VI.1
Lepton Full Listings
See key on page IV.1
Neutrinos
II
LEPTONS
NOTE ON NEUTRINOS
(by R.E. Shrock, State Univ.
of New York, Stony Brook)
In addition to the pc, up, and ur sections, we include a separate section (Searches for Massive Neutrinos and Lepton Mixing) concerned with correlated bounds on possible neutrino mixing and masses. In addition, there are sections on the Number of Light Neutrino Types, on Heavy Lepton Searches, and on Constraints from Cosmological and Astrophysical data. To summarize the current (Spring 1988) situation, many intensive searches for possible nonzero neutrino masses and lepton mixing have yielded progressively better upper limits on these quantities. There is no uncontested positive evidence for such masses or mixing. A description of the experimental situation may be found in the note at the beginning of the section on Searches for Massive Neutrinos and Lepton Mixing. As an aid to understanding the limits on masses and mixings, we recall that, in contrast to the other particles in this Review, the neutrinos L,~, u~, and ur are defined as weak eigenstates (that is, states which couple weakly with unit strength to e, p, and r) and are not, in general, states of definite mass. In the Standard Model, where all neutrinos are assumed to be massless and hence degenerate, it is possible to define the weak eigenstates to be sinmltaneously mass eigenstates. However, in the general case of possibly massive (nondegenerate) neutrinos, the weak eigenstates have no well-defined masses, but instead are linear combinations of mass eigenstates. Let us denote the charged leptons as the set {[~}, a = 1 . . . . , n where n _> 3 is the nmnber of generations, with [1 ~ e, ~2 --- it, [a - r. In the standard SU(2)L x U(1) electroweak theory 1 the mixing of the left-handed components of the mass eigenstates (~'j)L to form the weak gauge-group eigenstates (~%)L is specified by the transformation n
(-eo)L = ~
c%(-j)L ,
j=l
where U t = U 1. (In the case of Dirac neutrinos there are right-handed components of the uj, but they are singlets under the gauge group: in the case of Majorana neutrinos in the standard theory there are no independent right-handed components.) The ordering of the mass eigenbasis is defined such that U is as nearly' diagonal as possible, i.e., Ujj (no sum on j) > U~k , k ¢ j . This does not imply that rn(L,a) > m(L'k) if j > k, although this ordering might be regarded as natural in view of the similar one that obtains in the quark sector. The virtue of this convention is that a mass limit on "re(u,%)" can be used as a definite limit on uj, j = a, the dominantly coupled mass eigenstate in ue. Thus, in this general case of n possibly massive (Dirac or Majorana) neutrinos, decay,s such as 3H --~ 3He + e- +P~ and zc+ ~ p+ + uu, which have been used to set the best bounds
on the respective neutrino masses, really consist of incoherent sums of the separate decay modes 3H ~ 3He + e - + Pj and 7r+ ~ p+ + vk, where the ~,j, L,k are mass eigenstates, and the indices j and k range over the subset { 1 , . . . , n } allowed by phase space in these two respective decays} The coupling strengths for the jth modes are given for the two decays by the factors UU 2 and b½j 2, respectively. There are, in addition, certain kinematic factors depending on the rn(~,j) which enter in determining the branching ratio for the jth decay mode. Assuming that the off-diagonal elements of the lepton mixing matrix U are small relative to the diagonal elements, the dominantly coupled decays are the ones with coupling strength /j~j 2, a = j, i.e., aH ~ 3He + e - + Pi and 7i-+ ___, # + + /22.
It follows that the old neutrino mass limits quoted in the literature for "rn(ve)", "rn(~,)" and "m(~,~)" should really be interpreted as limits on the corresponding mass eigenstates. Specifically, a bound such as the Bergkvist limit? m(~,~) < 60 eV (90% CL), really constitutes a weighted limit on each of the mass eigenstates L,j in the weak eigenstate Pe which are kinematically allowed to occur in tritium decay and which are coupled with strength UIj 2 sufficiently large to make a significant contribution to the observed spectrum. It is thus certainly a limit on ~'1. If leptonic mixing is hierarchical as quark mixing is known to be (at least for the first three generations), i.e., Ujj ~ >> 5%k 2,2' ¢ k, then L'I is the only mass eigenstate significantly constrained by a bound on "rn(t,~)." Furthermore, strictly speaking, a neutrino mass limit cannot be stated in isolation; it always contains some implicit dependence on the relevant lepton mixing angles. Fortunately, this dependence is relatively unimportant for the dominantly coupled decay modes, i.e., e~l, #P2, and ~-P3. Since these modes were the ones responsible for the mass limits given previously, the latter can be reinterpreted without significant complication as proper limits on rn(~,j),j = 1, 2, and 3, respectively. In addition to mass and lifetime limits, we have added data on neutrino magnetic dipole moments. These are of interest because a massless, purely chiral (empirically, left-handed) Dirac neutrino cannot have a magnetic (or electric) dipole moment. The same is true for a Majorana neutrino, whether massless or massive, because of its defining property of being self-conjugate. If one considers the possibility of nonzero masses for neutrinos, for consistency one must also consider the leptonic mixing which would in general occur concomitantly. Accordingly we have devoted one section to correlated bounds on neutrino masses and lepton mixing angles. These can be divided into two types. First, there are those due to decay's involving neutrinos in the final state, which must be recognized to have the possible multimode structure pointed out above. In the two most sensitive cases suggested as tests for neutrino masses and mixing~ 2 one obtains a limit on rn(L%) and Uaj 2 individually for each j. Second, there are those due to processes
VI.2
Lepton Full Listings Neutrinos, ue involving the propagation and subsequent interaction of neutrinos. The latter are often called neutrino "oscillation ''3 limits, although this term is correct only if the differences in neutrino masses are sufficiently small relative to their momenta that the propagation is effectively coherent in a quantum mechanical sense; otherwise, the individual u~ from a given decay such as ~ru2 or Kt, 2 propagate in a measurably incoherent manner and there is no "oscillation." Experimentalists usually present their results in terms of a simplifying model in which mixing is assumed to occur only between two neutrino species. Then the transformation equation becomes uq
\-sin0
cos0J
ui
Let the distance between the source of the neutrinos and their point of interaction be labeled as z, and their energy as E. Assume furthermore that the m(uj) are such that the coherence assumption is valid. Then. the probability of an initial u fl. being equal to utb at time t: or equivalently (given the above assumption) at distance x = t, is
<.[b(O)
Vg~(t)>
2
' (Am2z'~ sin220 sin2 \ , - C ~ - j ,
where Am2 _ m.(~)~ _ .~(.j)2 Thus, neutrino oscillation experiments cannot measure individual neutrino masses, but only differences of masses squared, and indeed these are generally weighted in a more complicated way by mixing-matrix coefficients than in the two-species model. Experimental results are presented as allowed regions on a plot, the axes of which are A m 2 and sin220. These are often summarized in terms of the asymptotic limits for sin220 = 1, and sin220 for "large"
Am 2
Further explanatory notes are included in the Full Listings. References 1. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in Elementary Particle Theory: Relativistic Groups and Analyticity, ed. N. Svartholm (Alqvist and Wiksell, Stockholm, 1968), p. 367. See also S. Glashow, Nucl. Phys. 22, 579 (1961); S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970); and, for the n = 3 case, M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973). 2. R.E. Shrock, Phys. Lett. 96B, 159 (1980); Phys. Rev. D24, 1232 (1981); Phys. Rev. D24. 1275 (1981); and Phys. Lett. 12B, 382 (1982). 3. Z. Maki, M. Nakagawa, and S. Sakata. Prog. Theor. Phys. 28. 870 (1962); B. Pontecorvo, Sov. Phys. J E T P 6, 429 (1957), and 7, 172 (1958); Zh. Ek. Theor. Fiz. 53, 1717 (1967); Soy. Phys. J E T P 26, 984 (1968); V. Gribov and B. Pontecorvo, Phys. Lett. 28B, 493 (1969). 4. For studies of neutrinoless double beta decay, see H. Primakoff and S.P. Rosen. Ann. Rev. Nucl. Sei. 31, 145 (1981); S.P. Rosen, Proceedings of 1981 Interaational Conference on Neutrino Physics and Astrophysics (Maul, Hawaii), eds. R.J. Sens et al., v.2, p. 761 W.C. Haxton, G.L. Stephenson, Jr., and D. Strottman, Phys. Rev. Lett. 47, 153 (1981); M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E. Takasugi, Phys. Lett. 103B. 219 (1981), and Prog. Theor. Phys. 66, 1739 and 1765 (1981); M. Doi, T. Kotani, and E. Takasugi, Prog. TheDr. Phys. Supp. 83, 1 (1985); and W.C. Haxton, Proceedings, Intersections between Particle and Nuclear Physics', Steamboat Springs, 1984 (1986), p. 980. 5. F. Boehm and P. Vogel, Ann. Rev. Nucl. Part. Sci. 34, 125 (1984). 6. R.E. Shrock, in Proceedings of the Third LAMPF II Workshop, eds. J.C. Allred et al. (LASL, 1983), p. 316.
IIlD,X
A m 2 , i.e., sufficiently
J = 21
E ~
large Arn 2 that the detector averages over many cycles of oscillation (or there ceases to be any coherence). We refer the reader to the original papers for the two-dimensional plots; for the purpose of these Full Listings, we shall give only the asymptotic limits. An important question has to do with whether neutrinos are Dirac or Majorana (self-conjugate) particles. In the former case neutrinoless double beta decay, (Z,A) ~ (Z + 2, A ) + e + e , is forbidden from occurring. 4 In the Majorana case it may occur in gauge theories if neutrinos are massive. In the light-neutrino case an upper limit on neutrinoless double beta decay yields a correlated upper bound on the quantity
Not in general a mass eigenstate.
Ue
MASS
Applies to zq, the primary mass eigenstate in ue. Would also apply to any other which mixes strongly in ve and has sufficiently small mass that it can occur in the respective decays. The neutrino mass may be of Dirac or Majorana type; the former conserves total lepton number while the latter violates it. In general, either would violate lepton family number, since nothing forces the neutrino mass eigenstates to coincide with the neutrino interaction eigenstates. For limits on Majorana ve mass, s e e the section on "Searches for Massive Neutrinos and Lepton Mixing", part (C), entitled "Searches for Neutrinoless Double ~d Decay". From analysis of neutrino events from SN 1987A, it is possible to get modeldependent upper bounds on neutrino masses. Since these depend significantly on astrophysical assumptions, since they are model-dependent, and since different papers disagree strongly as to the values of the bounds; we do not list these here. For thorough statistical studies, see SPERGEL 88 and A B B O T T 88 and references therein. Our limit is taken from the average in the ~e "Mass Squared" section immediately below this section.
-
~ UL,2 m(uj) j=l
and V, the fractional admixture of right-handed leptonic
current. The correlated limits given in the section on Massive Neutrinos and Lepton Mixing are in digital form. -'For recent compendia of limits in convenient graphical form, see e.g., Refs. 5 6.
VALUE (eV)
<17 <29 <27 <18
EL~
(CL = 95%) OUR LIMIT 95 95 95
DOCUMENT 10
1 KAWAKAMi 2 WILKERSON 3 FRITSCHI
TEEN
COMMENT
88 CNTR ~'e, tritium 87 CNTR ~e, tritium 86 CNTR ~e, tritium
VI.3
Lepton Full Listings
See key on pace IV.1
ZJe • • • We do not use the following data for averages, fits, limits, etc. • • • <13.4
17 <32
95
95
4 BOWLES ABBOTT 5 SPERGEL 6 BORIS KAWAKAMI
90 95 90 90
DERBIN SIMPSON BFRGKVIST RODE
to 40
<50 <65 <60 <86
~
89 CNTR ~e, tritium 88 ASTR Supernova SN 1987A 88 ASTR Supernova SN 1987A 87 CNTR Pe, tritium 87 CNTR Repl. by KAWAKAMI 88 83 CNTR ~e, tritium 81 CNTR ~e, tritium 72 CNTR Pe, tritium 72 CNTR ~e, tritium
VALUE(S~ >278
> > > > > > >
8.3 x 1014 22 38 59 30 20 7 x 109
COMMENT tritium tritium tritium • • •
89 87
VALUE (#R)
<1 <5 < 1.5 _< 3 <1.1 <4 <8.5 <6
CNTR u, 163Ho CNTR u, 163Ho ASPK Ke3 decay CNTR ~,, 22Na
13 BARBIELLINI BERNSTEIN
68 68 68 68 68
89 89 89B 88 88 88 87 87 87 86 86 85
ASTR RVUE ~ (Dirac, Majorana) ASTR CNTR ~ (Dirac, Majorana) ASTR ASTR ~R (Dirac) ~ (Majorana) ~L (Dirac) CNTR P (Dirac) CNTR ~ (Majorana) ASTR
MOMENT
CL~_°/o
DOCUMENTID
TECN
COMMENT
10 - 1 2 10 - 1 3 10 - 1 2 10 11 10 - 1 1 10 - 1 1 10 - 1 1 10 - 1 1
24 RAFFELT 89B 24,25,26 BARBIERI 88 27 FUKUGITA 88 25'26,28GOLDMAN 88 24,26LATTIMER 88 24,26 NOETZOLD 88 24 RAFFELT 88B 24 FUKUGITA 87 LYNN 81 BEG 78 29 SUTHERLAND76 BERNSTEIN COWAN
63 57
ASTR ASTR COSM ASTR ASTR ASTR ASTR ASTR ASTR ASTR ASTR ASTR CNTR
Cooling helium stars Supernova SN 1987A Primordial magn. fields Supernova SN 1987A Supernova SN 1987A Supernova SN 1987A He burning stars Cooling helium stars
I
I I I
I Stellar plasmons Red giants + degen. dwarfs Cooling white dwarfs Reactor Pe
I
23KYULDJIEV 84 reported < 1.5 x 10 - 1 0 but MARCIANO 89 argues that use of an I updated neutrino reactor spectrum would yield a bound closer to that shown above. 24Significant dependence on details of stellar models. 25 A limit of 10-13 is obtained with even more model-dependence. 26These papers have assumed that the fight-handed neutrino is inert; see BARBIERI 88B, I 27 FUKUGITA 88 find magnetic dlpole moments of any two neutrino species are bounded by/~ < 10-16-.[10 - 9 G / B O] where B 0 is the present-day intergalactic field strength. 28 Some dependence on details of stellar models. 29We obtain above limit from SUTHERLAND 76 using their limit f < ½. I
I
CHARGE
VALUE(units: electronchar~e~ DOCUMENT IO TEEN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <2 x 10 15 <1 x 10 - 1 3
× x × x x x x x
<1 × 10 - 1 0 <1.4 × 10 - 9
12Assumes upper limit on @value reported by ANDFRSFN 82.
ul
MASS
< 4 X 10 - 1 0 90 23 KYULDJIEV 84 RVUE Pe e ~ Pe e • • • We do not use the following data for averages, fits, limits, etc. • • •
VALUE (eV~ CL~ DOCUMENTID TEEN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •
90 67
16 COWSIK 17 RAFFELT 18 RAFFELT 19 BOUCHEZ 20 FRIEMAN 20 VONFEILIT... 21 OBERAUER 21 OBERAUER 21 OBERAUER KETOV KETOV 22 RAFFELT
v1 M A G N E T I C
Test of CPTfor a Dirac u. (Not a very strong test.)
83 82 74 68
LIFE) /
Must vanish for Majorana neutrino or purely chiral massless Dirac neutrino. The value of the magnetic moment for the standard SU(2)xU(1) electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is pu = 3eGFmu/(87r2,/2 ) = (3.2 x 10 19)mu#B where rnu is in eV and #B = e~/2rne is the Bohr magneton. Given the upper bound m ( ~ ) < 18 eV, it follows that for the standard electroweak theory, # ( P l ) < 5.8 x 10- 1 8 /~B' Current experiments are not yet challenging this limit.
MASS DIFFERENCE
12yASUMI ANDERSEN CLARK BECK
(MEAN
15REINES 74 looked for ue of nonzero mass decaying to a neutral of lesser mass + .-/. Used liquid scintillator detector near fission reactor. Finds lab lifetime 6. × 107 s or more. Above value of (mean life)/mass assumes average effective neutrino energy of 0.2 MeV. To obtain the Hmit 6. x 107 s REINES 74 assumed that the full ~e reactor flux could be responsible for yielding decays with photon energies in the interval 0.1 MeV 0.5 MeV. This represents some overestimate so their lower limit is an over-estimate of the lab lifetime (P. Vogel, private communication, 1984). 16 COWSIK 89 use observations of supernova SN 1987A to set the limit for the lifetime of a neutrino with 1 < m < 50 MeV decaying through uH ~ u1 ee to be "r > 4 × 1015 e x p ( - m / 5 MeV) s. 17RAFFELT 89 uses KYULDJIEV 84 to obtain "rm3 > 3 × 10TM s eV3 (based once e cross sections). The bound is not valid if electric and magnetic transition moments are equal for Dirac neutrinos. 18RAFFELT 89B analyze stellar evolution and exclude the region 3 x 1012 < -rrn3 < 3 x 1021 s eV 3. 19 BOUCHEZ 88 reports limits in the nearly degenerate mass case. 20 Model-dependent theoretical analysis of SN 1987A neutrinos. 21OBERAUER 87 bounds are from comparison of observed and expected rate of reactor neutrinos. 22 RAFFELT 85 limit is from solar x- and -'/-ray fluxes.
<1 x 10 - 1 1 < ( 2 - 8 ) × 10 - 1 2
<1250 <1300 < 4.5 x 105 <4100
87B IMB
VALUE(s/eV) EL% DOCUMENTID TEEN COMMENT >300 90 15 REINES 74 CNTR P • • • We do not use the following data for averages, fits, limits, etc. • • •
CNTR ~e, tritium CNTR Repl. by KAWAKAMI 88 7KAWAKAMI 88 multiply their statistical error by the appropriate factor for 95% CL when m 2 >0 is required (1.74), add this linearly to their unmultiplied systematic error (173 eV 2) and add the rn2 value (223 eV 2 ) to obtain their 95% CL limit (m<29 eV). To adjust for our quadratic addition of errors and our multiplication of both the statistical and systematic errors by the factor 1.645 we set the systematic error to 269 eV?" to yield the same limit. 8 WlLKERSON 87 multiply both statistical and systematic errors by 1.645 (for 95% CL), add them in quadrature and add the (negative) rn2 value ( - 57 eV2 ) to obtain their 95% CL limit (m<27 eV). 9FRITSCHI 86 multiply their statistical error by 1.645 (for 95% CL), add this linearly to their unmultiplied systematic error (204 eV2) and do NOT add in the m2 value ( - 11 eV 2) to obtain their 95% CL limit (m<18 eV). To adjust for our quadratic addition of errors, and our multiplication of both the statistical and systematic errors by the factor 1.645, we set the systematic error to 178 eV2 . 10 BOWLES 89 is not used because it is not yet published. 11KAWAKAMI 87 give statistical error 341 eV2 and total error 452 eV2 and state that they add errors linearly. We add errors quadratically, so to obtain the same total error we choose systematic error of 297 eV2 .
Ul -~1
14 LOSECCO
~
Ue M A S S S Q U A R E D
10 BOWLES 11 KAWAKAMI
90
See also the Listings in the Neutrino Bounds from Astrophysics and Cosmology section.
The tritium experiments which yield the best limits for m(ve) actually measure mass squared. Any effort to combine their results to obtain an improved limit, therefore requires use of the mass squared results shown here. Note that we exclude the results of BORIS 87 because of controversy over the possible existence of large unreported systematic errors, see BERGKVIST 85B, BERGKVIST 86, SIMPSON 84, and REDONDO 89. For a review see ROBERTSON 88.
- 1 9 8 + 90:5111 +287±341:5297
TEEN
14 LOSECCO 87B assumes observed rate of 2.2 SN U (solar neutrino units) comes from sun while 7.0:5 3.0 is theory.
KAWAKAMI 88 multiply their statistical error by the appropriate factor for 95% CL when m 2 >0 is required (1.74), add this linearly to their unmultiplied systematic error (173 eV 2) and add the m 2 value (223 eV2) to obtain their 95% CL limit (m<29 eV). To adjust for our quadratic addition of errors and our multiplication of both the statistical and systematic errors by the factor 1.645 we set the systematic error to 269 eV2 to yield the same limit. 2WiLKERSON 87 multiply both statistical and systematic errors by 1.645 (for 95% CL), add them in quadrature and add the (negative) m 2 value ( - 5 7 eV2) to obtain their 95% CL limit (m<27 eV). 3 FRITSCHI 86 multiply their statistical error by 1.645 (for 95% CL), add this linearly to their unmultiplied systematic error (204 eV2) and do NOT add in the rn2 value ( - 11 eV 2) to obtain their 95% CL limit (m<18 eV). To adjust for our quadratic addition of errors, and our multiplication of both the statistical and systematic errors by the factor 1.645, we set the systematic error to 178 eV2 . 4 BOWLES 89 is not used because it is not yet published. 5SPERGEL 88 rule out masses greater than 16 eV. 6See also comment in BORIS 87B and erratum in BORIS 88.
~e, Pe, Pe, etc.
MEAN LIFE
DOCUMENTID
• • • We do not use the following data for averages, fits, limits, e t c . • • •
i
VALUE (eV21 DOCUMENT ID TECN 2 8 + 160 OUR AVERAGE 2233:244+269 7 KAWAKAMI 88 CNTR - 57:k453:L118 8 WILKERSON 87 CNTR -- Ii± 63±178 9 FRITSCHI 86 CNTR • • • We do not use the following data for averages, fits, limits,
CL~_°~
87 63
ASTR ASTR
Supernova SN 1987A Solar energy losses
I
I
13precise limit depends on assumptions about the intergalactic or galactic magnetic fields I and about the direct distance and time through the field.
I
I
Vl.4
Lepton Full Listings M e , M#
(MEAN LIFE) / MASS
R E F E R E N C E S FOR Ve BOWLES COWSIK MAREIANO RAFFELT RAFFELT REDONDO ABBOTT BARBIERI BARBIERI BORIS BOUCHEZ FRIEMAN FUKUGITA GOLDMAN KAWAKAMI LATTIMER Also NOETZOLD RAFFELT ROBERTSON SPERGEL VONFEILIT, BARBIELLINI BORIS Also BORIS
89 89 89 89 89B 89 88 88 88B 88 88 88 88 88 88 88 88B 88 88B 88 88 88 87 87 88 878
FUKUG~TA KAWAKAMI LOSECCO OBERAUER WILKERSON BERGKVIST ERITSCHI KETOV
87 87 878 87 87 86 8E 86
BERGKVIST RAFFELT KYULDJIEV SIMPSON DERBIN
85B 85 84 84 83
YASUMI ANDERSEN LYNN SIMPSON FUJIKAWA
83 82 81 81 80 BEG 78 SDTHERLAND 76 CLARK 74 REINES 74 Also 78 BERGKVlST 72 RODE 72 BECK 68 BERNSTEIN 63 COWAN 57
These limits often apply to v f also. Additional papers are listed in the Neutrino Bounds from Astrophysics and Cosmology section.
LA-UR-89-2010 +Friar, Robertson, Stephenson+ {LANL, LLL) PL B2L8 91 +Schrarnm, Hoflic~ (WUSL, TATA, CHIC, MPIM) BNL pfeprint (BNL) PR D39 2066 (PRIN. UCB) APJ 836 61 +Dearborn, Silk (UCB, LLL) PR C4O 368 ~Robeltson (LANL) NP B299 734 ~De Rujula, Walker (BRAN, CERN, BOST) PRL 61 27 +Mohapatra (PISA, UMD) PL B213 69 +Mohapatra, YanaBida (PISA, UMD, MICH) PRL 61 245 erratum +Golutvin, La0tin+ (ITEP. ABCI} PL B207 217 +Pichard, Soirat, Spiro, Declais (SACL, MARS) PL B20O 115 +Haber, Freese (SLAC, UCSC, UCSB) PRL 60 879 +Notzold, RafteR, Silk (KYOT, MPIM, UCB) PRL 60 1789 +Aharanov, Alexander, Nussinov (TELA} JPSJ 57 2878 +Kato, Naito, Nisimura+ (INUS, TOBY, TINT, KEK) PRL 61 23 ÷Cooperstein (STON, BNL) PRL 61 2633 erratum Lattimer, Cooperstein (STON, BNL) PR D38 1658 (MPIM) PR D37 549 ~Dearborn (UCB, LLL) ARNPS 38 185 +Knapp (LANL. LLL) PL B20O 366 +Bahcall (lAB) PL 8200 580 Von Feilitzsch, Oberauer (MUNT) Nature 329 21 +Cocconi (CERN) PRL 58 2019 +Bolutvln, Laptin+ (ITEP. ASCI) PRL 6t 245 erratum Boris, Gotutvin, Laptin~ (ITEP, ASC~) JETPL 45 333 +Gotutvin, Laptin~ (~TEP) Translated from ZETFP 45 267 PR D36 3817 +Yazaki (KYOT, TOKY) PL BtB? 198 +Nisimura+ (TOKY, INUS, TINT. TOHO, KEK+) PR D35 2073 +Bionta, Blewitt, Bratton+ (IMB Collab.) PL 8198 113 +yon Feilitzsch, Mossbauer (MUNT) PRL 58 2023 +Bowles, Browne(LANL. PRIN, UCSD) M~iond Conf. Vol. M48, 465 (STOH) PL 8173 485 +Holzschuh, Kundig+ (ZURI, SIN) JETPL 44 146 *Klimov, Nikolaev, Mikaelyan+ (KIAE) Translated from ZETFP 44 l t 4 PL 159B 408 (STOH) PR O31 3002 (MPIM) NP B243 387 (SOFI) PR DSO 1110 (GUEL) SJNP 38 665 +Popeko (LENI) Translated from YAF 38 1105. PL 1228 461 +Rajasekaran÷ (KEK, OSAK, TINT, TOHO, TSUK) PL 113B 72 +Beyer, Charpak, Deruju~a+ (AARH, CERN, RISO) PR D23 2151 (COLU) PB D23 649 (GUEL) PRL 45 963 +Shrock (STON) PR D17 1395 +Marciano, Ruderman (ROCK, COLU) PR D13 2700 +N6, Flowers+ (PENN, COLU, NYU) PR D9 533 +Elioff. Frisch, Johnson, North, Shen~ (LBL) PRL 32 180 +Sobel, Burr (UCI) Private Comm Barnes (PURD) NP 839 317 (STOH) LNC 5 139 +Daniel (MUNL MPIH) ZPHY 216 229 +Daniel (MPIH) PR 132 1 2 2 7 +Ruderman, Feinberg (NYU, COLU) PR 107 528 +Reines (LANL)
VALUE (s/eV)
>3 3
× 1014
>1.0 >1.7 >2.2 >3 >1,3
× x x × ×
10 2 10 - 2 10 - 3 10 3 10 2
VALUE (units 10 4) <0.4 <2.0 <4.0
TEEN
82 80 74
0 0 0 0 1
SPEC CNTR ASPK
EL%
EVT5
95 99 99
9800 77 26
I/2 - ~ 2 MASS DIFFERENCE
TEEN
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • <0,45
90
CLARK
74
HLBC HLBC DBC HLBC HLBC
DOCUMENT ID
TECN
K A L B F L E I S C H 79 A L S P E C T O R 76 A L S P E C T O R 76
CL%
<1 × 10 11 < 1 1 × 10 - 1 1 <6 × 10-14 < 1 2 × 10 9 <4 × 10 "-11 < 8 5 x 10 11 <81×10 9 <1 × 10 10
z~#, CERN GGM ~ # , CERN GGM u, A N L 12-ft v, CERN GGM ~, CERN GGM
CHG
COMMENT
SPEC SPEC SPEC
0 0
> 5 GBV v < 5 GBV v
DOCUMENT ID
TEEN
COMMENT
9 RAFFELT 9.10 F U K U G I T A 11 N U S S I N O V 90
ASPK
K#3 decay
KYULDJIEV LYNN 10 BEG 12KIM 13 B E R N S T E I N
898 A S T R 87 A S T R 87 A S T R
Cooling helium stars Cooling helium stars Cosmic EM backgrounds
84 81 78 74 63
utL e ~
RMUE ASTR ASTR RMUE ASTR
I
I I I
w# e I
Stellar plasmons ~#e~ u#e Cooling white dwarfs
8 D O R E N B O S C H 89 measure both vp e and ~# e elastic scattering and assume /~(~#) =
I
#(##).
I
9 S'gnificant i dependence on details of stellar properties. 10If rn(ul~ ) < 10 keV. 11 For m(~tL ) = 8 200 eV. NUSSINOM 87 examines transition magnetic m o m e n t s for ~
I;eand°btain<3x10-15form(u#)>16eVand<6×10 12 KIM 74 is a theoretical analysis o f ~ # reaction data, 131f rn(~,#) < 1 keV.
m2 0.14 ± 0.20 m 2 - 0.102 ± 0.119 K#3 decay
Test of C P T f o r a Dirac neutrino. ( N o t a very strong test.)
DOCUMENT IO
78 78 77 76 76
for the standard electroweak theory, #(~2) < 8 x 10 14 # B '
COMMENT
values shown here for mass and m 2 are corrected values obtained by J E C K E L M A N 86 f r o m the A B E L A 84 data using the more accurate f~- mass of J E C K E L M A N 86. 2 LU 80 combines D A U M 79 = + ~ i~ + ~# measurement with new LU 80 ~r mass and replaces D A U M 79. LU 80 is not independent of A B E L A 84,
EL%
BLIETSCHAU BLIETSCHAU BARNES BELLOTTI BELLOTTI
c) / C1 (v ~- ~'2VELOCITY)
I
14 f ° r m ( v F ) > 4 e V '
REFERENCES FOR
1 A B E L A 84 used the PDG84 value for ~r± mass, in conjunction with I~ m o m e n t u m I measurement in = ~ #u/~ decay to obtain m < 0.25 and m 2 = 0.16 ± 0 0 8 , The
VALUE (MeV~
3 3 3 3 3
ASTR ASTR
~2 MAGNETIC MOMENT
3, given the ue mass
<0.27 90 ] ABELA 84 SPEC m 2 = 0.097 ± 0.072 • • • We do not use the following data for averages, fits, limits, etc. • • • ANDERHUB 2 LU CLARK
90 90 90 90 90
88 88
<1 xl0 -9 95 8DO~S-. 89 C H R M , / # e - w/2e <9.5 × 10 - 1 0 90 ABE 878 C N T R u # e - - ~ # e • • • We do not use the following data for averages, fits, limits, etc, • • •
the respective decays. (This would be nontfivial only for J > limit above,)
90 90 90
COMMENT
Must vanish for Majorana neutrino or purely chiral massless Dirac neutrino. The value of the magnetic m o m e n t for the standard S U ( 2 ) x U ( 1 ) electroweak theory extended to include massive neutrinos (see F U J I K A W A 80) is ,u~ 3 e G F m u / ( 8 ~ r 2 ~ 2 ) - ( 3 2 × 1 0 - 1 9 ) n ~ / ~ B where n ~ is in eV and #B - e ~ / 2 m e is the Bodr magneton. Given the upper bound m ( ~ 2 ) < 0.25 MeV, it follows that
~,~ MASS
<0.50 <0.52 <0.65
TECN
• • • We do not use the foflowing data for averages, fits, limits, etc. • • •
Applies to ~2, the primary mass eigenstate in ~t~" Would also apply to any other ~j which mixes strongly in v# and has sufficiently small mass that it can occur in
DOCUMENT ID
4,5 H A T S U D A 6.7 V O N F E I L I T . . .
I(v-
Not in general a mass eigenstate. See note on neutrinos in the ue section above.
EL%
DOCUMENT ID
Expected to be zero for massless neutrino.
j=½
VALUE (MeV)
EVTS
3These experiments look for u/j ~ v e 3 o r ~ # ~ ~ e T . 4 Model-dependent theoretical analysis. 5 H A T S U D A 88 argues that previous bounds on radiative decays of neutrinos produced in supernovae explosions may not be valid (because v H ~ -/v m i g h t be dominated by processes such as ~H e ~ ,~e if e number density is high enough), and that, in tact, a neutrino mean life/mass of 0.2-0.6 s / e V may be consistent with the data. 6 Model-dependent theoretical analysis of SN 1987A neutrinos. 7 L i m i t applies to vT also.
VALUE (P'R)
D
EL%
>0.11 90 0 3 FRANK 81 C N T R z/# L A M P F • • • We do not use the following data for averages, fits, limits, etc. • • •
DORENBOS 89 RAFFELT 89B HATSUDA 88 VONFEILIT 88 ABE 87B FUKUGITA 87 NUSSINOV 87 JECKELMAN 86 ABELA 84 KYULDJIEV 84 ANDERHUB 82 FRANK 8] LYNN 8] FUJIKAWA 80 LU 80 DAUM 79 Also 76 Also 78 KALBFLEISCH 79 BEE 78 BLIETSCHAU 78 BARNES 77 ALSPECTOR 76 BELLOTTI 76 CLARK 74 KIM 74 BERNSTEIN 63
ZEHY C41 567 APJ 336 61 PL 8203 462 PL B2O0 580 PRL 58 636 PR D36 3817 PR D36 2278 PRL 56 t444 PL 14EB 431 NP 8243 387 EL 1148 76 PR D24 2001 PR D23 2151 PRL 45 963 PRL 45 1066 PR D20 2692 EL 608 380 EL 748 126 PRL 43 1361 PR D17 1385 NP 8133 205 PRL 38 1049 PRL 36 837 LNC 17 553 PR D9 533 PR D9 3050 PR 132 1227
Dorenbosch,Udo, Allaby, AmaldJ+ (CHARM Collab) -Dearborn Silk (UCB, LLL) {Lim, Yoshlmura (KEN) Von Feilitzsch, Oberauer (MUNT) + (BNL. BROW, HIRO. KEN, OSAK, PENN, STON) 4Yazak~ (KYOT. TONY) +Rephaeli (TELA) +Nakada, Beert (ETH, FRIB) *nauru, Eaton, Erosch, Jost, Kettle~ (SIN) (SOFI) +Boecklin, Hofer, Kottmann+ (ETH, SIN) 4Burman+ (LASL, YALE, MIT, BACL, SIN+) (COLU) +Shrock (STON) +DeCker, Dugan, Wu, CaRrey+ (YALE, COLU, JHU) +Eaton, Frosch, Hirschmannt (SIN) Daum, Dubal, Eaton, Frosch~ [SIN ETH) nauru, Eaton, Frosch, Hirschmann+ (SIN) +Baggett, Fowler~ (ENAL, PURD, BELL) +Mardano, Ruderman (ROCK, COLU) mDeden, Hasert, Krenze (Gargamelle Collab.} £Carmony. Dauwe, Fernandez+ (PURD, ANL) t (BNL, PURD, CIT, FNAL, ROCK) +Cavalli, F]orini, Rollier (MILA) +E~ioff, Frisch, Johnson, North, Bhen+ (LBL) +Mather, Okubo (ROCH) *Ruderman, Feinber6 (NYU, COLU)
I
VI.5
Lepton Full Listings
See key on page IV. 1
~, e
J=½
REFERENCES FOR u~RAFFELT 89B APJ 336 61 ALBRECHT 88 PL B207 349 ALBRECHT 88B PL B202 149 DORENBOS... 88 ZPHY C40 497 GROTCH 88 ZP £89 553 ABACHI 87 PR D35 2880 BOFILL 87 PR D36 8309 £SORNA 87B PR D35 2747 FUKUGITA 87 PR D3b 8817 NUSSINOV 87 PR D86 2278 TALEBZADEH 87 NP B291 503 ABACHI 86 PRL 56 1039 USHIDA 86C PRL 57 2897 ALBRECHT 851 PL lb3B 484 BURCHAT 85 PRL 54 2489 MATTEUZZr 85 PR D32 S00 MILLS 85 PRL 54 624 BLOCKER 82D PL 1O9B 119 ASRATYAN 81 PL 105B 301 FELDMAN 81 SLAgPUB-2839 Saata Cruz APS. FRITZE 80 PL 96S 427 FUJIKAWA 80 PRL 45 963 BACINO 79B PRL 42 749 KIRKBY 79 SLACPUB-24t9 Batavia Lepton Photon Conference. BEG 78 PR D17 1395
Existence i n d i r e c t l y established from ~- decay data c o m b i n e d w i t h u reaction data. See for example F E L D M A N 81. K I R K B Y 79 rule o u t J = 3 / 2 using ~- ~ 7ru~ b r a n c h i n g ratio. N o t in general a mass eigenstate. See note on neutrinos in t h e Ue section above.
u~ MASS Applies to u3, the primary mass eigenstate in ~r • Would also app y to any other wj which mixes strongly in v r and has sufficiently small mass that it can occur in the respective decays. (This would be nontrivial only for a hypothetical j > 4, given the ue and v/~ mass limits above.) VALUE (MeV)
CL~
EVTS
DOCUMENT ID
TEEN
COMMENT
< 35 95 12 1 ALBRECHT 88B ARG F..~em-10 GeV • • • We do not use the follOWing data for averages, fits, limits, etc. • • • < 76
95
< 85
95
< 84 < 70
95 95
13 10 102
<125
95
3
<143
95
22
<157
95
4
<250
95
<250
95
2 ABACHI
87
3 CSORNA
87B CLEO
F..~e= 10-11 GeV
4 ABACHI 5 ALBRECHT
86 HRS 851 ARG
Repl, by ABACHI 87 F..~em-10 GeV
6 BURCHAT
85
MRK2
Ece~ = 29 GeV
7 MATTEUZZl
85
MRK2
F..~em- 29 GeV
8 MILLS
85
DLCO
F..~e= 29 GeV
9 BLOCKER
82D MRK2
F..~e= 5.2 GeV
79B DLCO
F-.~em--3,5-7.4 GeV
594 10,11 BACINO
HRS
F..~em= 29 GeV
EL °/~
DOCUMENT IO
TECN
j=½
VALUE (MeV I
DOCUMENT ID
TECN
COMMENT
0.510999064.0.00000015 • •
•
1 COHEN 87 RVUE 1986 CODATA value We do not use the follOWing data for averages, fits, limits, etc. • • •
0.5110034 ±0.0000014
COHEN
73
RVUE
1973 CODATA value
1The mass is known much more precisely in u: rn - (5.48579903 :E 0.00000013) × 10- 4 u.
[m(e+) - m(e-)] / AVERAGE m A test of CPT. VALUE
~
DOCUMENT ID
< 4 × 10 - 8
90
CHU
84
TECN
COMMENT
CNTR
Positronium spectroscopy
e MEAN LIFE / BRANCHING FRACTION A test of charge conservation.
COMMENT e+ e - ~ uP7 I etc. • • • Cooling helium stars I Cooling helium stars Cosmic EM backgrounds | Stellar plasmons
12GROTCH 88 combined data from MAC, ASP, CELLO, and Mark J. 13 Significant dependence on details of stellar properties. 1 4 1 f r n ( p r ) < 10 keY. 15For m ( u v ) = 8-200 eV. NUSSINOV 87 examines transition magnetic moments for ~- ~ ue and obtain < 3 x 10 15 for re(v-r) > 16 eV and < 6 x 10 14 for m ( ~ - ) > 4 eV.
