) and it may be convenient to use aleast square method.

A typical least square formulation o f problem (1.1) is Min J(v)

(1.6)

V

where

(1.7) In

(1.7),

]I*]]

denotes a suitable norm (for more details

about this last point, see Remark 1.2 below) and

J(v)

the

solution o f the linear problem

We obtain similarly a least square formulation of (1.2) by replacing (1.8)1 by

(1*8)2

Ay = f-B(v).

LEAST SQUARE S O L U T I O N O F NON L I N E A R PROBLEMS

Remark _ _ 1~ .1:

I t a p p e a r s c l e a r l y from t h e above r e l a t i o n s t h a t

(1.6), (l.7), s t r u c t u r e of

(l.7),

( 1 . 8 ) l and ( 1 . 6 ) ,

( l . 8 ) 2 have t h e

p t i m a l c o n t r o l problem i n which t h e c ontrol an o ._ ~~

variable

(i.e.

t h e independent v a r i a b l e i n t h e problem) i s

the s t a t e variable i s

y

and t h e c o-s t-f-u n-c.t_ i -o. n is -

v,

J.

T h i s p a r t i c u l a r s t r u c t u r e l e a d s v e r y n a t u r a l l y t o compute t h e derivative o f

111 , [ 2 ] )

J

v i a an a d j o i n t s t a t e e q u a t i o n ( s e e Lions

f o r t h e o p t i m a l c o n t r o l o f s y s t e m s m o d e l l e d by

p a r t i a l d i f f e r e n t i a l equations). T h i s k i n d o f methodology h a s b e e n a d v o c a t e d by Cea-Geymonat

[l] f o r s o l v i n g non monotone, non l i n e a r t w o - p o i n t b o u n d a r y v a l u e problems l i k e

1

(1.9)

+

-u”

cp(u) = f

over

10,1[

u ( 0 ) = u ( 1 ) = 0.

I n B e g i s - G l o w i n s k i [1] a s i m i l a r a p p r o a c h h a s b e e n u s e d f o r s o l v i n g f r e e boundary problems

l i k e those r e l o t e d t o flows o f

l i q u i d s i n porous media. I n a n u n p u b l i s h e d work Derviauc-Glowinski h a v e a l s o u s e d t h i s t y p e o f methods t o compute t h e maximal s o l u t i o n of

I

(1.10)

where

>

-u

= Xe

U

over

10,1[



u(0) = u ( 1 ) = 0

0.

In t h e above r e f e r e n c e s t h e o p t i m i z a t i o n i s a c h i e v e d u s i n g e s s e n t i a l l y -~ descent o r steepest descent algorithms. ~

~~

~~~

More

~~~~

r e c e n t l y G l o w i n s k i and P i r o n n e a u o b s e r v e d t h a t t h e u s e of a conjugate gradient algorithm,

t o achieve the minimization,

c a n d r a s t i c a l l y improve t h e s p e e d o f c o n v e r g e n c e ,

specially

17 4

R. GLOWINSKI and 0. PIRONNEAU

in the solution of some hard problems like those to be considered in the following sections.

J

Remark 1.2: The choice of a convenient cost function

is a

very important matter if one wishes to use the above rnethodology.

Let us mention some possibilities we have found very

attractive since they simplify the adjoint state equation and lead to good convergence properties.

In the case of the problem (1.1) assume that for A(v)

E e(V,V’)

dual space. if

A(v)

where

(

where

is an Hilbert space and

V

Assume also thak

A(v)

v

given, V’

is self-adjoint. .

is _ strongly - a natural choice for _ _ _ V-elliptic

,*)

denotes the cu-ality -~_ pairing ~ _ . _o _ f _V’

Similarly i f in (1.2),

A

and

its Then

J

is

V.

is strongly V-elliptic it is

convenient to use

In the following sections we shall see how the above principles can be applied to the numerical solution of two important problems i n Fluid Mechanics, namely: *

The transonic flow of an isentropic, compressible perfect ~

fluid. ’ Navier-Stokes equations for incompressible fluids.

Numerical results will be presented in order to illustrate the possibilities of the above methods.

To conclude this report some indication will be given on the minimization of non quadratic functionals by conjugate gradient algorithms.

LEAST S Q U A R E S O L U T I O N OF NON L I N E A R PRODLEMS

175

2. Numerical solution-of transonic flow problems. . __ ~

2.1

Generalities on transonic flows.

The theoretical and numerical studies of transonic flows for -_ perfect fluids have always been very important,

But these

problems have become even more important these last years in relation with the design and development of large subsonic aircrafts. These transonic problem are very difficult, theoretically and mumerically, for the following reasons: They are n o n linear. Shocks may exist in the flow. An Entropy Condition is needed, in a way o r another, to avoid non physical solutions. They are mixed problems i n the sense that they are el_l.ipt-icin the Eubsgsic_ part of the flow, LyEerbolic i n the supersonic part of the flow. From a theoretical point of view let us mention the work of Morawetz [l].

At the present moment the numerical methods

which are the more commonly used have originated from Murman-Cole [l]

and we shall mention B a u e r - G a r a b e d i a n - K o r n r l ] ,

Bauer-Garabedian-Korn,Jameson

11

,

Jameson [ 11 ,[ 21 ,[ 31 ,[ 41

and the bibliographies there i n (see also Hewitt-Illingworth and Co-editors [ 13 ) . These above numerical methods use the key idea of Murman and Cole which consists to use a finite difference scheme, centered i n the subsonic-part of the flow, kackward (in the direction of the flow) in the supersonic part.

The switching

1 76

R.

GLOWINSRI a n d 0 .

between t h e s e two-schemes

PIRONNEAU

i s a u t o m a t i c a l l y done v i a a

t r u n c a t i o n o p e r a t o r only a c t i v e i n the supersanic p a r t of flow ( s e e Jameson,

loc.

cit.,

f o r more d e t a i l s ) .

We s h a l l d e s c r i b e h e r e a d i f f e r e n t a p p r o a c h ,

which seems v e r y

c o n v e n i e n t f o r comput i n g f l o w s p a s t p r o f i l e s ,

or f l o w s i n n o z z l e s .

infinity,

the

subsonic a t

I n o u r method t h e t r a n s o n i c

f l o w problem i s f o r m u l a t e d a s a non l i n e a r l e a s t s q u a r e problem,

control w h i c h i s i n t u r n i n t e r p r e t e d a s a n o p t i m a l~-

p r o b l -e m .

Then f i n i t e e l e m e n t s a r e u s e d t o a p p r o x i m a t e t h e Since t h e e n t r o p y~-c o n d i t i o n i s f o r m u l a t e d by .____

above problems.

~

a l i_ n e_ ar _ ine q u a l i t y c~-o n s t . ra i n t , a c o n v e n i e n t method t o h a n d l e .

i t i s t o u s e p e n a l t y a n d / o r d u a l i t y methods ( u s i n g a n augmented l a g r a n g i a n i f p e n a l t y and d u a l i t y a r e co mb in ed ) . Duality techniques a r e not

c o n s i d e r e d i n t h i s r e p o r t and w e

r e f e r t o Glowinski-Pironneau [ d e s c r i p t i o n of

2.2 2.2.1

11,

Glowinski

[13 for a

them.

M a t h e m a t i c a l m o d e l s f o r t r a n s__ o n __ i c f.l_ o ws. . .. B..-a s i c a s s u m p t i o n s .

We a s s u m e t h a t t h e f l u i d u n d e r c o n s i d e r a t i o n i s p e r f e c t a n d compressible,

and t h a t t h e flow of

a n d i r r o t a t i o-n a l ( i . e . ,

potential).

-

such a f l u i d is isentropic These assumptions a r e n o t

t r u e i n g e n e r a l s i n c e t h r o u g h a s h o c k wave t h e r e i s a v a r i a t i o n of e n t r o p y , and a n i r r o t a t i o n a l f l o w becomes rotational

(i.e.

t h e v a l i d i t y of i n t h e c a s e of

t h e r e i s c r e a t i o n o f v o_ r t_ i c i_ ty).

Therefore

t h e model t o f o l l o w i s assumed t o b e c o r r e c t "weak s h o cks". -.

177

LEAST SQUARE SOLUTION O F N O N LINEAR PROBLEMS

I n t h e c a s e o f a f l o w s p a s t a s- h a_ r p~ p_r o_f ._ i l e w e s h a l l suppose t h a t t h e r e i s no wake b e h i n d

2.2.2

E--q u a -~ t i o n s of

the tr a- _ i l ~i n g edge.

t h e flow.