(ROCK, COLU)
e MASS
~3 MAGNETIC MOMENT
x 10. 6 90 12 GROTCH 88 RVUE We do not use the following data for averages, fits, limits, x I0 11 13 RAFFELT 89B ASTR × 10- 1 1 13,14 FUKUGITA 87 ASTR x 10 - 1 4 15 NUSSINOV 87 ASTR x 10 I i 14 BEG 78 ASTR
+Marciane, Ruderman
The mass is knOWn much more precisely in u (8tomic mass units) than in MeV (see the footnote). The conversion from u to MeV, 1 u = 931.49432 ± 0.00028 MeV, involves the relatively poorly knOWn electronic charge.
Must vanish for Majorana neutrino or purely chiral rnassless Dirac neutrino. The value of the magnetic moment for the standard S U ( 2 ) x U ( 1 ) electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is pu = 3 e G F r n u / ( 8 ~ 2 ~ / 2 ) = (3.2 x 10-19)rnv/~B where my is in eV and /~B = e~/2me is the Bohr magneton. Given the upper bound m ( ~ 3 ) < 35 MeV, it follows that for the standard electroweak theory, #(~3) < 1.2 × 10- 1 1 #B"
<4. • • • <1 <11 <6 <8.5
(AACH, BONN. £ERN, LOIC, OXF, SACL) +Shrock (STON) +eerguson, Nod~lman, Slater+ (DEL£O Collab.) (SLA£) J
B
1 ALBRECHT 88 bound comes from analvsis of ~- ~ 5~ :I: ur decay mode. 2 Bound comes from analysis of "r ~ 5~T~: (~0) ~_ decay mode in 13 decay events. 3CSORNA 87B also quote result as 31 :I- 25 ± 20 MeV. Bound comes from analysis of T ~ 37r±(Ir0)vT decay mode. 4 Bound comes from analysis of T ~ 5~T± ~r0 Pr decay mode (5 events) and to a lesser extent from "r ~ 5~ ± v-r mode (5 events). SBound comes from analysis of "r ~ 31r± uF decay mode. 6Bound comes from analysis of "r ~ 57r:I- (Tr0)m- decay. 7 Bound comes from analysis of "r - - 3~r± Ir0 ur decay mode. 8 Bound comes from analysis of T ~ K :I- K ~: ~T± Ur decay mode. 9 Bound comes from analysis of T ~ 7rUT decay mode. 10 Bound comes from analysis of leptonic decay spectrum. 11BACINO 79B experiment rules out V + A decay, disfavors pure V or A, and is in good agreement with V - A .
VALUE (#1~)
+Dearborn, Silk (UCB, LLL) +Binder. Boeckmann+ (ARGUS Collab,) +Binder, Boeckrnann+ (ARGUS Collab.) Dorenboscb, Allaby, Arnaldi, BarbiOlini~ (CHARM Collab.) +Robinett (PSU) +BarinBer, Bylsma, DeBo~te+ (HRS Collab.) +Busza, Eldddge+ (MIT, FNAL, MSU) +Mestayer, Panvini, Word+ {CLEO £ollab.) +Yazaki (KYOT, TORY) +Rephaeli (TELA) +Guy, Venus+ ([3EBC WA66 Collab.) +AkerloL Baringer, Beltrarni+ (HR5 Collab.) +Kondo, Tasaka, Park, Son${+ (FNAL-ESaICollab.) +Binder, Drescher,Schubert+ (ARGUS Collab.) +Scbmidke, YeRon, Abrams+ (Mark II Collab.) +Barklow+ (Mark II £ollab.) +Pal, Atv,x~od, Baillon+ (DEL£O £ollab.) +Dorian, Abrams, Alam~ (Mark II Collab.) +Efremenko, Fedotov+ (ITEP, FNAL, SERP, MICH) (SLAG, STAN)
I
I
I
NOTE ON TESTING CHARGE CONSERVATION AND THE PAULI EXCLUSION PRINCIPLE by L.B. Okun (ITEP, Moscow) This Note is a condensed and edited version of a review which appeared in Comm. Nuc. Part. Phys. 19, 99 (1989), copyright C) Gordon and Breach Science Publishers Inc. The Russian language original is L.B. Okun, Uspekhi Fiz Nauk 158, 293 (1989).
LIMIT ON u~ PRODUCTION IN BEAM DUMP EXPERIMENT VALUE DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • 16 DORENBOS... 88 CHRM 17 BOEILL 87 CNTR 18 TALEBZADEH 87 BEBC 19 USHIDA 86C EMUL 20 ASRATYAN Sl HLBC 21 FRITZE 80 BEBC 16DORENBOSCH 88 is CERN SPS beam dump experiment with the CHARM detector. vT + VT flux is <21% of the total prompt flux at 90% CL. 17 BOFILL 87 is a Fermilab narrow-band v beam with a fine-grained neutrino detector. 18TALEBZADEH 87 is a CERN SPS beam dump experiment with the BEBC detector. Mixing probability P(ve ~ v f ) <18% at 90% CL. 19USHIDA 86c is a Eermilab wide-band ~ beam with a hybrid emulsion spectrometer. Mixing probabilities P(ve ~ ~T) <7.3% and P(u# ~ v v ) <0.2% at 90% C L 20ASRATYAN Sl is a Fermilab wide-band P beam with a 15 foot bubble chamber. Mixing probability P(P# ~ PT) <2.2% at 90% CL. 21FRITZE 80 is CERN SPS experiment with BEBC. Neutral-current/charged-current ratio corresponds to R = (prompt-~T-induced events)/(aJl prompt-u events) <0.1. Mixing probability P(ue ~ VT) <0.35 at CL - 90%.
About thirty papers dealing with the possibility of violation of charge conservation and/or the exclusion principle have been published during the last thirty years. A short review of these papers is given below. Electric charge conservation and the exclusion principle are among the most fundamental principles in modern physics. The two subjects are interconnected because violations of the principles are often searched for in the same experiments. They are also singled out by the inability of theorists to construct a self-consistent phenomenological framework for a quantitative description of the degree of accuracy with which these principles have been tested.
VI.6
Lepton Full Listings e
I. E x p e r i m e n t s already done
lower limit of 2 x 1020 years for the characteristic time of such
I.A. Exclusive experiments with electrons. A b o u t 30 years ago, Feinberg and Goldhaber 1 carried out an experiment
a 1 2 C ~ 12C 7 transition for the creation of a "non-Paulian" nucleus 12~ with five nucleons in the lowest s shell.
with an Nal detector aimed at testing electron stability. T h e y
I.C. Inclusive experiments with nucleons. Inclusive
looked for characteristic x rays expected when a vacancy in the
experiments differ from exclusive ones by not choosing a given
atomic shell of iodine is filled (see Fig. 1) a n d deduced a lower
m e c h a n i s m t h r o u g h which the p h e n o m e n o n under investigation
limit for the electron lifetime of about 10 is years. In 1965 Moe
is realized. In the case of electric charge, it is as if charge Q1
and Reines 2 raised this limit to 102o years; and by searching for
enters a "black box" and charge Q2 leaves it.
monochromatic 7 rays with energy me/2, they deduced a lower
T h e first inclusive experiment was done in 1979 by Norman and Seamster, 9 who established that r(S7Rb
limit for the lifetime of the process e ~ u~ of 4 x 1022 years.
SrSr) > 2p
=
-"
b)
Fig. 1. (a) Filled l s and 2p shells mysteriously disappears from l s conservation. (c) Electron from shell, emitting a characteristic x
c)
of iodine. (b) Electron shell, violating charge p shell j u m p s to l s ray.
In 1974 Reines and Sobel 3 used the result of the search by Moe and Reines 2 for characteristic iodine x rays to put a limit on the possible violation of the Pauli principle. This time they considered a transition not to a vacancy, but to a filled atomic shell (see Fig. 2). 2p
~
1980
Barabanov
et
al. 1° es-
uct of developing a radiochemical technique for the gallium-
?
a)
1.9 x 1018 yr. In
tablished another charge-nonconserving transformation limit r(71Ga ~ 71Ge) > 2.3 x 1023 yr. This result was a byprod-
--
g e r m a n i u m detector for low-energy solar neutrinos at the Baksan Neutrino Observatory. I.D. Global limit for charge nonconservation. The idea of a global approach to possible charge nonconservation was advanced in 1976 by Pomansky, n who considered electric currents in the atmosphere of the Earth and concluded t h a t the imbalance of current due to the decay of electrons or, more generally, due to charge nonconservation in the atoms of the Earth cannot be larger t h a n 200 A. Taking into account that ~he Earth contains 2 x 1051 electrons, he obtained re > 5 x 1022 yr. A review of experimental tests of the Pauli exclusion principle and of charge nonconservation was given in 1980 by Reines and Sobel32
:
II. T h e o r e t i c a l papers o n c h a r g e n o n e o n s e r v a t i o n In 1978, Zeldovich, Voloshim and Okun 13'14 considered a 1s
=
--" a)
n u m b e r of problems that arise when one tries to construct a b)
Fig. 2. (a) Filled l s and 2p shells of iodine. (b) Electron from 2I) shell j u m p s to ls shell, violating the Pauli principle. A similar search for x rays in 1975 by Steinberg et al, 4 with a g e r m a n i u m detector gave Te > 5 X 10 el yr. In 1979 Kovalchuk, Pomansky, and Smolnikov 5 raised the limit to 2 x 1022 yr (again with NaI); and in 1983 Bellotti et al. 6 obtained the same result with germanium. In 1986 Avignone et al. 7 repeated the 1965 search by Moe and Reines for e + u2 decay, this time with a g e r m a n i u m detector, and concluded t h a t r(e -~ u"/) > 1.5 x 1025 yr. All these experiments tested electrons: they searched for x rays or "7 rays caused by" the decay of an electron or x rays caused by violation of the exclusion principle for electrons. I.B. An exclusive experiment with nucleons. The above considerations were also applied to nucleons. In 1979 Logan and Ljubi~i~ s tested the Pauli principle by searching for ? rays with energies of the order of 20 MeV. Such ~, rays were expected to signal the transition of a nucleon in the 12C nucleus from the 2p shell to a filled i s shell. T h e y obtained a
self-consistent phenomenological description of nonconservation of electric charge. Some of the main conclusions of these papers are summarized below. I I . A . Impossibility of spontaneous breaking of charge conservation. Zeldovich et al. 13,14 showed that electric charge nonconservation, unlike spontaneous breaking of electroweak symmetry; cannot be realized spontaneously because the photon, unlike the Z-bosom is extremely light or (even worse) massless. As is well known, the Higgs m e c h a n i s m of spontaneous breaking of a U(1) gauge s y m m e t r y calls for the existence of a charged scalar field. After the breaking, the imaginary part of this field becomes the third (longitudinal) component of the now-massive vector bosom while the real part becomes a Higgs boson. T h e characteristic mass parameter of the charged scalar field determines the mass of the Higgs field and of the gauge bosom In the case of electroweak theory, this mass p a r a m e t e r is very large (of the order of the W and Z masses). But in the case of charge nonconservation, it has to be extremely small, of the order of the photon mass. As photons are practically massless, the charged scalar boson must also be practically massless. Emission and absorption of such almost-massless charged bosons would drastically
VI.7
Lepton Full Listings
See key on page IV. 1
e change the whole of electrodynamics, so their existence in our world is definitely ruled out. On the other hand, the nonspontaneous, explicit breaking of charge conservation would lead to catastrophic bremsstrahlung of longitudinal photons. II.B. Catastrophic bremsstrahlung in the case o f explicit charge noneonservation. If charge (and current) is conserved, the amplitude for emission of a longitudinal photon is negligibly small, being proportional to em~/w, where e is the electric charge, m r is the mass of the photon, and w is its energy (we use units in which h = c = 1). If charge is not conserved, the situation is opposite: the amplitude for emission of a longitudinal photon is proportional to ew/rn~ and therefore is extremely large. As a result, the probability for emission of two longitudinal photons is larger than for one, for three is larger than for two, and so on. If we assume that electrons can decay into three neutrinos, with an extremely small coupling constant g (see Fig. 3a), then the neutrinos would be accompanied by the emission of an immense number of longitudinal photons (see Fig. 3b). The energy me released in the decay is carried away by the photons, not by the neutrinos, and the energy of each of the photons is extremely small.
7 7
e=
.,~v
e;-
//...//.~¢
a)
v
b)
v
Fig. 3. (a) Hypothetical decay e ~ L,uu, violating charge conservation. (b) Catastrophic bremsstrahlung accompanying e ---*u~,u decay. The same applies to the decay e --* ~7, which becomes e ~ v + N~7 (see Fig. 4), and one can show that / O~ m 2"~1/3 ~ 10 TM
1021
#
Here the smaller number (10 TM) corresponds to the upper limit on my derived from the measurement of the magnetic field of Jupiter. The larger number (1021) corresponds to a less certain limit 1/m r >~ 1022 cm derived from the observed dimensions of galactic magnetic fields.
/
e= a)
7
e~-
///..//
7
b)
Fig. 4. (a) Hypothetical decay e ~ vT, violating charge conservation. (b) Catastrophic bremsstrahlung accompanying e ---*vV decay.
The probability of the electron decay is proportional to:
re ~ meg2 eN~ . We see, therefore, that all the energy released in this electron decay is carried away by infra-infra...infrared photons, that is, by a practically static field. There is no 7 ray with energy me~2 and no characteristic x rays when an electron disappears in an atom (the size of an atom is negligible compared with the characteristic wavelength of the longitudinal photons, so the atom may be considered to be point-like), and the almost static field of longitudinal photons is practically unobservable. Thus one must conclude that all the exclusive experiments discussed above would have been unable to discover electron decay or charge-nonconserving nuclear transformations even if such phenomena do occur in nature. Only the limits obtained from the inclusive, nonspectroscopic searches and the global limit remain valid. II.C. "Self-healing" by radiative corrections. The previous section may have created an impression that explicit breaking of charge conservation is a reasonable basis for a selfconsistent theory of this phenomenon. But such an impression is deceiving. The point is that the large probability of emitting real longitudinal photons is accompanied by a large probability of emission and absorption of virtual longitudinal photons by the same particle. That means that radiative corrections are expected to be so huge that the term "corrections" can be used only by tradition. It turned out 13'14 that these "corrections" suppress the charge-nonconserving amplitude by an exponentially small factor and in this way "heal" the theory. II.D. Recent theoretical papers. The last few years have witnessed a definite revival of interest in the problem of charge nonconservation. The possibility of constructing a renormalizable theory with an explicitly nonconserved electromagnetic current was discussed in 1986 by Nakazato et al. 15 Three papers appeared in 1987: Huang 16 attempted to spontaneously break charge conservation in the framework of broken SU(5) symmetry. Nussinov 17 considered the influence of an external potential on electron decay. Mohapatra TM proposed a model in which charge nonconservation is caused by electron-positron vacuum oscillations and conjectured that such a theory is only logarithmically divergent. In 1988, Suzuki TM discussed minicharged particles. Recently (1988), all these papers except Ref. 19 were reviewed and critically analyzed by Tsypin, 2° whose main conclusion is that the verdict of Refs. 13 and 14 is not refuted. III. T h e o r e t i c a l p a p e r s on Pauli p r i n c i p l e violation A nonconformist approach to the Pauli principle can be traced to remarks by P.A.M. Dirac, W. Pauli, and E. Fermi. By carefully reading the books by Dirac 21 and Pauli, 22 one can conclude that in the framework of quantum mechanics with a Hamiltonian that is permutationally invariant, transitions to a filled shell are forbidden independent of the validity of
VI.8
Lepton Full Listings e
the Pauli principle, because such transitions would change the permutational s y m m e t r y of a wave function of a given set of particles. In 1934, E. Fermi discussed in one of his popular sci-
T h e y established t h a t the abundance in the atmosphere of such false 9He is less t h a n 10 6 of t h a t of normal 4He. At present, we have no doubts t h a t there is only one particle with the mass and charge of the electron. A second
ence articles the possibility t h a t electrons are a "little bit"
electron would be a b u n d a n t l y produced by colliders; it would
nonidentical. 2a He concluded that a tiny nonidentity would
destroy the excellent agreement of QED with a great n u m b e r
drastically change the properties of atoms during the billions
of experiments. So these old searches may be considered to be
of years of their existence.
searches for the violation of the exclusion principle.
A t t e m p t s to violate (on paper) the Pauli principle have failed as a consequence of rather general theorems based on fundamental properties of field theory. Relevant (and complementary) lists of references m a y be found in Refs. 24 and 25. By some accident, these lists do not contain a very important paper by Luders and Zumino. 2a There is an excellent explanation of how the Pauli principle makes QED self-consistent in
Turning now from the Pauli principle to charge conservation, we stress the great potential of gallium-germanium detectors at Baksan (60 tons of Ga) and Gran Sasso (30 tons of Ga). These detectors will be able to raise the lower linfit for the Ga-Ge spontaneous transformation time from 1023 yr to 1026 1027 yr. In spite of the fact t h a t at present we have no theoreti-
the last lecture published by Feynman. 2r
cally self-consistent framework for a description of violation of
IV. Proposals for future experiments
charge conservation or the exclusion principle, I don't think that experimentalists should stop testing these most funda-
A n u m b e r of new experimental searches of violation of
mental concepts of modern physics. In f u n d a m e n t a l physics, if
the Pauli principle have been suggested during the last two years.242s 33 A m o n g the objects to be investigated are stable
something can be tested, it should be tested.
non-Paulian molecules, atoms, atonfic nuclei, and hadrons. Let
V. Postscript
us consider some of them. The ground state 3S1 of orthohelium can be searched for either by electron spin resonance 24'3°'al or by Zeeman splitting of an atomic beam. 32
After completing this note, I learned about three other papers t h a t discuss or describe experimental tests for the violation of the Pauli Principle. V. Novikov and A. P o m a n s k y 37 suggest a search for those
An atom of sodium with three electrons in the K shell will
non-Paulian isotopes, with atomic charge Z + 1, whose chemical
lack an active valence electron and will chemically resemble
analogs with atomic charge Z have a very low abundance; for
neon, but the optical s p e c t r u m of this false neon will differ from the s p e c t r m n of genuine neon. After separation and
appears like boron. As the abundance of normal boron is
instance, to look for non-Paulian carbon, which chemically
enrichment, the false neon could be searched for with tunable
known to be six orders of m a g n i t u d e smaller t h a n tha~ of
lasers by well-developed techniques, such as those of resonance excitation, photo-ionization, 24,31':~ or neutron activation. 33
carbon, this would give an enhancement factor of the order
There is also a proposal to search for z rays or Auger
of 106 in the search for "false boron." Especially proufising are mass-spectroscopic searches for false "12B" (the non-
electrons from a piece of m a t t e r when exposing it to "new"
Paulian 12C), as ordinary 12B does not occur in nature. Other
electrons via a strong electric current. 29'~° If the exclusion principle is violated at the quark level, 27
pronfising pairs of elements are fluorine-neon and chlorine-
unusual baryons belonging to an S-wave 70-plet of SU(6)
mass spectrometry is discussed by V. Novikov, A. Pomansky,
should exist (among t h e m an octet with J P = 3/2 + and a
and E. Nolte. as The technique of accelerator mass spectrometry is rather advanced: see, for instance, Refs. 39 and 40, which
decuplet with JP = 1/2+), and some of t h e m should be stable. There is a Russian saying, "New is well-forgotten old". Some of the experiments suggested recently are similar to experiments done m a n y years ago, when physicists (at least some of them) were not absolutely sure that J particles were identical to ordinary electrons, or that there were no other particles of the same mass and charge as ordinary electrons. For instance, in 1948 Goldhaber and Scharff-Goldhaber a4 stopped rays from ~4C in lead and looked for K-shell z rays from lead. T h e y were able to set a 3% upper limit on the existence of such :c rays and therefore concluded that fl particles are identical with electrons. (Earlier studies on the identily of ;3 particles and electrons are described in a review by Crane. ~ ) In 1968 Fishbach, Kirsten, and Shaeffer 36 searched for a "false 9He" they called 9Be~ a Be atom with two ordinary electrons and two false electrons e ~ all of t h e m in the K shell.
argon. The search for false "F" and "CI" using accelerator
give results of searches for some rare isotopes at the level of sensitivity 10 1~ _ 10 re;. W i t h this technique, lower limits for the lifetimes of Pauli-forbidden transitions in the ballpark of 19:31 years eould be achieved. An a t t e m p t to introdnee a large number of "fresh" electrons into a copper sample and to observe z rays was undertaken recently by E. Ramberg and G. Snow. 41 [n principle this experiment is similar to *hat of M. Goldhaber and G. SeharffGoldhaber. 34 However, this tilne, the "fresh" electrons were supplied not by a radioactive 3 source, but by a strong electric current.
VI.9
Lepton Full Listings
See key on page I V. 1
e
References 1. G. Feinberg and M. Goldhaber, Proc. Natl. Acad. Sci. U.S. 45, 1301 (1959). 2. M.K. Moe and F. Reines, Phys. Rev. Lett. 140B, 992 (1965). 3. F. Reines and H.W. Sobel, Phys. Rev. Lett. 32, 954 (1974). 4. R.I. Steinberg et al., Phys. Rev. D12, 2582 (1975). 5. E.L. Kovalchuk, A.A. Pomansky~ and A.A. Smolnikov, JETP Lett. 29, 145 (1979) [Pis'ma ZhETF. 29, 163 (1979)]. 6. E. Belotti et al., Phys. Lett. 124B, 435 (1983). 7. F.T. Avignone III et al., Phys. Rev. D34, 97 (1986). 8. B.A. Logan and A. Ljubihi~, Phys. Rev. C20, 1957 (1979). 9. B.E. Norman and A.G. Seamster, Phys. Rev. Lett. 43, 1226 (1979). 10. R. Barabanov et al., JETP Lett., 32, 359 (1980) [Pis'ma ZhETF. 32, 384 (1980)]. 11. A.A. Pomansky, in the Proceedings of the International Neutrino Conference, Aachen 1976, eds. H. Faissner, H. Reithler, P. Zerwas. Braumschweig: Vieweg, 671 (1977). 12. F.S. Reines and H.W. Sobel, "Festschrift for Maurice Goldhaber', eds. G. Feinberg, A.W. Sunyar, J. Weneser. Trans. New York Acad. Sci., ser. II, 40, 154 (1980). 13. L.B. Okun, Ya.B. Zeldovich, Phys. Lett. 78B, 597 (1978). 14. M.B. Voloshin and L.B. Okun, JETP Lett. 28, 145 (1978) [Pis'ma ZhETF. 28, 156 (1978)]. 15. H. Nakazato et al., Progr. Theor. Phys. 75, 175 (1986); and H. Nakazato et al., Progr. Theor. Phys. 75, 686 (1986). 16. J.C. Huang, J. Phys. G. 13, 273 (1987). 17. S. Nussinov, Phys. Rev. Lett. 59, 2401 (1987). 18. R.N. Mohapatra, Phys. Rev. Lett. 59, 1510 (1987). 19. M. Suzuki, Phys. Rev. D38, 1544 (1988). 20. M.M. Tsypin, Soy. J. Nuel. Phys. 50, 269 (1989) [Yad. Fiz. 50, 431 (1989)]. 21. P.A.M. Dirac, The Principles of Quantum Mechanics. Clarendon Press, Oxford, chap. IX (1958). 22. W. Pauli, Die Allgemeinen Prinzipen der Wellenmechanik, in Handbuch der Physik (Springer-Verlag, Berlin, 1958), Bd. 5, T. 1, Sec. 14. 23. E. Fermi, Atti. Sci. It. Progr. Sci. 22, Riunione (Bari 1933), yd. 3, p. 7; and E. Fernli, Scientia 55, 21 (1934). 24. L.B. Okun, "Festival - Festschrift for Val Telegdi', ed. K. Winter, Elsevier Sci. Publishers, 201 (1988). 25. O.W. Greenberg and R.N. Mohapatra, University of Maryland preprint UM PP 89-030 (1989). 26. G. Liiders and B. Zumino, Phys. Rev. 110, 1450 (1958). 27. R.P. Feynman, "The Reason for Antiparticles", Elementary Particles and the Laws of Physics, The 1985 Dirac Memorial Lectures, Cambridge University Press, 1 (1987). 28. A.Yu Ignatiev and V.A. Kuzmin, Sov. J. Nucl. Phys. 46, 444 (1987) [Yad. Fiz. 46, 786 (1987)]. 29. O.W. Greenberg and R.N. Mohapatra, Phys. Rev. Lett. 59, 2507 (1987). 30. O.W. Greenberg and R.N. Mohapatra, Phys. Rev. D39, 2032 (1989). 31. L.B. Okun, JETP Lett. 46, 529 (1987) [Pis'ma ZhETF. 46, 420 (1987)]. 32. D. Kelleher, National Bureau of Standards Internal Memo (1988). 33. A.Yu. Ignatiev and V.A. Kuzmin, JEPT Lett. 47, 4 (1988) [Pis'ma ZhETF 47, 6 (1988)]; and V.N. Gavrin, A.Yu. Ignatiev, and V.A. Kuzmin, Phys. Lett. B206, 343 (1988). 34. M. Goldhaber and G. Scharff-Goldhaber, Phys. Rev. 73, 1472 (1948). 35. H.R. Crane, Rev. Mod. Phys. 20, 278 (1948).
36. E. Fishbach, T. Kirsten, and O.Q. Shaeffer, Phys. Rev. Lett. 20, 1012 (1968). 37. V.M. Novikov and A.A. Pomansky, JETP Lett. 49, 81 (1989) [Pisma ZhETF 49, 68 (1989)]. 38. V.M. Novikov, A.A. Pomansky, and E.H. Nolte, in Proceedings X X I V Rencontre de Moriond, Les Arcs, Jan. 21-28, 1989, eds. O. Fackler and J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, 1989), p. 243. 39. H.E. Gove et al., Nucl. Instr. and Meth. 169, 425 (1980). 40. P.W. Kubik et al., Nucl. Instr. and Meth. B1, 51 (1984). 41. E. Ramberg and G.A. Snow, University of Maryland preprint (1988). VALUE ([ears~
CL ~/o
DOCUMENT tO
TEEN
COMMENT
> 2 x 1022 68 2 BELLOTTI 838 CNTR > 2 x 1022 68 3 KOVALCHUK 79 CNTR • • • We do not use the following data for averages, fits, limits, etc. • • • >1.5 >1 >3 >3.5 >5.3 >2 >4
x x x × x x ×
1025 1039 1023 1023 1021 1021 1022
68 68 68
AVlGNONE 40RITO BELLOTTI KOVALCHUK 3 STEINBERG 3,5 MOE MOE
86 85 83B 79 75 65 65
CNTR ASTR CNTR CNTR CNTR
e- ~
u-./
e- ~ e-~
u? u~f
e- ~
u~/
CNTR CNTR
2This limit of BELLOTTI 83B iS for disappearance of K electrons in Ge atoms. 3 These limits are for all modes in which decay particles escape from the detector without depositing energy, 4Assuming that electromagnetic forces extend out to large enough distances and that the age of our galaxy is 1010 years. 5See MOE 65 for a discussion of earlier experiments, The MOE 65 limit is re-estimated by STEINBERG 75 to be 1020 years.
e MAGNETIC M O M E N T
#e/#B -
1
ANOMALY
= (E-2)/2
For the most accurate theoretical calculation, see KINOSHITA 81. The COHEN 87 value assumes the g / 2 values for e+ and e - are equal by CPT. Some older results have been omitted. VALUE (units 10 6~ DOCUMENT ID
TEEN
CHG
COMMENT
1159.652193+0.000010
COHEN
87
RVUE
1159.6521884:t:0.0000043 1159.6521879±0.0000043 1159.652200 2:0.000040 1159.652222 J:0.o00050
VANDYCK VANDYCK VANDYCK SCHWINBERG
87 87 86 81
MRS MRS MRS MRS
+ +
TEEN
COMMENT
1986 CODATA value • • • We do not use the following data for averages, fits, limits, etc. • • • Single Single Single Single
electron positron electron positron
g ( e + ) / g ( e - ) - 1, e + e - COMPARISON A test of CPT. VALUE (units 10 12~
CLI%
DOCUMENT ID
-- 0 . 5 ± 2.1 6 VANDYCK 87 MRS Penning trap • • • We do not use the following data for averages, fits, limits, etc. • • • <
12 22
95 ±64
7 VASSERMAN
87
SCHWINBERG 81
6VANDYCK 87 measured ( g _ / g + ) -
CNTR MRS
Assumes m ( e + ) = re(e-) Penning trap
1 and we converted it.
7VASSERMAN 87 measured ( g F - g _ ) / ( g - 2 ) . 10 3.
We multiplied by ( g - 2 ) / g
= 1.2 x
e ELECTRIC DIPOLE M O M E N T A nonzero value is forbidden by both T invariance and P invariance. VALUE (10-26 e~m~
CLI~
DOCUMENT ID
TEEN
COMMENT
-- 1 . 5 ± 5.54-1.5 MURTHY 89 Cesium, no B field • • • We do not use the following data for averages, fits, limits, etc. • • • -
<
14 50 190 70 300
J- 24 :Lll0 ±340 ±220
90 90 90
CHO LAMOREAUX SANDARS PLAYER WEISSKOPF
89 87 75 70 68
NMR NMR MRS MRS MRS
TI F molecules 199Hg Thallium Xenon Cesium
Vl.lO
Lepton Full Listings e, # • • • We do not use the following data for averages, fits, limits, etc. • • •
REFERENCES FOR e CHO MUHTHY COHEN LAMOREAUX VANDYCK VASSERMAN AIs~ AVIGNONE VANDYCK ORITQ CHU BELLOTTI KINOSHITA
PRL 63 2559 PRL 63 965 RMP 59 1121 PRL 5~ 2275 PRL 59 26 PL B198 302 PL 8187 t72 PR D34 97 PR D34 722 PRL 54 2457 PRL 52 1889 PL 1248 435 PRL 4? 1573
+SanEster, Hinds (YALE) +Krause, Lir Hunter (AMHT) +Taylor (RISE, NBS) +Jacobs, Heckel, Raab, Fonson (WASH) Van Dyck, Schwinberg,Dehrnelt (WASH) +Vorobyov, Gluskin+ (NOVO) Vasserman, Vorobsov, Gluskin+ (NOVO) +Brodzinski, Hensley,Miley, Reeves+ (PNL, SCUC) Van Dyck, Schwinberg,Dehrnelt (WASH) +Yoshimura (TOKY, KEK) +Mills, Hall (BELL, NBS, COLD) +Corti, Florin±,Liguori, Pull±a+ (MILA) +Undquist (CORN)
SCHWINBERG 81
PRL 47 1679
+Van Dyck, Dehme~t
KOVALCHUK 79
JETPL 29 145 +pomansky. Smoln{kov Translated from ZETFP 29 163. PR A l l 473 +Sternheimer PR D12 2 5 8 2 +Kwiatkowski, Maenhaut+ JPCRD 2 663 +Taylor JP B3 1620 +Sandars PRt 21 1645 +Carrko, Gould, Lipworth+ PR 1408 992 ~-Reines
$ANDARS STEINBERG COHEN PLAYER WEISSKOPF MOE
89 89 87 87 87 87 878 86 86 85 84 838 81
75 7S 73 70 68 65
B
1165.910 1165.937 1165.923 1165.922 1166.16 i162.0
±O.Oll ±0.012 J_0.0085 ±0.bO9 ±0.31 ±5.0
8 8 8 8
(INRM)
+
Storage Storage Storage Storage Storage
± ± ± +
ring ring ring ring rings
#+-TO-#-
E-FACTOR RATIO MINUS ONE, ( E , + / E - ) - 1
A test of CPT. VALUE (units i0- 8)
DOCUMENTID
--2.6±1.6
BAILEY
79
# ELECTRIC DIPOLE
MOMENT
A nonzero value is forbidden by both T invariance and P invariance. DOCUMENT IO
TECN
CH6
COMMENT
3.7=1:3.4 9 BAILEY ?8 CNTR ± Storage ring • • • We do not use the following data for averages, fits, limits, etc. • • •
MASS
The mass is known more precisely in u (atomic mass units) than in MeV (see the footnote). The conversion from u to MeV, I u 931.49432 ± 0.00028 MeV, involves the relatively poorly known electronic charge. Where m ( # ) / m ( e ) was measured, we used the 1986 CODATA value for re(e) = 0.51099906 ± 0.00000015 MeV.
8.6±4.5 0.8i4.3
BAILEY BAILEY
DOCUMENT ID
TECN
CHG
78 CNTR 78 CNTR
+ -
Storage rings Storage rings
9 This is the combination of the two BAILEY 78 results given below.
I~/p
The fit uses the 7r± , ~T0, and # ± mass and mass difference measurements. --
CNTR CNTR CNTR CNTR CNTR CNTR
(WASH)
(OXF. 8NL) (UMD) (RISC. NBS) (OXF) (BRAN) (CASE)
VALUE (i~ 19 ~cm)
VALUE (MeV)
79 79 79 77 68 62
8 BAILEY 79 is final result. Includes BAILEY 77 data. We use # / p magnetic moment ratio = 3.1833452 and recalculate the BAILEY 79 values. Third BAILEY 79 result is first two combined.
j=½ #
BAILEY BAILEY BAILEY BAILEY BAILEY CHARPAK
MAGNETIC MOMENT RATIO
This ratio is used to obtain a precise value of the muon mass. Measurements with an error > 0.00001 have been omitted.
COMMENT
1.05,658387{Q.000034 OUR FIT 1 COHEN 87 RVUE 1986 CODATA value • • • We do not use the following data for averages, fits, limits, etc. • • •
105.6583899:0.000034
105.65841 ±0.00033 105r~58432±0.000064
2 BELTRAMI 3 KLEMPT
86 SPEC 82 CNTR +
t05.658386±0.000044 105.65856 ±0.00015 105.65836 ±0.00026 105.65865 ±0.00044
4 5 6 7
82 CNTR 77 CNTR 72 CNTR 71 CNTR
MARIAM CASPERSON CROWE CRANE
Muonic atoms Incl. in MARIAM 82
+ +
1The mass is known more precisely in u: m = 0.113428913 ± 0.000000017 u. COHEN 87 makes use of the other entries below. 2 BELTRAMI 86 gives m ( # ) / m ( e ) = 206.76830(64). 3KLEMPT 82 gives m ( F ) / m ( e ) = 206.76835(11). 4 MAP,IAM 82 gives m ( p ) / m ( e ) = 206.768259(627. 5 CASPEBSON 77 gives m ( # ) / m ( e ) 206.76859(29). 6CROWE 72 gives m ( # ) / m ( e ) = 206.7682(5). 7CRANE 71 gives m(lz)/m(e) = 206.76878(85),
VALUE
3.1833441 3.1833461 3.1833448 3.1833403 3.1833402
±0.0000017 ±0.0000011 ±0.0000029 ±0.0000044 ±0.0000072
3183346? ~00000082
DOCUMENT ID
TECN
CH6
BARDIN 8ARDIN GIOVANETTI BALANDIN DUCLOS
84 CNTR + 84 CNTR 84 CNTR + 74 CNTR + 73 CNTR +
/~+/#A test of CPT.
VALUE
__
1.000
±0.001
BAILEY MEYER
#
79 CNTR Storage ring 63 CNTR Mean life # + / F -
82 CN3-R + 82 CNTR + ?8 CNTR + 77 CNTR + 73 RVUE
CROWE
72
RVUE
+
DECAY MODES
Confidence level
F1
e - Pe ~# e
~
[-4
LF
<
5
%
90%
[5
e - ~e ~ # e-"~
LF
<
4.9
x 10 - I I
[6
e- e + e-
LF
<
1,0
x 10 - 1 2
F7
e - 2"y
LF
<
7.2
x i0
90% 90% 90%
[a] [a]
~eUt~
e-~Teu~e + e-
/J- BRANCHING
100 ( (
%
1.4i0.4) % 3.4±0.4) x 10 - 5
ii
1986 C O D A T A
value
RATIOS
r2/r
F ( e - P-e v ~ ' y ) / Ftota I VALUE
EVT5
DOCUMENT ID
TEeN
COMMENT
0.014 J:O.004
CRITTENDEN 61 CNTR 7 KE > 10 MeV • • • We do not use the following data for averages, fits, limits, etc. • • • 862
= (g#-2)/2 For reviews of theory and experiments, see HUGHES 85, KINOSHITA 84, COMBLEY 81, FARLEY 79, and CALMET 77. VALUE (units 10 6) __ DOCUMENT ID TEEN CHG COMMENT 87
CNTR
Precession strob HFS splitting See KLEMPT 82 HFS splitting 1973 CODATA value Precession phase
F2 F3
0.0033±00013
#l~/(eS/2m#)-I
COHEN
KLEMPT MARIAM CAMANI CASPERSON COHEN
Fraction (Fi/E)
TEeN CO_MMENT
/= MAGNETIC MOMENT ANOMALY
1165.92304-0.0084
value
[a] See t h e Listings b e l o w for the energy l i m i t s used in this m e a s u r e m e n t .
BARDIN 84 CNTR • • • We do not use the following data for averages, fits, limits, etc. • • • ±0.0010
1986 CODATA
~z+ modes are charge conjugates of the modes below.
1.000024-I-0,000078 1.0008
COMMENT
Lepton Family number (LF) violating modes
MEAN LIFE RATIO DOCUMENT ID - -
CHG
RVUE
IOCOHEN 87 (1986 CODATA) value was fitted using their own selection of the following data. Because their value is from a multiparameter fit, correlations with other quantities may be important and one cannot arrive at this result by any average of these data alone.
2.19703 4-0.00004 OUR AVERAGE 2.197078±0.000073 2.197025±0.000155 2.19695 ±0.00006 2.19711 ±0.00005 2.1973 ±0.0003
87
Mode
Measurements with an error > 0.001 x i0 6 s have been omitted.
TECN
i0 COHEN
• • • We do not use the following data for averages, fits, limits, etc. • • •
# MEAN LIFE
VALUE (10 6 sl-
.DOCUMENT ID
3.183345474-0.00000047
27
BOGART 67 CNTR ~ KE > 14.5 MeV CRITTENDEN 61 CNTR 7 KE > 20 Mev ASHKIN 59 CNTR
V1.11
Lepton Full Listings
See key on page 19'.1
# r(e-peu, e+e-)IFtotal VALUE (units lO-5 )
r3/r
EVTS
DOCUMENTID
TEEN
CH6
7
12CRITTENDEN 61
HLBC
2 1.5±1,0
1 3
13 GUREVICH 14 LFE
EMUL + HBC +
60 59
+
<4.9 x 10- 1 0
r (e- UeP.)/rtota,
r41r
90
90
JONKER WILLIS BLIETSCHAU EICHTEN
80 80 78 73
CALO CNTR HLBC HLBC
See BERGSMA 83 + ± +
Avg. of 4 values
15BERGSMA 83 gives limit on inverse muon decay cross-section ratio ~C'upe#-~e)/(T(u#e ~ # - v e ) , which is essentially equivalent to r ( e - u e ~ # ) / r t o t a { for small values like that quoted,
r ( e - ~')/rtotal
rs/r
Forbidden by lepton family number conservation, VALUE (units I0- l l ) CL~_°/o DOCUMENTID
TEEN
CHG
COMMENT
90 90 90
AZUELOS KINNISON SCHAAF
83 CNTR + 82 SPEC + 80 E L E C +
r (e- e + e-)/rtota I Forbidden by lepton family number conservation. VALUE (units 10-12~ CL~ DOCUMENTID
CHG
90 90 90 90
BOLTON 16 BERTL 18 BERTL 16 BOLTON
88 85 S4 84
CBOX + SPEC + SPEC + CNTR
TRIUMF
a(#-32 S --, e+32Si,) / a(#-32S -~ u#32p *) VALUE ~ DOCUMENTID TEEN COMMENT <9 x i 0 - I 0 90 B A D E R T . . . B0 STRC SIN • • • We do not use the following data for averages, fits, limits, etc. • • • <1.5 × 10- 9
a ( # - 1 2 7 1 --*
90
BADERT...
e+127Sb *) / a(#-1271 -~
VALUE <3 X 10- 1 0
~ 90
78 STRC SIN
anything)
DOCUMENTID 19 ABELA
80
TEEN CNTR
COMMENT Radiochemical tech.
19 ABELA 80 is upper limit for ~ - e+ conversion leading to particle-stable states of 127 Sb. Limit for total conversion rate is higher by a factor less than 4 (G. Backenstoss, private communication).
a(#-Cu -~ e+ c o ) / a ( # - c u ~
upNi)
VALUE
~
DOCUMENTID
TEEN • • • We do not use the following data for averages, fits, limits, etc. • • •
<2.6 × 10 - 8 <2.2 x 10 - 7
90 90
BRYMAN CONFORTO
a(/iTi
72 62
SPEC OSPK
88
TEEN TPC
e+Ca) / a(#-Ti -~ capture)
~
VALUE <1.7 x 10- 1 0
~ 90
DOCUMENTID 20 AHMAD
COMMENT TRIUMF
LIMIT ON (/J+, e-) BOUND STATE CONVERSION TO ( # - , e+) Forbidden by lepton family number conservation.
COMMENT
< 1.0 90 BELLGARDT 88 SPE£ + SINDRUM • • • We do not use the following data for averages, fits, limits, etc. • • • < 35 < 2,4 <160 <130
88 TPC
Forbidden by total lepton number conservation.
LAMPF SIN r6/r
TEEN
AHMAD
20Assuming a giant-resonance-excitation model.
< 4.9 90 BOLTON 8S CBOX + LAMPF • • • We do not use the following data for averages, fits, limits, etc. • • • <100 < 17 <100
TEEN COMMENT
LIMIT ON # - --, e+ CONVERSION
Forbidden by the additive conservation law for lepton family number. A multiplicative law predicts this branching ratio to be 1/2. For a review see NEMETHY 81. VALUE ~ DOCUMENTIO TEEN ~ COMMENT < 0.05 90 lSBERGSMA 83 CALO ~#e~ #-~e • • • We do not use the following data for averages, fits, limits, etc. • • •
0.09 -0.001±0.061 0.13 :E0.15 < 0.25
DOCUMENTID
90
E(e+e-)>lO MeV
l l B E R T L 85 has transverse momentum Cut PT > 17 MeV/c. Systematic error was increased by us, 12CRITTENDEN 61 count only those decays where total energy of either (e + , e - ) combination is >10 MeV. 13 GUREVICH 60 interpret their event as either virtual or real photon conversion, e+ and e - energies not measured. 141n the three LEE 59 events, the sum of energies E(e+ ) + E ( e - ) + E(e + ) was 51 MeV, 55 MeV, and 33 MeV.
<
~
• • • We do not use the following data for averages, fits, limits, etc. • • •
3.4+0.24-0.3 7443 11 BERTL 85 SPEC + SINDRUM • • • We do not use the following data for averages, fits, limits, etc. • • • 2.2+1.5
a(#-Pb -~ e-Pb) / a(/~-Pb -~ capture) VALUE
COMMENT
LAMPF SINDRUM SINDRUM LAMPF
Rg = gc / GF Where 6 F = 1.16637 x i 0 - 5 GeV - 2 is the Fermi constant and EC is an effective coupling (dimensions GeV- 2) for a four-fermion interaction assumed to be responsible for the conversion of the/~+ e - bound state to # - e+ . VALUE CL~jL DOCUMENTID TEEN COMMENT < 0.88 90 HUBER 88 CNTR TRIUMF • • • We do not use the following data for averages, fits, limits, etc. • • • < 7.5 <20 <42
90 95 95
NI BEER MARSHALL
87 86 82
CNTR LAMPF CNTR TRIUMF CNTR
16These experiments assume a constant matrix element.
r (e- 2,7)/rtota I
r7/r
Forbidden by lepton family number conservation. VALUE (units lO 11) CL~_~ DOCUMENT ID
TEEN
CHG
COMMENT
< 7.2 90 BOLTON 88 CBOX + LAMPF • • • We do not use the following data for averages, fits, limits, etc. • • • < 840 <5000
90 90
17 AZUELOS 18 BOWMAN
83 78
CNTR CNTR
+
DEPOMMIER 77 data 17 AZUELOS 83 uses the phase space distribution of BOWMAN 78. l S B O W M A N 78 assumes an interaction Lagrangian local on the scale of the inverse # mass.
LIMIT ON/J- --* e- CONVERSION Forbidden by lepton family number conservation. a ( p , - 325 "-~ e - 32S) / a ( # -
32S ~
up 32p.)
VALUE ~ DOCUMENTID TEEN COMMENT <7 X 10 - 1 1 90 BADERT... S0 STRC SIN • • • We do not use the follow)_ng data for averages, fits, limits, etc. • • •
<4 x I0 - I 0
90
BADERT...
77
STRC
EL% 90
BRYMAN
TEEN 72 SPEC
a(/~-Ti --~ e - T i ) / a(/~-Ti --~ capture) VALUE ~ DOCUMENTID TEEN COMMENT <4.6 X 10 - 1 2 90 AHMAD 88 TPC TRIUMF • • • We do not use the following data for averages, fits, limits, etc. • • •
<1,6 x 10 - 1 1
90
BRYMAN
DECAY PARAMETERS
(by W. Fetscher and H.-J. Gerber, ETH Zfirich) In the decay # - ~ e-PeVp if me is neglected, the energy and angular distribution of the decay electron in the rest frame of a polarized muon ( ~ : ) is the Michel spectrum,
dF ~x { 3 ( 1 - x) + 2--~(4x- 3) ~: ~cosO [1- x + 2~3( 4 x - 3)] } > x2dxd(cosO)
(1)
where 8 is the angle between the electron's m o m e n t u m and the muon's spin and x = 2Ee/mp. The parameters p, ~, and ~6 are defined below. For purely V - A coupling, p = ~6 = 3 = 1, and the differential decay rate is
dr = G2m5 IR - 2x d=cos 8(1 - 2x)} x2dx d(cos 8)
DOCUMENTID
• • • We do not use the following data for averages, fits, limits, etc. • • • <1.6 x 10_8
ON MUON
SIN
a(/~- Cu --, e- Cu) / a(/~- Cu --, capture) VALUE
NOTE
85
TPC
TRIUMF
(2) 192r3 t v where the coefficient of the curly bracket is the total decay rate. Vv'hen the electron mass is not neglected and the electron polarization is considered within the framework of the most general local, derivative-free leptonic four-fermion interaction, there are additional parameters (p, r] for the energy spectrum; ~, 6 for the angular distribution; and {', {", a, ~, a', and ~' for
Vl.12
Lepton Full Listings # the polarization of the electron). In the notation of Fetscher et al., 1 the matrix element is
4Go
g~u < (V.)m I r~ [ p. >
v~ with
1
(3)
7=S,V,T e,lz=R,L (~,m)
n and
upper bounds for QRR, QLR, and Q~tL, and a lower bound for QLL. These probabilities are expressed as S 2+
g V 2 + 3(1 -
6~.)19~r.I2
(4)
where 5~, = 1 for e = p, and 5~t, = 0 for e ¢ p. They take the values
m
determined by %e, and p. (7 = S,V,T; refer to e ,p ,%, Ve, respectively). The 10 complex amplitudes g~# constitute 19 free parameters to be determined by experiment. As shown by Langacker and London, 2 explicit lepton-number nonconservation still leads to a matrix element equivalent to the one above. The Standard Model has gV L = i and all others equal to zero. The sign conventions and definitions of the covariants of Scheck 3 are used.
QRR = 2(b + b')/A
e, p, m, n = R,L
Assuming massless neutrinos, Kinoshita and Sirlin 4 define ten real constants a, b, c, a', b', e', a, fl, a', and 2', which serve as a model-independent summary of all possible measurements on the decay electron from polarized and unpolarized muons. The values of these constants have been determined (see the Listings below). The relations to the decay parameters are
p- ~ =
( - a + 2e)/A ,
1
3
9
4
(a' - 2c')/A 1-[a+3a'+4(b+b')+6c-14c']/A'
~_ = 4[(b p
QLI=t = [(a - a') + 6(c - c')]/2A, QLL = 2(5 - b')/m , with A = 16. Since these upper bounds are found to be small, and since the helicity of the u~ in pion decay is known from experiments 6'7 to be - 1 to very high precision? the cross section S of inverse muon decay, normalized to the V - A value, yields 1
gSLL 2 <_ 4(1 -- S)
(5)
gVL 2 = S .
(6)
and
Thus the Standard Model assumption of a pure V - A leptonic charged weak interaction for e and p is confirmed (within errors) by experiments at energies far below rnw c2 : Eq. (6) yields a lower limit for V - A , and Eqs. (4) and (5) give upper limits for the other four-fermion interactions. The existence of such upper limits may also be seen from QRR+QRL = ( 1 - ~ ' ) / 2 and QRn + QLR = ½( 1 + ~ / 3 - - 1 6 ~ / 9 ) . Table 1 gives the current experimental limits for the g~,'s. Limits on the "charge retention" coordinates, as used in the older literature (e.g., Ref. 10), are given by Burkard et al} ~
= ( a - 2fl)/A , 4
QRL = [(a + a') + 6(c + c')]/2d,
+ e ) + 2(c - c')]/A 1 - (a - 2c)/A '
1 - (' = [(a + a') + 4(b + b)' + 6(c + c ' ) ] / A ,
1 - ~" = ( - 2 a + 20c)/A , where
A=a+4b+6c.
Table 1. Ninety-percent confidence level experimental limits for the coupling constants g ~ (from Ref. 9).
a = 16k,[,gV RLIL2+,gV L LR 2~] + [ g RS L + 6 g RTL I 2 4-1gSLR +6gLRIT 2
Ig~RI < 0.066
[gvnl <
V I2 - I gV T 2 -- gLR S 4- 6gTR[ 2 , a ' = 16(IgRL LRI 2 ) 4-[gSRL4-6 gRL
IgL%/ < 0.125
IgLVRI< 0060
LgLTRI<
IgSLI < 0.424
IgVLI < 0.110
IgTLI < 0.122
S < 0.918 IgLLI
V > 0.888 [gLLI
And
V
S
6 g T ~*
a=8Re{gRL(gLR4-
r
LR} +gLR(gRL +6gTRL)*} ,
=
+6gLR)
b
v
2
v
S
2
= 4(Ignnl + IgLLI) 4b' = 4(IgnRI v 2 --Ig~LI 2 ) +
gS
RR
+gLRigRL 2
s
6gRL) } ,
c=
{IgSn 1
_
0.036
2
+ IgLL] ,
IgRRI S 2 -[gsLI2
fl = - 4 Re{gVR (gSLL)* + gLL V (9R%)*},
fl,=4im{g~n(gSLL).
0.033
V ~, rgSRR]~,1I , -- 9LL
2gTnL 2 + gSL n - - 2 gLn T 2,t ,
s
c' = ~ { I g R L - - 29~LI 2 - I g L SR - 2g~Rt ~} In order to determine all the amplitudes g ~ in Eq. (3) uniquely from experiments, Fetseher et al} introduce the four probabilities Q ~ (e,p = R , L ) , for the decay of a p-handed muon into an e-handed electron and show that there exist
References 1. W. Fetscher, H.-J. Gerber, and K.F. Johnson, Phys. Lett. B173, 102 (1986). 2. P. Langacker and D. London, Phys. Rev. D39, 266 (1989). 3. F. Scheck, in Leptons, Hadrons, and Nuclei (North Holland, Amsterdam, 1983). 4. T. Kinoshita and A. Sirlin, Phys. Rev. 108, 844 (1957). 5. K. Mursula and F. Scheck, Nucl. Phys. B253, 189 (1985). 6. A. Jodidio et al., Phys. Rev. D34, 1967 (1986); and Phys. Rev. D37, 237 (1988). 7. L.Ph. Roesch et al., Helv. Phys. Acta 55, 74 (1982). 8. W. Fetscher, Phys. Lett. 140B, 117 (1984). 9. B. Balke et al., Phys. Rev. D37, 587 (1988). 10. S.E. Derenzo, Phys. Rev. 181, 1854 (1969). 11. H. Burkard et al., Phys. Lett. 160B, 343 (1985).
VI.13
Lepton Full Listings
See key on page IV.1
# ~'t PARAMETER
# DECAY PARAMETERS p PARAMETER (V
A) theory predicts p = 0.75. E~ DOCUMENT/D
VALUE
TEEN
CH6
326k
DOCUMENT IO
31 BURKARD
85
TEeN
CHG
COMMENT
CNTR
+
Bhabha + annihil
TRANSVERSE e+ POLARIZATION IN PLANE OF # SPIN, e+ MOMENTUM
0.762 ± 0 . 0 0 8 0.760 /-0.009
170k 280k
21 F R Y B E R G E R 21 S H E R W O O D
68 67
ASPK ASPK
+ +
25-53 M e V 25-53 M e V
e+ e+
0.7503±0.0026
800k
21 P E O P L E S
66
ASPK
+
20-53 M e V
e+
21~1 constrained = 0. These values incorporated into a two parameter fit to p and ~ by DERENZO 69.
VALUE
EVT5
DOCUMENT ID
TECN
CHG
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • 0.016t0.021/:0.01
5.3M
BURKARD
858 CNTR
+
Annihil 9-53 MeV
TRANSVERSE e+ POLARIZATION NORMAL TO PLANE OF # SPIN, e+ MOMENTUM
r/PARAMETER ( V - A ) theory predicts z/ = 0. VALUE EVTS - 0 . 0 0 7 - 1 . 0 . 0 1 3 O U R AVERAGE -0.007/-0.013 5.3M -0.12 ±0.21
6346
VALUE DOCUMENT ID
22 BURKARD DERENZO
TECN
COMMENT
0.EIO7/:0.022/:0.010"/
85B FIT
+
c~/A
69
+
9-53 MeV e+ 1.6-6.8 MeV e±
HBC
-0.012±0.015±0.003
5.3M
23 BURKARD
85B CNTR
+
0.011±0.081/-0.026
5.3M
BURKARD
858 CNTR
+
170k
24 FRYBERGER
68
+
-0.7
±0.5
0.7
±0.6
280k
24 SHERWOOD
67
ASPK
+
0.05 ± 0 . 5
800k
24 PEOPLES
66
ASPK
+
9213
25 PLANO
60
HBC
+
±0.9
Zero if Tinvariance holds. EVT5 5.3M
CHG
• • • We do not use the following data for averages, fits, limits, etc. • • •
ASPK
22Global fit to all measured parameters. Correlation coefficients BURKARD 858. 23c~ = a t : 0 assumed. 24p constrained = 0.75. 2 5 T w o parameter fit to p and ~1; PLANO 60 discounts value for ~1.
9-53 MeV e+ 9-53 MeV e+ 25-53 MeV e+ 25-53 MeV e+ 20-53 MeV e+ Whole spectrum are given in
VALUE (unit510 -3 /
EVT5
(90CUMENT ID
BURKARD
DOCUMENT ID
TEEN CHG 858 CNTR +
TECN
CH6
COMMENT
Annihil 9-53 MeV
COMMENT
0.4-1" 4.3 32 BURKARD 858 FIT • • • We do not use the foilowing data for averages, fits, 8mits, etc. • • • 15
+50
/-14
5.3M
BURKARD
32Global fit to all measured parameters. BURKARD 858.
858 CNTR Correlation
+
9-53 MeV e+
coefficients
are given in
~'/A Zero if Tinvariance holds. VALUE (unit5 LO 3) EVT5
pOCUMENT ID
TEEN
CHG
COMMENT
-- 0 . 2 / : 4.3 33 BURKARD 858 FIT • • • We do not use the following data for averages, fits, ~imits, etc. • • • -47
/-50
t14
5.3M
34 BURKARD
858 CNTR
+
9-53 MeV e+
33Global fit to all measured parameters. Correlation coefficients are given in BURKARD 858. 3 4 8 U R K A R D 858 measure e + polarizations PT~ and PT2 versus e+ energy.
~IA
PARAMETER ( V - A ) theory predicts 6 = 0.75. EVT5 DOCUMENT ID TEEN C_HG COMMENT 0.7486/:0.0026/:0.0028 26 BALKE 88 SPEC + Surface/~+ 's I • • • We do not use the following data for averages, fits, limits, etc. • • • VALUE
0.752 ± 0 . 0 0 9
490k
27 VOSSLER FRYBERGER
69 68
ASPK
+
25-53 MeV e+
0.782 ±0.031 0.78 ± 0 . 0 5
8354
KRUGER PLANO
61 60
HBC
+
Whole spectrum
2 6 8 A L K E 88 uses p = 0.752 /- 0.003. I 27 VOSSLER 69 has measured the asymmetry below 10 MeV. See comments about radiative corrections in VOSSLER 69.
( V - A ) theory predicts ~ = 1, longitudinal polarization = 1. VALUE EVT5 DOCUMENTID TEEN CHG 1.0027::E0.0079-1-0.0030 BELTRAMI 87 CNTR
COMMENT
SIN, Ir decay in fiight
• • • We do not use the following data for averages, fits, limits, etc. • • • 0.975 ± 0 . 0 1 5 0.975 ± 0 . 0 3 0
66k
0.903 ± 0 . 0 2 7 0.93 ± 0 . 0 6 0.97 + 0 . 0 5
8354 9k
AKHMANOV GUREVICH 28ALIZADE PLANO BARDON
68 64
EMUL EMUL
61 60 59
EMUL HBC CNTR
+ +
140 kG Repl. by AKHMANOV 68 27kG 8.8 kG Bromoform target
28Depolarization by medium not known sufficiently welt
TEEN
EHG
COMMENT
29JODIDIO 86 intrudes data result given in the erratum: 30STOKER 85 find (~Pl~6/p) rotation data and second is theory.
30 STOKER CARR
2
85 83
SPEC SPEC
+ +
#-spin rotation 11 kG
from CARR 83 and STOKER 85. The above value is the JODIDIO 88. >0.9955 and >0.9966, where first limit is from new # spinfrom combination with CARR 83 data. ( 6 / p ) = 1.0 in V - A
TECN
CHG
COMMENT
±17
/-6
5.3M
BURKARD
858 CNTR Correlation
+
9-53 MeV e÷
coefficients
are given in
~' IA Zero if T invariance holds. VALUE (units 1O-3 ) EVTS
DOCUMENT ID
TEEN
CHG
COMMENT
1.5/: 6.3 36 BURKARD 85B FIT • • • We do not use the followin~ data for averages, fits, limits, etc. • • • ±17
±6
5.3M
37 BURKARD
85S CNTR
+
9-53 MeV e+
36Global fit to all measured parameters. Correlation coefficients are given in BURKARD 858. 37 BURKARD 858 measure e + polarizations PT~ and PT2 versus e+ energy,
a/A This comes from an alternative parameterization to that used in the Summary Table (see Note on Muon Decay Parameters above). VALUE (units 10 3)
CL%
DOCUMENT ID
TECN
• • • We do not use the following data for averages, fits, limits, etc. • • • <15.9
90
38 BURKARD
38Global fit to all measured parameters. BURKARD 858.
858 FIT Correlation
coefficients
are given in
This comes from an alternative parameterization to that used in the Summary Table (see Note on Muon Decay Parameters above),
3)
DOCUMENT iE)
TECN
• • • We do not use the following data for averages, fits, limits, etc. • • • 5.3±4.1
39 BURKARD
39Global fit to all measured parameters. BURKARD 858.
85B FIT Correlation
coefficients
are given in
(t/+b)/A This comes from an alternative parameterization to that used in the Summary Table (see Note on Muon Decay Parameters above). CL% DOCUMENT ID TECN
VALUE (units 10-3 )
~' = LONGITUDINAL POLARIZATION OF e+ (V A) theory predicts the longitudinal polarization = ± i have flipped the sign for e - so our programs can average. VALUE EVT5 DOCUMENT ID TECN 1.00 -1,0.04 O U R AVERAGE 0.998±0.045 1M BURKARD 88 CNTR 0.89 /_0.28 29k SCHWARTZ 67 OSPK 0.94 ± 0 . 3 8 BLOOM 64 CNTR 1.04 ± 0 . 1 8 DUCLOS 64 CNTR 1.05 ± 0 . 3 0 BUHLER 63 CNTR
DOCUMENT ID
35Global fit to all measured parameters. BURKARD 858.
VALUE (units lO
>0.99677 90 29 JODIDIO B6 SPEC + TRIUMF • • • We do not use the following data for averages, fits, limits, etc. • • • 90 90
EVTS
a~/A
x (# LONGITUDINAL POLARIZATION) x 6 / p VALUE ~ DOCUMENT ID >0.99677 (CL = 90%) OUR ESTIMATE
VALUE (units 10- 3 )
3 . 9 ± 6.2 35 8 U R K A R D 85B FIT • • • We do not use the following data for averages, fits, ~imits, etc. • • •
17
({ PARAMETER)x(# LONGITUDINAL POLARIZATION)
>0.9966 >0.9959
EVTS
31 BURKARD 85 measure ( ~ t l _ ~ l ) / ~ and ~l and set ~ = 1.
COMMENT
0.7518-1.O.0026 DERENZO 69 RVUE • • • We do not use the following data for averages, fits, limits, etc. • • •
-2.0
VALUE
0.65'1,0.36
• • • We do not use the following data for averages, fits, limits, etc. • • • for e± , respectively. We
<1.04
CH6
COMMENT
40Global fit to all measured parameters. BURKARD 858.
+ + + +
Bhabha + annihil Moiler scattering Brems. transmiss. Bhabha scattering Annihilation
90
40 BURKARD
85B FIT Correlation
coefficients
are given in
VI.14
Lepton Full Listings # , 7c/A This comes f r o m an alternative parameterization to that used in the S u m m a r y Table (see Note on Muon Decay Parameters above).
VALUE(units 10 3}
CL_.%_%
DOCUMENT ID
TEEN
• • • We do not use the following data for averages, fits, limits, etc. • • • <6.4
90
41Global fit to all B U R K A R D 85B.
measured
41 B U R K A R D
85B FIT
parameters.
Correlation
coefficients
are
8:iven
in
c'/A This comes from an alternative parameterization to that used in the S u m m a r y Table (see Note on M u o n Decay Parameters above).
VALUE(units L0-3 )
DOCUMENT ID
TECN
• • • We do not use the following data for avera$es, fits, limits, etc. • • • 3.5±2.0 42Global fit to all B U R K A R D 856.
measured
42 B U R K A R D
856 F I T
parameters.
Correlation
coefficients
are givee
in
BAILEY Also FRYBERGER BOGART SCHWARTZ SHERWOOD PEOPLES BLOOM DUCLOS GUREVICH BUHLER MEYER CHARPAK CONFORTO ALl ZADE
68 72 68 67 67 67 64 64 64 64 63 63 62 62 61
PL 286 287 NC 9A 369 PR 166 1379 PR 156 1465 PR 162 2306 PR 156 1475 Nevis 147 unpub PL 8 87 PL 9 62 PL 11 188 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313 Translated from ZETF PR 121 1823 UCRL 9322 unpub JETP 10 225 Translated from ZETF
CRITTENDEN 61 KRUGER 61 GUREVICH 6O
PR 119 1400 NC 14 1266 PRL 2 56 PRL 3 55
(V-A)
theory predicts ~ = 0. ~ affects spectrum of radiative m u o n decay.
VALUE 0.02 :E0,08 OUR AVERAGE
DOCUMENT ID
TECN
CH6
COMMENT
-0.014±0.090 EICHENBER... 84 ELEC + p free +0.09 ±0.14 BOGART 67 C N T R + • • • We do not use the following data for averages, fits, limits, etc. • • • -0.035±0.098
EICHENBER... 84
ELEC
+
p = 0 . 7 5 assumed
REFERENCESFOR AHMAD Also BALKE BELLGARDT BOLTON Also Also HUBER JODIDIO BELTRAMI COHEN NI BEER BELTRAMI JODIDqO Also BERTL BRYMAN BURKARD BURKARD Also Also HUGHES STOKER BARDIN
88 87 88 88 88 86 86 87 87 87 86 86 86 88 85 85 85 85B 816
83B 85 85 84 84
BERTL BOLTON 84 EICHENBER... 84 GIOVANETTI 84
KINOSHITA AZUELOS Also BERGSMA £ARR KINNISON Also KLEMPT MARIAM MARSHALL COMBLEY NEMETHY ABELA
84 83 77 83 83 82 79 42 82 82 81 81 80
BADERT.,
80
Also JONKER BCHAAF Also WILLIS Also BAILEY FARLEY BADERT., BAILEY Also BLIETSCHAU BOWMAN CAMANI BADERT ,. BAILEY
82 80 80 77 80 8OB
Also
77C
79
79 78 78 79 78 74 78 77 77
Also CALMET CASPERSON DEPOMMIER BALANDIN
75 77 77 77 74
COHEN DUCLOS EICHTEN BRYMAN CROWE CRANE
73 73 73 72 72
DERENZO VOSSLER AKHMANOV
71 69 69 68
PR DS8 2102 +Azuelos+ (TRIU, VICT, VPI, BRCO, MONT, CNRC) PRL 59 970 Ahmad+ (TRIU, VPI, VICT, BRCO, MONT, CNRC) PR D37 587 +GidaL Jodidio+ (LBL, UCB, COLD, NWES, TRIU) NP B299 1 +Otter, Eichler+ (SlNDRUM Collab.) PR D38 2077 +Cooper, Frank, Hallin+ (LANL, STAN, CHIC, TEMP) PRL 56 2461 Bolton, Bowman, Cooper+ (LANL, STAN, CHIC, TEMP) PRL 57 3241 Grosnick, WriBht, Bonon+ (CHIC, LANL, STAN. TEMP) PRL 41 2189 +Beer+ (WYOM, VICT, ARIZ, ROCH, TRIU, BRCO) PR D37 237 erratum +Balke, Carr+ (LBL, NWES, TRIU) PL B194 326 +Burkard, Von Dincklage+ (ETH, SIN, MANZ) RMP 59 1121 +Taylor (RISC, NBS) PRL 59 2736 +Arnold, Chmely+ (YALE, LANL, WILL, MISS, HELD) PRL 57 671 +Marshall, Mason+ (VICT, TRIU, WYOM) NP A451 879 ~Aas, Beer, OechambrieL Go~dsmit+ (ETH, FRIB) PR DS4 1967 ~Balke, Carl Gidal, Shinsky+ (LBL, NWES, TRIU) PR DS7 237 erratum Jodidio,Balke, Carr+ (LBL, NWES, TRIU) NP B260 1 +Egli, Eichler+ (SINDRUM Collab.) PRL 55 465 + (TRIU, CNRC. BRCO, LANL, CHIC, CARL+) PL ISBB 242 +Cordveau, EgBer+ (ETH, SIN, MANZ) PL 166B 343 +Corriveau, EBger+ (ETH, SIN, MANZ) PR D24 2OO4 Corriveau, Egger, Petscher+ (ETH, SiN, MANZ) PL 129B 260 Corriveau, EBger, Fetscher+ (ETH, SIN, MANZ) CNPP 14 341 ~Kinoshita (YALE, CORN) PRL 54 1887 +Balke, Carl Gidaq(LBL, NWES, TRIU) PL 1376 135 +Du¢los, Magnofl+ (SACLr CERN, BGNA, FIRZ) PL 140B 299 ~Eichler, Felawka+ (SINDRUM Collab.) PRL 53 1415 +Bowman, £adini+ (LANL, CHIC, STAN, TEMP) NP A412 523 Eichenberger, Enter, Va~derSchaff (ZURI) PR D29 343 ÷Dey, Eckhaese, Hart+ (WILL) PRL 52 717 -~Nizic, Okamoto (CORN) PRL 51 164 +Depommier, Leroy, Martin+ (MONT, TRIU, BRCO) PRL S9 1113 Depornmier+ (MONT, BRED, TRIU, VICT, MELB) PL 120B 465 +Do~enbosch, Jonker~ (CHARM Collab) PRL 51 627 +Gidal, Gobbi, Jodidio, Dram+ (LBL, NWES, TRIU) PR D25 2 8 4 6 +Anderson, Marls, WriBht+ (EFI, STAN, LANL) PRL 42 556 Bowman, Cooper, Harem+ (LASL, EFI, STAN) PR D25 652 +Schulze, Wolf, Camani. GyBax+ (MANZr ETH) PRL 49 993 +Beer, BoRon, Egan, Gardner+ (YALE, HELD, BERN) PR D25 1174 +Warren. Dram, Kiefl (BRCO) PRRL 48 93 +Farley, Picasso (SHEF, RMCS, CERN) CNPP 10 147 +Hushes (LBL, YALE) PL 95B 318 +Backenstoss, Simons, Wuest+ (BASL, KARL) LNC 28 401 Badertscher, Borer, Czapek, FlueckiBer+ (BERN) NP AS77 406 Badertscher, Borer, Czapek, Elueckiger+ (BERN) PL 93B 203 +Panman, Udo, Atlaby+ (CHARM Codab.) NP A340 049 ÷En8fer, Povel, Dey+ (ZURh ETH, SIN) PL 72B 183 Povel, Dey, Walter, Pfeiffer+ (ZURI, ETH, SIN) PRL 44 522 ÷Hushes+ (YALE, LBL, LASL, SACL, SIN, CNRC+) PRL 45 1370 Willis+ (YALE, LBL, LASL, SACL, SIN, CNRC+) NP B150 1 (CERN, DARE, MANZ) ARNPS 29 243 +Picasso (RMCS. tERN) PL 79B 371 Badertscher, Borer, Czapek, Flueckiger+ (BERN) JP G4 348 (DARE, BERN, SHEF, MANZ, RMCS, CERN, BIRM) NP B150 I Bailey (CERN, DARE, MANZ) NP B133 2B5 +Deden, Hasert, Krenz+ {GarBamelle Collab.) PRL 41 442 +Cheng, Li, Matis (LASL, IAS, CMU. EFI) PL 77B 326 +GyBa×, Klempt, Schenck, Schulze+ (ETH, MANZ) PRL 39 1385 Badertscher, Borer, Czapek, Flueckiger+ (BERN) PL E7B 225 + {CERN Muon StoraBe Rin8 Codab.) PL E8B 191 Bailey~ (CERN, DARE, BERN, SHEF, MANZ+) PL 55B 420 Bailey+ (CERN Muon StoFaBe Rio8 Collab., BIRM) RMR 49 21 ÷Narison, Perrottet+ (MARS) PRL 58 956 +Crane~ (BERN, HE~D, LASL, VVYOM, YALE) PRL 39 1113 + (MONT, BRCO, TRIU, VICT, MELB) JETP 40 811 +Grebenyuk, Zinov, Konin, Ponomarev (JINR) Translated from ZETF 6T 1631 JPCRD 2 663 +Taylor (RISC, NBB) PL 47B 491 +Magnon, Picard (SACL) PL 466 281 +Oeden, Hasert. Krenz+ (Gargamelle Collab.) PRL 28 1469 +Blecher, Gotow, Powers (VPI) PR D5 2145 +Hague, RothberB, Schenck~ (LBL, WASH) PRL 27 474 +Casperson, Crane, EBan, Hushes+ (YALE) PR 181 1854 NC 6SA 428
SJNP 6 230 ~Gurevich, Dobretsov, Makarina+ Translated from YAF 6 316
(EFt)
(EFI) /KIAE)
(CERN) (CERN) (EFI) +Oicapua, Nemethy, Strelzoff (COLU) (EFI) (EFI) (COLU) +Dick, Peuvrais, Henry, Macq, SpiBhel (CERN) +Heintze, DeRujula, Soergel (CERN) +Makarina+ (KIAE) ÷Cabibbo, Pidecaro. Massarn, Muller+ (CERN) +Anderson, Bleser, Lederman+ (COLU) +Parley, Garwin+ (CERN) +Conversi, Oilella+ (INFN, ROMA, CERN) +Gurevich, Nikolski (USSR) 40 452. ~Walker, Ballam (WISC, MSU) (LRL) -Nikolski, 8urkova (ITEP) 37 318.
PLANO ASHKIN BARZ)ON LEE
E0 59 59 59
DEPOMMIER BASILE KINOBHITA SCHECK COMBLEY LAUTRUP RICH BLOCK SHAPIRO CHARPAK HUTCHINSON ASTBURY DEVONS LATHROP LATHROR PLANO REITER TELEGDI DUDZIAK FISHER
80 NP A33S 97 (MONT) 786 NC 4SA 281 +Cara-Romeo, Cifarel~i, Contin+ (CERN, BGNA) 78 Tokyo Cone 571 (CORN) 78 PRPL 44C 187 (MANZ) 74 PRPL 14 1 +Picasso (CERN) 72 PRPL 3 193 +Peterman, DeRafael (CERN, BURE) 72 RMP 44 250 +Wesley (MICH) 62 NC 23 1114 +Fiorini, Kikuchi~ (DUKE, BGNA, MILA) 62 PR 125 1022 -Lederman (COLU) 61 PRL 6 128 +Farley, Garwin Muder, Bens+ (CERN) 61 PRL 7 129 +Menes+ (COLU) 00 Rochester 60 542 ~Hattersley,Hussain+ (LIVP) 00 PRL 5 330 +Gidal, Lederman, Shapiro (COLU) 60 NC 17 109 +Lundy, TeleBdi+ (EFI) 60B NC 17 114 ~Lundy, Penman+ (EFI) 60 PR 119 1400 (COLU) 60 PRL 5 22 +Romanowski. Sutton+ (CMU) 60 Roohester Conf 60 713 (CERN) 59 PR 114 330 +Sagane, Vedder (LRL) 59 PRL 3 349 +Leont~c, Lundby, Meunier, Stroot (CERN)
-
fi PARAMETER
+Bartl, VonBochmann, Brown, Farley~ Bailey, Bartl, VonBochmann, Brown+
-
(COLU) (CERN) (COLU) (COLU)
+Fazzini, Fidecaro, Lipman, Merrison+ +Bedey, Lederman +Samios
OTHER RELATED PAPERS
-
D
-
j=½ v discovery paper was P E R L 75. e t e
~
T+ T
cross-section t h r e s h o l d
behavior and m a g n i t u d e are consistent w i t h p o i n t l i k e s p i n - i / 2 BRANDELIK ruled o u t ./ -
NOTE
Dirac particle.
78 ruled o u t p o i n t l i k e spin-0 or s p i n - I particle. F E L D M A N 3/2. KIRKBY
79 also ruled o u t . / : i n t e g e r ,
O N T H E ~" D E C A Y
J -
78
3/2.
PROBLEM
(by K.G. Hayes, Hillsdale College) There exists a problem in understanding the 1-chargedparticle decay modes of the v. The problem, first discussed by Truong 1 and Gilman and Rhie, 2 is that the measured inclusive branching fraction to 1-charged prong is larger than the stun of exclusive 1-charged-particle modes. 3 Since the measurement of exclusive modes with 2 or more neutral hadrons is dif~eult given the limitations of present detectors, the inequality between the sum of exclusive modes and the inclusive measurements is significant only if theoretical predictions are used to put limits on unmeasured or poorly measured modes. The current status of the 1-prong modes is summarized in the table below. For the theoretical estimates, we use the results of Ref. 2, u p d a t e d to include new experimental d a t a and electroweak radiative corrections. 4
Vl.15
Lepton Full Listings
See key on page IV.1
T 3. Many authors have examined the discrepancy. Some recent
1-Prong Branching F~actions of the r(%) Decay Mode eye//T
Experiment
Theory a
17.7+0.4
18.0
V#Vr p-v~
17.8±0.4
17.5
22.7±0.8
22.7
7r ~r
11.04-0.5
10.8
K-(>_ 0 neutrals) v~
1.71+0.23
#
references are: M.G.D. G~lehriese, Proceedings of the 1986 International Conference on High Energy Physics, ed. S. Loken (Berkeley, 1986); B.C. Barish and R. Stroynowski, Phys. Rep. 157, 1 (1988); K.K. Gan and M.L. Perl, SLACPUB-4331 (1987), to be published in Journal of Mod. Phys. A; and M.L. Perl, SLAC-PUB-4481 (1987) in Annals
of the New York Academy of Sciences. 4. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 61, 1815 (1988).
0.6+0.1
K * - v , K * - -'-* 7r-(27r°orKL)
7.5+0.9
<6.7/=0.4
5. K.G. Hayes and M.L. Perl, Phys. Rev. D38, 3351 (1988).
< 1.4b
it-(_> 37r°)v~
~--(>_ 1,)(> o~°),4
< 0.8
< 1.3
Sum of measured modes
79.0-t-1.4
Theoretical limits on unmeasured modes
r MASS VALUE (MeV} -
< 80.2 ± 1.4 86.1+0.3
BLOCKER 692
> 5.8 -4- 1.4
a Normalized to constrained fit to evv and #up measurements assuming BF# = 0.973 BFe. b Assumes 15% systematic error on the measured cross section for e - e - - - 27r+27r c Contribution to 1-prong mode only.
1 BACINO
80 MRK2 Ece~= 3.5-6.7 GeV 78B DLCO F..~ern= 3.1-7.4 GeM
1787 +10 299 2 BARTEL 78 SPEC Eceem= 3.0-4.4 GeV -18 1807 ±20 BRANDELIK 78 DASP F-~em=3.1-5.2GeV • • • We do not use the following data for averages, fits, limits, etc. • • • 1803 3-16
Difference
COMMENT
3.8
1787 ±10 1783 + 43
Measured 1-prong branching fraction
TEEN
1784.1 + 2.7 OUR AVERAGE
< 2.2
Sum of exclusive modes
DOCUMENT ID
EVT5
1138
BLOCKER
82D MRK2 Incl. in BLOCKER 80
1 BACINO 788 value comes from e± X :F threshold. Published mass 1782 MeV increased by 1 MeV using the high precision ¢(25) mass measurement of ZHOLENTZ 80 to eliminate the abSOlute SPEAR energy calibration uncertainty. 2 BARTEL 78 fitS ener&-y dependence of cross section for e± and /~± events. Mass value not dependent on whether V - A or V+A decay assumed,
MEAN LIFE
r
,
The discrepancy is due to errors in the experimental measurements or theoretical limits, or to the existence of one or more modes not included in the table. Early measurements of the inclusive one-prong branching fraction reported significantly lower values but suffered from large backgrounds not present in more recent experiments. Systematic errors dominate most measurements, particularly for the r - --- 7r ur and ~-- --~ p - u r modes. The technique used to obtain the experimental averages ignores correlated errors, which can be especially important when systematic errors are dominant. There is a tendency for multiple experimental measurements of a given mode to be more consistent than expected from their quoted errors. 5 This indicates either the existence of systematic errors accounted for by the experimenters which are correlated and should not be averaged, or inflation of experimental errors, or a bias in the experimental measurements. The 7 --+ p-vT measurements show this tendency even if the systematic errors are ignored and only the statistical errors are used. Resolution of the missing one-prong puzzle will require either new measurements with much reduced systematic and statistical errors, or an explicit measurement of a mode which is presently unmeasured or very poorly measured. References 1. T.N. Truong, Phys. Rev. D30, 1509 (1984). 2. F.J. Gilman and S.H. Rhie, Phys. Rev. D31, 1066 (1985); and F.J. Gilman, Phys. Rev. D35, 3541 (1987).