~

n

Let

be t h e domain o f

r

t h e f l o w and

i t s boundary;

then

we s h a l l assume t h a t t h e f l o w i s m o d e l l e d by

-

(2.1)

v-((1 -

,

1

, 2

y-1

where i n ( 2 . 1 ) .

- 0 -

C,

-

y

the flow v e l o c i t y ,

i s t h e c.r i t i c a l v e l o c i t y , ~~

i s t h e r. __ a t i o of

W e have *

09

i s the flow p otential, _____

(y = 1 - 4 f o r

specific heats _ _ I

4.

t o add t o ( 2 . 1 )

Boundary c o n d i t i o n s ( o f D i r i c h l e t a n d / o r

Neumann t y p e , f o r

instance), *

-

A K u t t a - J o u k o v-k y

condition i n the case of

a l i f t i n g body ( s e e L a n d a u - L i f c h i t z

the flow past

[ l , Sec.

46]),

An e n t r o p y c o n d i t i o_ n . i n o r d e r t o e l i m i n a t e t h e non p h y s i c a l .s o l u t i o n s of

(1.1); t h i s p o i n t

w i l l be d i s c u s s e d i n S e c .

2.2.3.

:

Remark 2 . 1 :

I t c a n h a p p e n t h a t on some p a r t of

0

have

and

ness; -

t o be g i v e n s _ i m_ u l t a n e o u s- __ ly t o i n s u r e unique-

i t is, f o r i n s t a n c e ,

of F i g .

2.1 i f

~~

t h e c a s e of

'4

g i v e n on

t h e divergent nozzle

the velocity a t the entrance i s supersonic.

T y p i c a l boundary c o n d i t i o n s a r e 5-n

t h e boundary,

r4, rl, r 2 .

If

@

g i v e n on

r l , Fg

and

the velocity a t the entrance

178 (i.e.

R.

I-,)

GLOWINSKI and 0. P I R O N N E A U

is subsonic we require ___ less boundary conditions.

Figure 2.1

Figure 2.2 Remark 2.2:

In the case o f t h e f l o w past a multibody profile

(like i n Fig. 2.2)

each

body requires a Kutta-Jourkowsky

condition.

2.2.3

Formulation of the entropy condition.

It follows f r o m Landau-Lifchitz [ l , ch.91 condition c a n be formulated as follows:

that the entropy

1 79

LEAST SQUARE SOLUTION OF NON LINEAR PROBLEMS

1 In the direction

I

-!

(2.2)

o f the flow, One- cannot have a - ___ ~~

subsonic-supersonic transition through

a_;t?ck.

F o r a one-dimensional . . flow, (2.2) implies ~

*<

2 d

(2.3)

dx

3-

2

+m,

is a measure bounded from_ above; _ ~ _ _weak (and more dx rigorous) formulation of (2.3) are: i.e.

-~

There exists a constant ~~

~

M,

such that-either -

where

(We recall that fJ

(R) =

{cp E Cm ( f i )

,

cp

has a compact support in

n] . )

In the case o f a t ~ oo r three dimensional flow we shall suppose that (2.2) can be formulated by

(2.9)

190

R.

GLOWINSKI a n d 0 . P I R O N N E A U

T h e n u m e r i c a l r e s u l t s o b t a i n e d f o r t__ wo and _ t r e_e -_ d i_ m e~n s_ i o_ n a_ l flows u s i n g d i s c r e t e analogous of above formulation Remark 2 2 :

(2.7) seanto justify the

of t h e entropy condition.

The c o n d i t i o n ( 2 . 7 )

i s a c t u a l l y a p a r t i c u l a r case

O f

(w)+ E LPP)

(2.10) where,

assuming t h a t

is a m a s_ u_ re, _e_

( ~ c p ) + = positive p a r t of

(2.11) Then

Acp

(2.7)

corresponds t o

f r o m a computational point

p =

+m;

~cp.

another useful choice i s ,

of view,

p=2

i.c.

(2.12)

To c o n c l u d e t h i s S e c .

2.2

a t t h e moment,

l e t u s mention t h a t ,

t h e t r a n s o n i c f l o w problem i s s t i l l open from a t h e o r e t i c a l ~

~~

of view, even i n t h e simpler c a s e of t h e so-called

point

s m a l l d i s t u r b a n c_e _ c c l u a t i o n ~~

details).

( s e e J a m e s o n [ 11 ,[

41

f o r more

T h i s l a c k o f e x i s t e n c e and u n i q u e n e s s r e s u l t s h a s

v e r y l i k e l y i t s c o u n t e r p a r t i n t h e n u m e r i c a l methodology.

2.3

L - east

s q u a r e f o r m u l a t i on. ~

~~

R edu5;ion _ _t o~ a n o p t i m a l -~ ~~

~

~

~~

c o n t r o l problem. If

w e s u p p o s e t h a t t h e d e n s i t y o f t h e f l u i d i s o n e when t h e

velocity is zero,

then the coefficient

a s the density of

the

(2.13)

fluid.

of

V@

i n (2.1)

We s h a l l u s e t h e n o t a t i o n 1

lvcpl

2 Y - l

)

.

appm

181

LEAST SQUARE SOLUTION OF NON L I N E A R PROBLEXS

The i d e a o f t h e method t o f o l l o h i s t o d ecoup_ le t h e _ density ~ and t h e p o t e n t i a l those described

4

potential

0

and

-

via a _ l e_a s -~ t s_ q u_ a r_ e~ f o_ rm u_ l a.t_____ i o_ n like _ _

@

To d o s o we i n t r o d u c e a new

1.

i n Sec.

-

the c -o .n t r o l potential ~

by m i n i m i z i n g a c o n v e n i e n t

least

square c o s t function.

W e may u s e f o r i n s t a n c e t h e f o l l o w i n g f o r m u l a t i o n formulations s e e Glowinski-Pironneau pironneau

5

and t r y t o r e c o u p l e

(for other

[ 2 1 , Gowinski-Periaux-

[ 11 )

(2.14) where

(2.15) i

In

(2.14

,

a

'' c o n v e n i e n t l y ''

p ep(x)) = 0

y =

that for a i r , appears t h a t

via the state

p l u s boundary c o n d i t i o n s f o r

t h e parameter

a convex s e t Since

5

i s a f u n c t i o n of

in

i n the

is either cho s e n

.

implies

1

y+1 2

(--)

Y-1

t r a n s o n i c range

=

1

= (Fl) --

,,/6 = 2 . 4 5 , =

(say

X

and

1 Y+1 2

I Vcp(x) 1

i f and o n l y i f

1.4

or

0

I-.

on

d,

is

and

C,

it

lVCpl

1.5

c*)

w e have

(2.16)

o

< 6 s p(cp(x)) s 1

I t f o l l o w s from ( 2 . 1 6 )

that

a.e.

on

0.

( 2 . 1 5 ) i s an e l l i p t i c p r o b l e m f o r

a p p r o p r i a t e boundary c o n d i t i o n s . l i f t i n g b o d i e s , Kutta-Joukowsky

I n t h e case of flows p a s t conditions are a l s o required

physical t o h a v e , w i t h t h e o t h e r b o u n d a r y c o n d i t i o n s , a -__ s o l u t i o n o f problem ( 2 . 1 5 )

(modulo a c o n s t a n t i f

Neumann c o n d i t i o n s on t h e b o u n d a r y ) .

one o n l y h a s

R.

182

2.4:

Remark

If

GLOWINSKI and 0 . P I R O N N E A U

i n t h e o r i g i n a l problem,

0

r,

be s i m u l t a n e o u s l y p r e s c r i b e d on some p a r t of approach,

5

w i t h t h e two p o t e n t i a l

and

'@ have t o an

and

a,

t h e above

i s very

convenient s i n c e t h e boundary c o n d i t i o n s can be s p l i t t e d b e t ween

@

4.

and

However i f

boundary c o n d i t i o n s f o r t a k e a c c o u n t of

0

one w i s h e s t o u s e t h e same and

4

i t i s always p o s s i b l e t o

t h e e x t r a boundary c o n d i t i o n s

(assumed t o be

(2.14) a

o f D i r i c h l e t t y p e ) by a d d i n g t o t h e c o s t f u n c t i o n I

quantity proportional t o e i t h e r

( I

' rd

15-@,1

(9-0,1

2

br,

or

'd (or t o a l i n e a r c o m b i n a t i o n o f b o t h ) , where

2

i s the part

of

on which one r e q u i r e s

A s i m i l a r i d e a i s used i n Begis-Glowinski

@Ird

=

rd

Od.