VALUE (10 12 s) EVT5 0 . 3 0 3 i 0 . 0 0 6 O U R AVERAGE
DOCUMENT ID
TEEN
0.301±0.029 3780 KLEINWORT 89 JADE 0.288±0.016±0.017 807 AMIDEI 88 MRK2 0.306±0.020±0.014 695 BRAUNSCH...88c TASS 0.299±0.015±0.010 1311 ABACHI 87c HRS 0.295±0.014±0.011 5696 ALBRECHT 87P ARG 0.309±0.017+0.007 3788 BAND 87B MAC 0.325±0.014±0.018 8470 BEBEK 87C CLEO 0.315±0.036=h0.040 10k FERNANDEZ 85 MAC • • • We do not use the following data for averages, fits, limits, 0~1R+0.081 . . . . -0.094 0.320±0.054
80
ALTHOFF
156
JAROS
r-
COMMENT
F..~e = 35-46 GeM E ~ = 29 GeV E~ = 36 GeV ~ e = 29 GeV ~ee m = 9.3-10.6 GeV ~ e = 29 GeV ~ e = 10.5 GeV ~ e = 29 GeV etc. • • •
84D TASS Repl. by BRAUNSCHWEIG 88C 83 MRK2 RepL by AMIDEI 88
DECAY MODES
r + modes are charge conjugates of the modes below. Mode rI F2 F3 F4 F5 F6 F7
ra F9 Flo Fll r12 r13 El4 FI5
Fraction (l'i/F)
particle- > 0 neut Ur ( " l - p r o n g " ) #--~/~UT
e-PeU~ hadron- > 0 neutrals Ur hadron- u~ 7r- u~K - > 0 neutrals Ur K-u-r K - > 1 neutral uT hadron- > 1 7r0 ur hadron- /rout p-u z ~ - / r 0 non-res, uT had _> 2 had0 u,r /r-27r0uT
Scale factor/ Confidence level
(86.13±0.33) % (17.8 ±0.4 ) % (17.7 /_0.4 )% (503 ±0.6 ) % (11.7 ±0.5 )% (11.0 ±0.5 ) % (1.72±0.22) % ( 6.8 3-1.9 )×10 -3 (1.04±0.28) % (38.8 3-0.8 ) % (22.8 3.1.6 )% (22.7 /:0.8 ) % ( 3.7 +310 ) x 10- 3 (14.7 3-0.8 ) % ( 7.5 3-0.9 )%
5=1.4
5=1.2 S=l.l
|
V1.16
Lepton Full Listings T FI6 ~r- 3~"0 v-r F17 2had- had + > 0 neut ~ ( "3-prong" ) F18 ~T ~r ~r+ ~ ¢ F19 R pO ,v,r F20 a 1 ( 1 2 6 0 ) uT F21 ~r-~r ~T+ non-res, z~T F22 ~T--7r-",'r+ _> 1 9' u-r F23 ~--~ ;T+ ~rOur F24 K - had + had- > 0 neutrals uT F25
K
~+~r
>0
F26
K
K+TT
uT
K~(1430)- ~
F35 F36
K u K- ur K 0K 7r0~r
F37
~;r
EL 95% S 1.7 EL=90%
x3
13
x6
12
-12
( 2.2 +~:~ ) × 1 0 - 3
x8
0
0
x9
4
4
1
x12
12
13
20
0
6
x13
3
3
5
0
-2
13
x14
15
15
24
1
8
-61
x18
0
0
0
0
0
0
0
0
x22
3
-3
-5
0
- 2
5
1
6
x27
i
I
I
0
0
1
0
1
0
0
x2
x3
x6
x8
x9
x12
x13
x14
x18
x22
× 10 3
( 5.6 ± 1 6 ) x 10 -4 ( 5.1 ± 2 . 2 ) x 10 4
<
1.9
× 10 - 4
(1.30±0.30) % ( 1.4 1 0 . 9 ) % - ~ + 0.18~ % ( . . . . 020~ < 3 xlO <
26
× 10 -3
<
2.6
× i0 3
< <
1.1 1.2
CL 90%
% %
CL=95% CL=95% CL=95%
CL 95% CL-95% CL-95% CL=95%
The following are sometimes subreactions of 3-pron~ inclusive ~/searches F43 ~/~T+ ~ r - ~ r _> 0 neutrals UT 1-44 ~irlTr > 0 neutrals u~
< <
3 5
× 10 - 3 × 10 3
F45 F48
< < <
83 9 1.74
× 10 -3 x 10 3 × i0 3
rlrl=- Mr TIll= ,'TOur
=-
> 0 "Y Pr
CL 90% CL-90% CL 95% CL-95% CL=95%
L e p t o n n u m b e r ( L ) or L e p t o n Family n u m b e r ( L F ) v i o l a t i n g modes F48 F49 F50 F51 F52 [-53 F54 r55 F56 F57 r58 F59 F60 F61 F62 F63 F64 F65 F66 r67 1-68 F69 FT0 F71 F72 F73 F74 F75
<
4
%
CL 90%
< < <
5.5 2.0 8.2 14 2.9 3.3 3.3 3.8 10 13 3.8 3.9 4,2 6.3 40 63 4.2 12 1.2 12 5,4 59 3.8 3.8 2.4
× 10-4 × 10 - 4 × 10 4 × 10 4 × 10 - 5 x i0 5 × i0 5 x 10 5 x 10-3 x 10-3 x 10 5 × 10 5 x I0 5 × 10 5 x 10 5 x 10 - 5 x 10 - 5 × 10 - 4 × 10 - 4 × 10 - 4 x 10 - 5 ~10 5 x 10 5 × 10-5 × i0 4
EL=90% EL-90% EL-90% CL-90% CL 90% CL 90% EL-90% EL=90% EL-90% CL-90% CL--90% CL 90% EL--90% CL 90% CL=90% EL-90% EL=90% CL-90% EL-90% EL-90% CL-90% EL--90% CL 90% CL-90% CL 90%
e - charged particles + # charged particles # ~ charged particles e - charged particles # - "7 e "f #-/r0 e ~0 t.t-lz+ft e #+ # # e+ e e- e + e #- K 0 e- K0 i~ po e - pO e ~T+~T
LF
LF LF LF LF
<. < < < < < < < < <
e + ~F
L
<
LF L LF L
< < < < < < < <
?T
/~ ~r+¢r / x + w 7r e ~T+ K e + ;T K t~ 7c+ K ft + ~T-- K e K*(892) ° t~ K * ( 8 9 2 ) 0 e +/~ /z /z + e e e q
LF
LF LF LF LF LF LF LF LF
LF LF
LF
L LF LF LF LF
< <
LF
<
8
r3
( 1.6 ±0.4 ) % ( 1.6 ±0.5 ) % < 1.3 % < 9 × 10 -.3
>_ 0 neutrals p~
F38 ~r ~T F39 tlfr ~_ 0 neutrals ~T F48 rl~" ~T 1-41 rf ~ r - ~r0 uT F42 TiEr IT07T01zT
[-47 K%r+~r
The following off-diagonal array elements are the correlation coefficients ( & x i # x j ) / ( S x i . h x j ) , in percent, from the fit to the branching fractions, x~ F j F t o t a I. The fit constrains the xi whose labels appear in this array to sum to
10-3
(1,13±027)
~T
K*(892)-
r34
1.4 % ( 6.7 4-0.7 ) % ( 4.4 4-1.6 ) % < 6 × 10 - 3
FIT INFORMATION
An overall fit to 22 branching ratios uses 89 measurements and one constraint to determine 11 parameters. The overall fit has a X 2 = 72.1 for 79 degrees of freedom.
S 1.8
<
( 2.2 +~:~ )×
K 0 hadron >0 neutralsv~ K * ( 8 9 2 ) - > 0 neutrals ~
F33
CONSTRAINED S 1.4
( 7.1 ± 0 . 6 ) % ( 5.4 ± 1 . 7 ) %
~r0 ~T
F27 3had- 2had + _> 0 neutrals vT ("5-prong") F28 2 ~ + 3~r- uT F29 2~r+3~r =Ou~ F30 4 h a d - 3had + _> 0 neut u~. ( "7-prong" ) F31 F32
( 3 0 ±2.7 ) % (13.76±0.32) %
60
BRANCHING
-16 89
RATIOS
> 0 neut ~,~ ( " l - p r o n g " ) ) / F t o t a l rl/r (F2+ F3+ F6+F8+F9+ F12+ FI3+FI4)/F Charged particle can be e, Iz, or hadron. Since 5-prong branching fraction is very small this branching fraction is not independent of 3-prong value (F(2had- had + _> 0 neut u-r ("3 prong"))/Ftotal). VALUE EVT~ DOCUMENTID TEEN COMMENT 0.8613/-0.0033 OUR FIT Error includes s ~ ~-ac~r of 1.4. • • • We do not use the following data for averages, fits, limits, etc. • • • r(particle
0864 0.849 0.847 0871 0.879 0872 0869
±0.003 ±0.004 =0008 ~0010 ±0.005 4-0005 ±0.002
=0.003 ±0.003 4-0.006 ~0.007 4-0.012 &0008 ±0.003
0847 ±0.011 ± 0 0 1 6 0.013 0861 ±0.005 ±0.009 0.878 4-0013 4-0.039 0.867 = 0 0 0 3 ±0.006 0.852 &O.O09 ±0.015 0.852 ±0.026 4-0.013
ABACHI BEHREND 3 AIHARA 4 BURCHAT RUCKSTUHL SCHMIDKE AKERLOF
89B 89B 87s 87 86 86 85B
HRS CELL TPC MRK2 DLCO MRK2 HRB
F..~em= 29 GeV E~em= 14-47 GeV E.~e= 29 GeV E ~ e = 29 GeV F.~el= 29 GeV E~em= 29 GeV Repl. by ABACHI 898
169
5 ALTHOFF
85
TASS
E~em= 34.5 GeV
660 178
BARTEL 6 BERGER FERNANDEZ AIHARA BEHREND
85F 85 85 84c 84
JADE PLUT MAC TPC CELL
4098
0851 ±0.028 m0013
182
BEHREND
0840 ~0.020
672
BEHREND
764
BLOCKER
0.86
±002
=001
E~e = 34.6 GeV E.~em= 34.6 GeV E~em= 29 GeV E~e = 29 GeV Repl. by BEHREND 89s 84 CELL Repl. by BEHREND 89~ 82 CELL Repl. by BEHREND 89L~ 82c MRK2 F~em=29GeV
3Not independent of AIHARA 87B F(tz Y~#~JT)/Ptota I, F(e # e ~ - ) / F t o t a l , and F(hadron "> 0 neutra s vf)/'Ftota I values. 4Not independent of SCHMIDKE 86 value (also not independent of BURCHAT 87 vaRJe for F(2had had ~ > 0 neut uT ("3-prong"))/Ftota I. 5 Not independent of ALTHOEF 85 F(# TJI~vf) /Ftotal, F(e #e v~) /Ftota I , F: hadron 0 neutrals ~T}/'Ftota I, and r(2had had ~ > 0 neut ~/T ("3~prong"))/Ftota I values. 6Not independent of (1-prong ~ 07rO) and (1 prong ~ > 1~ O) values.
r ( # - ~ ~)/rtota,
r2 / r
VALUE £~'lS 0.1784-@004 OUR FIT 0.1784-0.004 OUR AVERAGE 0 1797=0009 0174±0.010 2197 0 177±0.012±0007 0183±0.009~0008 0188~0008±0.007 558
0 129•0 017 + 0 0 0 7 " -0005 0.183-_0.009±0.005 0.180±0.010±0006 0194±0.016±0017 0176±0026±0021 0 1 7 8 ± 0 027 0.35 ±0 14 0.22 ~ 0 0 7 008 015 ±003 O22 +- 00 1 07 0 0 175±0040
473 153 47
11 220
DOCUMENTID
7ECN
COMMEAH
BEHREND ADEVA AIHARA BURCHAT BARTEL
90 88 87B 87 86D
CELL MRKJ E~em= 14 16 GeV TPC E~e = 29 GeV MRK2 E~e = 29 GeV JADE E ~ 34.6 GeM
ALTHOFF
85
TASS
Ec~em= 34.5 GeV
MAC MRK3 PLUT CELL PLUT TASB
F~ern= 29 GeV F.~em= 3,77 GeV E ~ e = 34.6 GeV ~e 34 GeV F~e1 9 32 GeV E~ne]= 30 GeV
7 ASH 85B 8 BALTRUSAIT,.~5 BERGER 85 BEHREND 83c BERGER 81B BRANDELIK 80 SMITH
78BSPEC
e+e --
H+p
X0
BURMESTER 77B PLUT
Assumes V A decay
CAVALLI-...
77
SPEC
e ~ e - - * eL= X ~
PERL
77
MRK1 e + e - ~
tz± X =
V1.17
Lepton Full Listings
See key on page IV.1
7" • • • We do not use the following data for averages, fits, limits, etc, • • •
r(~- v.)/rtotal
0.178+0,007±0.005
VALUE
0.174±0.0064-0.008 0.177+0.007
9 AIHARA 1201
0 173±0.005
878 TPC
~eem= 29 GeV
ADEVA 10 BARTEL
868 MRKJ Repl. by ADEVA 88 86D JADE F~e = 34.6 GeV
11 ASH
858 MAC
E~em= 29 GeV
7 Error correlated with FERNANDEZ 85 1-prong value. 8 Error correlated with BALTRUSAITIS 85 eu~ value. 9Combined result of AIBARA 878 e~,# and p.e# measurements assuming B ( # u P ) / B ( e u ~ ) = 0.973. 10This is a combined result of BARTEL 86D euP and # v P measurements assuming B ( p . u ~ ) / B ( e u ~ ) = 0.973. 11This is a combined result of ASH 858 F ( # - P / ~ u . r ) / r t o t a I, F ( e - ~ e P r ) / r t o t a I, and F O , - ~ t ~ . T ) r ( e - V e u T ) / r 2 o t a l measurements assuming B(l~P~)/B(ePu) = 0.97.
r (e- re .~-)/rtotal VALUE
rs/r EVTS
DOCUMENT ID
0.177=1=0.004 OUR FIT 0.179=1:0.004 OUR AVERAGE 0.186±0,009 0.1634-0.0034-0.032 0.1844-0.0124-0.010 O191±0.00810.011 0.1704-0.0074-0.009 515
BEHREND JANSSEN
0.2044-0.030_+00:0014 0.1804-0.0094-0.006
390
0.182±0.0074-0.005
90 89
878 TPC
BURCHAT
87
0.19 ±0.09
COMMENT
E~em-9.4-10.6 GeV E~em= 29 GeV
MRK2 E~em- 29 GeV
83c CELL
F.~e= 34 GeV
BRANDELIK
80
E ~ e = 30 GeV
TASS
858 MAC
F_.~e= 29 GeV
0.973.
16Combined result of BARTEL 86D ez/P and /zvp measurements assuming B ( # v ~ ) / B ( e v ~ ) = 0.973. 17This is a combined result of ASH 858 r(ff ~ # ~ T ) / F t o t a l , F ( e - ~ e u ~ - ) / r t o t a I, and F ( # - ~ v ~ ) r ( e - ~e z'~-)/r2otal measurements assuming B ( / ~ # u ) / B ( e ~ , ) = 0.97.
(r(#- % ..)r(e- re u~-))tl2/rtotal
(r2r3)?~/r TEC.N
COMMENT
0.1777±O.0024 OUR FIT Error includes scale factor of 1.1. 0.189 =t:0.020 OUR AVERAGE 0.182 ±0.028 4-0.014 13 18 BRANDELIK 78 DASP Assumes V - A decay 0.224 ±0.032 4-0.045 21 18 BARBARO-... 77 MRK1 0.186 ±0.010 ±0.028 144 IS PERL 77 MRK1 • • • We do not use the following data for averages, fits, limits, etc. • • • MRK1 Repl. by PERL 77
-0.03 18Assumes V - A coupling, -r mass = 1.9 GeV, z#- mass = 0. 19AssumesV A c o u p l i n g , ~ m a s s = 1.8 GeV, z~r m a s s = 0 .
r2r3/r 2 TECN
0.0316:1:8.01X)9 OUR FIT Error includes scale factor of 1.1. 0.0293=t=0.0022 OUR AVERAGE 0.02884-0.0017±0.0019 ASH 85B MAC 0.030 ±0.005 0.034 ±0.008 =1=0.005
257 20
BLOCKER 20 BACINO
79c DLCO
F ~ e = 3.6-7.4 GeV
27 ALEXANDER
78B PLUT
E~em- 3.6-5 GeV
r6/r3 DOCUMENT 10
820 MRK2 E ~ e = 3.5-6.7 GeV 79E DLCO
F..~e -
3.6-7.4 GeV
r3/r2 TEEN
F(K-
TEEN
COMMENT
28 BARTEL
86D JADE
F..~e= 34.6 GeV
U.r)/rtota I
VALUE
rs/r EVT5
DOCUMENT IO
TEEN
COMMENT
O.0068=t=0.0019 OUR FIT Error includes scale factor of 1.2. 0.006;4-0.OO23 OUR AVERAGE Error includes scale factor of 1.3. 0.0059±0.0018 16 MILLS 84 DLCO Ecee m = 29 GeV 0.013 =k0.005 15 BLOCKER 82B MRK2 F..~e= 3.9-6.7 GeV
I-(hadron- ur)/rtotal
rE/r=(rg+r8l/r
VALUE
DOCUMENT ID
0.117+0.005 OUR FIT 0.126±0.012 OUR AVERAGE 0.126±0.012 0.130±0.020±0.040
BEHREND BERGER
F(K- > I
COMMENT
CELL PLUT
E e e = 34.6 GeV
90 85
TECN
rg/r
neutral vT)/rtota I
VALLJE
EVT5
O.0104=1:0.0028 OUR FIT
Error includes scale factor of 1.1.
0.012 =1=0.005 +0.002 -0.004
9
DOCUMENT 10
AIHABA
TEEN
878 TPC
F(K- >__0 neutrals u~-)/rtota t VALUE
EVT5
0.0172:E0.0022 OUR FIT 0.0168=1=0.0024OUR AVERAGE 0.016 -E0.004 ±0.002 35 0.0171±0.0029 53
COMMENT
E~e = 29 GeV (r8+r9)/r
DOCUMENT ID
TEEN
COMMENT
AIHARA
878 TPC
E~em= 29 GeV
MILLS
84
E~em= 29 GeV
DLCO
r11/r
~ ° v-r ) / r t o t a l
VALUE
DOCUMENT ID
0.228±0.016
BEHREND
VALUE
Ece~= 29 GeV
Predicted to be 1for sequential lepton, 2 for para-electron, and 1/2 for para-muon, Para-electron also ruled out by HELLE 78. DOCUMENT ID
26 BACINO
TEEN
90
CELL
F (p- u~-)/rtota I
r(e-ve,.)/r(#-%,.)
EVT5
COMMENT
COMMENT
20BACINO 79c quotes B(#) = 0.21 ± 0.05 ± 0.03 assuming B(e) = 0.16. We multiply by 0.16 to get above value.
VALUE
rsr6/r2 TEEN
26 BACINO 79c quote B(Tr) - 0.080 4- 0.032 4- 0.013 assuming B(e) = 0.16. We multiply by 0.16 to get above value. 27ALEXANDER 78B quote B(Tr) - 0.090 J- 0.029 4- 0.029 using B(e) = 0.167 4- 0.010. We multiply by 0.167 to get above value.
F(hadron-
F(IL- ~ u~)r(e- ~e V~-) / Ft2otal DOCUMENT ID
= 0.0059 4- 0.0018.
28Combined result of BARTEL 86D ev#, # ~ # , and 7 r - v assuming B(#~/~)/B(eu#) 0.973.
17 ASH
EVT5
82D MRK2 F-~e = 3.5-6,7 GeV
F(K- z4-)/Ftota I
• • • We do not use the following data for averages, fits, limits, etc. • • •
F_~em 34.6 GeV
12 Error correlated with FERNANDEZ 85 1-prong value. 13 Error correlated with BALTRUSAITIS 85 F ( # - ~# u.r)/Ftota I. 14 BACINO 78B value comes from fit to events with e± and one other nonelectron charged prong. 15Combined result of AIHARA 878 ev~ and /~v~ measurements assuming
VALUE
BLOCKER
0.647±0.039±0.061
BEHREND
76
F..~e= 34 GeV
MRK3 Ece~= 3.77 GeV
85
19 PERL
83E CELL
PLUT
BERGER
0.178±0,005
105
F-.~em= 34.6 GeV
BEHREND
Error includes scale factor of 1,1.
VAL~)E
F ~ e = 34.6 GeV
+0.06
E ~ e = 29 GeV
86D JADE
DOCUMENT ID
0.014 +0.004 OUR AVERAGE 0.013 ±0.005 4-0.002 10 0.015 4-0.005 4,0.005 23
r(~r- u~)/r(e-PeuT)
86D JADE
0.17
MAC
25 BARTEL
+ 0 0010 OUR FIT 0,0196_010009
F..~e = 29 GeV
DOCUMENT tD
MRK2 E ~ e = 29 GeV
87
EVT5
Fee = 34.6 GeV
16 BARTEL
EVT5
87
FORD
VAL~IE
E~e : 34.5 GeV
858 MAC
COMMENT
~ e z',)/rt2otal
86D JADE
0.1824-0.008
VALUE
u,)r(e-
85
0.160,10.013 459 14 BACINO 78B DLCO F.~ern= 3.1-7.4 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • 0.170±0.0054-0.006 ABACHI 89 HRS F..~e = 29 GeV 0.1834-0.0074-0.005 15 AIHARA 878 TPC F..~e= 29 GeV
B(#u~)/B(ev~) =
r(~-
TEEN
BURCHAT
25 BARTEL 86D have corrected their result with
BARTEL
TASS
DOCUMENT 10
0.110=1=0.005 OUR FIT 0.109=E0.006 OUR AVERAGE 0.100±0.011±0.014 0.107±0.005±0.008 798 0.118±0.006±0.011 328 0.099±0.017+0.013 34 0.117±0.019 1138
ALTHOFF
13 BALTRUSAIT..~5 60
CELL CBAL
AIHARA
12 ASH
0.130±0.0194-0.029 0.183±0.0244-0.019
TE¢-N
r6 I r EVT5
COMMENT
0.995~0.031 OUR FIT 0.86 3-0.17 OUR AVERAGE 0.75 4-0.23 154 21 BLOCKER 82D MRK2 F~ern= 3.5-6.7 GeV 1.09 ±0.38 18 22 BRANDELIK 78 DASP E ~ e = 3.1-5.2 GeV 0.92 4-0.37 21 BURMESTER 77c PLUT Assumes V A decay • • • We do not use the following data for averages, fits, limits, e t c . • • • 0.91 4-0.06 ±0.05 23 BARTEL 86D JADE E~em- 34.6 GeV 0.98 ±0.07 4-0.04 390 24 ASH 85B MAC E~e = 29 GeV 21 BLOCKER 82o gives the inverse of this ratio as 1.33 4- 0.18 4- 0.36. 22 BRANDELIK 78 quotes the inverse of this ratio as 0.92 ± 0.32. 23 BARTEL 860 gives the inverse of this ratio as 1.10 4- 0.07 4- 0.06. Not independent of BARTEL 86D e u ~ and /~u~ values. 24 Not independent of ASH 85B F(/~- ~# u ~ ) / r t o t a I and r ( e - ~e u ~ ) / r t o t a I values.
r12/r EVTE
DOCUMENT ID
TEEN
COMMENT
0.227=1=0.008 OUR FIT 0.222=1:0.010 OUR AVERAGE 0.215±0,004±0.019 4400 29 ALBRECHT 88L ARG F,.~e = 10 GeV 0.230:l-0.013±0.017 582 ADLER 878 MRK3 E~e = 3.77 GeV 0.223±0.006±0.014 629 YELTON 86 MRK2 F..~e = 29 GeV 0.2214-0.025 BEHREND 84 CELL E ~ e = 14,22 GeV I 1 I We do not use the following data for averages, fits, limits, etc. • • • 0.258~-0.0174-0.025
30 BURCHAT
87
MRK2 Ece~= 29 GeV
29 The authors d'vide i by ( r 2 + F3 + r 6 + r 8 ) / r = 0.467 to obtain this result. 30BURCHAT 87 value is not independent of YELTON 86 value. Nonresonant decays included.
r(o- ~T)r0,- r...)/r~ota ~ VALUE
EVT5
0.0405=t=0.0015 OUR FIT 0.O41 ±O.O09 r(p-
v.)r(e-
103
r2r12/r 2 DOCUMENT ID
BLOCKER
TEEN
80
COMMENT
MRK2 E~e = 3.5-6.7 GeV
~e u . ) / r t 2 o t a l
VALUE
0.0403=1=0.0016 OUR FIT 0.034:1:0.008
EVTS
139
rsr12/r 2 DOCUMENT ID
BLOCKER
TEEN
80
COMMENT
MRK2 E~em=3.5-6.7GeV
V1.18
Lepton Full Listings T
r(~r-~ °
r13/r
non-res, u~)/Ftota I
VALUE
DOCUMENT ID
TEEN
COMMENT
BEHREND
84
CELL
F..~em= 14,22 GeV
VALUE
DOCUMENT ID
TEEN
139±n n->n+0,019 ...... - 0.022
F(hadron-
COMMENT
86E TPC
F..~e = 29 GeV
~e)/r(total) value.
r~o/r=(rl2+Q3+r~l/r
> 1 ~r0 u ~ ) / r t o t a I
VALUE
DOCUMENT IO
TEEN
COMMENT
0.378:E0.007 OUR FIT Error includes scale factor of 1.1. 0.389:t:0.O17 OUR AVERAGE Error includes scale factor of 1.2. 0.382±0.012±0.010 32 BURCHAT 87 MRK2 E~ren- 29 GeV 0.427±0.020±0029 BERGER 88 PLUT F~em= 34.6 GeV 32BURCHAT 87 quote for B(~r ± > 1 neutral u~) = 0.378 ± 0•012 ± 0.010. We add 0.004 to account for contribution from (K* ~r) which they fixed at BR = 0•013. r(hadron-
> 0 neutrals ~ ) / F t o t a
VALUE
EVT5
0.506=E0.0(~ OUR FIT
I
F4/F=(F6+FB+F9+F12+F13+F14)/I-
DOCUMENT ID
Error includes s ~ f ~ r ~ f
0.49 +0.06 OUR AVERAGE - 0.07 + 0 016 0.515±0.029_01026
TEEN
COMMENT
1.1.
Error includes scale factor of 1.9. See the ideogram below. ALTHOFF
88
TASS
+0.011 ~nn0+0.Ol4 0.001-0.001
33 AIHARA 34 BRANDELIK
878 TPC 80 TASS
33 Not independent of AIHARA 87B ev~, Hv~, and ~r+ 2~ 34Not independent of BRANDELIK 80 f ( # ~ # ~ ) / F t o t a f(particle- > 0 neut z~ ("1 prong"))/Ftota I values. WEIGHTED AVERAGE 0.49 + 0.06 - 0.07
EVT5
0.067±0008±0.009 0.081±0.008 0 0 7 ±0.05
ALTHOFF BRANDELIK
85 78 77
TASS DASP MRK1
"''""~-I-
r(hadron-
06
>_ 0 neutrals u r ) / r t o t a
0.8
0.4 3.3 0.0
VALUE
EVTS
DOCUMENT ID
87 MAC F~e = 29 GeV 0.062 ± 0.006 3_0.012 87 MRK2 F~e - 29 GeV 0,080 3- 0.035 84 CELL Ec Be- 14,22 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • >0•083
95
35 BAND 38 GAN BEHREND
37 AIHARA
86£ TPC
.
ENO
• BAND • ALBRECHT RUCKSTUHL SCHMIDKE BEHREND BRAHDELIK
O.O5 ~
O•10
gO
CEL
87 86B 86 86 84 80
MAC ARG DLCO MRK2 CELL TASS
(Confildence Level : 0.15
2 X ,0 0.1 2.7 3.0 1.3 1.5 0.1 13.6 0.034)
0.20
7r+uT)/'Ftotal
r19/r EVT5
o.o~=~o.o~7
VALUE
DOCUMENT ID
WAGNER
2~
80
TECN
COMMENT
PLUT
E~e = 4-5 GeV
TEEN
COMMENT
r2o/F
u-r)Irtot~, EVT~
DOCUMENT ID
E~em- 29 GeV
35BAND 87 assume B(~ 3~0w~-) _ 0.01 and B ( ~ - ~ r O ~ r ) 0005. 36GAN 87 analysis use photon multiplicity distribution. See comments for F/had-
27
44 WAGNER
80
PLUT
F..~em= 4-5 GeV
44 Not independent of WAGNER 80 F ( ~ - p 0 uT)/rtotal value below. Assumes that all ( v p 0 ~ ~') events are ( u a ~ ) and B(~± u~) = 0.173 ± 0.013. F (Tr- ~r- 7r+ non-res, u T ) / F t o t a l
COMMENT
_> 2
had 0 u~)/Ftota I. 37AIHARA 86E analysis is sensitive to the sum of several multiple neutral meson decay modes. See comments for F(had- > 2 had0 z-r)/rtota I.
I
MRK2 E ~ e ~ 29 GeV MAC Repl, by BAND 87 MRK1 E~em> 6 GeV
pc u~)/Ftota I
VALUE
815
•B
........ ........ r'--" .... k )
0108=0.034
I
Flair EL%
0.0?5±0.009 OUR AVERAGE 0.087±0.004±0.011
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.0
F (~r- 2~r 0 u~-)/ F t o t a I VALUE
87 85 78
\ ~ _ ~
r (~-
( C o n f i d e n c e Level = 0.151)
•4~
~/~
X2
I
0.4
quote
Values above of weighted average, error, and scale factor are based upon the data in this ideogram only• They are not necessarily the same as our "best" values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information•
and
r (ai(1260),
TEEN
42 BURCHAT FERNANDEZ 43 JAROS
1255 13
• •
,BARBARO-...
0.2
DOCUMENT ID
E~e = 29 GeV Eee c m - 30 GeV
Values above of weighted average, error, and scale factor are based upon the data in this ideogram only• They are not necessarily the same as our "best" values, obtained from a least-aquares constrained fit utilizing measurements of other (related) quantities as additional information.
...... "LN,v//. | . . . . . .
Authors
W E I G H T E D AVERAGE 0 . 0 6 7 ~- 0 . 0 0 6 (Error scaled by 1.6)
E~em= 34.5 GeV
(~ 0~r0)~ values. I, r I e - u e u ~ ) / f t o t a l ,
MRK2 rr..~em: 29 GeV
39BAND87furthermoreassumethatabTr-~r 7r~ states are the result of al (1260) decay" I 40ALBRECHT 86B does not include kaon modes. Statistical and systematic errors are added in quadrature by authors. 41Contributions from kaons are subtracted. 42 BURCHAT 87 value is not independent of SCHMIDKE 86 value. 43jAROS 78 events consistent with being pTr or aI .
r(~
O.O
87
8.811 :EO.006 OUR FIT Error includes scale factor of 1.8. 0.061:t:8.006 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below. 0,0943_0.012 BEHREND 90 CELL 0070±0.003±0007 1566 39 BAND 87 MAC F~e = 29 GeV 0056±0.007 593 40 ALBRECHT 86B ARG F-.~e = 10 GeV 00803_0.010 41 RUCKSTUHL 86 DLCO Eceem=29 GeV 0.078±0.005±0.008 890 SCHMIDKE 86 MRK2 E ~ e = 29 GeV 0097±0.024 BEHREND 84 CELL F..~e= 14,22 GeV 0.09 ±0.06 BRANDELIK 80 TASS F_.~e 30 GeV • • • We do not use the following data for averages, fits, limits, etc, • • •
O.OO
I
38 GAN
(Error scaled by 1.9)
~
COMMENT
F ('/r- "~- vr + u~-)/Ftota I Q8/F Decay modes with kaons are measured to be small, so all hadrons are assumed to be pions. BEHREND 84 and RUCKSTUHL 86 subtract kaons by hand.
0 2 9 m0.11 BRANDELIK 78 DASP Assumes V A decay 0.45 ±0.19 19 BARBARO-... 77 MRK1 • • • We do not use the following data for averages, fits, limits, etc. • • • 0.486±0.012±0.009 0.22 -}:0.14
TECN
38Highly correlated with GAN 87 F(~pr-~0z,~-)/rtota I value. B(Tr± 37r0 z/-r) + 0.67B(Tr± 777r0u-r) = 0047 ± 0.010 ~: 0.011.
VALUE
90 CELL 87 MRK2 E~em= 29 GeV
AIHARA
31Error correlated with BURCHAT 87 r(p
DOCUMENT ID
0.030:E0.027 BEHREND 84 CELL E~e = 14,22 GeV • • • We do not use the following data for averages, fits, limits, etc. • • •
r ( h a d - > 2 had0 u . r ) / r t o t a I Q4/F Experimental situation is confused. The data below are not added into the overall fit at this time. Acceptances for individual modes contributing to this category vary greatly. For modes ( ~ - ~ ~r- X ur), AIHARA 86E (TPC) quote B(2~# ~r- ~r) + 1.6B(37r 0 ~r- ~T) + l.lB(~r0~l~r - ~T) 0.139 ± 0•020 -E 0.019 and GAN 87 (Mark II) quoteB(2~r0~r ur)+O.95B(3~rO~r-u~)+0.43B(~rO~l~r ~T)=0.090±0.010± 0.012. 0.147-1-0.00~ OUR FIT 0.138-1-0.011 OUR AVERAGE 0,142±0.013 BEHREND 0.120±0.014±0.025 31 BURCHAT
r16/r
VALUE
0 naa~+O.O03O . . . . . -0.0022 OUR FIT 0.003 :E0.0Cl3
F (Tr- 3 7 r 0 u ~ ) / r t o t a l
<0.O14 r(~
VALUE
r21/r
CL%
DOCUMENT ID
95
WAGNER
80
TEEN
COMMENT
PLUT
F-.~em= 4-5 GeV
7r- 7r+ 7tO u ~ ) / r t o t a l ThismeasurementofT- ~ lr-Tr 7r+ TrOuT is put into the fit as T > 1 ~ /T; we assume that the multi-Tr 0 fraction is small. EVTS
0.06710.00"/ OUR FIT Error includes 0.046:1-0.010 OUR AVERAGE 0.042±0.005±0.009 203 45 0.062±0.029 0.15 ± 0 0 7
DOCUMENT ID
TEEN
r22/r ~
~-~r
COMMENT
scale factor of 1 . ~ ALBRECHT BEHREND BRANDELIK
87L ARG 84 CELL 80 TASS
E~e = 10 GeV Ece~= 14,22 GeV E ~ e = 30 GeV
~÷
VI.19
Lepton Full Listings
See key on page IV. 1
7-
F(K-
• • • We do not use the following data for averages, fits, limits, etc. • • • 46 BURCHAT 47 RUCKSTUHL 48 SCHMIDKE JAROS
0.061:£0.008+0.009
0.0604-0.012 0.047+0.005+0.008 0.11 4-0.07
530
87 86 86 78
MRK2 DL£O MRK2 MRK1
E~ee m= E~e= E~em= F~e>
29 GeV 29 GeV 29 GeV 6 GeV
EVT.~5
D-DCUMENT IO
TECN
COMMENT
0 ~~7+0.35 '-0.20
103
ALTHOFF
85
TASS
F-.~em= 34.5 GeV
FERNANDEZ
85
MAC
EcC~m=29 GeV
EVT5
DOCUMENTID
TEEN
COMMENT
0./.3764-0.0032 OUR FIT Error includes scale factor of 1.4. 0./.3884-0.0033 OUR AVERAGE Error includes scale factor of 1.3, below. 0.135 9:0.003 4-0.003 ABACHI 89s HRS 0.150 4-0.004 4-0.003 BEHREND 89s CELL 0.151 ±0.008 ±0.006 AIHARA 878 TPC 0.121 4-0.005 +0.012 RUCKSTUHL 86 DL£O 0.128 9:0.005 ±0.008 1420 SCHMIDKE 86 MRK2
F-~em= 29 GeV Eceem= 14-47 GeV E ~ = 29 GeV E ~ e = 29 GeV F..~em= 29 GeV
0.153 9:0.011 +0.013 -0.016
F--~em= 34.5 GeV
0.136 0.122 0.133 • •
367
ALTHOFF
85
TASS
See the ideogram
±0.005 +0,008 BARTEL 85F JADE Eceem=34.6 GeV +0.013 ±0.039 49 BERGER 85 PLUT F.~e= 34,6 GeV ±0.003 ±0.006 FERNANDEZ 85 MAC E~em= 29 GeV We do not use the following data for averages, fits, limits, etc. • • •
0.128 ±0.010 ~:0.007 0.130 4-0.002 +0.003 0.148 9:0.009 9:0.015
4098 660
50 BURCHAT AKERLOF AIHARA
0.148 ±0.020 ±0.013
178
BEHREND
0.145 4-0.022 ±0.013
182
BEHREND
0.150 4-0.020
186
BEHREND
0.14
4-0,02
152
BLOCKER
0,24 0.32 0.35 0.18
+0.06 4-0.05 4-0.11 9-0.065
35 692
BRANDELIK 51 BACINO 51 BRANDELIK 51 JAROS
33
87 MRK2 Ecee m = 29 GeV 858 HRS Repl, by ABACHI 89s 84c TPC Repl, by AIHARA 87a 84 CELL Repl. by BEHREND 89B 84 CELL Repl. by BEHREND 89B 82 CELL Repl. by BEHREND 89a 82c MRK2 Repl. by SCHMIDKE 86 80 TASS Fr--~e = 30 GeV 78B DLCO F~em= 3.1-7.4 GeV 78 DASP Assumes V - A decay 78 MRK1 E~em> 6 GeV
49 Not independent of BERGER 85 r ( # - ## v-r)/rtota I, r ( e - #e U'r)/rtota I, r(hadron_> 1 ~r0 ~,T)/rtota I, and r(hadron- u ~ ) / r t o t a I. 50 BURCHAT 87 value is not independent of SCHMIDKE 86 value. 51 Low energy experiments are not in average or fit because the systematic errors in background subtraction are judged to be large. WEIGHTED AVERAGE O.1388 + 0 . 0 0 3 3 (Error scaled by 1.3) Values above of weighted average, error, and scala factor are based upon the data in this ideogram only. They are not necessarily the same as our "best" values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information.
: ........ ...... t ..... ~ ....... :~ . . . . . .