[l] t o s o l v e some

f r e e boundary p r o b l e m s . Remark 2.5: variant

To s t a t e t h e e n t r o p y c__ o n d-i t_i_ o n ( 2 . 7 )

4

( 2 . 1 2 ) ) we h a v e t h e c h o i c e between

(or its

and

F

(actud-

l y we can a l s o u s e t h e s e two p o t e n t i a l s ~ i m y l t a n e o u ~ l y ) I. f one u s e s

E

( r e s p . @ ) we have a c o n t r o l c o-n s t r a_i_n t

(resp.

a s t a t e c-onstr-int). Remark 2 . 6 :

W e observe t h a t for t h e c l a s s o f flows under

c o n s i d e r a t i o n we h a v e

T h i s o b s e r v a t i o n s u g g e s t s t h a t t h e convex

X

( 2 . 1 4 ) h a s t o be t a k e n a s a convex s u b s e t of

occuring i n

Wl'"(S2).

We

o b s e r v e a l s o t h a t t o s t a y i n t h e t r a n s o n i c r a n g e i t may b e convenient t o intr oduce t h e following c o n s t r a i n t s

or

183

LEAST SQUARE S O L U T I O N OF NON LINEAR PROBLEMS

(2.18) Actually the computations we have done prove that for a physically well-posed transonic problem it is not necessary ~~

to introduce

Remark

~

(2.17), (2.18).

2.7: If the transonic problem has a solution and if

X

is "large enough" then the least square problem has a solution such that the cost function is equal to zero.

This last

property gives us means to check the quality of the computed solution.

2.4

Finite element approximations. __

We assume that

0c

_. Three-dimensional calculations will

2

!R

be reparted i n a forthcoming paper.

2.4.1

Generalities.

The above control problem will be approximated by finite elements.

Compared to finite differences, finite elements

give us the possibility o f handling problems posed on rather complicated geometrical domains.

Moreover the variational . .~

framework of finite element formulations is very appropriate to the problem under consideration and to the methodology we use to solve it.

It will be in particular fairly easy to

approximate the weak formulations of the entropy condition (2.7) (and also the alternate entropy condition (2.12)).

If

R

is unbounded, it is replaced by a bounded domain

still denoted by

-

as large as possible.

-

To approximate

the above continuous problem, we introduce a standard tri-

184

R. GLOWINSKI and 0 . PIRONNEAU

Zh

angulat ion elements).

of

61

(we can also use quadrilateral finite -

7

Then we approximate the functions

and

$I

by

piecewise polynomial functions belonging to the following subspace of

with

H1(n)

(and

Wl’”(n))

Pk = the space o f polynomials of degree

Sk.

Remark 2.8: In the case of a lifting body, to take into account the Kutta-Joukowsky condition, one usually introduces -~ .. (see Fig. 2.3) an arc

y

between the trailing edge o f the

body and the external boundary.

Thus arc

constant jump, a priori unknown of

a@

requires the continuity of

Y.

Since

@

-

an

@

(and

is discontinuous along

used any more, but introducing

.

.

0

and

y

supports a

<,

ae z) at y,

but one the crossing o f

Hl(61)

c a n not be

\

n = n - y one can use

A.

HL(n)

and define

Vh

over a triangulation of

Results of computations for such profiles are given in

Sec. 2.6;

however the method f o r t r e a t i n g t h e Kutta-Joukowsky

condition will not be treated in this report since they are not specific of transonic flows. In order to simplify the presentation o f our method we shall assume i n the sequel that one works directly over

61.

LEAST SQUARF S O L U T I O \

@rU O U

Figure

Remark 2 . 9 :

If

@

and

?

2.3

have t o s a t i s f y o n l y N e u m-a r i r i

b-o u n d a r y_ _c o n d i t -~ i o n s , t h e s u b s p a c e of ~

Vh

itself.

If

on t h e c o n t r a r )

i$

Vh

t o h e u s e d w i l l be

and/or

haxe to satisfi

F

D i r i c h l e t boundary c o n d i t i o n s over s o m e p a r t of s h a l l have t o use subspaccs o f Remark 2 . 1 0 : domain o f

R

Vh,

,

",

t h e n we

s t r i c t l y included _-___

We have t a c i t l y assumed t h a t 2

185

LIhFAR l'ROI3LEVS

R

in V

h'

i s a polygonal

or has b e e n a p p r o x i m a t e d b y s u c h a d o m a i n .

Hoizever i n t h e c a s e o f a curx-ed b o u n d a r y i t i s a l w a y s r > o s s i b l e t o use

( a t s o m e e x t r a computational c o s t ) curved f i n i t e

elements

t-11).

(see,

for i n s t a n c e , S t r a r i g - F i x [I], C i a r l e t - R a v i a r t

R. GLOWINSKI and 0. PIRONNEAU

185

2.4.2

o f the state equation . and . . o f_ _the cost Approximation __. ~~

function. T o simplify the presention, we shall assume that we only have

Neumann .boundary cond>t-ions, i.e.

aa@ n

(2.20)

= g

on

7

(it is the case for the important application of flows subsonic at infinity, past profiles). F

sections that

and

0

It follows from the above

will satisfy the same boundary ~

conditions.

We shall also assume that if

then the corresponding value of (2.21)

p g

p

dr =

g(x)

f 0, x E

r,

is known, and that 0.

'iThen the state equation (2.15) h a s the following variational

(2.22)

which is approximated by

r

i

4

(2.23) where @

and

P(ch)v@h'v"h

f 'I-

(pg)h q h

[

Oh vh' ( ~ g )is~ a Convenient approximation of @h

dr

pg.

qhevh,

Since

are only defined modulo a constant we shall

prescribe the values of some point of ed by

dx =

r.

@

and

cph

(and

5

and

5,)

at

The cost function in (2.14) is approximat-

187

LEAST SQUARE S Q L U T I O N O F PJON L I N E A R PROULEFIS

If one

R e m a r k 2.11:

(k=l),

uses

the piecewise linear approximation

then the integrals occuring i n ( 2 . 2 3 ) ,

to compute since property for

05,

p(ch)

(2.24)

piecewise constant implies the same (from (2.1'3)).

If

k=2

a ~ numerical _

integration procedure has to be used in ( 2 . 2 3 ) ,

a

are easy

_

and also in

= 1.

(2.24)

if

2.4.3

Approximation of .the entropy condition. -~ _. ~~

~

~~~

~

T o avoid non physical shocks (i.e. shocks for which the

thermodynamical entropy condition is n o t satisfied) we use the formulations o f Sec. 2 . 2 . 3 .

We still assume that w e o n l y

have Neumanii b o u n d a r y conditions.

We use the notation of the continuous oroblem. the condition ( 2 . 1 2 ) (2.14)

If

one uses

we may "regularize" the cost function

by adding to it, with

C

> 0, either

(2.25)

or (2.26)

E

[ '*

l ( h E ; ) + 1 2 dx

( o r a linear combination of both).

In

(2.25),

(2.26),

is

a "small" parameter.

We can make this approach more sophisticated by using instead of ( 2 . 2 5 ) ,

(2.26),

regularization functionals like

188

R.

GLOWINSKI and 0 . PIRONNEAU

0.

p o s s i b l y e q u a l t o z e r o o v e r some p a r t of

To u s e t h e above methodology f o r t h e a p p r o x i m a t e problem i t i s n e c e s s a r y t o have a n a p p r o x i m a t i o n o f W e may u s e a n a p p r o x i m a t i o n a p p r o x i m a t i o n of

C i a r l e t - R a v i a r t [ 21

,

[

(2.28)

73 ) :

i s s u f f i c i e n t l y smooth, t h e n from

we h a v e

Ai/lcpdx =

'n

(2

i

epdP

-

(2.29)

I

{R

an a p p r o x i m a t i o n of

E H1(n).

-

i

'R

Ah

$I,

0Bh'VCPh dx

A@

of

cph E Vh,

bL

I n (2.29),

t o define

the function

of

r,

g

of

gh

Remark 2.13: To o b t a i n

(2.20).

t h i s can be d o n e . from ( 2 . 2 9 ) we have t o s o l v e a

Ah@,

l-~ i n e a r s ys t e m t h e m a t r i x o f which i s _s_yrnmetric, p o s i t i v e ~~

sparse, but p o t d i a g o n a l

approximation of t h e o p e r a t o r approximate

is

t h e above i d e a i s s l i g h t l y more

complicated t o a p p l y , b u t

definite,

as

we a l s o h a v e D i r i c h l e t boundary c o n d i t i o n s

If

o v e r some p a r t

cp

E Vh*

We u s e t h e same method

Remark 2 . 1 2 :

ghCPhc

=

'h'hcphdx

AhOh

+

V w - v c p dx

F

U s i n g t h i s i d e a we d e f i n e a n a p p r o x i m a t i o n €allows

[21,

e q u a t i o n ( s e e Glowinski

-

Glowinski-Pironneau [

$

L e t u s assume t h a t Grgeq-for5qJ-a-

s u g g e s t e d by F i x e d -f i n i t e e_l e_m_e n t

t h e b i h a r m o n~ic

~

AS).

(resp.

I

n

4 0 cp

h h h

dx

I).

( t h i s m a t r i x i s an If

k=l

one c a n

u s i n g t h e two-dimensional,

189

LEAST SQUARE SOLUTION O F N O N L I N E A R I'RODLEMS

t____ r a p e-z o i d a l n u m e r i c a l i n t e g r a t i o - n m e t h o d .

D o i n g s o we o b t a i n

~

s o l v i n g a l i n e a r s y s t e m w i t h a _d_i a g o n a l m a t r i x .

by

ahQh

If

t h e a b o v e r e g u l a r i z a t i o n method i s t e c h n i c a l l y more

k=2

complicated t o use.

A

Once

h a s b e e n a p p r o x i m a t e d we add t o t h e c o s t f u n c t i o n

(see ( 2 . 2 4 ) ) the functional


2

I (Ahah)+]

('. 3')

dx

(rcsp'

I

Eh(x)

I ('h
2

dx)

'R

ch

with (2.30)

" s m a l l " and

0.

2

W e use i n f a c t approximations o f

o b t a i n e d v i a a n u m e r i c a l i n t e g r a t i o n p r o c e.d u r e .

W e have t o m e n t i o n t h a t t h e o p t i m a l c h o i c e f o r

is still

Fh

a n open q u e s t i o n , n e v e r t h e l e s s t h e r e e x i s t s o m e e m p i r i c a l methods t h a t w e d o n ' t d i s c u s s h e r e .

Numerical r e s u l t s

ed w i t h t h e p i e c e w i s e l i n e a r a p p r o x i m a t i o n i n Sec. Eemark

(k=l)

obtairr

a r e given

2.6.

2.14:

T h e r e g u l a r i z a t i o n by



(or i t s

l ( h @ ) + 1 2 dx

v a r i a n t s ) m a y be s e e n a s a t e c h n i q u e f o r i n t r o d u c i n g s o m e pseudo-viscosity

B

-

i n t h e problem under c o n s i d e r a t i o n .

A method u s i n g ( 2 . 7 ) .

L e t u s d e s c r i b e t h i s method f o r t h e c o n t i n u o u s p r o b l e m , ~~

first:

We assume t h a t t h e e n t r o p y c o n d i t i o n i s f o r m u l a t e d by ( 2 . 7 ) . Let

M(x)

b e a s u f f i c i e n t l y s m o o t h u p p e r bound o f

e s t i m a t e d or g u e s s e d ) .

a weak f o r m u l a t i o n o f

R e p l a c i n g ( 2 . 7 ) by

(2.31)

is

hb,

(M i s

190

GLOWINSKI and 0. P I R O N N E A U

R.

-

(2.32)

1

I

I

[email protected] dx

n

M ( x ) c p dx

V

cp E 8 + ( n ) .

R

i t i s v e r y convenient t o i n t r o d u c e t h e

M

I n s t e a d of u s i n g

S

s o l u t i o n ( d e f i n e d modulo a c o n s t a n t ) o f

Ago = M

over

0,

= g

over

r,

(2.33)

then

i""'o.vv

(2.33) has t h e f ollow ing v a r i a t i o n a l formulation dx =

-

(

M(x)cp dx +

R

f

r

v cp t H 1 ( n ) ,

mdr

(2.34) I t f o l l o w s from ( 2 . 3 4 )

-i

(2.35)

W e observe t h a t

that

(2.32)

v ( O - @ O ) ' ~ c p dx

5

a (@-a0) = an

0.

c a n a l s o be w r i t t e n

v cp E

0

rs+(n).

F o r t h e d i s c r e t e problem t h e o b v i o u s s t r a t e g y seems t o be t h e following: F i r s t we a p p r o x i m a t e

vaoh-vvh

dx =

Q0

-

\

R

where

Mh

by

Go,,

solution of

Mh(x)vhdx +

f ghcphdr r

i s a c o n v e n i e n t a p p r o x i m a t i o n of

M.

+ e p , c vh,

191

LEAST SQUARE SOLUTION O F N O N L I N E A R PROBLEMS

( 2 . 3 5 ) by

F i n a l l y we a p p r o x i m a t e

1

-

(2.38)

n

'

v(@h-@o,)'vqh dx

I n f a c t t h e above " o b v i o u s ' l

qh

s t r a t e g y f o r t h e d i s c r e t e problem

h a s t o be m o d i f i e d f o r t h e f o l l o w i n g r e a s o n s : 1)

V:h

k=l,

If

can be g e n e r a t e d by t h e c a n o n i c a l b a s i s

2)

B u t i t i s n o t the c a s e f o r

Voh.

f u n c t i o n s of

k=l

C o m p u t a t i o n s u s i n g ( 2 . 3 8 ) and done w i t h t h a t t h e approximation o f

close t o

k=2. have shown

t h e s o l u t i o n i s n o t good

t h e p o i n t s a t which s o n i c l i n e s t o u c h

r.

To overcome t h e s e d i f f i c u l t i e s we may p r o c e e d a s f o l l o w s : If

k=l:

ed from 1

C,

Let

be t h e s e t o f

Nh,

t o

where

Vh,

c a n o n i c a l b a s i s of

Nh

t h e v e r t i c e s of

= dim(Vh).

Sh,number-

Wh

Let

be t h e

i.e.

(2.39) with

(2.40)

wi

E Vh,

W e observe t h a t

po - .s -i t i v e Z of

e

w

VL

i

2

of

Wi(Pj)

0

onver

Vh

v P j E c.,

= 6 1. J.

R,

+k

i,

i s g e n e r a t e d by

and t h a t

Bh.

the

Then i n s t e a d

t o formulate t h e d i s c r e t e entropy c o n d i t i o n

using (2.38)

one t a k e s

(2.41)

-

V(@h-@oh)*vp dh x

which i s e q u i v a l e n t t o t h e

s e t of

the

'

' Nh

ph

Vi

following l i n e a r

192

R.

GLOWINSKI a n d 0.

T-'IRO"EALl

i z c i u a 1i t y c o n s t r a i n t s

f

( 2 .I42 ) 5,

If

v(ql-cboh)

-1

-vwi

V

dx < 0

i = 1,

...,N h .

i s u s e d , i n s t e a d o€ ( 2 . 4 2 ) x e h a v e I

-

(2.'43)

v(~tl-@oll)'v\\idx

0

4

V

...,N h .

i = 1,

62 Computations done with

and u s i n g ( 2 . 4 2 )

k=l

have p r o d u c e d

good r e s u l t s . k=2: The t e c h n i q u e s

I.f ~

~~

t o be u s e d a r e m o r e c o m p l i c a t e d a n d

a r e d e t a i l e d i n G l o ~ i n s k i - P i r o n n c a u[ 1 1 ,

-Remark ..2.15:

(It holds f o r

If

k=1,2).

some D i r i c h l e t

r,

b o u n d a r y c o n d i t i o n s a r c ' p r e s c r i h e d somewhere o v e r

the

p o s i t i v e cone used t o de€irie t h e d i s c r e t e entropy c o n d i t i o n w i l l b e r e l a t e d t o t h e subspace of

Vtl

c o n s i s t i n g of

those

f u n c t i o n s v a n i s h i n g a t t h e boundary nodes corresponding t o the

(discrete) Dirichlet condition.

2.26:

Remark

(or

Mh)

may b e a n u n e a s y

computations. p a r t A,

Houever,

t~e c h n i q_u_e i s u s e d

e s p e c i a l l y for p r o f i l e

l i k e i n t h e r e g u l a r i z a t i o n method o f

t o handle

2.'+./+ A p p r o x.i m~-~ ation of ~

~~

(2.'+2) ( o r

if

Part A,

(2.17),

(2.18),

Xh

then

Xh

is

the d i s c r e t e entropy conditions.

2.4.3 e i t h e r

one u s e s t h e r e g u l a r i z a t i o n methods

or

~_

a penalty

(2.43)).

one u s e s t h e methods d e s c r i b e d i n S ec.

= Vh

if

X.

take i n t o account

e s s e n t i a l l y determined b y If

task,

some e m p i r i c a l r u l e s h a v e b e e n o b t a i n e d ,

If we d o n ' t

M

The o p t i m a l c h o i c e f o r the hound f u n c t i o n

of

Sec.

xh =

2.4.3,

i s d e f i n e d by t h e l i n e a r i n e q u a l i t y constraints

LEAST S Q U A R E SOLUTIOV O F NON L I N E A R PKOI)LE,PIS

(2.42)

2.5

( o r (2.43))

ICe-rative

~-

2.5.1

so

i f w e proceed

lution of

l i k e i n Sec.

193

2.4.3,

P a r t B.

t h e a p p~r o x i m a t e p r~. oblems.

-~