ABACHI BEHREND AiHARA RUCKSTUHL SCHMIDKE
• • " ALTNOFF
J~vv i ~
1 ~/ ~ V
0.08
O.10
r(2had-
O.12
0.14
• ~ ...... ~. . . . . . ' ~ ...... / I ~ O.16
O.18
BARTEL BERGER FERNANDEZ
89B 89B 87B 86 88 85 85F 85 85
HRS CELL TPC DLCO MRK2
2 X 8.8 5,0 1.5 1.9 1.3
TASS
0.6
JADE PLUT MAC
0.8
0.1
11.9 I ( C o n f i d e n c e Level = O.104) 0.20
0.22
had + > 0 neut v~ ( " 3 - p r o n g " ) ) / r t o t a I
90
ArHARA
F24/ITEEN
COMMENT
84c TPC
F..~e = 29 GeV
- >_ 0 ~To V - r ) / r t o t a I
VALUE
r2s/r
EVTS
(2.2+~: 6) x 10 - 3
DOCUMENTID
9
52 MILLS
85
TEEN
COMMENT
DLCO
E~em= 29 GeM
52 Error correlated with MILLS 85 {K K ~ u ) value. Exdudes 23% systematic error,
F(K- K+lr -
r26/r
vT)/rtota I
VALUE
EVT5
DOCUMENTID
9
53 MILLS
85
TEEN
COMMENT
DLCO
F ~ e = 29 GeV
53 Error correlated with MILLS 85 (K~r~rlr0v) value, Excludes 23% systematic error, r(3had-
2had + _> 0 neutrals u r ( " 5 - p r o n g " ) ) / r t o t a ~
EVT5
I
DOCUMENTID
r27/r T.ECN
COMMENT
0.00113-1-0.00027 OUR FIT 0.00U2+0,00027 OUR AVERAGE 0.0016 ~:0.0013 4-0.0004
r ( 2 h a d - had + > 0 neut u-r ( " 3 - p r o n g " ) ) / r t o t a r17/r=(r18+r22)/r Decay modeswith kaons are measured to be small, so all hadrons are assumed to be pions. .VALUE
<0.006
VALUE
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.614-O03±0.05
OOEUMENTID
( 2 . 2 + ] : 7) x 10 - 3
+ r ( ~ - , - ~ + > 1 -r ~.)]
r18/(l18+r22) Not independent of values for r(~r- ~r-/r + u T ) / F t o t a I and r ( 2 h a d - had ~- _> 0 neut u,r ("3-prong"))/rtota F .VALUE
_> 0 neutrals ~ r ) / r t o t a I ~
r(K-/r+~
45ALBRECHT 87L measure the product of branching ratios 8(3~r4- ~0 ur ) 9( (eT, or t ~ or 7r or K or p ) v~-) = 0.029 and use the PDG 86 values for the second branching ratio which sum to 0.69 + 0.03 to get the quoted value. 46 BURCHAT 87 value is not independent of SCHMIDKE 86 value. 47Contributions from kaons and from >11r 0 are subtracted. Not independent of (3-prong + 07r0) and {3-prong + _> 07r0) values. 48 Not independent of SCHMIDKE 86 7r+ 2 7 r - u and 7r+ 2~T-(> 0~0)~ values.
r(~-~-~+~.)/[r(~-~-~+,.)
had + h a d -
VALUE
89s 87 85F 85
CELL
ALTHOFF BELTRAMI
85 85
TASS HRS
FERNANDEZ AIHARA
85 MAC 84c TPC
BEHREND BEHREND
84 82
BEHREND
0.00102±0.00029 13 BYLSMA 0.003 ±0.001 ±0.002 BARTEL 0.0016 ±0.0008 4-0.0004 4 BURCHAT • • • We do not use the following data for averages, fits, <0.007 0.0013 +0.0004
95
0 10
<0.0017 <0.003
95 90
2 4
95
1 10
95 95
2
<0.009 0.010
±0.004
<0.005 <0.060 [r(lr-~-Tr
HRS JADE MRK2 limits, etc.
F.~e= 34,5 GeV Repl, by BYLSMA 87 F..~em= 29 GeV F..~e = 29 GeV
Eceem= 14,22 GeV RepL by BEHREND 898 82C MRK2 Eceem=29 GeV 80 TASS F..~e= 30 GeV
BLOCKER BRANDELIK
+ _> 1 -), u , ) + r ( 3 h a d -
Ecee m = 14-47 GeV E ~ e = 29 GeV E~em= 34,6 GeV Ecee m = 29 GeV • • •
CELL CELL
2had + > 0 neutrals u ~ ) ] / r t o t a I (r22+r27)/r
VALUE
DOCUMENT ID
TEEN
0-0594-0-012
BEHREND
90 CELL
DO(~UMENTID
--
r (27r + 3 ~ - ur )/rtotal VALUE
r2g/r EVT5
TECN.
COMMENT.
(5.64-1.6 ) x 10- 4 OUR AVERAGE (6.49:2.3+1.) x 10 - 4 12 ALBRECHT 889 ARG E ~ e = 10 GeV (5.1±2.0 ) x 10 - 4 7 BYLSMA 81 HRS F ~ e = 29 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • (6.7±3.0
) × 10 - 4
5
54 BELTRAMI
85
HRS
RepL by BYLSMA 87
54 The error quoted is statistical only.
r(2~ + 37r- ~r°v~)/rtotal VALUE
r29/r
EVTS
DOCUMENTID
TEEN
COMMENT
(5.14-2.2) X 10 - 4 6 BYLSMA 87 HRS Feces= 29 GeV • • • We do not use the following data for averages, fits, limits, etc. • • • (6.7±3.0) x 10 - 4
5
55 BELTRAMI
55 The error quoted is statistical only,
85
HRS
RepL by BYLSMA 87
VI.20
Lepton Full Listings T F(4had-
~
DOCUMENT ID
<1.9 x 10 - 4
90
BYLSMA
87
~
0.0134-0.003
44
EVT5
VALUE
~
DOCUMENT tD
HRS
~ = ~9 GeV
<0.012
95
ALBRECHT
TEEN
COMMENT
VALUE
~
DOCUMENT ID
TSCHIRHART 88
HRS
E~.em= 29 GeV
<0.003
90
ABACHI
r32/r TEEN
F(r/~/lr
COMMENT
87B TPC
AIHARA
TEEN
88M ARG
COMMENT
E~e ~ 10 GeV
r43/r
r(r/Tr+lr 7r- > 0 neutrals ur)/[-total
r311r
DOCUMENT IO
DOCUMENT ID
5
0.0144-0.0094-0_003
r42/r
COMMENT
F(K*(892)- > 0 neutrals u~)/rtotai VALUE
=ono.~)/rtota I
TEEN
F(K 0 hadron- _> 0 neutrals ur)/Ftota I VALUE
r(~,~-
r30/r
3had + _> 0 n e u t u~ ( " 7 - p r o n ~ " ) ) / r t o t a I
VALUE
~ e = 29 GeV
TEEN
87B HRS
COMMENT
E~em= 29 GeV
F44/F
_> 0 neutrals u~-)/Ftota I
VALUE
~
DOCUMENT IO
<0.005
90
ABACHI
TEEN
87B HRS
COMMENT
F ~ e = 29 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • • r (K*(892)-
F33/F
ur)/rtotaI
VALUE
EVT5
TEEN
DOCUMENT ID
<0.015
COMMENT
0 013 e+0"0018 OUR AVERAGE
"-
•
O.0O20
o.o123-~0.0o21+oO:oOo~I
84
56 ALBRECHT
F-~em = 10 GeV
i
0.019 d_0.003 ±0.004
44
57 TSCHIRHART 88 HRS
E~e -
[
0.015 ±0.004 ±0.004
15
58 AIHARA
F..~e = 29 GeV
0.013 ±0.003 ±0.003
31
YELTON
86 MRK2 E~em 29 GeV
0.017 ± 0.007
11
DORFAN
81 MRK2 F ~ e : 4.2-6.7 GeV
88L ARG 87C TPC
29 GeV
I
VALUE
~
<3.
x 10 - 3
EVT5
95
0
TECN
COMMENT
TSCHIRHART 88
HRS
F~em= 29 GeV
DORFAN
81
I
95
AIHARA
VALUE
CL~
DOCUMENT ID
<0.0026
95
AIHARA
<0.0026
TEEN
87c TPC
TEEN
87C TPC
VALUE
EVT5
DOCUMENT ID
1513
ALBRECHT 88M ARG
F.~em= 29 GeV
TEEN
r (~-.~)/r
(~
_
0.36±0.06
146
TEEN
59 ALBRECHT
r(~=- _> 0 neutrals
~
DOCUMENT ID
95
ALBRECHT
TEEN
COMMENT
90
<0021
ABACHI
95
BARINGER
87
EVT~
<0.009
95
ALBRECHT
90
0051~-0.010±0.012 <0.010
r ( ~ - =o u.r ) / r t o t a VALUE
0042+0:0%~0016
~
<0.04
90
DOCUMENT ID
TEEN
61 BURMESTER 77C PLUT
COMMENT
Eceem=4-5 GeV
1-51/F
VALUE
~
DOCUMENT ID
<5.5 x 10 - 4
90
HAYES
90
HAYES
TEEN
82
COMMENT
MRK2 F..~em= 3.8-6.8 GeV r82/r
_ TEEN
88 CBAL
C O M M E N T
E~e = 10 GeV
82
MRK2 Ecee m - 3.8-6.8 GeV
rs~/r
F..~em= 10 GeV
<8.2 × 10 - 4
90
HAYES
,TEEN
82
COMMENT
MRK2 F..~em= 3.8-6.8 GeV
r(e- ~O)/rtotal
r84/r
Test of lepton family number conservation. VALUE
_
_
<1.4 x 10 4
~
DOCUMENT ID
90
KEH
88
TEEN
COMMENT_
CBAL
F...~e = 10 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • i < 2 1 × 10 3
90
HAYES
82
MRK2 Ece e -
3.8-6.8 GeV
E ~ e = 29 GeV F (#-/~+ #-)/Ftotal Test of lepton family number conservation.
E~em= 10.5 GeV
TEEN
88M ARG
COMMENT
--Fee m ~
10 GeV
0
COFFMAN
87
MRK3 F~e
3.77 GeM
DERRICK
87
HRS
E~e -
29 GeV
GAN
87B MRK2 E~e~
29 GeV
I
VALUE
CL~o
DOCUMENT ID
<2.9 x 10 - 5
90
ALBRECHT
Fss/F TEEN
87M ARG
COMMENT
F~e = 10 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • • <4.9 × 10 4
90
HAYES
82
MRK2 F_.~em= 3.8-6.8 GeV
r(e #+ f~-)/rtotal
I-selF
Test of lepton family number conservation. VALUE
~
DOCUMENT ID
<3.3 × 10- 5
90
ALBRECHT
TEEN
87M ARG
COMMENT
F.~em= 10 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • • < 3 3 × 10 4 90 HAYES 82 MRK2 Eecem_- 3.8-6.8 GeV
r41/r
I ~
DOCUMENT ID
TEEN
COMMEN L
<0.011 95 ALBRECHT 88M ARG F~e ~ 10 GeV • • • We do not use the followingdata for averages, fits, limits, etc. • • • <0.021
VALUE
DOCUMENT ID
65 95
E ~ e = 29 GeV
[F(#- charged particles) + l-(e- charged particlesl]/rtota,
~
• • • We do not use the following data for averages, fits, limits, etc. • • • ee <0014 90 BEHREND 88 CELL Ecm_ 14-46.8 GeV <0,018 95 BARINGER 87 CLEO Fee m - 10.5 GeV <0.025
HRS
Test of lepton family number conservation.
F..~em ~ 10 GeV
CLEO
DOCUMENT ID
85
r(F P)/rtota,
r40/r ~
BELTRAMI
VALUE
F ( r / ~ - v~-)/Ftota j VALUE
F..~em= 29 GeV
COMMENT
COMMENT
87B HRS
HRS
90
<6.4 × 10 - 4
• • • We do not use the following data for averages, fits, limits, etc. • • • <0,021
TSCHIRHART 88
KEH
0.32 ± 0.05. We divide
88M ARG
95
• • • We do not use the following data for averages, fits, limits, etc. • • •
r39/r
<0.013
X 10 - 3
COMMENT
90
u~-)/rtotal
VALUE
r4~/r TEEN
<2.0 X 10 - 4
87L ARG
59ALBRECHT 87L quotes this ratio times B(~ ~ =~ 7r =0) by 0896 to get above value.
E.~em ~ 10 GeV
DOCUMENT IO
DOCUMENT I0
TEEN
88M ARG
COMMENT
~
~
87 CLEO ~ e = 10.5 GeV
DOCUMENT LD
<1.74
TEEN
0 "~ u~)/Ftotal
VALUE
VALUE
r38/r23
EVT~
r(KeTr+~r-Tr - >
F(e-'/)/Ftota ~ Test of lepton family number conservation.
~- ~+ ~0.~)
VALUE
ALBRECHT
I~e ~ 10 GeV r38/r
BARINGER
95
F..~e ~ 10 GeV r4dr
COMMENT
r(uJTr- uT)/rtota I DOCUMENT ID
<0.009
88M ARG
Test of lepton family number conservation.
F37/F
0.01(x54`0.0033:0.002
EVTS
DOCUMENT ID
<0.0083
COMMENT
r 0'- ~)/rtotal
COMMENT
F(~Tr- _> 0 neutrals uz)/Ftota I
=1=0.2"/ ±0.41) x 10-2139
C~
r4s/r TEEN
61Assumes same #, e momentum spectrum as (txe + nothing detected).
F~em= 29 GeV
F36/r
VALUE
VALUE
F~em= 10.5 GeV
r48/r=(r49+r5o)/r
COMMENT
r(K ° K x°u~)/rtotan
(1.60
ALBRECHT
CLEO
Test of lepton family number conservation.
r38/r DQCUMENT IO
95
_ _
MRK2 E~em 4.2-6.7 GeV
F(K 0 K- u~)/Ftotal ~
DOCUMENT IO
uQ/rtot.,
VALUE
<0.0027
DOCUMENT ID
• • • We do not use the following data for averages, fits, limits, etc. • • • <0.009
CL~
r(~;-
87
• • • We do not use the following data for averages, fits, limits, etc. • • •
r34/r
95
BARINGER
F (T/7/~- 7r0 v T ) / r total
56The authors divide by r l / I - = 0.868 to obtain this result. | 57NotindepeodentofTSCHIRHART88 F(T- ~ K0 hadron > 0neutralsl~-)/F(total). 58Decay ~r identified in this experiment, is assumed in the others.
F(K~(1430)- vT)/rtotal
95
95
BARINGER 87 CLEO E~em 10.5 GeV
bO ~A.
87 ~R.2 ~ =
60 Highly correlated with GAN 87 r(~T 3= 0 v,r)/r(total) value.
29 ~o~
F(# J VALUE
e+ e-)/Ftotal Test of lepton family number conservation. __
~
DOCUMENT IO
rs7/r TEEN
COMMENT
<3.3 X 10 - 5 90 ALBRECHT 87M ARG F~e = 10 GeV • • • We do not use the following data for averages, fTts, limits, etc. • • • <4 4 x 10 4 90 HAYES 82 MRK2 Eecem_- 3.8-6.8 GeV
VI.21
Lepton Full Listings
See key on page I V. 1
7" r(e-
e + e-)/rtota I Test of lepton family n u m b e r conservation. VALUE ~ DOCUMENTID < 3 . 8 x 10 - 5
90
ALBRECHT
rsslr TEeN 87M ARG
< 4 . 0 x 10 - 4
90
HAYES
82
MRK2
Ece~ ~ 10 GeV
<3.8 x 10 - 5
F_.~em= 3.8- 6.8 GeV
r(#- K°)/rtotal
rsglr
Test of lepton family n u m b e r conservation. CL~ DOCUMENTID
VALUE
< 1 . 0 x 10 - 3
90
HAYES
82
TEE.N
COMMENT
MRK2
Ecee m ± - 3 , 8 - 6 . 8 GeV
r(e- K0)/rtotal
rbo/r
Test of lepton family n u m b e r conservation. ~ DOCUMENTID
VALUE
< 1 . 3 x 10 - 3
90
HAYES
82
TEEN
COMMENT
MRK2
F..~e= 3,8- 6.8 GeV
r0.-o °)/rtotal
r61/r
Test of lepton family n u m b e r conservation. VALUE CL~ DOCUMENTID
TEEN
COMMENT
90 ALBRECHT 87M ARG Ece~ = 10 GeV <3.8 X 10 - 5 • • • We do not use the following data for averages, fits, limits, etc. • • • < 4 . 4 x 10 - 4
90
HAYES
82
MRK2
r62/r
< 3 . 9 x 10 - 5
90
ALBRECHT
TEEN 87M ARG
VALUE
90
HAYES
82
< 4 . 2 x 10 - 5
ALBRECHT
F..~em= 3,8- 6.8 GeM
TEEN
COMMENT F-.~e = 10 GeV
r(e%r- ~-)Irtota.
r~/r
Test of lepton n u m b e r conservation. VALUE ~ DOCUMENTID < 0 . 3 × 10 - 5
90
ALBRECHT
TEEN 87M ARG
COMMENT E~e = 10 GeV
r(.-~+.~-)/l-tota I
F6S/r
Test of lepton family n u m b e r conservation, VALUE ~ DOCUMENT10 < 4 . 0 x 10 . 5
90
ALBRECHT
TEEN 87M ARG
COMMENT F-.~e = 10 GeM
r (#+ ~ - ~ -)/rtotal VALUE
r66/r
Test of lepton n u m b e r conservation. ~ DOCUMENTID
< 0 . 3 x 10 - 5
90
ALBRECHT
TEEN 87M ARG
COMMENT F.~em= 10 GeV
r (e-lr+ K- )/rtotal VALUE
r67/r
Test of lepton family n u m b e r conservation. ~ DOCUMENTID
< 4 . 2 x 10 - 5
90
ALBRECHT
TEeN 87M ARG
COMMENT F..~e = 10 GeV
r(e +~r- K-)/Ftotal
r68/r
Test of lepton n u m b e r conservation. VALUE ~ DOCUMENTID < 1 . 2 x 10 - 4
90
ALBRECHT
7r + K - ) / r t o t a l Test of lepton family n u m b e r conservation. VALUE ~ DOCUMENTID
TEEN 87M ARG
COMMENT Ece~ = 10 GeV
r(#-
< 1 . 2 X 10 - 4
90
ALBRECHT
r ( # + 7r - K - ) / r t o t a I Test of lepton n u m b e r conservation, VAI~UE ~ DOCUMENTID < 1 . 2 x 10 - 4
90
ALBRECHT
roglr TEEN 87M ARG
COMMENT F...~ern= 10 GeV rTo/r
TEEN 87M ARG
COMMENT F-.~e = 10 GeV
r(e- K*(892)°)/rtotal VALUE
r71/r
Test of lepton family n u m b e r conservation. ~ DOCUMENTI0
< 5 . 4 x 10 - 5
90
ALBRECHT
r (/~ - K * ( 8 9 2 ) O) / r t o t a I Test of lepton family n u m b e r conservation, VALUE ~ DOCUMENTID < 5 . 9 x 10 - 5 r(e+ VALUE
90
ALBRECHT
#- #-)/rtotal Test of lepton family n u m b e r conservation, CL~ DOC.UMENT I0
< 3 . 8 X 10 - 5
90
ALBRECHT
TEEN 87M ARG
COMMENT E~ern = 10 GeV r72/r
TEEN 87M ARG
COMMENT F-~e = 10 GeV r73/r
TEEN 87M ARG
r7s/r
< 2 . 4 X 10 - 4
90
KEH
88
TEEN
COMMENT
CBAL
F..~ = 10 GeV
"r DECAY PARAMETERS
p (MICHEL) PARAMETER ( V - A ) theory predicts p = 0.75. VALUE EVTS DOCUMENT ID 0.70:E0.06 OUR AVERAGE 0.64±0.06±0.07 2753 JANSSEN
89
0.79+0.10±0.10
3732
FORD
87B MA C
F..~e= 29 GeV
0.71±0.09±0.03 0.72±0.15
1426 594
BEHRENDS BAClNO
85 CLEO 79B D L C O
e + e - near T ( 4 S ) F..~e = 3 . 5 - 7 . 4 GeV
TEEN
COMMENT
CBAL
F..~ern=9.4-10.6GeV
CHARGED COUPLING CONSTANT RELATIVE TO # (G.r/G#) VALUE
DOCUMENT ID
0.94+010124-0.09
ALTHOFF
TEEN 84D TASS
COMMENT E~e=
43 GeV
REFERENCES FOR r
MRK2
87M ARG
~ m = 10 GeV
Ece~ = 10 GeV
r63/r 90
COMMENT
COMMENT
r (e- 7r+ 7r-)/rtotBl Test of lepton family n u m b e r conservation. VALUE ~ DOCUMENTID
87M ARG
Test of lepton family n u m b e r conservation, ~ DOCUMENTID
• • • We do not use the following data for averages, fits, limits, etc. • • • < 3 . 7 x 10- 4
ALBRECHT
90
_TEEN _
r(e- r/)/rtotBi
F~em= 3.8- 6.8 GeV
r(e-o°)/rtotal Test of lepton family n u m b e r conservation. VALUE CL~ DOCUMENTID
Test of lepton family n u m b e r conservation, ~ DOCUMENTID
VALUE
• • • W e do not use the following data for averages, fits, limits, etc. • • •
r74/r
r (~+ e- e- )/rtotal
COMMENT
COMMENT E~e = 10 GeV
BEHREND 90 ABACHI 89 ABACHI 896 BEHREND 89B JANSSEN 89 KLEINWORT 89 ADEVA 88 ALBRECHT 88B ALBRECHT BBL ALBRECHT 88M AMIDEI 88 BEHREND 68 BRAUNSCH... 88C KEH 88 TSCHIRHART 88 ABACHI 87B ABACHI 87C ADLER 87B AIHARA S7B AIHARA 87C ALBRECHT 87L ALBRECHT 87M ALBRECHT 87P BAND 87 BAND 87B BARINGER 87 BEBEK 87C BURCHAT 87 BYLSMA 87 COFFMAN 87 DERRICK 87 FORD 87 FORD 87B GAN 87 GAN 87B ADEVA 86B AIHARA 86E ALBRECHT 866 BARTEL 86D PDG 86 RUCKSTUHL 86 SCHMIDKE 86 YELTON 86 AKERLOF 85B ALTHOFF 85 ASH 8SB BALTRUSAIT...85 BARTEL 85F BEHRENDS 85 BELTRAMI 85 BERGER 85 BURCHAT 85 FERNANDEZ 85 MILLS 83 AIHARA 84C ALTHOFF S4D BEHREND 84 MILLS 84 BEHREND 83C JAROS 83 BEHREND 82 BLOCKER 82B BLOCKER 82C BLOCKER 82D HAYES 82 BERGER 81B DORFAN 81 BLOCKER 50 BRANDELIK 80 WAGNER 80 ZHOLENTZ 80 Also 81
ZPHY (to be pub.) +Criegee, Field, Franke+ (CELLO Collab.) PL B226 405 +Derrick, Kooijman, Musgrave+ (HRS Collab.) PR D40 902 +Derrick, Kooijman, Musgrave+ (HRS Collab,) PL B222 163 +Criegee, Dainton, Field+ (CELLO Collab.) PL B228 273 +Antreasyan, Bartels, Besset+ (Crystal Ball Collab.) ZPHY C42 7 +Allison, Ambrus, Barlow+ (JADE Collab.) PR D3B 2665 +Anderhub, Ansari, Becker+ (Mark J Collab ) PL B202 I49 +Binder, Boeckmann+ (ARGUS Collab) ZPHY C41 ] +Boeckmann, Glae~er, Harder+ (ARGUS Collab.) ZPHY C41 405 +Boeckmann, Glaeser, Harder+ (ARGUS Collab.) PR D37 1750 +Trilling, Abrams, Baden+ (Mark fl Collab.) PL B2O0 226 +Criegee, Dainton, Field+ (CELLO Collab.) ZPHY C39 331 Brautlschweig, KirSchfink, Martyn+ (TASSO Collab,) PL B212 123 +Antreasyan, Bartels, Besset+ (Crystal Ball Colrab,) PL B20S 407 +Abachi, Akerlof, Baringer+ (HRS Collab,) PL 6197 291 +Baringer, ByBma, De Bonte+ (HRS Collab.) PRL 59 2519 +Akedof, BaringeL Blockus+ (HRS Coflab,) PRL 59 1527 +Becket, Blay~ock, Bolton+ (Mark III Colrab) PR D35 1553 +Alston-Garnjost, Avery+ (TPC Collab,) PRL 59 751 +AIstomGamjost, Avery+ (TPC £ollab.) PL 6185 223 +Binder, Boeckmann, Glaser+ (ARGUS £obab.) PL 6185 228 +Binder, Boeckmann, Glaser+ (ARGUS Collab.) PL B199 580 +Andam, Binder, Boeckmann+ (ARGUS £ollab.) PL 6198 297 +Camporesi, Chadwick, Oelfino+ (MAC Collab.) PRL 59 415 +Bosman, Camporesi, ChadwTck+ (MAC Collab.) PRL 59 1993 +Mdlwain, Miller, Sbibata+ (CLEO £ollab.) PR DSE 690 +Berkelman, Blucher, Cassel+ (CLEO Collab.) PR D35 27 +FePdman, Barklow, Boyarski+ (Mark II Collab.) PR O35 2269 +Abachi, Baringer, DeBonte+ (HRS Collab.) PR 036 2185 +Dubols, Eigen, Hauser+ (Mark III Collab.) PL 6189 260 +Kooijman, Loos, Musgrave+ (HRS Collab.) PR D35 408 +Qi, Read, Smith+ (MAC Collab,) PR D36 1971 +Qi, Read, Smith+ (MAC Collab.) PRL 59 411 +Abrams, Amidei, Baden+ (Mark II Collab.) PL B197 561 +Abrams, Amidei, Baden+ (Mark II Collab.) PL B]79 177 +Ansari, Becket, Becker-Szendy+ (Mark J Collab.) PRL 57 1836 +Alston-Garnjost, Avery+ (TPC Collab.) ZPHY C33 7 +Donker, Gabriel, Edwards+ (ARGUS Collab.) PL B182 226 +Becker, Felst, Haidt, Knies+ (JADE Collab 1 PL 170B Aguilar Benitez, Porter+ PRL 56 2132 +Stroynowski, Atwoad, Barish+ (DELED Collab.} PRL 57 527 +Abrams, Matteuzzi, Amidei+ (Mark II Cobab.) PRL 56 812 +Dorfan, Abrams, Arnidei+ (Mark II Cobab.) PRL 55 570 +Baranko, Baringer, Beltrami+ (HRS Collab.) ZPHY C26 521 +Braunschweig, Kirschfink+ (TASSO Cobab.) PRL 55 2118 --Band, Blume, Camporesi+ (MAC Collab.) RRL 55 1842 BaltrusaBis, Becket, Blaylock, Brown+ {Mark tll Cotlab.) PL 161B 188 +Becket, Cords, Felst+ (JADE Collab.) PR 032 2468 +Gentile, Guida, Guida, Morrow+ (CLEO Collab.) PRL 54 1775 +Bylsma, DeBonte, Gan+ (HRS Collab.) ZPHY C28 1 +Genzel, Lackas, Pielorz+ (PLUTO Collab.) PRL 54 2489 +Schmidke, Yelton, Abrams+ (Mar~ II Collab,) PRL 54 1624 +Ford, Qi, Read+ (MAC Collab.) PRL 54 624 +Pal, AtwOod, Baillon+ (DELED Collab.) PR 030 2436 +Alston-GarrljosC Badtke, Bakken+ (TPC Collab.) PL 141B 264 +BraunschWeig, Kirschfink+ (TASSO £ollab.} ZPHY C23 103 +Fenner, 5chachter, Schroder+ (CELLO Collab,) PRL 52 1944 +Ruckstuhl, AtWOOd, Baibon+ (DELED Collab,) PL 127B 270 +Chert, Fenner, Gumpel+ (CELLO Collab.) PRL 51 955 +Amidei, Tribing, Abrams+ (Mark II Collab,) PL 1146 282 +Chen, Fennel Field+ (CELLO Colfab.) PRL 48 1586 +Abrams, Alam, Blondel+ (Mark II Collab.) PRL 49 1369 +Levi, Abrams, Amidei+ (Mark II Collab.) PL 109B 119 +Dorfan, Abrams, AJam+ (Mark II Cobab)J PR D25 2869 +Red, Alam, Boyarski+ (Mark B Collab.) PL 996 489 +Genzel, Grigult, Lackas+ (PLUTO CoUab.) PRL 46 215 +Blocker, Abrams, Alam~ (Mark II Collab.) LBL 10801 Thesis (LBL) PL 92B 199 +Braunschweig, Gather+ (TASSO Collab.) ZPHY C3 193 +Alexander, Criegee, Dehne+ (PLUTO Collab.) PL 96B 214 +Kurdadze, Lelchuk, Mishnev+ (NOVO/ SJNP 34 814 Zholentz, Kurdadze, Lelchuk+ (NOVO) Translated from YAF 34 1471
VI.22
Lepton Full Listings ~-, Number of Light Neutrino Types BACINO 79B PRL 42 749 BACINO 79C PRL 42 6 KIRKBY 79 SLAC-PUB-2419 Batavia Lepton Photon Conference. ALEXANDER 78B PL 78B 162 BACINO 78B PRL 41 13 Also 78 Tokyo Conf 249 Also 80 PL 96B 214 BARTEL 78 PL 77B 331 BRANDELIK 78 PL 73B 109 EELDMAN 78 Tokyo Conf. 777 HELLE 78 NP B138 189 JAROS 78 PRL 40 1120 SMITH 78B PR D18 1 BARBARO ... 77 PRL 39 1 0 5 8 BURMESTER 77B PL 68B 29? BURMESTEH 77C PL 68B 301 CAVALLI .. 77 LNC 20 33? PERL 77 PL 70B 487 PERL 76 eL 63B 466 PERL 75 PRL 35 1489
- -
+Ferguson, Nodulman, Slater+ +Ferguson. Noaulman, Slater+
+Criegee, Debne, Derikum~ (PLUTO Collab.) +Ferguson, Noduqman,Slater+ (DELCO Collab.) J Kirz (STON) Zbolentz, Kurdadze, Lelchuk, Mishnev+ (NOVO) +Dittrnann, Dulnker, OBson, Oneil1+ (DESY, HEID) +Braunschweig, Martyn, Sander+ (DASP Collab) J (SLAC) J +Perl, Abrams, Alam. Boyarski+ (SLAC, LBL) ~Abrams. Alam+ (SLAC. LBL. NWES. HAWA) ~Ford, Morse, Mann+ (COLO. PENN, WISC) Barbatc-Galneri. Kwan+ (LBL. NWES, SLAC, HAWA) +Criegee, Dehne. Derikum+ (PLUTO Eollab.) +Eriegee, Dehne. Derikum+ (PLUTO CoIlab.) CavalliSforza, Goggi+ (PAVI. PRIN. UMD) -~Feldman, Abrams, Alam, Boyatski+ (SLAC, LBL) ~Feldman, Abrams, Alam, Boyarski+ (SLAC, LBL) +Abrams. Boyarski, Breidenbach+ (LBL. SLAC)
OTHER RELATED PAPERS
BARISH 88 PRPL 157 1 GAN 88 IJMP A3 531 HAYES 88 PR D38 3351 PERL 80 ARNPS 30 299 ALLES-. 79 LNC 25 404 FLUGGE 79 ZPHY C1 121 AZlMOV ?8 SPU 21 225 PERL 78 SLAC-PUB-2219 Kaflsruhe Summer Institute, FLUGGE 77 Boston Conf Also issued as OESY 77/35 PEriL 77B Hambl2rgSymp Also issuedas SLAC-PUB-2022,
(DELCO Collab.) (DELCO Collab.) (SLAC) J
- -
+Stroynawski +Perl ~Perl
(CIT) (SLAC) (SLAC) {SLAC) (BGNA) J (DESY) (LENI) (SLAC)
Alias Borelli +Frankfurt, Khoze
(DESY) (SLAC)
INumber of Light Neutrino Typesl T h e neutrinos referred to in this section are those of the Standard S U ( 2 ) x U ( 1 ) Electroweak Model. L i g h t neutrinos are those w i t h r e ( u ) << m ( Z O ) . T h e limits are on t h e n u m b e r of n e u t r i n o families or species.
N O T E O N L I M I T S O N N U M B E R OF L I G H T NEUTRINO TYPES FROM pp COLLIDERS In the subsection on "Linfits from p~ Colliders," the results assume that there are only three families of quarks and three families of charged leptons light enough to contribute to W or Z decay. The results were derived from Nv = [rz(measured) - rz(a-family theory)]/Cu + 3 . The term "3" above is for L'e, u#, and ~'r; Cu is approximately 0.18 GeV; and the I"s are measured in GeV. For the results reported here, Fz(measured) is not a directly measured number, but rather an inferred number based on measured cross sections times branching fractions: re =
rw r~L:LT).) ~w
L~z B(z ~
e+e-)J
r ( z --, e+e ) For each result, Fw and are calculated from r ( W ~ e~) the Standard Model with three families, while ~ z / a w is calculated from QCD (most uncertainties in QCD are thought
to cancel in this ratio). Only crw • B ( W --+ eu) is a measured c~z B ( Z --+ e+e ) "
quantity. The errors quoted include the uncertainties from each theoretical and experimental quantity except Fw.
Limits from p ~ Colliders
Number of
v Types Including Z~e, u~, ~'r
See above note for method of derivation and crucial assumptions.
VALUE
~
OOCUMENTID
TECN COMMENT
* • • We do not use the following data for averages, fits, limits, etc. • • •
8,3 8.0 6.1 5.9
90 90 90 90
1 2 2 2 2
HALZEN ALBAJAR ALBAJAR ALBAJAR ALBAJAR
8 4 7.3
95 95 90 90
ANSARI ANSARI 3 APPEL 4 ARNISON
88 87E 87E 87E 87E
THEO UA1 UA1 RVUE RVUE
87 87 86 86
UA2 UA2 UA2 UA1
Any re(t) re(t) > 44 GeV U A I + U A 2 ; any m(t) U A I + U A 2 ; m(t) > 44 GeV Any rn(t) re(t) > 74 GeV Ecm= 546,630 GeV Ecm= 546, 630 GeV
I See theoretical analysis in HALZEN 88, which combines data on W and Z production in p p collisions with deep inelastic scattering of leptons on hydrogen and deuterium to conclude that Nu < 3 at 95% CL, except that Nv = 4 is allowed if the fourth neutrino is accompanied by a heavy charged lepton lighter than re(W). 2 ALI3AJAR 87E limits are obtained while requiring N(v) > 3. W i t h o u t this requirement, all limits would be 0.3-0.5 lower. The 95% confidence limits are about i . higher. 3Assume re(t-quark) - 40 GeV, Cu = 0.177 GeV, F ( W ) = 2.65 GeV and F(Z, 3-family theory) = 2.72 GeV. APPEL 86 reported their limit as 5.6 :h 1.7 or less and we chose the upper value. 4Assume re(t-quark) = 40 GeV, G/ = 0.182 GeV, r ( w ) - 2.82 GeV and r ( z , 3-family theory) = 2,83 GeV.
N O T E O N LIMITS O N N U M B E R OF L I G H T NEUTRINO TYPES FROM e+e - COLLIDERS (by C. Hearty, LBL) The Mark II experiment at SLC and the ALEPH, DELPHI, L3, and OPAL experiments at LEP have determined N~ by measuring the production cross section for hadronic decays of the Z (hadronic plus a subset of the leptonie decays in the case of Mark II) at several center-of-mass energies on the Z resonance. The expected resonance shape--including substantial initial state radiation corrections--is fitted to the data with N~ and the mass of the Z taken as fit parameters. The fit assumes that the Z couples only to the known charged fermions (five quarks and three leptons) and Nv species of neutrinos, that neutrinos are massless, and that all couplings to the Z have their Standard Model strengths. Combining all measurements gives 1% = 3.10 :E 0.09, where statistical and systematic errors have been added in quadrature. The value of Nv is determined largely by the absolute normalization, rather than the width, so systematic errors in the integrated luminosity measurement are a substantial component of the uncertainty in all cases.
VI.23
Lepton Full Listings
See key on page IV.1
Number of Light Neutrino Types Limits from Astrophysicsand Cosmology
The ALEPH, DELPHI, L3, and OPAL experiments have also determined the invisible partial width of the Z by subtracting the measured values for the hadronic and leptonic
Number of Light u Types Including ue, u~, ur ( " l i g h t " means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. VALUE DOCUMENT ID TEEN
partial widths from the total width. The Standard Model neutrino partial width is used to extract Nu. Because measured leptonic and hadronic widths are used rather than the Standard Model predictions, these measurements are less precise than those above. Making use of this technique, the average of these three experiments is Nv = 3.05 + 0.16; this is consistent with our "official" value of 3.10 (above). Experiments at e+e - colliders have previously obtained limits on Nv through the observation of the reaction e+e - --* 7u~. The ASP, CELLO, MAC, MARK J, and VENUS experiments have together observed 3.9 events; the Standard Model predicts that 6.8 should be observed for three neutrino generations. The combined 95% CL limit is Nu < 4.8, assuming massless neutrinos. If the bound N . > 3 is imposed, the 95% CL limit is Nv < 6.8.
• • • We do not use the following data for averages, fits, limits, etc, • • • <3.4 <5.2 <4 <4 <4 <7
VALUE
DOCUMENT ID
<20 <20
DLPH
Ece~= 91 GeV at LEP
I
F..~e= 91 GeV at LEP
|
3.10i0.09 OUR AVERAGE 5 ABREU
90
5 ADEVA
90c L3
3.09±0.19+8106
5,6 AKRAWY
90E OPAL E~em= 91 GeV at LEP
I
3.012_0.15±0.05
5,6 DECAMP
90D ALEP Eceem=91 GeV at LEP
|
89B MRK2
I
2.8 ± 0 . 6
5 ABRAMS
Eceem=91 GeV at SLC
• • • We do not use the following data for averages, fits, limits, etc, = • • 3.12±0.24:E0.25
7 ABREU
90
3.23+0.29
7 ADEVA
90D L3
F-.~em= 91 GeV at LEP
3.3 ± 0 . 7
7 AKRAWY
90
E ~ e = 91 GeV at LEP
6,7 AKRAWY
2.73±0.26+_00:(~
DLPH OPAL
F..~re n = 91 GeV at LEP
90E OPAL E~em= 91 GeV at LEP
3.35±0.41
7 DECAMP
90B ALEP
Ece~= 91 GeV at LEP
2.4 ± 0 . 4 ± 0 . 5
5 AARNIO
89
Ecee m-
8 ABE
89K VNS
3.8 ± 1 . 4
5ABRAMS
89
MRK2
F.~e = 84-61 GeV at TRISTAN Eceem=91GeVatSLC
3.422_0.48
5 ADEVA
89
L3
Ece~= 91 GeV at LEP
3.12±0.42
5 AKRAWY
89
OPAL
F..(~em= 91 GeV at LEP
5,6 DECAMP
89
ALEP
F..~e= 91 GeV at LEP
89
ASP
<11
90
3.27±0.29±0,05 < 7.9
90
HEARTY
< 8.7
90
9 BEHREND
DLPH
88B CELL
< 7.5
90
HEARTY
87
ASP
<14
90
BARTHA
86
ASP
<15
90
BEHREND
86D CELL
<17
90
FORD
86
MAC
10 OLIVE 10 STEIGMAN
81C COSM 79 COSM
REFERENCES FOR Limits on Number of Light Neutrino Types
COMMENT
3.29±0.17
TECN
10 Limit varies with strength of coupling.
TECN
2.97±0.26
DOCUMENT ID
• • • We do not use the following data for averages, fits, limits, etc. • = •
Number from e + e - Colliders ~
COSM COSM COSM COSM COSM COSM COSM COSM
Number Coupling with Less Than Full Weak Strength
Number of u Types Including Ue, ~'#, U.r VALUE
OLIVE 90 ELLIS 86 STEIGMAN 86 YANG 84 YANG 79 STEIGMAN 77 SHVARTSMAN69 HOYLE 64
91 GeV at LEP
ABREU 90 CERN-EP/90-32 ADEVA 90C ADEVA 90D AKRAWY 90 AKRAWY 90E CERN-EP/90-27 DECAMP 90B DECAMP 90D DENEGRI 90 OLIVE 90 AARNIO 89 ABE 89K ABRAMS 89 ABRAMS 89B ADEVA 89 AKRAWY 89 DECAMP 89 HEARTY 89 BEHREND 88(3 HALZEN 88 ALBAJAR 87E ANSARI 87 HEARTY 87 APPEL 86 ARNISON 86 AlSO 87B BARTHA 86 BEHREND 86D ELLIS FORD 88~ STEIGMAN 86 YANG 84 OLIVE 81 OLIVE 81C STEIGMAN 79 YANG 79 STEIGMAN 77 SHVARTSMAN 69 HOYLE
F..~e= 29 GeV at PEP Ec~em= 35-46.6 GeV at PETRA F.~em= 29 GeV at PEP E~em= 29 GeV at PEP Ecee= 38-46.6 GeV PETRA Eceem=29 GeV at PEP
5These papers assume standard model couplings, | ~The second error is due to theoretical uncertainties. These papers measure leptonic widths and are more model independent. However, they divide the measured invisible width by the standard model width for neutrinos, They are less precise. 8ABE 89K combine their data with previous e+ e - data and obtain N < 3.9 at 90% EL. I 9BEHREND 88B combine their data with previous e + e - data and derive the limits N < 4.6 at 90% CL and < 5.8 at 95% CL (if BEHREND 88B requires N _> 3, then the limit is N < 6.7 at 95% EL).