~~~

Preliminary statements.

G eneralitie - s.

We s h a l l r e s t r i c t o u r a t t e n t i o n t o t h e f o l l o w i n g s i t u a t i o n : *

R

i s hounded anti w e o n l y have Neumann boiindary

conditions.

~

We assume a l s o t h a t K u t t a - J o u k o w s k y required

i s not

since t h e i r treatment

conditions are not s p e c i f i c of

transonic

flows. '

We d o n ' t

take

i n t o account

*

We s u p p o s e t h a t

a

= 1

in

(2.17), ( 2 . 1 8 ) .

(2.14)

and t h a t an e n t r o p y

c o n d i t i o n i s f o r m u l a t e d u s i n g t h e method o f Part B,

with the formulation (2.43)

Sec.

2.4.3,

(control's constraints).

The c a s e where t h e r e g u l a r i z a t i o n method o f P a r t A i s u s e d i s s i m p l e r , and i n f a c t may b e s e e n a s a p a r t i c u l a r c a s e o f other ( a t least i f '

one u s e s p e n a l t y t o h a n d l e

the

(2.43)).

We f i n a l l y assume t h a t we u s e p i e c e w i s e l i n e a r f i n i t e elements

(k=l).

S i n c e we d o n ' t closed

take i n t o account

convex s u b s e t of

Vh

(2.17), ( 2 . 1 8 ) ,

d e f i n e d by

t h e a p p r o x i m a t e c o n t r o l problem

(2.43).

xh

i s the

Therefore

i s a non l i n e a r ( a n d non ~

c o n v e x ) programming p r o b l e m i n w h i c h t h e i n d e p e n d e n t v a r i a b l e

is

qh.

method.

~~

We s h a l l s o l v e t h i s p r o b l e m by a c o n j u g a t e g r a d i e n t ~~~

T o take i n t o account t h e l i n e a r c o n s t r a i n t s ( 2 . 4 3 )

we h a v e u s e d a p e n a l t y method

( f o r t h e s o l u t i o n by p e n a l t y -

d u a l i t y m e t h o d s v i a ____ augmented ._______ Lagrangians see GlowinskiP i r o n n e a u [ 11 )

.

194

R.

2.5.2

GLOWINSKI and 0 . PIRONNEAU

Penalty approximation of the discrete ____ problem. ~

~

We use the notation o f Sec. 2.4.3.

(Uh9Vh)h

-- _

vh

2

L (n)-scalar product: ~-

the following _ approximate (2.44)

Let us define over

Nh

c

3 i=l

miuh(Pi)vh(Pi),

pi E

ch,

tf

i,

where

i :f

m

-

6. =

measure union of

(nil, ni TE

=

a. 0

1'

6, such that Pi is a vertex of T;

the corresponding norm is denoted by

\*\,.

Then we define

It follows therefore from (2.45) that (2.43) can also be written

which is equivalent to

where in

cph

(2.48)'

(cp,)'

does not denote the positive part of

but the approximation of it defined by

LEAST SQUARE

In

(2.48)s

@Il

195

SOLUTION O F N O N LINEAR PROULEPIS

Eh

is a function of

t h-r~ ou _ g_h_ ( 2 . 2 3 )

and

.

r

i s a p o s i t i v e p a r a m e t er. Then w e c a n p r o v e t h e f o l l o w i n g :

- -~ P rop-osition

2 .1

-

If

t h e approximate c o n t r o l problem ~~

Min

(2.50) has a s o l u t i o n ,

Jh(Fh)

'h

I-1'

t h e n t h e s o l u t i o n o f - t h e p e n a l i z e d problem

(2.51) converges

Remark 2.17: ______

If

Ooh

= 0

notation) a variant of i n Sec.

2.4.3,

in

~~

the r e g u l a r i z e d f u n c t i o n a l i n t r o d u c e d

(2.51) i s a f i n i t e dimensional c o n t r o l

constraint.

We h a v e s o l v e d t h i s p r o b l e m

the n - on l i n e a r c o n j u g a t e

_g _r _ a d i e n t method

( s e e P o l a k [ 1, C h . 2 ,

more e f f e c t i v e ,

f o r our problem,

pp.

53-551)

w h i c h seems

than the F l e_ tche r.- R e e v e s _

The s c a l a r p r o d u c t u s e d i n t h i s a l g o r i t h m i s t h e

s c a l a r product important

+m.

(2.48) w e recover ( w i t h d i f f e r e~nt

u s i n g t h e P o l a k - R i b i & ~ ev e r s i o n o f

version.

+

P a r t A.

The p e n a l i z e d problem problem without

r

(2.50)

toasolutioLo-f

i n d u c e d by

H1(n)

over

s t e p i n t h e s o l u t i o n of

algorithm i s t h e computation of

(2.51)

Vh.

Therefore a very

by the ab o v e

the gradient

r _J h_

d5 h

~ (5,)

; this

196

R.

point i s discussed

GLOWINSKI and 0.

PIRONNEAU

i n t h e f o l l o w i n g s e c t i - o n 2.5.4.

A d e s c r i p t i o n o f t h e m o s t i m p o r t a n t non l i n e a r c o n j u g a t e g r a d i e n t a l g o r i t h m s i s g i v e n i n Sec.

2.5.4

Computation of

-- J h r

4.

( F ~ ) .

d5 h Owing t o t h e p r a c t i c a l i m p o r t a n c e of

.

i t s c o m p u t a t i o n w i t h some d e t a i l s :

Jhr

"h

we s h a l l d i s c u s s

We have

I

We c a n e a s i l y compute t h e l a s t t e r m of

(2.53). of

(2.23)

About

t h e right-hand

s i d e of

t h e s e c o n d t e r m , w e o b t a i n by d i f f e r e n t i a t i o n

197

LEAST SQUARE S O L U T I O N O F N O N L I N E A R PROBLEMS

Since

(2.57) !

t h e second term o f with t h e l a s t

Jhr ( 5 h )

' 6!3

t e r m of

~

= 0

t h e r i g h t hand s i d e o f

( 2 . 5 3 ) we o b t a i n

h'

Remark 2.18: I f -~ ..-.

a

( 2 . 5 6 ) i s e a s i l y computed and by a d d i t i o n

i n s t e a d of t a k i n g

U.=l

i n (2.24),

one t a k e s

w i l l r e q u i r e the use o f

t h e n t h e c o m p u t a t i o n of

an adjoint s t a t e equ ation. -~

2.5.5

Computational c o n s i d e r a t i o n s . __

When s o l v i n g ( 2 . 5 1 )

by t h e non l i n e a r c o n j u g a t e g r a d i e n t

method d i s c u s s e d a b o v e , we h a v e t o s o l v e a t e a c h i t e r a t i o n the state equation

(2.23).

S i n c e t h e b i l i n e a r form o c c u r i n g

i n (2.23)

is positive de€inite

p o i n t of

6

( o n c e t h e v a l u e of'

h a s b e e n p r e s c r i b e d ) we c a n u s e t o s o l v e

e i t h e r i-t e r a t i v e m e t h o d s l i k e c o n j u g a t e g r a d_--.I ient, I_

S.S.O.R.

etc...

A x e l s s o n [ 13

qjh

,

(cf.

e.g.,

Young [ 11 )

P o l a k [ 1 1 , Concus-Golub

i n one

(2.23)

S.O.R., __

[l]

,

o r d i r e c t m e-. thods l i k e G a u s s ' s o r

Choleskyls.

2.6

Numerical e x p e r i me n t s .

The f o l l o w i n g n u m e r i c a l t e s t s by Mrs. B r i s t e a u a n d MM.

( i n two d i m e n s i o n s ) were done

P e r i a u x , P o i r i e r on I B M 3 7 0 - 1 6 8 ,

198

R.

G L O W I N S K I and 0.

PIRONNEAU

o t h e r t e s t s and r e s u l t s a r e r e p o r t e d

C 11 ,

21

,

i n Glowinski-Pironneau

~ l o w i n s ~ < i - ~ e r i a u x - ~ i r o n n[c11 a u,[: 21

Concerning 3-dimensional

problems,

.

some c a l c u l a t i o n s h a v e been

d o n e on t h e e f f e c t s o f o b l i q u e wind on t h e f l o w a t t h e i n t a k e (see Fig.

2.4)

of

-

a j e t e n g i n e a t l o w mach number ; t h e s e

c a l c u l a t i o n s w i l l be r e p o r t e d

elsewhere.

Aircraft

Velocity

\

J e t engine

F i g u r e 2.4 The f o l l o w i n g r e s u l t s c o n c e r n

-

A Naca 0012 p r o f i l e ,

A Kornls p r o f i l e , An O n e r a ' s p r o f i l e ,

A two-piece

2.6.1

airfoil.

Naca 0012 p r o f i l e .

The t e s t d e s c r i b e d b e l o w c o r r e s p o n d s i n f i n i t y of

.85

(M,

= .85)

t o a mach number a t

and i s w i t h o u t _ i n~c_i _ d -e n c e . ~

We

199

L E A S T SQUARE SOLUTION OF NON LINEAR PROCLEMS

have used __piecewise linear finite elements ing to a triangulation %h

correspond-

(k=l)

of 600 triangles and 341 nodes.

The entropy condition (2.12) was required via regularization. ~

~~

The convergence was obtained in 80 iterations for a CPU time of

4

mn.

O n Figure 2.5 we have shown the mach numbers at the midpoint

of the edges, on the skin of the airfoil, extrapolated from their values at the centroid o f the triangles. ed by Bauer-Garabedian-Korn's

Results obtain-

code are shown also.

We observe

the good agreement between the results, except for the amplitude of the shock jump,

This seems to be related to the

fact that in the B-G-K code we have used the discretization -. finite difference - scheme is achieved by a Eon conservative -

and that the small disturbance model is used.

(The schemes

we use are fully conservative). O n Figure 2 . 6 we show the results obtained for the same problem, using piecewise quadratic finite elements 2.6.2

(k=2).

Korn's profile.

The Korn's profile, which is not symmetric (see Fig. 2.7) has the property of giving a shock free flow if

for s o m e specific incidence angle).

Mm = 0.75

(and

On Figure 2.8 we have

shown the mach numbers on the skin of the airfoil;

we observe

that the computed flow is also shock free. 2.6.3

ONERA profile.

Wind tunnel measurements have been made by ONERA (Office Nationale d'Etudes et de Recherches AGrospatiales) for the

R.

200

GLOWINSKI and 0 . P I R O N N E A U

profile shown o n Fig. 2.9.

O n Fig.

2.9 is also indicated the

mach distribution on the skin o f the profile.

O n Fig. 2.10

the computed results are shown and the agreement with the measured results is very good, including the shock location and amplitude.

The agreement is less good after the shock

since the physical flow is n o longer potential.

We observe

that the computed shock is sharper than the measured shock. This fact is due, may b e , to the fact the actual fluid is slightly viscous, but very likely the main reason of this difference is the fact that the velocity fluctuations at the intrance o f the wind-tunnel induce fluctuations of the shock wave location; therefore the measurement taking same average value of the velocity has a smoothing effect,

2.6.4

Two-piece airfoil. ____~

The geometry shown on Fig. 2.11 corresponds to a &)ractical situation.

Kutta-Joukowsky conditions have to be imposed o n

both profiles.

T h e position o f the front piece makes the

funnel slightly convergent. incidence and (k=l)

Mm = . 5 5 .

The main airfoil is at 5 O of

Lagrangian elements of order 1

were used with 2936 triangles and 1 5 5 5 nodes.

Regularization i s used and convergence is obtained in iterations for a C P U time o f 1 6 mn. guessed by measuring

3.5

X

from

lo3

and at

IlV(@-C)Il

n=50

2;

L it is 2.

T h e precision can be at

n=O

its value is

O n each triangle it varies

in the subsonic region to

sonic region.

50

lom2

i n the super-

li

LEAST SQUARE S O L U T I O N OF N O N L I N E A R PROBLEMS

i

0

20 1

202

0

*a

R. G L O W I N S K I and 0 . P I R O N N E A U

W

m

N

F

LEAST SQUARE SOLUTION OF NON L I N E A R I’R0DLJ)MS

203

204

a U I

R.

h

x

G L O W I N S K I and 0 . P I R O N N E A U

h

h

4

LEAST SQUARE SOLUTION O F N O N L I N E A R PROBLEMS

'I;

205

R.

206

G L O W I N S K I and 0 .

PIRONNEAU

M

X 0.5

Figure 2.10

1.

L E A S T SQUARF: S O L U T I O N O F NON L I N E A R PROBLEMS

R. GLOWINSKI and 0. PIRONNEAU

208

3.

Numerical solutions of Navier-Stokes equations. ___ __

3.1

-

Generalities.

Or$entati&n.

In this Section 3 we should like to briefly introduce the reader to some aspects o f the numerical analysis o f the NavierStokes equations.

This is a very large subject in constant

evolution; for information prior to 1 9 7 6 see Temarn [l] and the bibliography therein.

In the following subsections we s h a l l see how the non linear least square methodology can be applied for solving the continuous Navier-Stokes equations in the -~ pressure-velocity ~~

formulation.

Similar methods can also be used for the stream

function-vorticity __ formulation; these methods will bedescribed in a forthcoming report. In practice the above problems have to-be approximated;

we

have used some mixed finite element methods which are described in the report mentioned above.

However we shall only

consider the continuous case whose formalism is simpler.

3.2

The - _N _a v i e r - S t o k e s - e - q u a t i o n s .

Let

0

be a domain o f

iRN

(N = 2 , 3

in practice) and

we consider the

stationary Navier-Stokes equations

(3.2)

uIT. = g

where

(

g'n dr = 0 ,

Jl-

r

= 30;

2 01'

LLAST S Q U A R E S U 1 , I J T I O N O F N O N L I K E A R I'ROB1,CMS

F o r e x i s t e n c e anti u r i i q u c i i e s s see, e.g.,

7.3

Lions

I31 ,

(3.I)-( 3 . 3 )

tlieorems concerning

Tctnam [ 11

A l e a s t s q u.a.r e f o r m u l a t i o n

,

L a d y z e n s k a y a [ 11

.

o f~-t h e Y a v i e r - S t o k e s

equatio _ n_s .

It can b c

(3.4)

Miri VEU

where i n

v 5 :6

i

-

I v(y-v) I

dx,

'R

(3.4)

and where

i s a function of

v

through

(3.5)

W e h a v e o b t a i n e d a c-ontrol

problcrn i n w h i c h t h e s t a t e e q u a t i o n ~

~

~~

i s a Stokcs problem.

If t h e o r i g i n a l p r o b l e m

(3.1)-(3.3) has a s o l u t i o n then the

l e a s t s q u a r e p r o b l e m has a s o l u t i o n f o r w h i c h t h e c o s t function takes

the value

0.

Remayk 3 .-1-.: O t h e r f o r m u l a t i o n s c a n b e u s e d ; f o r i n s t a n c e we can r e q u i r e f o r

etc..