I I
64
PL B (to be pub.)
+Adam,Adami+
PL PL PL PL
+Adriani, A$uilar-Benitez,Akbari+ +Adriani, Aguilar Benitez, Akbari+ +Alexander, Allison, AIIport, AnderSon+ +Alexander, Allison, AIIport+
B237 136 B238 (L3 no. 5) B235 379 B (to be pub.}
(DELPHI Collab.) (L3 Colbb.) (L3 Eollab.) (OPALCollab) (OPAL Eollab.)
PL B234 399 +Deschizeaux, Lees, M]nard, Oespo+ (ALEPH£ollab.) PL B235 399 +Oeschizeaux, Lees, Minard, Crespo+ (ALEPHCollab.) RMP 62 1 +Sadoulet, Spiro (£ERN, UEB, SACL) PL B236 454 +Schramm, Steigrnan,Walker (MINN, CHIC, OSU, HARV) PL B231 539 +Abreu, Adam, Adrianos, Adye+ (DELPHI Eollab.) PL B232 431 +Amako, Arai, Asano, Chiba+ (VENUS Co,lab.) PRL 63 724 +Adolphsen, Aleksan, Alexander,Allen+ (Mark II Collab.) PRL 63 2 1 7 3 +Adolphsen, Averill, Ballam, Barish+ (Mark II Collab.) PL B231 509 +Addani, Aguilar-Benitez,Akbari+ (L3 Eoffab.) PL B231 530 +Alexander, Allison, AIIport+ (OPAL Eollab.) PL B231 519 +Deschizeaux, Lees, Minard, Crespo+ (ALEPH£ollab.) PR D39 3207 +Rothberg, Young, Johnson, Whitaker+ (ASP Eollab.) PL B215 186 +Criegee, Dainton, Field+ (CELLO Collab.) PR D37 229 +Kim, Willenbrock (WISE) PL B198 271 +Albrow, AIIkofer+ (UA1 Collab.) PL B186 440 +Bagnaia, Banner, Battiston+ (UA2 Collab.) PRL 58 1711 +Rothberg, Young, Johnson+ (ASP Eollab.) ZPHY C30 1 +Bagnaia, Banner, Battlston+ (UA2 Collab.) PL 166B 484 +Albrow, AIIkofer, Astbury+ (UA1 Collab) PL B185 241 Albajar, AlbrOW,AIIkofer, Arnison+ (UA1 Collab.) PRL 56 685 +Burke, Extermann+ (ASP Collab} PL B176 247 +Buerger, Criegee, Fenner, Field+ (CELLO Eollab.) PL 167B 457 +Enqvist, Nanopoulos,Sarkar (CERN, OXF) PR D33 3472 +Qi, Read+ (MAC Collab.) PL B176 33 +Olive, Schramm, Turner (BART, MINN+) APJ 281 493 +Turner, Steigman, Schramm, Olive (CHIC, BART) APJ 246 557 +Schramm, Steigman, Turner, Yang+ (CHIC, BART) NP B180 497 +Schramm, Steigman (EFI, BART) PRL 43 239 +Olive, Schramrn (BART, EFI) APJ 227 697 +Schramm, Steigman, Rood (CHIC, VALE, VIRG) PL 66B 202 +Schramm, Gunn (YALE, CHIC, LIT) JETPL 9 184 (MOSU) Translated from ZETFP 9 315 Nature 203 1108 +Tayler (LAMB)
VI.24
Lepton Full Listings Heavy Lepton Searches and electromagnetic interactions to cancel unphysical high energy behavior in such processes as e+e - --+ W + W -. 3
IHeavy Lepton SearchesI NOTE ON HEAVY LEPTON
SEARCHES
Data on the 7 ± are listed in a separate section, following the e and # listings. Data on excited leptons (e*, #*, r*) appear in the section "Searches for Quark and Lepton Compositeness." Searches for fractionally charged heavy leptons are included in the section on "Free Quark Searches." The following section contains information on searches for heavy leptons of other types. Several types of heavy leptons (that is, non-stronglyinteracting fermions other than e and #) have been proposed. In the Full Listings we distinguish four types. L2 Each has a corresponding antiparticle with opposite charge and lepton number. For convenience we omit writing the antiparticles in the following descriptions. The four types are:
Sequential leptons (L , i l L ) . Such a pair is assumed to have its own separately strictly conserved lepton number nL = +1. This means that the radiative decay's L L
2 e-7 } # ?
are forbidden,
while the weak decays (assuming m L- sufficiently large)
L - -~ ~Le-Pe L-
Ortholeptons (F and N ). These have the same lepton numbers as e and p - , respectively. They may or may not have associated neutral leptons. Radiative decays are allowed in addition to weak modes similar to those of sequential leptons. The radiative mode can dominate or can be relatively unimportant depending on the model. 4 Decays such as F - --+ e
stable since its lepton number is conserved. See PERL 81 for a review. References
1. M.L. Perl and P. Rapidis, SLAC-PUB-1496 (October 1974). 2. C.H. Llewellyn Smith, Invited paper presented at the Royal Society Meeting on New Particles and New Quantum Numbers, 11 March 1976, Oxford Ref. 33/76. 3. J.D. Bjorken and C.H. Llewellyn Smith, Phys. Rev. D7, 887 (1973). 4. F. Wilczek and A. Zee, Nucl. Phys. B106, 461 (1976).
I
[
~
- ~ PL,~-V#
are allowed .
/
L - --~ PL h a d r o n s
)
There could be an increasing mass sequence of such pairs. It is frequently assumed that the neutrinos are massless. Decay rates are assumed calculable from conventional weak interaction theory. For an L mass between 1 and 3 GeV, the branching fraction to each of the two leptonic modes above should be roughly 10 to 20%. For an L mass above 1 GeV, the mean life should be < 10 12 second.
Paraleptons ( E + , E °) and ( M +, M°). These pairs have the same lepton numbers as the opposite-charge ordinary leptons, i.e., e and # , respectively. Radiative decays are again forbidden and decays similar to those allowed for L - are
Limits apply only to heavy lepton types specified. See review above for description of types. L, E, M, F, N stand for sequential lepton, para-electron, para-muon, ortho-electron, orthomuon respectively. Limits for excited leptons (e*, #*, r*) are included in the section on "Searches for Quark and Lepton Compositeness." Charged Heavy Lepton MASS LIMITS Sequential Charged Heavy Lepton (L) MASS LIMITS These experiments assumed that a fourth generation L± decayed to a fourth generation u L (or L'0) where uL was stable. New data show that stable uL have m(uL) > 42.7 GeV so that the above assumption is never valid. One can instead assume that L± decays via mixing to ue, u# and/or UT, and in that context the limits below are meaningful. VALUE (GeV~ CL% DOCUMENT10 TECN COMMENT >44.3 95 AKRAWY 90G OPAL • • • We do not use the following data for averages, fits, limits, etc. • • • >42.7 > 8
allowed here, e.g.,
M + -~ v~e+v~ or
M + ---, v~#+v~ . However, the lightest member is not stable as is the case for sequential leptons, so that bizarre decay schemes such as (assuming mE0 < mE+)
E + ~ E°p+vt~
Pe
+hadrons
are also allowed. Long-lived penetrating particles. Heavy leptons could have long mean lives under certain circumstances. For example, if m,L > rn L , then L - , the sequential lepton, is completely
e'~lJe
are allowed. Heavy leptons of this type were proposed (before the discovery of the Z ° boson) in unified gauge theories of weak
>12 >276 >255 none 15-22.0 >25.0 >27.6 >41 >25.0 >22.5 >18. >18.0 >14 none 4 145 (]155 qi3 0.490
95
95 95 95 95 95 90 95 95 95 95 95 95 95
DECAMP 1STOKER t STOKER 2 ABE 3 ADACHI BEHREND 4 IGARASHI 5 KIM 6 ALBAJAR YOSHIDA 7 ADEVA S ADEVA 9 BARTEL ADEVA 10 BERGER IIBRANDELIK 12AZIMOV 13BARBER 14 ROTHE
90F ALEP 89 MRK2 F o r ( r n ( L ~ ) - m ( L O ) ) = 0.4 G~V 89 MRK2 For m(L )=0.9 GeV 88 VNS 88B TOPZ 88C CELL 88 A M Y 88 AMY 87B UAI 87B VNS 85 MRKJ 83B MRKJ 83 JADE 82 MRKJ 81B PLUT 81 TASS 80 80B CNTR 69 RVUE
I
I
I
1STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L + ) mass for the generalized case in which the corresponding neutral heavy lepton (L0) in the SU(2) I doublet is not of negligible mass. 2ABE 88 search for L+ and L - ~ hadrons looking for acoplanar jets, The bound is valid for m(u) < 10 GeV. 3 ADACH188B search for hadronic decays giving acoplanar events with large missing energy. ee = 52 GeV. Ecm
I
VI.25
Lepton Full Listings
See key on page IV. 1
Heavy Lepton Searches 41GARASHI 88 search for multi-hadron events with isolated leptons. E ~ = 50-52 GeV. I SKIM 88 search for L± ~ hadrons with L:F ~ isolated lepton X and for L± and L:F hadrons, Ecm ee = 56 GeV, 6Assumes associated neutrino is approximately massless. 7ADEVA 85 analyze one-isolated-muon data and sensitive to f <10 nanosec. Assume B(lepton) = 0.30. Ecm = 40-47 GeV. BADEVA 83B looked for muon opposite against a hadron jet. 9BARTEL 83 limit is from PETRA e+ e - experiment with average Ecm = 34.2 GeV. 10BERGER 818 is DESY DORIS and PETRA experiment, Looking for e+ e - ~ L+ L - . 11BRANDELIK 81 is DESY-PETRA experiment. Looking for e+ e - ~ L+ L . 12AZlMOV 80 estimated probabilities for M + N type events in e+ e - ~ L+ L - deducing semi-hadronic decay multiplicities of L from e+ e - annihilation data at Ecm = (2/3)rn(L). Obtained above limit comparing these with e+ e - data (BRANDELIK 80). 13 BARBER 808 looked for e+ e - ~ L+ L - , L ~ UL+ X with MARK-J at DESY-PETRA.
I
14ROTHE 69 examines previous data on/~ pair production and 7r and K decays. S t a b l e Charged H e a v y L e p t o n ( L ) M A S S L I M I T S VALUE (GeV} CL~ DOCUMENTID TEEN >26.5
95
DECAMP
90F ALEP
Charged Heavy L e p t o n M A S S L I M I T S VALUE (GeV~ EL% E V T S DOCUMENTID
TEEN
I
95 95 95
0 0 0
15 ORITO 16 BERNARDINI 16 BERNARDINI
74 ASPK 73 ASPK 73 ASPK
Any nonrad type Any nonrad type Any nonrad type
15 ORITO 74 looked for H + H - pairs giving p.- e pairs. Mass limit refers to any nonradiative type heavy lepton - - L, E, M, F, N. Coupling to hadron assumed from theoretical models. 16 BERNARDINI 73 is Frascati e+ e - experiment. First value assumes universal coupling to ordinary leptons. Second value also assumes coupling to hadrons. Charged O r t h o - E l e c t r o n ( F ) M A S S L I M I T S See also the section "MASS LIMITS for Excited e" in the section on "Searches for Quark and Lepton Compositeness." _VALUE(6eV~ EVT5 DOCUMENTIO TEEN CH6 • • We do not use the following data for averages, fits, limits, etc. • • • none 0.25-2.3 >0.6 >2.2 none 0.263 1.32 none 0.1-1.3 none 0.3-0.7 >1.0 none 0.12-0.57
0 0
0
17 18 18 19 20 21 22 23
BACCI 778 BACCI 73 BACCI 73 LICHTENSTEII~0 BOLEY 68 BUDNITZ 66 BEHREND 65 BETOURNE 65
SPEC ELEC ELEC SPEC SPEC SPEC SPEC SPEC
TEEN
± + ± -
17BACCI 778 is same type as BACCI 73. Lower mass limit corresponds to A2 limit of 4 × 10 - 5 , upper value is for A2 limit of 1.5 x 10 - 3 . 18BACCI 73 is Frascati e+ e - experiment. Looks for F ~ eq, Mass limit depends on coupling constant A for this decay. First value above is for A2 > 9 × 10- 5 , second is for A2 > 10 - 3 . 19LICHTENSTEIN 70 IS Cornell experiment measuring e Bremsstrahlung, Mass limit depends on coupling constant. First value above is for A2 >0.17, second is for A2 >0.42. 20BOLEY 68 is CEA experiment. Looks for e p ~ F p . Mass of 0.1 corresponds to coupling constant 2,2 > 3 x 10 - 4 , mass limit of 1.3 to A2 >0.01. 21BUDNITZ 66 is CEA experiment. Looks for ep ~ F p . 22BEHREND 65 is DESY experiment. Looks for ep ~ F p , F ~ eT. This mass limit corresponds to a limit on A2 of 6.25 x 10 - 4 . 23BETOURNE 65 is Orsay experiment. Looks for e p ~ F p . Mass of 0.12 corresponds to coupling constant A2 >0.0016, mass of 0.57 to A2 >0.22.
> 9.0 >10.0 >12. > 8.4 > 2.0 > 2.4
0 90 90 90 90
29 30 31 32 33 34
0 0
CNOPS ERRIQUEZ HOLDER BAR/SH BARISH EICHTEN
78 78 78 74 738 73
HLBC + BEBC + CNTR + SPEC + ASPK + HLBC +
29CNOPS 78 is FNAL experiment looking for u# Ne ~ L:k, followed by L± ~ e~: uu. 30ERRIQUEZ 78 is CERN SPS experiment. Looks for v# nucleon ~ # - e+ X. Finds cross section for producing heavy lepton ~ e+ <0.7 x 10- 3 xCC cross section 31 HOLDER 78 is a CERN u experiment looking for u# nucleon ~ p.+ anything, Assumes M + ~ # + 2~/~ with BR = 0.2. 32 BARISH 74 is FNAL 50,135 GeV u experiment, Looks for (v nucleon ~ M + X), Assumes ( M + ~ # ± v v ) with BR = 0.3. 33 BARISH 73B is FNAL 50,145 GeV v experiment. Looks for (v nucleon ~ M-- X). Assumes ( M + ~ # + v v ) with BR = 0.3. 34EICHTEN 73 is CERN 1-10 GeV v experiment. Looks for M + produced in v N ~ M + hadrons assuming 15% decay to e+ w , . Charged L o n g - L i v e d Heavy L e p t o n M A S S L I M I T S VALUE (GeV) EVT$ DOCUMENTID TECN 0
>0.1 none 0.55-4.5 none 0.2-0.92 none 0.97-1.03
35 ANSORGE 36 BUSHNIN 37 BARNA 37 BARNA
738 73 68 68
HBC CNTR CNTR CNTR
D o u b l y - C h a r g e d Heavy L e p t o n M A S S L I M I T S VALUE (GeV) EL% DOCUMENTIO
TEEN
none
1-9 GeM
90
38 CLARK
S t a b l e N e u t r a l Heavy L e p t o n M A S S L I M I T S VALUE (6eV)
CL~_%
DOCUMENTID
>42.7
95
DECAMP
TEEN
90F ALEP
95
39,40 BURCHAT
90
MRK2
none 25-45.7
95
39,41 DECAMP
90F ALEP
• • • We do not use the following data for averages, fits, limits, etc. • • •
none 8.2-26.5
±
SPEC
VALUE (GeV}
COMMENT
~irac. lu~,,-I 2 > lO -lo Dlrac, aH I u~jl2 OiraclU~,jI 2 > 10-13
| I I
• • • We do not use the following data for averages, fits, limits, etc, • • • 95
42 SHAW
89
AMY
Oirac L0,
I
IuejI 2 >10 -6
none 8.3-22.4
95
42 SHAW
89
AMY
Majorana L0 , IUe,xI2 >10 - 6
|
none 7.8-28.1
95
42 SHAW
89
AMY
Dirac Lu ,
I
Majorana L0 ,
I
Iu#jj 2 >10 - 6
OSPK
24ASRATYAN 78 analyzes dependenceof (neutral current/charged current) on energy of associated hadrons. Uses data of HOLDER 77 - - u~ interactions at CERN-SPS. 25CNOPS 78 is FNAL experimentlooking for u# Ne ~ L±, followed by L± ~ e± uu. 26ASRATYAN 74 uses EICHTEN 73 data on uN ~ e hadronsand ~N ~ e± hadrons to set limits on orthomuon production. 27GITTLESON 74 is # p ~ p orthomuon search. Coupling constant ~2 is <0.01 for mass up to 0.7 GeV, limit on A2 rises to <0,1 for mass of 2.0 GeV. 28 LIBERMAN 69 is a BNL experiment measuring muon 8remsstrahlung,
birac
N e u t r a l Heavy L e p t o n M A S S L I M I T S
>19,6
HLBC HLBC
COMMENT
Limits apply only to heavy lepton type given in comment at right of data Listings. See review above for description of types. L, E, M, F, N stand for sequential lepton, para-electron, para-muon, ortho-electron, ortho-muon respectively. For a review, see GAN 88.
See also the section "MASS LIMITS for Excited #" in the section on "Searches for Quark and Lepton Compositeness." VALUE (GeV) CL% E V T S DOCUMENTID TEEN CHG
0
CH6
81 SPEC + +
Charged Ortho-Muon (N) MASS LIMITS
90
Long-lived Long-lived Long-lived Long-lived
38CLARK 81 is FNAL experimentwith 209 GeV muons, Boundsapplyto M which couples with full weakstrengthto muon. See alsosection on "Doubly-ChargedLeptonProduciton Cross Section."
TECN MRK2
78 78 74 74 69
~ -
• • • We do not use the following data for averages, fits, limits, etc. * • .
90
24 AS RATYA N 25 CNOPS 26 ASRATYAN 27 GITTLESON 28 LIBERMAN
COMMENT
35 ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung. 36BUSHNIN 73 is SERPUKOV 70 GeV p experiment. Masses assume mean life above 7 × 10 - 1 0 and 3 × 10 - 8 respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data. 37 BARNA 68 is SLAC photoproduction experiment,
CL~_% DOCUMENTID 95 39,40 BURCHAT
98
CHG
• • • We do not use the following data for averages, fits, limits, etc. • • •
>41
>10.3 > 7.5 > 1.8 none 0-2.0 none 0.2-0.6
CH6
• • • We do not use the following data for averages, fits, limits, etc. • • •
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • >1.15 >1.4 >1.0
Charged P a r a - M u o n ( M ) M A S S L I M I T S VALUE (6ev) CL% EVT5 DOCUMENTID
none 8.1-24.9
95
42 SHAW
89
AMY
none 1.8-6.7
90
43 AKERLOF
88 HRS
none 1.8-6.4
90
43 AKERLOF
none 2.5-6.3
80
43 AKERLOF
88 HRS 88 HRS
none 5-18
95
44 BEHREND
88C CELL
none 0.6-34.6
95
44 BEHREND
88c CELL
i % f 2 >10-6 I Ue,y=l Iu#.jl 2=1 Eu~,j122=l Iue,jl or
I I I I
JU~ ;12>10 5 L O = ~ , V - A coupling IUejI 2=1
|
VI.26
Lepton Full Listings Heavy Lepton Searches o-(LL) x [B(L ~
LO=E O, V+A coupling
euX) + B(T ~
euX)]
none 0.4-37.4
95
44 BEHREND
88C CELL
none 0.25-14
90
45 MISHRA
87
CNTR
lu#,jI
noneO.2S-lO
90
4SMISHRA
87
CNTR
Ju#,jl2=o.1
none 0.25-7 7
90
45 MISHRA
87
CNTR
JU#jI2=O.03
none1. 2
90
46WENDT
87
MRK2
JUeor#jj2=0.1
none 2 . 2 - 4
90
46 W E N D T
87
MRK2
JUeor pjJ 2=0001
none2.3-3.
90
46WENDT
87
MRK2
Iu~,y=o,1
none 3.2-4.8
90
46 W E N D T
87
MRK2 J UT,]I2=0.001
none0,3-0.9
90
47BADIER
86
CNTR
none0.33-2.0
90
47BADIER
86
CNTR
IUe,jj2=O.O3
none 0.6-0.7
90
47 BADIER
86
CNTR
IU#j12=0'8
mill
none 0.6-2.0
90
47 BADIER
86
CNTR
I Up j-12=0.01-0.001
>24.5 >225 none 1-9 > 12
95 95 90
48 BARTEL 48 BARTEL 49 CLARK MEYER
83 83 81 77
JADE JADE SPEC MRK1
Para- or ortho- e, V+A Para- or ortho- e, V A Para-muon(~f O) Neutral
VALUE (10 5 nb) CL~ DOCUMENTID TEEN COMMMENNT • • • We do not use the following data for averages, fits, limits, etc. • • •
VALUE(10 5 nb) CL~ DOCUMENTID TEEN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •
IUe~/I2=1 =1.
< 8 <18 <20 <11 <13 <17
I
I
42SHAW 89 also excludes the mass region from 8.0 to 27.2 GeV for Dirac L0 and from 8.1 to 23.6 GeV for Majorana L0 with equal full-strength couplings to e and #. SHAW 89 also gives correlated bounds on lepton mixing. 43AKERLOF 88 is PEP e + e experiment at Ecru = 29 GeV. The L0 is assumed to decay | via V - A to e or # or -r plus a virtual W. 44The first bound of BEHREND 88C applies for a general L0 . The second and third have their assumptions indicated. 45 MISHRA 87 is Fermilab neutrino experiment looking for either dimuon or double vertex events (hence long-lived). 4 6 W E N D T 87 is MARK-II search at PEP for heavy u with decay length 1 20 cm (hence long-lived). 47 BADIER 86 is a search for a ~ong-lived penetrating sequential lepton produced in ~r nucleon collisions with lifetimes in the range from 5. x 10 7 - 5 . x 10- 1 1 s and decaying into at least two charged particles. Ue j and U m j are mixing angles to ue and v#. See also the BADIER 86 entry in the section "Searches for Massive Neutrinos and Lepton Mixing". 48 BARTEL 83 is PETRA e + e - experiment with average WET = 34.2 GeV. First (second) limit is for V + A ( V - A ) type W - E 0 e coupling, 49CLARK 81 is FNAL experiment with 209 GeV muons, Bounds apply to M 0 which couples with full weak strength to muon. See also section on "Neutral Heavy Lepton Production Cross Section (# NUCLEON)" below.
I
VALUE(cm2)
EVTS
DOCUMENTID
TEEN
CHG
• • • We do not use the following data for averages, fits, limits, etc. • • • <6. x 10 - 3 8
0
50 CLARK
81
SPEC
÷+
50CLARK 81 is FNAL experiment with 209 GBV muon. Looked for #4- nucleon ~ M 0 X, ~MO ~ # + # - u # and #-~ n - - M + + X, M + + ~ 2# + ~,#. Above limits are for o x BR taken from their mass-dependence plot figure 2.
Neutral Heavy Lepton Production Cross Section
(/~N) VALUE(cm2)
EVTS
DOCUMENTID
TEEN
CHG
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • <4. x 10 38 <1.22 x 10 - 3 4
0
51 CLARK 52 LEBRITTON
81 80
SPEC SPEC
O 0
Para-muon(M O) M 0 ~ jz+ # -
51CLARK 81 is FNAL experiment with 209 GeV muon. Looked for # + N ~ ~ X,Nf 0 # + # - P# and/~+ n ~ M + + X, M + + ~ 2# + vp. Above limits are for ~ x BR taken from their mass-dependence plot figure 2. 52 LEBRITTON 80 is BNL experiment with 10.5 GeV muons. Trimuons are consistent with QED trident and diffractively produced p decay.
Neutral Heavy Lepton Production Cross Section x B 0- ~ VALUE(10 5 nbI
new neutral lepton) x B(neutral lepton -~ e~r or #Tr) CL~/o
DOCUMENTID
TEEN
COMMENT
• I • We do not use the following data for averages, fits, limits, etc. • • • <450 <250
90 90
53 MEYER 53 MEYER
77 77
MRK1 MRK1
For re(L)=0.5 GeV For re(L)=1.5 GeV
53 MEYER 77 experiment looks for narrow neutral resonance in e - 7r and # See "Heavy Lepton MASS LIMITS" section above.
~ channels.
+ L2) x BiLl
< 4.7 <18
39Limits apply for [ = e, /~, or T and for I / A decays of Dirac neutrinos. | 40BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89c, and W E N D T 87. 41For 25 < m(L O) < 42.7 GeV, DECAMP 90F exclude an L0 for all values of J Uf~jI 2. J
(# N Scattering)
54 54 54 54 54 54
ERREDE ERREDE ERREDE ERREDE ERREDE ERREDE
84 84 84 84 84 84
HRS HRS HRS HRS HRS HRS
For For For For For For
m(L)=l re(L)=2 re(L)--3 re(L)=4 re(L)=6 re(L)=7
GeV GeV GeV or 5 GeV GeV GeV
54Assuming X - #, If X - meson, limits are 20% higher. ERREDE 84 say these limits are comparable to those expected from naive theory, e+ e - , Ecru = 29 GeV. See also GRONAU 84, RIZZO 84.
jUeljj2=0.8
Doubly-Charged Lepton Production Cross Section
90 90 90 90 90 90
--,
only light neutrinos)
90 90
55 AKERLOF 55 AKERLOF
85 85
HRS HRS
For re(L)=2 GeV For r e ( L ) = 1 0 GeV
55 AKERLOF 85 observe no monojets above background. They use standard couplings to Z to find o-(L 1 + L2) = 0.36 pb. Above data then imply B(L 1 ~ light neutrinos) < 1 3 - 5 0 % for re(L) = 2-10 GeV.
~(LL) x BR1 x BR 2 / (7(standard via virtual Z) where BR 1 and BR 2 are branching ratios leading to events with two or four charged particles, and ~r(standard) = 0.35(fl(3 + ~2) / 4) pb with 13 = velocity/c of L. VALUE ~ EVT5 DOCUMENTID TEEN COMMENT • • • We do not use the following data for averages, f~ts, limits, etc. • • • < 0.1-0.2
90
0
56 PERL
85
MRK2
For re(L)<1 GeV
56 PERL 85 examine a variety of models and processes. They search up to re(L) = 14 GeV but are most sensitive for rn(L) <1 GeV. They require lepton lifetime
REFERENCES AKRAWY 90G 8URCHAT 90 5LAC PUB-5172 DECAMP 90F JUNG 90 ABRAMS BC SHAW 89 STOKER 89 ABE 88 ADAEHI 88B AKERLOF 88 8EHREND 88C GAN 88 IGARASHI 88 KtM 88 ALBAJAR 87B MISHRA 87 WENDT 87 YOSHIDA 87B BADIER 86 ADEVA 85 Also 84C AKERLOF 85 PERL 85 ERREDE 84 GRONAU 84 RIZZO 84 ADEVA 83B BARTEL 83 ADEVA 82 BERGER 81B BRANDELIK
81
CLARK Also AZIMOV
B~ 82 80
PL 8236 511 PRL 64 1091 PRL 63 2447 PRL 63 1342 PR D39 1811 PRL 61 915
PR D37 1339 PR D37 577 ZPHY C41 7 IJMP A3 531 PRL 60 2359 PRL 61 911 PL B185 241 PRL 89 1397 PRL 58 1810 PRL 59 2915 ZPHY C31 21 PL 152B 439 PRPL 109 131 PL 156B 271 PR D32 2859
PL 149B 519 PR D29 2539 PL 1368 251 PRL 51 443 PL 123B 353 PRL 48 967 PL 99B 489
PL 998 163 PRL 46 299 PR D25 2762 JETPL 32 664 Translated from PRL 45 1904 PL 928 199 eL 89B 271 Ph 76B 237 PRL 40 144 eL 77B 227 PL 74B 277 PL 7tB 227 PL 7OB 393 PL 70B 469 PL 49B 488 PRL 32 ]387 PR DI8 1379 PL 48B 165 PR D7 26 PL 44B 530 PRL 31 410 NC 17A 383 LNC 4 1156 NP B58 476 PL 42B 136 PL 4EB 281 PR D1 825 PRL 22 663 NP B18 241 PR 173 1391 PR 167 1275 PR 141 1313 PRL 15 900 PL 17 70
BARBER 8OB 8RANDELIK 80 LEBRITTON 80 ASRATYAN 78 CNOPS 78 ERRIQUEZ 78 HOLDER 78 BACCI 77B HOLDER 77 MEYER 77 ASRATYAN 24 BARISH 74 GITTLESON 74 ORITO 74 ANSORGE 73B BACCI 73 BARISH 73B BERNARDINI 73 Also 70 BUSHNIN 73 Also 72 EICHTEN 73 LICHTENSTEIN70 LIBERMAN 69 ROTHE E9 8ARNA 68 BOLEY 68 BUDN]TZ hE BEHREND 65 BETOURNE 65 -
FOR Heavy
Lepton Searches
PL 8240 (to be pub ) --Alexander, Allison, AIIport+ PRL (to be pub) +King, Abrams, Adolphsen+
-
OTHER
81 SLAC-PUB2752 eERphysics in Collision Conference
(OPAL Collab) (Mark II £ollab )
+Deschizeaux, Lees, Minard+ (ALEPH Collah.) +Van Kooten, Abrams, Adolphsen+ (Mark II Collab) ~Adolpbsen, Avedll, BaJJam+ /Mark II CoJlab) +Blanis, Bodek, Rudd+ (AMY Collah.) +Perl, Abrams4 (Mark II Collab) +Amako, Arai, Asano, Chiba {VENUS Collab.) ~Aihara, Dijkstra, Enomoto+ {TOPAZ Collab ) ~Chapman, Errede, Ken+ (HRS Collab) ~Buerger, Criegee, Daipton~ {CELLO Collab) ~Perf (SLAC) +Myuni~, Chiba, Hanaoka+ (AMY Collab) ~Son, Bacala, Imlay+ (AMY Collah.) tAIbrow, AIIkofer, Arnison~ (UA1 Collah.) *Aucdincloss+ (COLU, CIT. FNAL, CHIC, ROCH) ~Abrams, Amidol Baden~ {Mark II CoHab.) +Chiba. Endo+ (VENUS Collab) +Bemporad, Boucrot, Callot+ (NA3 Collah.) +Becker, Becker-Szendy+ (Mark-J Collah.) Adeva, Barber, Becket+ {Mark J Collah.) +Bonvicini. Chapman, Errede+ (HRS Collab.) +Barklow, Boyarski4 (Mark II Collab,) +Akerlof, Chapman,Harnew+ (BRS Collab.) +Leung, Rosner (SYRA, FNAL, CHIC) 0su) +Barber, Beckeq Berdu8o+ {Mark J Cotlab.) +Cords, Dietrich, Eichler+ (JADE Coilab ) +Barber, Becker, Berdu8o~ (Mark J Collab.) +Genzel, Grigull, Lackas+ (PLUTO Collab) +Braunschwei6, Gather+ (TASSO Collab) ~Johnson, Kerth, Loken~ (UCB, LBL, FNAL, PR]N) Smith, Clark, Johnson, Kerth+ (LBL, FNAL, PRIN) +Khoze iKONS) ZETFP 32 677 +Becket, Bei, BerghofF+ {Mark J Collab) +Braunschweig, Gather+ (TAS80 Collab) +McCaL Melissinos+ (HOCH, BNL, NSF1 +K~bantsev (JTEP) +Connolly, Kahn, Kirk+ (RNL. COLU) (EARl, BIRM, BRUX. EPOL, RHEL, 8ACL. LOUC) +Knobloch, May+ (CDHS Eollab I ~Dezorzi. Penso, Stella+ (ROMA, ERAS/ +Knobloch, May+ (COHS CoHab.) *Nguyen, Abrams+ (SLAC, LBL, NWES, HAWA) ~Getsrltei~, Kaftanov, Kubantsev, Lapin+ (BERn) -Bartlett, Buchholz,Merritt+ (C[T FNAL) ~Kirk+ (HARV, ROCH, COLU, FNAL) ~V~sentin, Ceradini, Conversi+ (FRAS, ROMA) + Baker, Krzesinski, Neale. Rushbrooke+ {CAVE) +Padsi, Penso, Salvini, Stella~ (ROMA, FRAS) +Bartlett, Buchholz, Humphrey+ (CIT, FNAL) +Bo[lini, Brunini~ (CERN, BGNA, ERAS) Aries Borell], Bernardini, Boilini~ (CERN) +Dunaitzev, Golovkin, Kubarovsky+ (BERP) Golovkin, Gracbev, Shodyrev+ (BERn) ~-Deden, Hasert, Krenz+ (Gargamelle Collab) 4Ash, Berkelman,Harnll f {CORN) fHoffman, Engels~ {HARV. CASE, MCGI, SLAC) +Wolsky (PENN) +Cox, Martin, eerl, Tan, Toner. Zipfff (SLAC, STAN) ÷Elias, Friedman, Hartmann, Kendall+ (MIT, CEA) ~Dunnin6, Goitein, Ramsey,Walker+ (HARV) +Brasse, Engler, Ganssauge+ (DESY, KARL) 4 Ngoc, Perez y Jorba+ (ORSA/ RELATED
PAPERS-(SLAC)
V1.27
Lepton Full Listings
See key on paEe IV.1
Massive Neutrinos and Lepton Mixing New Experimentsto Apply Peak and Kink Search Tests
Searches for Massive Neutrinos| and Lepton Mixing
VALUE_
I
See the note on neutrinos by R.E. Shrock in the ue section near the beginning of these data Listings. A review can be found in GILMAN 86. Searches for indirect effects of neutrino masses and lepton mixing are listed here. Direct searches for masses of dominantly coupled neutrinos are listed in the appropriate section on ~,#, Ue, or uT. Results of indirect searches are correlated upper bounds on mixing matrix coefficients Ua, j versus neutrino mass. These results are divided into three sections: (A) bounds from particle and nuclear decays (B) bounds from neutrino reactions (C) searches for neutrinoless double fl decay Other limits for lepton mixing are found in the muon and tau sections and include muon-electron and muon-positron conversion and various lepton-family number violating decays, The situation can be summarized as follows. Current experiments yield no evidence for massive neutrinos or lepton mixing except for the following. Of these, only the results of the DAVIS 84 and HIRATA 89B solar neutrino experiments are not contested by another experiment. And these experiments are not direct evidence for a massive neutrino since their results depend on models of the internal structure and dynamics of the sun. (1) Mass of ~'e (more precisely, el, the primary mass eigenstate in ue). Consistent with earlier ITEP reports BORIS 87 stiN observe a nonzero mass 17 eV < m ( u l ) < 40 eV. FRITSCHI 86 appear to disagree with this result obtaining the upper bound m(pt) < 18 eV (95% CL). Subsequent experiments, WILKERSON 87 and KAWAKAMI 88 also obtained only (slightly weaker) upper bounds on m(ul). By combining these experimental bounds, we obtain the limit re(v1) < 17 eV (90%CL). See also the criticisms of LUBIMOV 83 and BORIS 85B by BERGKVIST 85 and BERGKVIST 85B. Experiments searching directly for masses of the # and r neutrinos yield only upper limits. (2) SIMPSON 85 reported observation of a kink in 3H )3 decay, indicating emission of a heavy neutrino with mass m(uj) = 17 keY and ,,JUI,jJ 2 = 0.03 ± 0.01. This finding was contradicted by five subsequent 35S experiments, ALTZlTZOGLOU 85, APALIKOV 85, DATAR 85, MARKEY 85, and OHI 85. However, SIMPSON 86 reanalyzes the OHI 85 data and claims to find evidence for emission of a 17 keY neutrino with ,,IUl,jl 2 from 0.01 to 0.02. SIMPSON 89 again reports positive evidence for a heavy neutrino with mass 17 keV, in agreement with his earlier data. (3) BERNARDI 86B reports neutrino oscillations of the type p# ~ ue, with sin2(2~) = from 0.02 to 0.04 and IA(m2)l = from 5 to 10 eV 2. This claim is in conflict with previous limits, as the authors of BERNARDI 86B realize. (4) The results of the 1970-1983 3 7 0 radiochemical solar neutrino experiment of DAVIS 84 indicate a solar neutrino flux (of high energy neutrinos, from 8B source) which is considerably smaller than theoretical calculations of this flux. The Kamiokande II experiment (HIRATA 89B) has also observed a solar neutrino flux which is smaller than the prediction of the standard solar model. See section on Solar Neutrino Experiment. See also Bounds on Masses of Neutrinos above.
Limits on ]Uz,jJ 2 as Function of m(vj) - -
Appr~zation of Kink and Peak Search Test to Existing Data VALUE
~
~EUMENT ID
TEEN COMMENT
<1
x 10- 4
68
1
<5
x 10 8
68
1 SHROCK
81 RVUE m(vj)=60 MeV
95
2 5~MPSON
81B
m(vj.)=0.1 key
× 10-3
95
2 SIMPSON
81B
m(z~j)=10 keY
<0.1 <1 x 10 5 <3 x 10 6
68 68 68
3SHROCK 4 SHROCK 4 SHROCK
80 RVUE m(uj)=O.1-3MeV 80 RVUE m(uj)=80 MeV 80 RVUE m(uj)=160 MeV
81
RVUE m(u])=lO MeV
1Analysis of (Tr+ ~ e+ ve)/(~T + ~ #+up)and (K + ~ e+ ue)/(K + ~ decay ratios, 2 Application of kink search test to tritium /~ decay Kurie plot. 3 Application of test to search for kinks in fl decay Kurie plots. 4Analysis of (K + ~ e~ue) spectrum.