.

v

the condition

v-v

= 0,

o r t a k e as c o s t

R. GLOWINSKI and 0. PIRONNEAU

2 10

3.4

Calculation o f t h e gradient of the cost function. ___ - ._ ~. ~

~

~~

In practical applications, an essential step, in view of using descent or conjugate gradient methods, is the calculation o f the d e r i v a t i v e , o f the cost function. Let

J

J(v) = ; 2

where

r,

the functional defined by

y

is a function of

v

lv(y-v)l

via ( 3 . 5 ) .

2

dx,

Then we f o r m a l l y

have =

V(y-v).V&(y-v)dx

(3.6) = -V

where

6y

[

v(y-v)*06v

dx +

V

i

~ ( y - v *V6ydx )

W~V€(H’,(~))~

R

is solution o f

I

+

-VA6y

v6p = - ( & v . v ) v

-

(v-V)bv,

At that stage it is convenient to introduce the following S t o k e s equation (which is the adjoint state equation i n o u r

problem)

-van + m (3.8)

y,v E

(H;(anN

on

a,

= 0,

nlr

van = If

= -v~(y-v)

0.

(H1(n))N,

then (3.8) has a unique solution in

x (L2(W/R).

Taking variational formulations of ( 3 . 7 ) , (3.8) we have ~

LEAST SQUARE

where

Wo

Taking

z

SOLUTTON

= { z

E

= 7

i n ( 3 . 9 ) and

I n t e g r a t i n g by- p a r t hand s i d e o f

7 - 2 = 03

(Hi(n))N,

(i.e.

z

= 6y

211

L I N E A R PROBLEMS

O F NON

*

i n (3.10)

we o b t a i n

using Green's formula) the right-

( 3 . 1 1 ) c a n a l s o be w r i t t e n

I t f o l l o w s t h e n from ( 3 . 6 ) , ( 3 . 1 1 ) , ( 3 . 1 2 ) t h a t w 6 v E (H:(R))~

which c a n also be w r i t t e i i

(3.14) (

where and

(J'(V),~V)=(-VA(Y-V)

- ,*)

(H:(n))N.

(3.15)

3.5

+

(V*V)n

+

(V.V)q

-

(V~)q,q)

d e n o t e s t h e d u a l i t y p a i r i n g between

(H-l(n))N

Therefore

J' (V) =

-vA(V-y)

+

(V*V)

n

-k

(v'V:Y

-

(vV)n

-

Numerical e x p e r i m e n t s .

I n p r a c t i c e we have a p p r o x i m a t e d t h e N a v i e r - S t o k e s by a mixed

f i n i t e e l e m e n t method.

equations

Then u s i n g a d i s c r e t e

212

R.

v a r i a n t of

GLOWINSKI and 0 . P I R O N N E A U

the l e a s t square formulation

( 3 . ) + ) , ( 3 . 5 ) we have

minimized t h e c o s t f u n c t i o n by a c o n j u g a t e g r a d i e n t a l g o r i t h m _ _ ~ . ~ . _ ( o f R i b i & r e - P o l a k t s t y p e ) . I n t h e conjugate g r a d i e n t algorithm 1 N

we used as a s c a l a r P r o d u c t a d i s c r e t e f o r m of t h e ( ~ ~ ( 0 ) ) s c a l a r product.

The n u m e r i c a l t e s t p r e s e n t e d h e r e i s t h e t w o - d i m e n s i o n a l , time d e p e n d e n t f l o w p a s t a d i s k , o f a v i s c o u s i n c o m p r e s s i b l e f l u i d a t a Reynolds number o f 2 0 0 . f o r t h e time d i s c r e t i z a t i o n ,

U s i n g a n i_ m - p l i c i t scheme .__ ~

t h e numerical i n t e g r a t i o n i s

r e d u c e d t o a s e q u e n c e of s t a t i o n a r y a p p l y t h e t e c h n i q u e s . d e s c r i b e d above.

problems

t o which we

T h e r e f o r e a t each time

s t e p we h a v e t o s o l v e a l e a s t s q u a r e p r o b l e m ; however s i n c e

t o compute t h e f l o w

at

(n+l)At

we s t a r t o u r i t e r a t i v e

procedure u s i n g t h e informations a t of

nAt,

t h e convergence

the conjugate gradient algorithm i s f a i r l y f a s t .

S i n c e t h e domain o f t h e f l o w i s unbounded we have imbedded t h e d i s k i n a much l a r g e r d i s k on which a u n i f o r m boundary velocity i s prescribed. l y perturbated Fig.

3.1

S t a r t i n g from a u n i f o r m f l o w s l i g h t -

t o 3.4

show t h e e v o l u t i o n o f t h e f l o w

d u r i n g some t i m e i n t e r v a l , and p a r t i c u l a r l y t h e b e h a v i o u r of t h e f l o w behind t h e o b s t a c l e .

LEAST SQUARE

SOLUTION O F NOK L I N E A R PROBLEMS

F i g . 3.1

CYCLE DE TEMPS REYNOLDS

10

200.

214

R.

G L O W I N S K I and 0. P I R O N N E A U

Fig. 3 . 2

CYCLE DE TEMPS REY NClLDS

20

200.

LEAST S Q U A R E S O L U T I O N O F NON L I N E A R I’ROULEIIS

Fig. 3 . 3

CYCLE DE TEMPS REYNOLDS

40 200.

216

R.

G L O W I N S K I and 0 .

PIRONhTAU

Fig. 3 . 4

CYCLE DE TEMPS REYNOLDS

GO 200.

LEAST SQUARE S O L U T I O N OF NON L I N E A R PRODLEMS

4.

On c o n j u g a t e g r a d i e n t m e t h o d s .

An e s s e n t i a l t o o l i n t h e s o l u t i o n o f non l i n e a r p r o b l e m s by n j-u.g_ a t. e_ l e a s t s q u a r e methods i s t h e c_o_ - g r a d i e n t method t o b e d e s c r i b e d below:

N

be a s u f f i c i e n t l y smooth f u n c t i o n ,

Let

f: R

R

vf

af be {a fK ... , ,axN]

4

let

i t s g r a d i e n t , and l e t S b e a N x N 1 s y m m e t r i c , p o s i t i v e- d e_ f-i n i t e m a t r i x . Then t o s o l v e t h e m i n i =

~

~

r n i z a t i o n problem

I

x

Find

E RN

such t h a t

(4.1)

we c a n u s e t h e t w o f o l l o w i n g c o n j u g a t e g r a d i e n t a l g o r i t h m s t h e c o n v e r g e n c e o f which is s t u d i e d i n P o l a k [I]

(forS=I).

(Fletcher-Reeves) :

F i r s t method

(4.2)

xo

(4.3)

go =

s-l

(4.4)

w

-

-

0

E I R ~ given, Vf("),

0

= g .

Then a s s u m i n g t h a t

-

xn

-

wn

and

a r e known we compute

-

x n+1

by

(4.5)

X n + l= I

where problem

p,

-n

-p,y9

n

i s t h e s o l u t i o n f o r t h e one-dimensional minimization

R.

218

GLOWINSKI a n d 0 . PTRONNEAU

Then w e compute

-gn+'

(4.7)

gn+l =

(4.8)

wn+1 = -gn+1 + x n w n

wn+ 1

and

s-1

by

Vf(?n+l),

where

(4.9) i n (4.9),

denotes t h e u s u a l inner-product

( a , . )

Second method

of

N

R

.

(Polak-Ribisre).

T h i s method i s l i k e t h e p r e v i o u s o n e e x c e p t t h a t

(4.9) i s

r e p l a c e d by

-

( sgn+l, _g"+l-gn)

(4.10)

Remark 4.1:

If

E RN

where

and where

A

NxN

is a

symmetric p o s i t i v e

d e f i n i t e m a t r i x , t h e n t h e two a b o v e a l g o r i t h m s a r e i n f a c t

similar,

s i n c e i t c a n be proved t h a t i n t h i s c a s e

-

( S g n + l , g") Remark 4 . 2 :

A t e a c h i t e r a t i o n of

= 0.

t h e two a b o v e a l o r i t h m s w e

have t o s o l v e a one d i m e n s i o n a l problem t o o b t a i n

pn.

For

t h e s o l u t i o n o f t h i s k i n d o f one d i m e n s i o n a l problem s e e , e.g.,

P o l a k [: 1 3

Remark 4.3: round-off

,

Brent [

13 .

The above a l g o r i t h m s a r e f a i r l y s e n s i t i v e t o

e r r o r s ; h e n c e d o u b l e p r e c i s io n may be r e q u i r e d o n

some c o m p u t e r s .