TEEN COMMENT
<5 <2 <3
<1
x x x x × x x
10- 7 10- 7 10- 7
10- 6
<2 10- 7 <8 10- 6 <4 10- 7 <2 x 10- 6 <7 x 10- 6 <1 x 10- 4 <1.5 x 10- 6 <1 x 10- 5 <1 x 10- 4
90 90 90 90 90
90 90 90 90
AZUELOS AZUELOS AZUELOS AZUELOS AZUELOS DELEENER-... DELEENER-... DELEENER-... DELEENER-... 5 BRYMAN BRYMAN BRYMAN BRYMAN
86 CNTR 86 CNTR 86 CNTR 86 CNTR 86 CNTR 86 CNTR 86 CNTR 86 CNTR 86 CNTR 83B CNTR 83B CNTR 83B CNTR 83B CNTR
m(~j)=60 MeV m0/j)=80 MeV m(vj)=lO0 MeV m(vj)=120 MeV m(vj)=130 MeV m(v])=20 MeV m(vj)=60 MeV m(uj)=lO0 MeV m(vj)=120 MeV m(uj)=5 MeV m(uj)=53 MeV m(uj)=70 MeV m(uj)=130 MeV
5 BRYMAN 83B obtain upper limits from both direct peak search and analysis of B(Tr ev)/B(lr ~ #u). Latter limits are not listed, except for this entry (i.e. - - we list the most stringent limits for given mass).
Searches for Decays of Massive u Limits on [Ul,jl 2 as function of m(vj)
VALUE
~
• • • We do not use the following all values ruled out 95 <1 × 10- 1 0 95 <1 x 10-11 95 all values ruled out 95 <1 x 10-13 95 <5 x 10- 3 90 <2 x 10- 5 90
DQC_[)MENT ID _ _ TEEN ~OMMENT data for averages, fits, limits, 6 BURCHAT 90 MRK2 6 BURCHAT 90 MRK2 6 BURCHAT 90 MRK2 DECAMP 90F ALEP DECAMP
AKERLOF AKERLOF
m(.j) < 19.6 GeV m(z,j) = 22 GeV m(vj) = 41 GeV m(vj)= 25.0-42.7 GeV 90F ALEP m(vj)= 42.7-45.7 GeV 88 HRS m(uj)=l.8 GeV 88 HRS m(uj )=4 GeV 88 HRS m(vj)=8 GeV
<3 x 10- 6 <1.2 x 10- 7
90 90
AKERLOF BERNARDI 88 CNTR
<1 × I0 -8 <2.4 x 10- 9
90 90
BERNARDI
m(.j)=lOO Mev
I I
90
<2
x 10. 2
68
70BERAUER 87
<8
x 10- 4
68
70BERAUER 87
<8
x 10- 3
90
BADIER
<8
90
CNTR CNTR CNTR
m(vj)=l.5 MeV m(uj)=4.0 MeV m(vj)=400 MeV m(vj)=1.7 GeV m(vj)=lO0 MeV m(~.)=200 MeV m(uj)=400 MeV
CNTR
m(vj)=150 MeV
DORENBOS,.. 86 CNTR
m(,9)=5oo MeV m(~j)=l.6 GeV
86 CNTR
10- 5 10- 8 10- 8 10- 9 10 - 5
90 90 90
<3
x x x x x
90
BADIER 86 BERNARDI 86 BERNARDI 86 BERNARDI 86 DORENBOS,..86
x 10_6
90
<1
x 10- 7
90
DORENBOS,.. 86 CNTR
CNTR
<7
x 10- 7
90
8 COOPER-...
85 HLBC m(z~)=0.4 GeV
<8
90
<1
x 10- 5
90
8 COOPER-... 9 BERGSMA 9 BERGSMA 9 BERGSMA GRONAU
85 HLBC
<1 <6
x i0 -8 x 10 - 2 x 10- 5 x 10- 7
x 10- 6
90
GRONAU
90 90 90
l I I | I I I |
88 CNTR mE#j)=200 MeV BERNARDI 88 CNTR m(/zj)=300 MeV BERNARDI 88 CNTR m(.j)=4oo MeV
<2.1 x 10 - 9
<8 <4 <6
etc. • • •
I
I
m(vj)=l.5 GeV 83B CNTR m(vj)=lO MeV 83B CNTR m(vj )=110 MeV 83B CNTR m(vj)=410 MeV
83
m(,,j ):16o MeV
83
m(vj)=480 MeV
be required for this bound to be nontriviaL 9 BERGSMA 83B also quote limits on j U1,312 where the index 3 refers to the mass eigenstate dominantly coupled to the "r. Those limits were based on assumptions about the Ds mass and Ds ~ ~u~" branching ratio which are no longer valid. See COOPERSARKAR 85.
• • • We do not use the following data for averages, fits, limits, etc. • • • SHROCK
DOCUMENTID
6BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89c, and I WENDT 87. 7OBERAUER 87 bounds from search for v ~ flee decay mode using reactor (anti)neutrinos. 8COOPER-SARKAR 85 also give limits based on model-dependentassumptionsfor Ur flux, We do not list these. Note that for this bound to be nontrivial, j is not equal to 3, Le. vj cannot be the dominant mass eigenstate in ,4- since m(v3) <70 MeV (ALBRECHT 850. Also, ofcourse, jis not equalto 1 or 2, so a fourth generation would
(A) Bounds from Particle and Nuclear Decays - -
~
• • • We do not use the following data for averages, fits, limits, etc. • • •
Kink Search in Nuclear/9 Decay
#+ vl~)
VALUE(units 10 3) CL~ DOCUMENTID TEEN • • • We do not use the following data for averages, fits, limits, 7 ~- 0.99-0.6 10 SIMPSON 89 CNTR 10 to 20 11 SIMPSON 86 RVUE < 4 99 12ALTZfTZOG... 85 < 7.5 99 12 ALTZITZOG... 85 < 8 90 12,13APALIKOV 85 SPEC < 1.5 90 12 APALIKOV 85 SPEC < 8 90 12 APALIKOV 85 SPEC < 3 90 12 APALIKOV 85 SPEC <45 90 12 APALIKOV 85 SPEC
COMMENT etc. • • • m(uj)=16.9 ± 0.4 keV m(uj)=17 keV m(~)=17 keV m(p])=5-50 keV m(vj)=80 keV m(z~j)=60 keY m(uj)=30 keY m(vj)=17 keV m(uj)=4 keY
I
V1.28
Lepton Full Listings Massive Neutrinos and Lepton Mixing; < 6
90
12 DATAR
85
<10
90
12 DATAR
< 3.0
90
12 MARKEY
CNTR
m ( v j ) = 17 keV
< 2.5
90
12 MARKEY
< 0.62
90
12 OHI
< 0.90
90
12 OHI
m(vj) =5-30 keY 85 SPEC m(vj)-5-SO keV 85 SPEC m(uj)_17 keV 85 CNTR m(u]) 48 keY 85 CNTR m(u]) 30 keY
< 1.30 < 1.50
90 90
12 OHI 12 OHI
85 85
CNTR CNTR
12OHI
85
CNTR
14 SIMPSON
85
< 3.30 30
90 J_10
85
CNTR
m ( v ] ) - 2 0 keV m(v])_17 keY
Peak Search in M u o n C a p t u r e Limits on IU2,]I 2 as function of m(~,j)
VALUE
DOCUMENT ID
COMMENT
• • • We do not use the following data for averages, tits, limits, etc, • • • <1 x 10 - 1
DEUTSCH
83
m(v])--45 MeV
<7 × 10 - 3
DEUTSCH
83
m(u]}--70 MeV
<1
DEUTSCH
83
m(z~])=85 MeV
10 1
x
Searches for Decays of Massive v Limits on
m(vj)=lOkeV m ( v j ) - 1 7 . 1 ± 0.2 keV
VALUE
Iu2jI 2 as function ~
of m(vj)
DOCUMENTID
TECN
COMMENT
<25
90
SCHRECK...
83
CNTR
m(v])=30 keV
• • • We do not use the following data for averages, tits, limits, etc. • • •
< 4
90
SCHRECK...
83
CNTR
m(u])--140 keY
all values ruled out
< 8
90
SCHRECK...
83
CNTR
m(vj)
440 keV
10 SIMPSON 89 reports a kink due to massive neutrino, using 35 S beta decay, in agreement with his earlier measurement on 3H beta decay. This claim is in contradiction with the results of other experiments. See also HIME 89. 11 SIMPSON 86 is a reanalysis of the OHI 85 data and claims that these data show evidence of heavy neutrino emission with m(~j) = 17 keV and I U 1 j I 2 = from 0.01 to 0.02, consistent with the earlier reported observation by SIMPSON 85. This conclusion strongly disagrees with the conclusion reached by OHI 85 from their analysis of their own data. SIMPSON 86 also states that "a similar threshold effect (due to supposed heavy neutrino emission) is seen in several of the other published 355 experiments as well." 12Data from 355/9 decay. 13 This limit was taken from the figure 3 of APALIKOV 85; the text gives a more restrictive limit of 1.7 x 10 - 3 at CL - 90%. 14Data from tritium fl decay contradicted by ALTZITZOGLOU 85, APALIKOV 85, MARKEY 85, and by OHI 85. Also comment in LINDHARD 86, DRUKAREV 86, and KALBFLEISCH 85.
20 BURCHAT
90
× 10 - 1 0
95
20 BURCHAT
90
MRK2 m(u]) = 22 GeV
<1
× 10 -11
95
20 BURCHAT
90
MRK2 m(u]) - 41 GeM
all values ruled out <1
× 10 - 1 3
-
L i m i t s on
IU2jI 2 as
Function of
m(u]) - -
A p p l i c a t i o n o f Peak Search Test t o E x i s t i n g Data
VALUE
~
DOCUMENTID
TECN
COMMENT
• • • We do not use the following data for averages, tits, limits, etc. • • • <6 × 10 - 6
95
15 ASANO
81
m0~/)-240 MeV
<5 x 10 - 7
95
15 ASANO
81
m(~.)
<6 × 10 6
95
15 ASANO
81
m ( ~ . ) - 3 0 0 MeV
<3 × 10 - 2
95
16 SHROCK
81
RVUE
m(v]) 7 MeV
<1 × 10 - 2
95
16 SHROCK
81
RVUE
m ( w j ) - 1 3 MeV
<1×10 -4
68
16SHROCK
81
RVUE
m(w]) 13MeV
<3 × 10 5
68
16 SHROCK
81
RVUE
m ( v j ) = 3 3 MeV
<6x10 -3
68
17SHROCK
81
RVUE
m(vj)-80MeV
<5×10
3
68
17SHROCK
81
RVUE m ( u j ) = 1 2 O M e V
<5×10
2
95
16SHROCK
80
RVUE
280 MeV
m(v]) 4 - 6 M e V
15Analysis of experiment on K + ~ #+ ~p vx ux decay. 16 Analysis of magnetic spectrometer experiment, bubble chamber experiment, and emulsion experiment on ~ + ~ # + v/~ decay. 17Analysis of magnetic spectrometer experiment on K ~ #, v# decay.
Application
of Peak Search Test to New Experiments ~
DOCUMENTID
DECAMP
90F ALEP
m ( v j ) - 25.0-42.7 GeM
95
DECAMP
90F ALEP
m(zJ])= 42.7-45.7 GeV
× 10 _3
90
AKERLOF
88
HRS
m ( w j ) = l . 8 GeV
<2
× 10 - 5
90
AKERLOF
88
HRS
rn(uj)=4 GeV
<3
× 10 _6
90
AKERLOF
88
HRS
m ( u ] ) - 6 GeV
<1
x 10 - 7
90
BERNARDI
88
CNTR
m ( # j ) - 2 0 0 MeM
<3
× 10 - 9
90
BERNARDI
88
CNTR
m(#j)--300 MeV
<4
× 10 _4
90
21 M I S H R A
87
CNTR
m(u])=l.5GeV
<4
m(u])=2.5 GeM
× 10 - 3
90
21 MISHRA
87
CNTR
<0.9 × 10 _2
90
21 MISHRA
87
CNTR
m(~.)
<0.1
90
21 MISHRA
87
CNTR
m(~])--10 GeV
CNTR m(v])=600 MeV
5 GeV
× 10 _4
90
8ADIER
86
< 1 2 × 10 - 5
90
BADIER
86 CNTR
m ( u ] ) - l . 7 GeV
<9
× 10 _5
90
BERNARDI
86
CNTR
<3.6 x i0 -'7
90
BERNARDI
86
CNTR
<3
× 10 _8
90
BERNARDI
86
CNTR
<6
× 10 _9
90
BERNARDI
86
CNTR
<1
× 10 _6
90
DORENBOS.., 86
CNTR
<1
x 10 _7
90
DORENBOS... 86
CNTR
<0.8 × i0 ~5
90
22 COOPER ,..
85
< 1 0 × 10- 7
90
22 COOPER-...
85 HLBC
m(vj)= 25 MeV m(u])=lO0 MeV m(uj)-200 MeV m(u])=3SO MeV m(u])-500 MeV m(~])=1600 MeV m(uj) 0.4 GeV m(v])=1.5 GeV
HLBC
20BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89c, and i WENDT 87. 21 See also limits on I U3jl from WENDT 87.
22COOPER SARKAR 85 also give limits based on model-dependent assumptions for ~r flux. We do not list these. Note that for this bound to be nontrivial, j is not equal to 3, i.e. ~j cannot be the dominant mass eigenstate in ~ since m(u3 ) <70 MeV (ALBRECHT 851). Also, of course, ] is not equal to i or 2, so a fourth generation would be required for this bound to be nootriviah L i m i t s on [U3,jI 2 as a F u n c t i o n o f m ( v ] )
VALUE
CL~
DOCUMENTID
TECN
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
Limits on IU2,112 as function of m(~j)
VALUE
95
<5
<8 -
MRK2 m(u]) < 19.6 GeV
95
<1
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
<2 x 10 - 2
90
DAUM
87
m ( ~ , ) = l MeV
<1 × 10 - 3
90
DAUM
87
m ( v ] ) - 2 MeV
DAUM
<6 x 10 - 5
90
87
3 MeV < m(v]) < 19.5 MeV
<3 × 10 2
90
18 MINEHART
84
m ( u ] ) - 2 MeV
<1 × 10 - 3
90
18 MINEHART
84
m ( v ] ) - 4 MeV
<3 x 10 4
90
18 MINEHART
84
m(z~])-lO MeV
<5 × 10 6
90
19 HAYANO
82
m ( v ] ) - 3 3 0 MeV
<1 × 10 - 4
90
19 HAYANO
82
m ( u ] ) - 7 0 MeV
<9 × 10 7
90
19 HAYANO
82
m ( u ] ) - 2 5 0 MeV
m ( u j ) - 4 MeV
all values ruled out
95
23 BURCHAT
90
MRK2 m(u]) < 19.6 GeV
<1 × 10 - 1 0
95
23 BURCHAT
90
MRK2 m(u]) - 22 GeV
<1 × 10 - 1 1
95
23 BURCHAT
90
MRK2 m(v]) = 41 GeV
all values ruled out
95
DECAMP
90F ALEP
m ( u j ) = 25.0-42.7 GeV
<1 × 10 - 1 3
95
DECAMP
90F ALEP
m ( v ] ) = 42.7-45.7 GeV
<5 × 10 2
80
AKERLOF
88
HRS
m(~])=2,5 GeV
<9 x 10 5
80
AKERLOF
88
HRS
m(v])=4.5 GeV
23BURCHAT 90 includes the analyses reported WENDT 87.
in JUNG 90, ABRAMS 89c, and
Limits on IUadl 2 Where a = 1, 2 from p parameter in /l decay.
VALUE
CL%
DOCUMENT10
TECN
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
<1 x 10 1
90
18 ABELA
81
<7 × 10 5
90
18 ABELA
81 m(~])-10.5 MeV
<1 × 10 2
68
SHROCK
81B RVUE
<2 × 10 4
90
18ABELA
81
m(v])=11.5 MeV
<2 × 10 3
68
SHROCK
81B RVUE m ( v ] ) - 4 0 MeV
<4 × 10 2
68
SHROCK
81B RVUE
<2 × 10 - 5
90
18 ABELA
81
m(uj)
16-30 MeV
<2x10
5
95
19ASANO
81
m(~)
170MeV
<3 x 10 6
95
19 ASANO
81
m(~])=210 MeV
<3 × 10 -6
95
19 A S A N O
81
m(vj)-230 M e V
95
18 C A L A P R I C E
81
m0~/) 7 M e V
<3x10
95
18CALAPRICE
81
m(u])
3
18~T+ ~ tz+tJ# peak search experiment. 1 9 K + - - l ~ + v # peak search experiment.
33MeV
Limits on VALUE
Iuljxu2,jlas Function of m(vj) EL%
DOCUMENTID
TECN
m ( u ] ) - 1 0 MeV m ( ~ ] ) - 7 0 MeV
COMMENT
• • • We do not use the following data for averages, tits, limits, etc. • • •
10_5
90
BERNARDI
86
CNTR m(~],)--25M e V
<3.6 x 10 -7
90
BERNARDI
86
CNTR
m(v])=lO0 MeV
<3
× 10 _8
90
BERNARDI
86
CNTR
m ( v ] ) - 2 0 0 MeV
<6
× 10 _9
90
BERNARDI
86
CNTR
m ( u ] ) - 3 5 0 MeV
<1
.~ 10 _2
90
BERGSMA
83s CNTR m ( u j ) - l O MeV
<1
× 10 _5
90
BERGSMA
83B CNTR
m ( v j ) = 1 4 0 MeV
<7
× 10 _7
90
BERGSMA
83B CNTR
m(~,)=370 MeV
<9
×
VI.29
Lepton Full Listings
See key on page I V. 1
Massive Neutrinos and Lepton Mixing ( B ) Bounds from v Reactions -
-
Solar ~, Experiments -
. . . .
VALUE(¢V2 ~
Solar e Flux The unit of flux for solar neutrinos used by DAVIS 84 and the theory papers below is the Solar neutrino unit, SNU = 1 × 10 _36 captures/s/target atom in the 37CI radiochemical experiment. The Kamiokande II experiment quotes the measured solar neutrino flux relative to the expectation from the standard solar model (SSM). See below for the comparison with the 37CI experiment. BETHE 89 discusses various possible theoretical explanations of solar neutrino data. For reviews, see DAVIS 89 and KUO 89. VALUE DOCUMENT IO TEC.N COMMENT (0.46 4- 0.13 4- 0.08)xSSM 24 HIRATA 89B Kamiokande II water I Cernekov detector 2.1 ± 0.3 SNU 25 DAVIS 84 37Cl radiochem • • • We do not use the following data for averages, fits, limits, etc. • • • 7.9 5.8 5.6 7.0 6.9 7.3
4- 2.6 SNU 26 BAHCALL 88 ± 2.2 SNU 26 BAHCALL 84 SNU 26 FILIPPONE 83 4- 3.0 SNU 26 FILIPPONE 82 4- 1.0 SNU 26 FOWLER 82 SNU 26 BAHCALL 80 See also the reviews by BAHCALL 85, BAHCALL analysis by EHRLICH 82.
D e e p Underground Detector Experiments -
0.59±0.07 0.95±0.22 0.62+0.17
89 NUSEX 88 Kamiokande II 81 Baksan 78 Case Western/UCI
I
I
-
"
I
~ - 0 . 2 8 "
<
6 × 10- 3 eV2 for maximal I
sin2(28) for Given A(m 2)
( u # ~ Ue) For a review see BAHCALL 89. VAL_UE ~ DOCUMENTID TEC'N COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <0.14
90
LOSECCO
87
= 1 (up -~ Vs) us means v r or any noninteracting v. VALUE(10-5 eV2) CL~ DOCUMENTID
IMB
A ( m 2) = 1.1 x 10- 4 eV 2
TECN
COMMENT
DOCUMENT10
TECN
COMMENT
90 68 68 90 90 90 90 90
<0.04 <0.05 <0.05 <0.019 <0.07 <0.02 <0.016 <0.1 <0.13
35AFONIN 36 AFONIN 36 AFONIN 37 ZACEK AFONIN 38 ZACEK 39 GABATHULER AFONIN BELENKII
88 CNTR P e p ~ 87 ~e p ~ 86 Pep~ 86 PeP~ 85 PeP ~ 85 Pe P ~ 84 Pep~ 83 ~e P ~ 83 ~eP~
e+n e+ n e+n e+ n e+ n e+ n e+n e+ n e+ n
A ( m 2) for Given sin2(2e) VALUE(eV2)
DOCUMENT ID
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • 0.2,10.1
40CAVAIGNAC
84 P e p ~
e+n
40sin2(28) = 0.25 ± 0.1. These are from best fit to data; see CAVAIGNAC 84 for plot of allowed regions in these variables. These data from Bugey reactor.
Pe VALUE CL% DOCUMENTID TECN C.OMMENT <0.14 68 41 VIDYAKIN 87 Pe P ~ e+ n • • • We do not use the following data for averages, fits, limits, etc. • • •
27AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They de- I fine p = (measured number of ~,e'S)/(measured number of v/~'s). They report p(measured)=p(expected) -- 0 9~+0"32 28HIRATA 88 error is statistical. 29From this data BOLIEV 81 obtain the limit A ( m 2) mixing, v/l 7c, v# type oscillation.
CL~
<0.014 68 34 VIDYAKIN 87 ~e P ~ e+ n • • • We do not use the following data for averages, fits, limits, etc. • • •
sin2(28) for "Large" A(m 2) ~e 74
-
R = (Measured Flux of v # ) / (Expected Flux of u/~) VALUE DOCUMENT ID 6"OMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 27 AGLIETTA 28 HIRATA 29 BOLIEV CROUCH
. . . .
37 This bound is from data for L=37.9 m, 45.9 m, and 64.7 m distance from Gosgen reactor. 38See the comment for ZACEK 85 in the section on sin2(28) below. 39This bound comes from a combination of the VUILLEUMIER 82 data at distance 37.9m from Gosgen reactor and new data at 45.9m.
I
-
~e
34VlDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors. 35Several different methods of data analysis are used in AFONIN 88. We quote the most I stringent limits. 36AFONIN 86 and AFONIN 87 also give limits on sin2(2e) for intermediate values of A(m2).
THEO Total theor, range THEO Est. 3-(7 uncert THEO THEO THEO THEO 82, and BAHCALL 89B, and the
24The flux given by HIRATA 89B represents the value relative to the standard solar | model (SSM) scattered electron energy Ee > 9.3 MeV from neutrino interactions in water. HIRATA 89B cites a theoretical flux of (5.8 4- 2.1) × 106 cm- 2 s- 1 , with the central value corresponding to 7.9 SNU for 37 CI experiment. 25This is the average from the 37CI experiment of DAVIS 84, at Homestake mine from 1970-1983. 26These are theoretical calculations of the solar neutrino flux and are shown for comparison with the measured flux. The uncertainty shown for BAHCALL 84 is the 3a error.
-
~ e 74
A(m 2)for sin2(2e)=1
-
A(m 2) for sirl2(2e)
<0.2 <0.21 <0.21 <0.34 <0.19 <0.16 <0.4
90 68 90 90 90 90
42AFONIN AFONIN 43 ZACEK AFONIN 44 ZACEK 45 GABATHULER 46 BELENKII
88 CNTR P e P ~ 87 Pe P ~ 86 PeP~ 85 Pe P ~ 85 ~ep~ 84 ue p ~ 83 PeP~
e+n e+ n e+n e+ n e+n e+ n e+n
41VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors. 42Several different methods of data analysis are used in AFONIN 88. We quote the most string ent limits. Different upper limits on sin2 28 apply at intermediate values of A ( m 2), i 43This bound is from data for L=37.9 m, 45.9 m, and 64.7 m distance from Gosgen reactor. 44 ZACEK 85 (Gosgen reactor) gives two sets of bounds depending on what assumptions are used in the data analysis. The bounds in figure 3(a) of ZACEK 85 are progressively poorer for large A(rn 2) whereas those of figure 3(b) approach a constant, We list the latter. Both sets of bounds use combination of data from 37.9, 45.9, and 64.7m distance from reactor. ZACEK 85 states "Our experiment excludes this area (the oscillation parameter region allowed by the Bugey data, CAVAIGNAC 84) almost completely, thus disproving the indications of neutrino oscillations of CAVAIGNAC 84 with a high degree of confidence." 45This bound comes from a combination of the VUILLEUMIER 82 data at distance 37.9m from Gosgen reactor and new data at 45.9m. 46This bound holds for A ( m 2) > 4 eV 2,
I
-
-
Accelerator Experiments -
-
• • • We do not use the following data for averages, fits, limits, etc. • • • <3000 (or <550) < 4.2 or >54.
-
-
30 OYAMA BIONTA
89 88
Bounds on A(rn 2) VS sin2(2e) where A ( m 2) is magnitude of (m2(ui) -- m 2 ( ~ ) ) and e is the mixing angle for the simplifying assumption of mixing between two neutrino families only. For a recent set of bounds assuming three neutrino families, see BLUMER 85.
Kamiokande II I Flux has u/~, ~ # , ue, and Pe 30OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region Zl(m2) = (100-1000)×10 - 5 eV2 is not ruled out by any data for i large mixing. 90
I I
IMB
Reactor P Experiments -
Each experimental result is a plot giving allowed and excluded regions as functions of A(mZ~ and sin2(2e). We quote two representative limits from each plot - 1) A ( m ~) for sin2(2e)=l, 2) sin2(2e) for "LARGE" A(m2), i.e. sufficiently large A ( m 2) that the detector would measure only an effect averaged over many oscillations. Experiments are of two general types - - (A) those which search for ua ~ v b (b not equal a), i.e. the appearance o f t b from charged-current reaction of a ua beam. (B) those which search for the "disappearance" of part of the initital Ua beam by comparing the number of observed £a events with the number expected from flux calculations. These experiments do not try to observe the anomalous l b 's. We label such experiments as Ua 7~ va
-
Events ( O b s e r v e d / E x p e c t e d ) from Reactor ~ e Experiments VALUE DOCUMENT ID COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 1.05 +0.02 ±0.05 0.955±0.035-E0.110 0.89 4-0.15 0.38 :E0.21 0.40 :L0.22
31 31 32,33 32,33
VUILLEUMIER82 z ~ e p ~ KWON 81 ~e P ~ BOEHM 80 ~ e P ~ REINES 80 REINES 80
e+n e+ n
e+n
31KWON 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80. 32 REINES 80 involves comparison of neutral- and charged-current reactions~e d ~ np~e and ~ e d ~ nne + respectively. Combined analysis of reactor ~e experiments was performed by SILVERMAN 81. 33 The two REINES 80 values correspond to the calculated ~e fluxes of AVIGNONE 80 and DAVIS 79 respectively.
I
. . . .
v~-~
ve . . . .
A ( m 2) VALUE (eV2~
CL~
DOCUMENTID
<0.09
90
ANGELINI
TECN 86
COMMENT
BEBC sin2(28)=1
Vl.30
Lepton Full Listings Massive Neutrinosand Lepton Mixing • • • We do not use the following data for averages, fits, limits, etc. • • • <0.1 <1.3 <0.19
90 90 90
<2.4 <1.8 5 to 10 <2.2 <0.43 <3.2 <2.1 <0.20
90 90
47 ASTIER 89 BLUMENFELD89 AMMOSOV 88 BERGSMA 88 48 LOVERRE 88 49 AHRENS 87 BOFILL 87 50 BERNARDI 86B 51 BRUCKER 86 49 AHRENS 85 49 AHRENS 85 49 AHRENS 85 BERGSMA 84 ARMENISE 81 51 BAKER 81 ERRIQUEZ 81 BLIETSCHAU 78 BELLOTTI 76
90 90 90 90 90 90 90 90 95 95
CNTR CNTR HLBC CHRM RVUE CNTR CNTR CNTR HLBC CNTR CNTR CNTR CHRM GGM HLBC BEBC GGM GGM
sin22e-1 SKAT sin228_1 sin2(28)_1 sin2(28)=1 sin2(28)=0.02-O.04 sin2(28) 1 sin2(2~)=1 sin2(2e)=0.02 sin2(28)=0.04 sin2(28)=1 sin2 (2~)=1 sin2{28)-1 sin2(28)=1 sin2(28)=1 sin2(28)=1
47ASTIER 89 is a counter neutrino oscillation experiment at BNL AGS. ASTIER 89 reports a a positive effect with Ue(observed)/ve(expected ) 2.2 ± 0.6 and I Pe(observed)/Pe(expected) = 1.6 :I- 0.9. 48LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged Current ratios. 49 Liquid_scintiflato r calorimeter at BNL AGS. 50This is a typical fit to the data, assuming mixing between two species. As the au thors state, this result is in conflict with earlier upper bounds on this type of neutrino oscillations. 51 15ft bubble chamber at FNAL.
u # ~
~r
. . . .
VALUE (eV21
EL%
DOCUMENT ID
TEEN
COMMENT
< 0.9 90 USHIDA 86C EMUL FNAL • • • We do not use the following data for averages, fits, limits, etc. • • • <10.2 < 6.3 < 4.6 < 3 < 6 < 3
90 90 90 90 90 90
BOFILL BRUCKER ARMENISE BAKER ERRIQUEZ USHIDA
87 86 81 81 81 81
CNTR HLBC HLBC HLBC HLBC EMUL
FNAL 15-ft FNAL GGM CERN SPS 15-ft FNAL BEBC CERN SPS FNAL
TEEN
COMMENT
sin2(20) for "Large" A ( m 2) VALUE
~
DOCUMENT ID
< 4 x 10 - 3 90 USHIDA 86C EMUL FNAL • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.34 < 8.8
x x x × × ×
10 2 i0 2 10 . 2 1O 2 1O- 2 i0 2
90 90 90 90 90 90 90
BOFILL BRUCKER BALLAGH ARMENISE BAKER ERRIQUEZ USHIDA
EL%
DOCUMENT ID
87 86 84 81 81 81 81
CNTR HLBC HLBC HLBC HLBC HLBC EMUL
FNAL 15-ft FNAL 15-ft FNAL GGM CERN SPS 15-ft FNAL BEBC CERN SPS FNAL
TECN
COMMENT
A ( m 2) for s i n 2 ( 2 8 ) = 1 VALUE (eV2 )
<2.2 90 ASRATYAN 81 HLBC FNAL • • • We do not use the following data for averages, fits, limits, etc. • • •
sin2(2~) VALUE (units
. . . .
A ( m 2) for s i n 2 ( 2 O ) = Z
EL%
10 - 3 )
DOCUMENT ID
TEEN
COMMENT
< 3.4 90 52 AHRENS 85 CNTR Large A ( m 2) • • • We do not use the following data for averages, fits, limits, etc. • • • < 16 < 25 < 8
90 90 90
< 10 < 15 < 13 20 < 11 < 9 < 3 <240 < 10 < 6 < tO < 4 < 10
90 90 90 to 40 90 90 90 90 90 90 90 95 95
53 ASTIER 89 BLUMENFELD89 AMMOSOV 88 BERGSMA 88 54 LOVERRE 88 52AHRENS 87 BOFILL 87 ANGELINI 86 BERNARDI 86B 55 BRUCKER 86 52AHRENS 85 52AHRENS 85 BERGSMA 84 ARMENISE 81 55 BAKER 81 ERRIQUEZ 81 BLIETSCHAU 78 BELLOTTI 76
CNTR CNTR HLBC CHRM RVUE CNTR ENTR BEBC CNTR HLBC ENTR CNTR CHRM GGM HLBC BEBC GGM GGM
~ # --~ ~e
L a r g e A ( m 2) Large A ( m 2) A(m2)--2.2eV 2 A ( m 2 ) = 5 10 Large ~.(m 2) A(m2)=5 A(m2) 10 Large ~ ( m 2 Large A(rrr Large A(m" Large A ( ~ Large A(trr Large A(n~
. . . .
A ( m 2) for s i n 2 ( 2 ~ ) = l VALUE (eV2 )
EL%
DOCUMENT ID
TECN
COMMENT
<0.11 90 56 DURKIN 88 CNTR LAMPF • • • We do not use the following data for averages, fits, limits, etc. • • • <3.1 <2,4 <0.91 <1 561n reaction ve p --
90 90 90 95
BOFILL TAYLOR 56 NEMETHY BLIETSCHAU
87 83 81B 78
CNTR FNAL HLBC 15-ft FNAL CNTR LAMPF HLBC GGM CERN PS
e+ n.
sin2(28) for "Large" A ( m 2) VALUE
~
DOCUMENT ID
TECN
COMMENT
<0.004 95 BLIETSCHAU 78 HLBC GGM CERN PS • • • We do not use the following data for averages, fits, limits, etc. • • • <0014 <004 <0.013 <0.2 571n reaction ue p ~
90 90 90 90 e + n.
57 DURKIN BOFILL TAYLOR 57 NEMETHY
88 87 83 81B
CNTR CNTR HLBC CNTR
90 90
BOFILL TAYLOR
87 83
CNTR FNAL HLBC 15-ft FNAL
sin2(20) for "Large" A ( m 2) Large~,(m 2) LargeA(m 2) A ( m 2) > 30 eV2
52Liquid-scintillator calorimeter at BNL AGS. 53ASTIER 89 is a counter neutrino oscillation experiment at BNL AGS. ASTIER 89 reports a a positive effect with ve(observed)/ue(expected) 2.2 ± O.b and Pe(observed)/Pe(expected) 1,6 ± 0.9. 54LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios. 5515ft bubble chamber at FNAL. . . . .
<65 <7.4
LAMPF FNAL 15-ft FNAL LAMPF
VALUE
CL~
DOCUMENT ID
TECN
COMMENT
<4.4 x 20- 2 90 ASRATYAN 81 HLBC FNAL • • • We do not use the following data for averages, fits, limits, etc. • • • <0.15 <8.8 × 10 - 2
90 90
BOFILL TAYLOR . . . .
87 83
l/# 74
CNTR HLBC
FNAL 15-ft FINAL
1)# . . . .
A ( m 2) for s i n 2 ( 2 8 ) = l These experiments also allow sufficiently large A ( m 2). VALUE (eV2 )
CL%
DOCUMENT ID
TEEN
COMMENT
<0.23 OR >100 90 DYDAK 84 CNTR <13 OR >1500 90 STOCKDALE 84 CNTR • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.29 OR >22 <7 <8.0 OR >1250 <0.29 OR >22 <80
90 90 90 90 90
BERGSMA BELIKOV STOCKDALE BERGSMA BELIKOV
88 CHRM 85 CNTR Serpukhov 85 CNTR 84 CHRM 83 ENTR
sin2(20) as F u n c t i o n o f A ( m 2) VALUE
~
DOCUMENT ID
TECN
<0.02 90 58 STOCKDALE 85 CNTR • • • We do not use the following data for averages, fits, limits, <0.17 90 59 BERGSMA 88 CHRM <0.07 90 60 BELIKOV 85 CNTR <0.27 90 59 BERGSMA 84 CHRM <0.1 90 61 DYDAK 84 CNTR <0.02 90 62 STOCKDALE 84 CNTR
COMMENT
FNAL etc. • • • Serpukhov CERN PS CERN PS FNAL Serpukhov
58 This bound applies for A ( m 2) = i00 eV 2. Less stringent bounds apply for other A(rrt2 ); these are nontrivial for 8 < ~ ( m 2) <1250 eV2. 59 T his bound applies for ~,(rn 2 ) = 0.7-9. eV2 . Less stringent bounds apply for other ~ ( m 2 ); these are nontrivial for 0.28 < A(rn2) <22 eV2 . 60This bound applies for a wide range of ~,(m ~) >7 eV 2. For some values of ~ ( m 2 ) , the value is less stringent; the least restrictive, nontrivial bound Occurs approximately at ~ ( m 2) = 300 eV 2 where sin2(28) <0.13 at CL = 90%. 61This bound applies for A ( m 2) = 1.-10. eV2. Less stringent bounds apply for other ~ ( m 2 ); these are nontrivial f or 0.23 < A ( m 2) <90 eV2 . 62 This bound applies for A ( m 2) = 110 eV 2 . Less stringent bounds apply for other Z~(rn2 ); these are nontrivial for 13 < ~ ( r n 2) <1500 eV2, 63 Bound holds for Z~(m2) = 20-1000 eV 2 . . . . .
t/e 74
Ve . . . .
A ( m 2 ) for s i n 2 ( 2 0 ) = l VALUE (eV2)
EL°/o
DOCUMENT ID
TEEN
COMMENT
< 8 90 BAKER 81 HLBC 15-ft FNAL <2.3 OR >8 90 NEMETHY 81B CNTR LAMPF • • • We do not use the following data for averages, fits, limits, etc. • • • <149 <56
90 90 90
BRUCKER DEDEN ERRIQUEZ
86 81 81
HLBC HLBC HLBC
15-ft FNAL BEBC CERN SPS BEBC CERN SPS
VI.31
Lepton Full Listings
See key on page I V. 1
Massive Neutrinosand Lepton Mixing sin2(28)
for "Large"
Zl(m 2)
(C) Searches for Neutdnoless Double/~
VALUE DOCUMENT ID TEEN COMMENT <7 x 10 - 2 90 ERRIQUEZ 81 HLBC BEBC CERN SPS • • • We do not use the following data for averages, fits, limits, etc. • ,, •
<0.54 <0.6 <0.3
90
BRUCKER
86
HLBC
90 90
BAKER DEDEN
81 81
H L B C 15-ft FNAL H L B C BEBCCERN SPS
D~
~e ~
. . . .
sin2(2e)
1S-ft FNAL
. . . .
The primary information from these experiments is lifetime. From lifetime to neutrino mass one needs to invoke nuclear structure. The neutrino mass limits below are, therefore, model dependent. Different experiments have used different models. Note that regular 2-neutfino double /3 decay has now been observed directly for 82Se with t l / 2 = (1.1_+00:8) × 1020 years by ELLIOTT 87B.
for "Large" A ( m 2)
VALUE <0.7
DOCUMENT ID 64 FRITZE
90
64Authors give P(ue ~
80
TEEN COMMENT HYBR BEBC CERN SPS
u~-) <0.35, equivalent to above limit.
....
~,, -~ P~, . . . .
(re(u)), The
Effective Weighted Sum of Neutrino MASSES Corltributing to Neutrinoles$ Double/Y Decay
A(m 2) for sin2(2e)=1
= Iz U2jrn(vj)l,
VALUE (eV2 ~
CL~
DOCUMENT ID
< 7 OR >1200
90
STOCKDALE
85
CNTR
s i n 2 ( 2 8 ) as Function o f A ( m 2) VALUE ~ DOCUMENT ID <0.02 90 65 STOCKDALE
85
TEEN CNTR
TECN
COMMENT FNAL
65This bound applies for A ( m 2) between 190 and 320 or = 530 eV2 . Less stringent bounds apply for other ~ ( m 2 ) ; these are nontrivial for 7 < ~.(m 2) <1200 eV2. --
--
--
Ue
--+
u T
. . . .
Z l ( m 2) f o r s i n 2 ( 2 ~ ) = l VALUE (eV2 )
CL_~
DOCUMENT ID
TEEN
COMMENT
< 9 90 USHIDA 86C EMUL FNAL • • • We do not use the following data for averages, fits, limits, etc. • • • <44
90
TALEBZADEH87
HLgC
BEBC
sin2(2e) for "Large" Z~(m2) VALUE ~ DOCUMENT ID TECN COMMENT <0.12 90 USHIDA 86C EMUL FNAL • • • We do not use the following data for averages, fits, limits, etc. • • •
<0.36
90 . . . .
TALEBZADEH 87 Up-~
(Pe)L
HLBC
BEBC
. . . .
This is a limit on lepton family-number violation and total lepton-number violation. (Ue)L denotes a hypothetical left-handed Pe- The bound is quoted in terms of A (m2), sin(28), and c~, where ~ denotes the fractional admixture of ( V + A ) charged current.