M o r e o v e r i t may b e c o n v e n i e n t t o r e s t a r t

LEAST SQUARE SOLUTION OF MON LINEAR PROBLEMS

periodically with

wn =

-g

n

.

219

Actually Powell [l] has recently

introduced a new type of restarting procedure which increases the efficiency of the algorithm, but which requires more storage.

The Powell's analysis shows also that the Polak-

RibiBre's algorithm may b e more convenient than the FletcherReeves' algorithm for some problems.

In fact f o r the type of

problems we are solving a similar observation has been done, from our computational experiments. Remark 4.4: F o r the problems described i n this paper a convenient choice f o r the matrix form of

S

is to take a discrete

-A.

5 . Conclusions, The methods presented in this paper may appear as very heuristical, however when convexity o r monotonicity are lacking they seem one o f the few possibilities for computing the solutions o f some difficult non linear problems, taking into account their special structure. Applications to non linear problems i n elasticity are to be done. Acknowledgments: Many thanks are due to Mrs. Bri,steau and MM. Perrier, Periaux, Poirier for their help at various stages of this report.

R. GLOWINSKI and 0. PIRONNEAU

220

Bibliography Axelsson, 0.

-

[l]

A class of iterative methods for finite

element equations. Ccmp.

Math. . Applied _ ~ _ .. Mech. Eng.,

Bauer, F., Garabedian, P., Korn, D.

~~

-

[l]

Supercritical _____ wing

sections, . -~ Lecture Notes in Economics and Math.

.

Systems, Vol. 66, Springer-Verlag, 1972. Bauer, F., Garabedian, P., Korn, D., Jameson, A. [l]

Supercritical wing sections (11), Lecture Notes

in Economics and Math. Systems, Vol. 108, SpringerVerlag, 1975. Begis, D., Glowinski, R.-[l] 616ments finis

Application de la m6thode des la r6solution d'un problbme de

domaine optimal. Vol. 2, NO 2, Brent, R.

-

Applied Math. and Optimization,

(1975), pp. 130-169.

[l] Algorithms for minimization without derivat~

~~~

~

ives, __ Prentice Hall, 1973. Cea, J., Geymonat, G.

-

[l] Une methode de lin6arisation via

l'optimisation.

Instituto d i Alta Mat. Symp. Mat.,

Vol. X, (1972), Bologna, pp. Ciarlet, P.G., Raviart, P.A.

-

431-451.

111 Interpolation theory over

curved element with applications to finite elements methods. Comp. Meth. Applied Mech. Eng., Vol. 1, (1972) , PP. 217-249.

[2] A mixed finite element method for the biharmonic equation, i n Mathematical aspects of the

LEAST SQUARE SOLUTION OF NON LINEAR PROBLEMS

finite elements in partial di-fferen&ial C. de B o o r Ed., Acad. Press, Concus, P., Golub, G.H.

-

221

equations,

1974, pp. 125-145.

[l] A generalized conjugate gradient

method for non symmetric systems of linear equations, in Computing Methods in Applied Sciences and Engineering, R. Glowinski and J.L. Lions Ed., -~ Lecturca Notes i n Ecsiiomics and Math. Systems,

VOI. 134, Springer-Verlag, 1976, pp. 56-65. Glowinski, R.

-

[ 13 Numerical methods f o r non linear

variatipnal problems, Lecture Notes at the Tata Institute, Bombay, to appear in 1977-1978. [2] Approximations externes par 616ments finis

d'ordre un et deux d u probl&me de Dirichlet pour

A 2 , in Topics i n Numerical Analysis , J. J.H. Miller ed., Acad. Press, (1973)) pp. 123-171. Glowinski, R., Marroco, A .

-

[l] Sur lfapproximation par

616ments finis dfordre un, et la r6solution par p6nalisation-dualit6 d'une classe de probl;?mes de Dirichlet non linGaires, Revue Franqaise d'dutoma___ ____ tique, d'Informatique et de Recherche Opgr-ationnelle, e

9

ann&e, aojt 1975, R-2, pp.

41-76.

Glowinski, R., Periaux, J., Pironneau, 0.

-

[l] Transonic

flow simulation by the finite element method via optimal control.

Proceedings of the Second Inter-

national Symposium on Finite Elements i n Flow Problems, Santa Margherita, Italy, June 1976,

PP. 249-259.

R. GLOWINSKI and 0 . PIRONNEAU

222

[2] Use o f optimal control theory for the numerical

simulation of transonic flow by the method of finite lements.

Proceedings o f the

5th Conference _____

on Numerical Methods i n Fluid Dynamics.

Enschede,

Netherlands, July 1976. Glowinski, R., Pironneau, 0.

-

[l] On the computation of

transonic flows, Proceed+-ngs o f the first FrancoJ_po&Ese

Co-lloquium on Functional and Numerical

__ Analysis, Tokyo, Kyoto, September 1976. [2] Calcul d'ecoulements transoniques par des

methodes dlel6ments finis et de controle optimal, in Computing Methods in Applied Sciences and E n- -g i n e e r i x ,

R. Glowinski and J.L.

Lions Ed.,

Lectures Notes i n Economics and Math. Systems, vol. 134, Springer-Verlag,

1976, pp. 276-296.

[ 3 ] Numerical methods f o r the first biharmonic equation and for the two-dimensional- Stokes problem, C.S. Report, University of Stanford, Computer Science Dpt., Hewitt, B.L.;

1977.

Illingworth, C.R.;

Lock, R.C.;

Mc Donnel, J.H.; Richards, C.; Walkden, F . ;

Mangler, K.W.; Ed.

[l] Computational method2 and problems i n aeronau-

tical fluid Acad. Press, 1976. ~ - dynamics, -___-Jameson, A.

- [l]

Transonic flow calculations, in Proceedings

of Conference o n Computational Fluid Dynamics, - Von .

Karman Institute, March 1976, Brussels (Belgium). [2] Three dimensional flows around airfoils with

LEAST SQUARE SOLUTION OF NON LINEAR PROBLEMS

223

shoks , in Computing Methods _in ApplA-e-d-Sci-e-Eces_and Engineering, Part 2 , R . -~ _ I

Glowinski and J.L. Lions

Ed., Lecture Notes in Comp. Sciences, V o l . Springer-Verlag,

131

11,

(1974), pp. 185-212.

Iterative solution of transonic flows over

airfoils and wings, including flows at Mach 1,

Comm. Pure Appl. Math., ~ _ _Vol. 27, (1974), pp.283-309.

[4] Numerical solution of non linear partial differential equations of mixed type, in Numerical Solution of Equations, 111, Synspade - Partial Differential - __. ~~~

~~

1975, B. ___

~

Hubbard Ed., Acad. Press, (1976),

PP. 275-320. Landau, L.; Lifchitz, F.

-

[l] M6canique des - Fluides, Editions ~

MIR, MOSCOU, 1953. Ladyzenskaka, O . A .

-

[l] The ___. mathematical theory of viscous

incompressibA-e fluids, Gordon Breach, New York, 1963. Lions, J.L.

-

[l] Gontrole optimal des _ systemes _ ~ gouvern6s par ~

des 6quations aux d6rivGes partielles.

Dunod, 1968.

[ 2 ] Some aspects of the optimal control of

distributed systems, Regional Conference Series in Applied Math., Siam Publication NO 6, 1972.

[ 3 ] Quelques m6thodes de rdsolution des problhmes aux limites non lineaires, Dunod, 1969. Morawetz, C.S.

-

[l] O n the non existence of continuous

transonic flows past profiles, C o m m . Pure Applied Math., V o l .

9, 1956, pp. 45-68.

224

R. GLOWINSKI and 0. PIRONNEAU

Murman, E.M.;

Cole, J . D .

-

[11 Calculation of plane steady

transonic flows, AIAA Journal, V o l .

9, (1971),

pp. 114-121. Polak, E.

-

[l]

Computational methods in optimization, Acad.

Press, 1971. Powell, M . J . D .

-

[l] Restart procedures f o r the conjugate

gradient method, Math. Programming 12,

(1977),

pp. 241-254. Strang, G.; Fix, G.

-

[l] &n--analysis of the finite element -

method, Prentice Hall, 1973. Temam, R.

-

[l] Navier-Stokes Equations, North-Holland,

1977 Young, D . M .

- I: 11

Iterative s-ol~~ix-of__large linear systems,

Acad. Press, 1971.