• • • We do not use the following data for averages, fits, limits, etc. • • •
<4,3-28 <12 <3.4-23 < 1.8 < 2.7 < 2.6 < 6 <20 < 3.8 <22 <10 <22 < 8.3 < 5.6
90
TECN
66 COOPER
82
HLBC
66 Existing bounds on V + A currents require (~ small - - see COOPER 82. ~ 2 s i n 2 ( 2 e ) f o r " L a r g e " A ( m 2) VALUE ~ DOCUMENT ID TEEN • • • We do not use the following data for averages, fits, limits, etc. • • • <1 x 10 - 3
90
67 COOPER
82
HLBC
67 Existing bounds on V + A currents require ~ small - - see COOPER 82. . . . .
See note above for u/~ ~
Ue --
(-~e)L
. . . .
(ue)L limit
o~Z~(m 2) for s i n 2 ( 2 e ) = l VALUE (eV2~
CL~
DOCUMENT ID
TECN
• • • We do not use the following data for averages, fits, limits, etc. • • • <7
90
68 COOPER
82
HLBC
68 Existing bounds on V + A currents require e small - - see COOPER 82. (x2sin2(2e) f o r " L a r g e " A ( m 2) VALUE ~ DOCUMENT IO TEEN • • • We do not use the following data for averages, fits, limits, etc. • • • <5 × 10 . 2
90
68
68 68 68 68 68 90 68 68 95
70 ALSTON-... 71 BARABASH ?2 BELLOTTI 73 DANEVICH "/4 FISHER 75 CALDWELL BELLOTTI 76 CALDWELL 77 ELLIOTT 78 CALDWELL 79 HUBERT 80 BELLOTTI FORSTER AVIGNONE 81 BELLOTTI 81 BELLOTTI KIRSTEN
69 COOPER
82
HLBC
69 Existing bounds on V + A currents require c~ small - - see COOPER 82.
89 89 89 89 89 87 86 86 86 85 85 84 B4 83 83 83 83
CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR SPEC
100Mo 136Xe T H Y 137Xe THY1 116Cd T H Y 76Ge THY1 76Ge THy76Ge T H Y 76Ge 82Se T H Y 76Ge 76Ge T H Y 76Ge T H Y 76Ge THy76Ge THY1 76Ge THY2 76Ge T H Y 128Te/130Te
70 ALSTON-GARNJOST 89 searched for neutrinoless double beta decay of 100 Mo and got | the lower bounds T1/2(0+ ~ 0 + ) > 4 × 1021 yr (68% EL) and T1/2(0+ ~ 2+ )
i
> 4 × 1020 yr (68% CL). 71 BARABASH 89 searched for neutrinoless double beta decay of 136Xe and got the following limits: T 1 / 2 ( 0 + ~ 0 + ) > 3.3 x 1021 yr at 68% CL for a neutrino-mass induced I 0 + ) > 2.9 x 1021 yr at 68% £L for lepton-number-violating right- I
handed-current-induced decay, and ?-1/2(0+ ~ DOCUMENT ID
• • • We do not use the following data for averages, fits, limits, etc. • • • <7 x 10 - 1
where the sum goes from 1 to n and where n = number
of neutrino generations, and uj is a Majorana neutrino. Note that U~,j, not I /~_,jl 2 , occurs in the sum; the possibility of cancellations has been stressed in WOLFENSTEIN 81. VALUE (eV} EL~ DOCUMENT ID TEEN COMMENT
decay, T 1 / 2 ( 0 + ~ cxZl(m 2) f o r s i n 2 ( 2 8 ) = 1 VALUE (eV2)l CL%
Decay
The nuclear decay ((Z,A) ~ (Z+2,A) + e - + e - , i.e. neutrinoless double decay, violates total lepton number by two units. It is forbidden if neutrinos are Dirac particles but can occur in gauge theories if neutrinos are Majorana particles and are massive. P R I M A K O F F 81, ROSEN 81, and H A X T O N 83 discuss correlated bounds on (re(u)/ and right-handed couplings. Further theoretical discussions include ROSEN 88, DOI 85, H A X T O N 86, and GROTZ 83. A comprehensive experimental review is CALDWELL 89.
2 + ) > 1.5 x 1021 yr at 68% EL. A I
limit T 1 / 2 ( 0 + ~ 0 + ) > 8.4 x 1019 yr (6.0 x 1019 yr) at the 68% (95%) CL on the I allowed two-neutrino decay mode was also given. 72BELLOTTI 89 searched for neutrinoless double beta decay of 136Xe in the Gran I Sasso deep underground facility and got the lower bounds T1/2(0+ ~ 0+ ) > 1.4 I (0.9)×1022 yr at the 68% (90%) CL for a neutrino-mass induced decay, and 1.2 (0.8) x 1022 yr at the 68% (90%) C L for a lepton-number-violating right-handed-currentinduced decay. Model-dependent upper bounds on Majorana neutrino masses and on the admixture of right-handed lepton-number-violating currents were also given. 73 DANEVICH 89 gives half-life limit t l / 2 > 1.3x 1021 yr (68% CL) for 1~6Cd neutrinoless I double beta decay. Used calculations of DOI 83 ( = T H Y 1 ) . 74 FISH ER 89 searched for neutrinoless double beta decay of 76 Ge and got the lower bounds T 1 / 2 ( 0 + ~ 0 + ) > 2.7 (1.6)x1023 yr at the 68% (90%) CL; and T1/2(0+ ~ 2+ ) I
I
> 1.0 (0.6)×1023 yr at the 68% (90%) CL. From these limits, model-dependent upper bounds on on Majorana neutrino masses are derived. 75 CALDWELL 87 gets lower bound on half-life for 0 + ~ 0 + neutrinoless double fl decay of 76Ge t l / 2 > 5 x 1023 years. The derived upper limits on effective neutrino masses are dependent on input for nuclear matrix elements; the authors also list two other limits for different input assumptions: 1.3 eV and 0.7 eV. Used calculations of DOI 83 ( = T H Y 1 ) . 76CALDWELL 86 gives several limits depending on which calculation of nuclear matrix elements is used; we quote the most conservative, i.e., least stringent. Other limits are 1.0 eV and 1.9 eV. Authors note that the overall uncertainty due to the serious disagreement between nuclear calculations and both lab and geochemical measurements for regular 2-neutrino double ~ decay is also present in these limits. 77ELLIOTT 86 gives half-life limits t l / 2 > 7. × 1021 yr (68% CL) for 82Se neutrinoless double ~3 decay and t l / 2
>1. × 1020 yr (68% EL) for regular 2-neutrino double
decay of 82Se. Latter limit agrees with the geochemical limit and strongly disagrees with nuclear theory calculations, casting doubt on their application to derive limits on Majorana neutrino masses and ~ parameters from limits on neutrinoless double/~ decay. 78 Uses results of H A X T O N 81, HAXTON 82. Authors state that bound could be "two or three times larger." Half-life for 0 + ~ 0 + transition > 5 x 1022 yr (CL = 68%). 79 Limit is obtained from analysis of data using theoretical calculations by H A X T O N 81, HAXTON 82. Also given are lifetime limits on neutrinoless double ~ decay of 76Ge to excited states of 765e. 80See table 1 of BELLOTTI 84 for their assessment of previous bounds. Half-life for 0+ 0 + transition >7 x 1022 yr (CL = 90%), >1.2 x 1023 yr (EL = 68%). 81 Limits are obtained from analysis of data using theoretical calculations by DOI 83 ( = thyl) and ROSEN 81 ( = thy2).
I !
Vl.32
Lepton Full Listings Massive Neutrinos and Lepton Mixing Limits on Lepton-Number Violating (V+A) Current Admixture
RHRENS ALBRECHT ALTZITZOG. APALIKOV
~! is defined as the fractional admixture of ( V + A ) charged current, relative to ( V - A ) in electron-type lepton sector. VALUE ~ DOCUMENT ID TEEN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • <9 <6 <6 <14 <03 <0.8 <06 <24 <4 <15 <2.4
x x x x x x × x x x x
i0 -8 10 - 5 10 6 10 - 5 10 - 5 10 - 5 10 5 10 - 5 10 5 10 5 10 . 5
68 68 68 68 68 68 68 68 68 95
82 83 84 85 85 85 85
BELLOTTI BELLOTTI CALDWELL CALDWELL CALDWELL BELLOTTI BELLOTTI AVlGNONE 86 B E L L O T T I 86 B E L L O T T I KIRSTEN
89 87 86 85 85 84 84 83 83 83 83
CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR CNTR SPEC
T H Y 76Ge 128Te,130Te ( + T h e o r y ) T H Y 76Ge T H Y 76Ge T H Y 76Ge T H Y 76Ge T H Y 76Ge T H Y 76Be T H Y 1 76Ge T H Y 2 76Ge T H Y 128Te/130Te
82See footnote on B E L L O T T I 89 in section on Limits on ( m ( ~ ) >
above. B E L L O T T I 89 l
gives two model-dependent limits, rlRR < 9 × 10 6 and qLR < 8 × 10 - 8 , both at the 68% CL. See also B A R A B A S H 89. 83 B E L L O T T I 87 gives two limits, depending on the type of chirality mixing. These happen to be the same. BELLOTTI 87 limit is stated to be independent of neutrino mass. 84See previous c o m m e n t for C A L D W E L L 86 in data block above. Other limits given by C A L D W E L L 86 for q (left-right) are 5.5 × 10 7 and 4.5 x 1 0 - 8 ; as we did for the limit on a Majorana mass, we take the most conservative, i.e., least stringent of these model-dependent bounds. 85 T w o bounds given, depending on types of chirality mixing. See references. 86Limits are obtained from analysis of data using theoretical calculations by DOI 83 ( t h y l ) and ROSEN 81 ( - thy2).
REFERENCES FOR Searches for Massive Neutrinos and Lepton Mixing BURCHAT SLAC PUB DECAMP JUNG ABRAMS AGLIETTA
90 5172 9OF 90 89E 89 ALSTON 89 ASTIER 89 BAHCALL 89 BAHCALL 89B BARARASH 89 BELLOTTI 89 BETHE 89 BLUMENFELD 89 CALDWELL 89 DANEVICH 89 DAVIS FISHER HIME HIRATA KUO OYAMA SIMPSON AFONIN
89 89 89B 89 89 89 88
AKERLOF AMMOSOV
80 88
BANCALL
~88
89
BERGSMA BERNARDI BIONTA DURKtN HIRATA KAWAKAMI LOVERRE ROSEN AFONIN
88 88 88 88 88 88 88 87
AHRENS BELLOTTI BOFILL BORIS Also CALDWELL DAUM ELLIOTT LOSECCO MISHRA OBERAUER TALEBZADEH VlDYAKIN
87 87 87 87 88 87 87 87B 87 87 87 aT 87
WENDT WILKERSON AEONIN
87 87 86
ANGEUNd AZUELOS BAOIER BELLOTTI 8ERNARDI BERNARDI BRUCKER CALDWELL DELEENER, DORENBOS DRUKAREV
86 86 86 86 86 868 86 86 86 86 86
ELLIOTT FRITSCHJ GILMAN HAXTON LINDHARD SIMPSON USHIDA ZACEK AFONIN
86 86 86 B6 86 86 86E 86 85
Arso
858
PRL (to be pub.)
~King, Abrams, Adolphsen~
(Mark II Collab )
PL 8236 Sll ~Deschizeaux, Lees. Minard+ (ALEPH Collab) PRL 64 1091 +Van Kooten, Abrams, Adolphsen+ (Mark II Collab ) PRL 63 2 4 4 7 +Adolphsen, AveUII, Ballam+ (Mark II Collab ) EPL 8 611 +Battistoni, Bellotti+ (Frejus Codab.) PRL 63 1671 Alston D~rnjost, Dougberty+ (LBL, MTHO, UNM, INEL) PL B220 646 48ernardi, Carugno, Cbauveau*(LPNP, BOST, CERN, BNL) Neutrino Astrophysics, Cambridge Univ Press (IAS) PR 040 931 +Haxton (lAB, WASH) PL B223 273 +Kuzminov. Lobashev, Novikov+ (ITEP, INRM) PL B221 209 +Cremones, Fiorini, Ge~asio+ (MFLA) PRL 63 837 (CORN) PRL 62 2237 kChi, Chichura, Chien+ (COLU ILL, JHU) IJMP A4 ]851 (UCSB) JETPE 49 476 +Zdesenko,Nikolaiko, Tret~ak (INRU) Translated from ZETFP 49 417, ARNPS 39 467 +Mann. Wolfenstein /BNL. PENN, CMU) PL 8218 257 ÷Boehm, Bovet, Egger* (CIT, NEUC, PSI) PR 039 1037 +Simpson (GUEL) PRL 63 16 +Kajita, Kifune, Kihara+ (Kamlokande H Calla&) RMP 61 937 +Pantaleone (PURD, UCR) PR D39 1481 +Hirata, Kajita. Kifune+ (Kamiokande II Collab.) PR D39 1825 +Hime (GUEL) JETP 67 213 +Ketov. Ropeikin. Mikaelyan+ (KIAE) Translated from ZETF 94 1. PR D37 577 +Chapman, Errede. Ken4 [HRS Collab ) ZPRY C40 487 +Belikov÷ (SKAT Collab ) RMP 60 297 +Ulrich 0AS, UCLA) ZPHY C40 171 +Dorenbosch.Nieuwenhuis4 (CHARM Collab) PL B203 332 +Carugno, Chauveau+ (LPNP, CERN, INFN, ATEN) PR D38 758 ~Blewitt, Bratton, Casper~ (IMB CoHab) PRL 61 1811 +Harper. Ling+ (OSU. ANL. CIT. LBL. LSU. LANL) PL 82S5 416 ~Kajita. Koshiba+ (Kamiokande II Collab ) JPSJ 57 2873 +Kato, Naito, Nisimura+ (INUS, TOKY, TINT, KEK) PL B206 711 (INFN) CNPP 18 31 (LANL) JETPL 45 257 +Bogatov, Vershinskii+ (KIAE) Translated from ZETFP 45 201 PR D38 702 + {BNL, BROW, OCh HIRO, KEN, OSAK, PENN, 8TON) EPL 3 889 +Cattadori, Cremonesi. Fiodni+ (MILA) PR D36 3309 +Busza, Eldridge+ EMIT, FNAL, MSU) PRL 58 2019 ÷Golutvin, LapEn* (ITEP, ASCI) PRL 61 245 erratum Boris, Golutvin, LapUn+ (ITEP, ABEl) PRL 59 429 +Eisber8, Grumm, Witherell + (UCSB, LBL) PR D36 2624 ÷Kettle, Jost~ {SIN, VIRG) PRL 59 2020 +Hahn, Moo (UCI) PL B184 305 +Bionta, Blewitt, Bratton~ (IMB Collab.) PRL 59 1 3 9 7 +Auchincloss+ (COLU, OT, FNAL, CHIC, ROCH) PL B198 113 +yon Feilitzsch, Mossbauer (MUNT) NP 8291 503 +Guy, Venus~ {BEBC WA66 Co/tab) JETP 66 243 +Vyrodov. Gurevich, Kozlov+ (KIAE) Translated from ZETF 93 424 PRL 58 ]810 ÷Abramst Amidei, Baden+ (Mark II Collab,) PRL 58 2023 +Bowles, BrOWne+ (LANL, PRIN, UCSD) JETPL 44 142 +Bogatov, Borovoi, Vershinskii+ (KIAE) Translated from ZETFP 44 111, PL B179 307 +Apostolakis. Baldini~ (PISA, ATRU, PADO, WISC) PRL 56 2241 ~Britton, Bryman~ (TRIU, CNRC) ZPNY C31 21 +Semporad,Boucrot, Callot4 (NA3 Coflab) NC 95A 1 +Cremonesi, Fiorini, LiguorPf (MILA) PL IEbB 479 PCarugno+ {LPNP. INFN. CDEF, ATEN. CERN) PL B181 173 +CaruBno+ (LPNP, INFN. CDEF. ATEN, CERN) PR D34 2183 +Jacques. Kalelkar. KoPer+ (RUTG. BNL. COLU) PR D33 2737 +Eisberg. Grumm, Hale, Wltherell4 (UCSS, LBL) PL B177 228 DeLeener Rosier, Deutsch+ (LVLN, ZURI. LAUS) PL 166B 473 Dorenbosch, Ailaby, Amaldi~ (CHARM Collab ) JETP 64 686 +Strikman (LENI) Translated from ZETF 91 1160 PRL 56 2582 +Hahn, Moo (UCI) PL B173 485 +Holzschuh Kundig~ (ZURh SIN) CNPP 16 231 (SLAC) Proc Sleamboat Spn~g~ /WASH/ PRL 57 965 sen (AARH) PL B174 113 (GUEL) PRL 57 2897 +Kondo, Tasaka, Park, Song~ (FNAL E531 Collab) PR 034 2 6 2 1 +FeilSzsch+ (Cal Tech SIN TUM Collab ) JETPL 41 435 +Borovoi, Dobrynin+ (KIAE) Translated from ZETFP 41 355. JETPL 42 285 Afonin, Bogatov, Borovoi, Dobrynin4 (KIAE) Translated from ZETFP 42 230
I
85 851 85 85
PR D31 2732 +Aronson+ (BNL, BROW, KEK, OSAK, PENN+) PL 1638 404 +Binder, D~escher, Schubert+ {ARGUS Colbb.) PRL 55 799 Altzitzoglou, Calaprice, Dewey+ (PRIN) JETPL 42 289 +Boris, Golutvin, Laptin, Lubimov+ (ITEP) Translated from ZETFP 42 233. BAHCALL 85 APJ 292 L79 +Cleveland, Davis, Rowtey (IAS, BNL) BELIKOV 85 SJNP 41 589 +Volkov, Kochetkov, Mukhin+ (SERP) Transbted from YAF 41 919 BERGKVIST 85 PL 1548 224 (STOH) BERGKVIST 8SB PL 1598 488 (STOH) BLUMER 85 PL 1618 407 +Kleinknecht (DORT) BORIS 858 JETPL 42 130 +Golutvin. Laptin, Lubimov+ (ITEP) Translated from ZETFP 42 107 CALDWELL 85 PBL 54 281 +Eisberg, Grumm, Hale, Witherell+ (UCSB, LBL) COOPER 85 PL 1608 207 Cooper-Sarkar+ (CERN, LOIC, OXF, SACL+) DATAR 85 Nature 318 547 +Saba, Bhattacherjee, Bhuinya, Roy (BHAB, TATA) DOI 85 PTP Supp 83 1 +Kotani, Takasugi (OSAK) HUBERT 85 NC 85A 19 +Leccia, Dassie, Mennrath+ (BEEN, ZARA) RALBFLEISCH 85 PRL 55 2225 +Mi~ton {ORLA) MARKEY 85 PR C32 2215 +Boehm (CIT) OHI 85 PL 160S 322 +Nakajima. Tamura* (TOKY. INUS. KEK) SIMPSON 85 PRL 54 1891 (GUEL) STOCKDALE 85 ZPHY C22 53 +Bodek+ (ROCH, CHIC, COLU, FNAL) ZACEK 85 PL 1648 193 +Zacek, Boehml (MUNIt CIT. SIN) BAHCALL 84 AI.P 126 E0 (lAB) Proc., Solar Neutrinos and Neutrino Astronomy (Homestake 1984) BALLAGH 84 PR D30 2 2 7 1 +Bingham+ (UCB, LBL, FNAL, HAWA, WASH, WlSC) BELLOTTI 84 PL 146B 450 +Cremonesi, Fiorini, LiguoB, Pullia+ (MILA) BERGSMA 84 PL 3428 103 +Dorenbosch, ARabK Abt+ (CHARM Colla6) CAVAIGNAC 84 PL 14S8 387 +Hoummadat Noang+ OSNG. LAPP) DAVIS 84 A.IP 123 1 0 3 7 +Cleveland.Rowley (BNL) Proc. Intersections between Particle and Nuclear Physics {Steamboat Springs. 1984) Also 848 Icoman 1983 Davis, Chern], Oavidson, Lande, Lee, Marshall+ Also 84 A h P 126 1 RowleK Cleveland, Davis (BNL) DYDAK B4 PL 1349 281 +Feldman+ {CERN, DORT, HE~D, SACL, WARS) FORSTER 84 PL 138B 301 +Kwon, Markey, Boehm, HenBkson (CIT) GABATHULER 84 PL 138B 449 +Boehm+ (CIT, SIN, MUNI) MINEHART 84 PRL 52 804 +Ziock, Marshall. Stephens, Daum+ (VIRG, SIN) STOEKDALE 84 PRL 62 1384 ÷Bodek+ (ROCH, CHIC, COLU. FNAL) AFONIN 83 JETPL 38 436 +Bogatov, Borovoi, Vershinskii~ (KIAE) Translated from ZETFP 35 361. AVIGNONE 83 PRL 50 721 eBrodzinskL Brown, Evans, Hensley+ (SCUC, PNL} BELENKn 83 JETPL 38 493 +Dobrynin, Zemlyakov, Mikaelyan+ (KIAE) Translated from ZETFR 38 488 BELIKOV 83 JETPL 38 661 +Volkov, Kochetkov, Mukhin, Sviridov+ (SERP/ Translated from ZETFP 38 547 BELLOTTI 83 PL 121B 72 +Fiori~i, Ligutod, Puifia, Sarracino+ (MILA) BERGSMA 03S PL 128B 361 ~Dorenbosch+ (CHARM Collab.) BRYMAN 838 PRL 50 1546 -Dubois, Nurnao, Olaniya, Olin+ (TRIU, CNRC) A~so 83 PRL 50 7 Bryman, Dubois, Numao, Olaniya(TRIU. CNRC) DEUTSCH 83 PR D27 1644 -Lebrun, Prieels (LVLN) OOI 83 PTP 6g 602 ~Kotanl, Rishiura, Takasugi (OSAK, KYOT) FIUPPONE 83 PRL 50 412 ~Elwyn, Davids4 (ANL, CHIC, VALP) GRONAU 83 PR D28 2762 (HALF) GROTZ 83 JP 89 L169 -Klapdor, Metzinger (MPIH) HAXTON 83 CNPP 11 41 (LASL, PURD) K]RSTEN $3 PRL S0 474 ~Ricbter, JeSSberger {MP~H) Also 83S ZPHY 16 189 Kirsten, Richter, Jessberger (MPIH) LUBIMOV 83 Brighton Conf 386 (ITEP) SCHRECK 83 PL 1298 265 Schreckenbach, Colvin+ (ISNG, iLLG) TAYLOR 83 PR D28 2705 +Cence, Harris, Jones+ (HAWA, LBL, FNAL) BRHCALL 82 RMP 54 767 +Huebner, Lubow+ (IAS, LANL, HPC, YALE, UCLR) COOPER 82 PL 1128 97 ~Guy, Michette, Tyndel, Venus (RL) EHRUCH 82 PR D25 2282 (GMAS) FILIPPONE 82 APJ 253 393 +Schramm EARL, EFI) FOWLER 82 A.I.P. 96 80 (CIT) HAXTON 82 PR D25 2 3 6 0 +Stephenson, Strottman (LANL, PURD) HAYANO 82 PRL 49 ]305 fTatSgu¢fli, Yamanaka+ {TORY, KEK, TSUK) VUILLEUMIER 82 PL 114B 298 +Boehm, Egger4 (CIT, SIN, MUNI) ABELA 81 PL 105B 263 +Daum, Eaton, Frosch, Jost, Kettle, Steiner (SIN) ARMENISE 81 RL 100B 182 4 Fogli-Muciaccia+ (BARi, CEBN, MILA, LALO) ASANO 81 PL 1048 84 +Hayano, Kikutani, Kurokawa+ (KEK, TOKY, OSAK) Also 81 PR D24 1232 Shrock (STON) ASRATYAN 8] PL i05S 301 +Efremenko,Fedotov+ (ITEP, FNRL, SERP, MICH) BAKER 81 PRL 47 1576 +Connolly, Kahn, Kirk, Murtagh+ (BNL COLU) Also 78 PRL 40 144 Cnops, Connolly, Kahn, Kirk(RNL, COLU) BOLIEV 81 SJNP 34 787 +Butkevich, Zakidyshev, Makoev+ (INRM) Translated from YAF 34 1418. CRLAPRICE 81 PC 106B 175 ~Sehreiber, Schneider+ (PRIN, INO) DEDEN 51 PL 9BB 318 +Grassier. Boeckmann. Mermikides+ (BEBC Collab.) ERRIQUEZ 81 PL 102B 73 -Natali+ (BARE BIRM. LIBH. EPQL. RHEL. SACL~) HAXTON 81 PRL 47 133 -Stephenson, Strottman (PURD. LASL) KWON 51 PR D24 1097 *Boehm. Hahn, Henrikson~ (CIT, ISN8, MUNI) NEMETHY 018 PR D23 262 + {YALE, LBL, LASL. MJT, SACL, SIN, CNRC, BERN) PRIMAKOFF 81 ARNS 31 145 -Rosen (PURD) ROSEN 81 Nu Conf. Hawaii (PURD) Also 78 RMP 50 11 Biyman, Picciotto (TRIO, VICT) SHROCK 81 PR D24 1232 (STON) SHROCK 81R PR D24 1275 (STON) SILMERMAN 81 PRL 46 467 -Soni {U£1 UCLA/ SIMPSON 81S PR D24 2971 (GUEL) USHIDA 81 PRL 47 1694 (A[CH. FNAL. ROBE. SEOU. MCBI. NA80. OSU-) WOLFENSTEIN 81 PL 107S 77 (CMU) AVIGNONE 80 PR C22 594 -Greenwood (SCUC) BAHCALL 80 PRL 45 945 -Lubow, Huebner* 0AS, LASL, YALE, LLL. UCLA) Also 75 Science 191 264 Bahcall. Davis (IAS, BNL) BOENM 80 PL 97B 310 ~Cavaignac, Feilitzsch+ (ILLG, CIT, ISNG, MUNI) FRITZE 80 PL 968 427 (AACH, BONN, CERN. LOlC, OXF, SACL) RUNES 80 PRL 45 1307 ±5obel, Pasierb (UO) Also 59 PR 113 2?3 Reines, Cowan (LASL} Also 86 PR 142 852 Nezrick, Reines {CASE) Also 76 PRL 37 315 Reines, Burr. Sobel (UCI) SHROEK 80 PL 96B 159 (STON) DAVIS 79 PR C19 2259 +VoBeL Mann. Schenter (CIT) BLIETSCHAU 78 NP 8133 205 +Deden, Hasert, Krenz(Gargamelle Collab) CROUCH 78 PR 01B 2 2 3 9 +Landecker,Lathrop, Reines-~ {CASE, UCI, WITW) BELLOTTI 76 LNC 17 553 ~Cavalli, Fiorini, RolSer (MEAl
VI.33
Lepton Full Listings
See key on page IV. 1
Neutrino Bounds from Astrophysics and Cosmology I Neutrino Bounds from Astrophysics OMITTED
and
FROM SUMMARY
to which the central core reaches densities sufficiently high
I
Cosmo,ogyI
t h a t neutrinos are trapped and diffuse out on this timescale. Constraints
TABLE
The limits on the number of light neutrino types now appears in a separate section (following the T-lepton section). See the note on neutrinos by R.E. Shrock in the Ue section near the beginning of these Listings. For information on neutrinos derived from more conventional (terrestrial) experiments, see the ue, ~#, uT, and heavy-u sections above.
on
n e u t r i n o s : Since
the
IMB
and
Kainiokande neutrino pulses did not last much longer t h a n expected, an upper limit on m~ e can be derived. W h e n deriving a limit, care m u s t be taken to include the neutrino m e a s u r e m e n t errors and the likelihood t h a t one or two events were due to background, as discussed in Ref. 13, resulting in the conservative upper limit
NOTE
ON CONSTRAINTS
FROM
SN 1987A
ON PARTICLES
~< 25 eV
(90% CL) .
(1)
T h e absence of any indication of neutrino pulse-lengthening
(by J. Ellis, C E R N and D.N. Schramm, Univ. of Chicago) According to the s t a n d a r d theory of T y p e II supernovae, 1 the core of a star with M
m~
~> 8 M e
collapses when its
imclear fuel is exhausted. T h e collapse releases the n e u t r o n star's binding energy of (2 to 4)x1053 e r g s ? ejecting the outer
can also be used to give an upper b o u n d on the electric charge of the ~e, as discussed in Ref. 14:
IQ~ol ~<
10 -17
e .
(2)
There is a simple lower b o u n d on the Pe lifetime from the persistence of the pulse out to 50 kpc:
regions of the star and leaving behind a r e m n a n t neutron star of mass 1.4 M e to 2 M e. Only about 1% of the binding energy is emitted as kinetic energy or electromagnetic radiation; the rest is carried off by n e u t r i n o s ? with at most 1% radiated as gravitational waves. 4 T h e essential features of this s t a n d a r d theory agree with observations of SN 1987A, and the agreement can be used to constrain the properties of neutrinos and other conjectured light particles, as well as the equation of state of (lense hadronic matter.
"7 7-~e >~ 105 y r .
(3)
Stronger limits can be set on individual decay modes; for example, the absence of accompanying 7 rays implies (see Ref. 15): T~e/rn~ ~ > BT1015 s / e V .
(4)
where B7 is the branching ratio into radiation.
SN 1987A has been identified 5 with a blue giant star
T h e integrated luminosities for different u and ~ species are expected to be similar. The neutron star binding energy can be
Sanduleak-69 202 with M ~ 20 + 5 M e , which was a 12 th
calculated a s s u m i n g various equations of state for neutron star
m a g n i t u d e star t h a t had lost its red giant envelope. Its visual
m a t t e r as (2 to 4)x105s ergs. Then, a s s u m i n g equipartition
m a g n i t u d e rose in a few hours to almost 4 and after 90 days to
of energy between u and P species, and using the neutron star binding energy to b o u n d the total energy carried by the
3, the luminosity decayed quasi-exponentially with a lifetime 100 d, consistent with radioactive 56Co decay. This and 7ray line observations from the Solar M a x i m u m satellite 6 argued that the ejecta included ~ 0.075 M 0 of 56Ni which decay to
emitted neutrinos, the above estimate of the Pe luminosity can be used TM to estimate the n u m b e r of neutrino species:
N~ = 2.s+~:~,
56Co and then to 56Fe.7 T h e synthesis of significant a m o u n t s of other heavy elements is consistent with the observations. While, in principle, x rays emitted from the shell could be due to neutrino d e c a y s ? we adopt the conventional view t h a t they were emitted by relativistic electrons. The most important constraints on neutrinos and other light particles come from the
< 8
(90% CL) .
(5)
T h e consistency of the integrated ue luminosity with N . = 3 constrains the difference between the probabilities of Pe ~ P x , or u x and P x , or u x --* Ue oscillations. In particular, an upper b o u n d can be given on the magnetic m o m e n t s # , of neutrinos. Induced magnetic transitions to sterile right-handed neutrinos
observations of a neutrino burst associated with stellar collapse. T h e most significant of these observations were those by the IMB 9 and Kamiokande 1° experiments, which were coincident
would allow more rapid loss of the available binding energy. Also, such neutrinos t h a t had escaped from the inner core could
within the timing uncertainties (see also Ref. 11"). Because
be converted back to detectable 30 100 MeV neutrinos by the
n e +) is much larger t h a n other neutrino cross
intergalactic magnetic field. T h e absence of such detections or rapid cooling gives the limit 17
o(Fep ~
sections at low energies, it is believed t h a t most of the events observed were due to Ue interactions. Taken together, the IMB and Kamiokande events suggest an integrated Pe luminosity of (3 to 9)x1052 ( D / 5 0 kpc) ~ ergs, where D = 50-4-5 kpc is the distance to SN 1987A. T h e distributions of neutrino energies were compatible with a t h e r m a l s p e c t r u m of t e m p e r a t u r e T ~ (4 to 5) MeV, and the neutrino pulses lasted ~ 10 s as expected in conventional models 1 of stellar collapse, according
I~.1
~ 10-12 ttB -
(6)
This b o u n d applies only to Dirac neutrinos (static or transition m o m e n t s ) b u t not to Majorana transition moments. 18 C o n s t r a i n t s o n o t h e r light p a r t i c l e s : T h e consistency of the observed neutrino pulse with expectations places upper limits on energy emission via photinos, axions, majorons, and
VI.34
Lepton Full Listings Neutrino Boundsfrom Astrophysicsand Cosmology any other particles weighing ~ a few MeV. Light photinos can be excluded unless the squark masses are 19 m~ ~ 60 GeV or ~ 10 TeV.
(7)
The lower range is excluded by accelerator experiments, and the upper range is deemed theoretically implausible. Analogous bounds on light Higgsinos are also given in Ref. 19. Axions emitted from the core of the embryonic neutron star would have shortened the neutrino pulse and diminished its energy. The absence of such effects gives a lower bound 2° on the axion decay constant f,~ of fa ~ 3 x 10 ~° GeV .
(8)
The precise value of this bound depends on the axion-nucleon couplings and on the behavior of dense hadronic matter: for more discussion, see Ref. 20. Analogous bounds on majorons and other light spin-zero bosons can be found in Ref. 21. References * The claim ~2 of an earlier neutrino pulse in the Mont Blanc experiment has less statistical significance and is difficult to reconcile with the absence of coincident observations in the Kamiokande detectors. Therefore we will not include it in our discussions. 1. R. Mayle, J. Wilson, and D. Schramm, Ap. J. 318, 288 and references therein (1987). 2. W.D. Arnett and R. Bowers, Ap. J. Supp. a3, 415 (1977). 3. S. Colgate and W. White, Ap. J. 143, 626 (1966). 4. D. Kazanas and D. Schramm, Nature 262, 671 (1976). 5. W.P. Meikle, S.J. Matcher, and B.L. Morgan, Nature 329, 608 (1987). 6. E.L. Chupp et al., in Proceedings of the International
Workshop on High Resolution Gamma Ray Cosmology,
7. 8.
9. 10. ll. 12. 13. 14. 15.
16.
17.
18.
19. J. Ellis, K.A. Olive, S. Sarkar, and D.W. Sciama, Phys. Lett. B215, 404 (1988). 20. G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988); R. Mayle et al., Phys. Lett. B219, 515 (1989); and A. Burrows, M.S. T~rner, and R.P. Brinkman, Phys. Rev. D39, 1020 (1989). 21. G.M. Fuller, R. Mayle, and J.R. Wilson, Ap. J. 332, 826 (1988); J.A. Grifols, E. Mass6, and S. Peris, Phys. Lett. B215, 593 (1988); V. Aharonov, F.T. Avignone, and S. Nussinov, Phys. Rev. D37, 1360 (1988); D39, 985 (1989); Phys. Lett. B200, 122 (1988); and K. Choi, C.W. Kim, J. Kim, and W.P. Lain, Phys. Rev. D3'L 3225 (1988).
UCLA, edited by D. Cline (World Scientific, 1988); and Phys. Rev. Lett. 62, 505 (1989). S. Woosley, G. Pinto, and L. Ensman, Ap. J. 324, 466 (1988). T. Hatsuda, C.S. Lira, and M. Yoshimura, Phys. Lett. B203, 462 (1988); and R. Cowsik, D. Sehramm, and P. Hoflich, Phys. Lett. B218, 91 (1989). R.M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987). K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987). E.N. Alekseev et al., JETP Lett. 45, 589 (1987). M. Aglietta et al., Europhys. Lett. 3, 1321 (1987). T. Loredo and D. Lamb, Phys. Rev. D, in press (1989). G. Barbiellini and G. Coeconi, Nature 329, 21 (1987). F. von Feilitzsch and L. Oberauer, Phys. Lett. B200, 580 (1988); E.W. Kolb and M.S. Turner, Phys. Rev. Lett. 62, 509 (1989). J. Ellis and K. Olive, Phys. Lett. B193, 525 (1987); and D. Schramm, Comments Nucl. and Part. Phys. A17, 239 (1987). I. Goldman et al., Phys. Rev. Lett. 60, 1789 (1988); D. N6tzold, Phys. Rev. D38, 1658 (1988); J.M. Lattimer and J. Cooperstein, Phys. Rev. Lett. 61, 23 (1989); and J. Barbieri and R. Mohapatra, Phys. Rev. Lett. 61, 27 (1988). M. Leurer and J. Liu, Phys. Lett. B219, 304 (1989); and L. Okun, in Proceedings of the Neutrino '88 Conference, (Boston, MA 1988).
zJ M A S S
NOTE ON v MASS LIMITS The limits on low mass (mr ~< 1 MeV) neutrinos apply to tr~tot given by
where g~ is the number of spin degrees of freedom for u plus P: g~ = 4 for neutrinos with Dirac masses; gu = 2 for Majorana neutrinos. The limits on high mass (m, > 1 MeV) neutrinos apply separately to each neutrino type. Limit on T o t a l u M A S S , m(tot) (Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives
greater than or equal to the age of the universe). These papers assumed Dirac neutri nos. When necessary, we have generalized the results reported so they apply to m~tot). For other limits, see SZALAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85. VALUE [eVil
DOCUMENT ID
TECN
• • • We do not use the following data for averages, fits, limits, etc. • • • <180 <132 <280 <400
SZALAY COWSIK MARX GERSHTEIN
74 72 72 66
COSM COSM COSM COSM
Limits on Neutrino MASS for re(v) > 1 MeV The neutrinos are assumed to be stable. Note that the LEP results (DECAMP 90F) exclude a fourth stable neutrino with m < 42.7 GeV which combined with CALDWELL 88 indicates m > 1400 GeV. For papers of historical interest, see HUT 77, LEE 77, VYSOTSKY 77, and HUT 79. VAL~E (GeV)
CL ~/o
DOCUMENT ID
TECN
COMMENT
• • * We do not use the following data for averages, fits, limits, etc. • • • none 12-1400 none 4-35 none 4 16 >4.2 to 4.7 >5.3 to 7.4 none 20-1000 >4.1
1 2 2,3 2,3
ENQVIST CALDWELL OLIVE OLIVE SREDNICKI SREDNICKI 2 AHLEN GRIEST
90 90
95
89 COSM 88 COSM 88 COSM 88 COSM 88 COSM 88 COSM 87 COSM 87 COSM
Dirac Majorana u Dirac Dirac Majorana u Oirac v Dirac v
1 ENQVIST 89 argue that there is no cosmological upper bound on heavy neutrinos. 2 These results assume that neutrinos make up dark matter in the galactic halo. 3Limits based on annihilations in the sun and are due to an absence of high energy neutrinos detected in underground experiments.
Astrophysical and Cosmological Limits on ~, MASSES If neutrinos are present as dark matter in galactic halos, limits on neutrino masses have been computed based on neutrino degeneracy and Fermi statistics. The results depend strongly on assumptions. See the references. VALUE (eV)
.
DOCUMENT tD
TECN
COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • SPERGEL KAWASAKI
KAWASAKI TAKAHARA MADSEN MADSEN SARKAR FREESE LIN PRIMACK BOND DAVIS SCHRAMM TREMAINE
88B 86 86B 86 85 84 84 83 83 83 81 81 81 79
COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM
supernovae Some anisotropy Assume isotropy Decaying neutrinos Degenerate v
Adiabatic Adiabatic+decaying u's Isothermal Isothermal
VI.35
Lepton Full Listings
Seekey on page IV.1
Neutrino Bounds from Astrophysicsand Cosmology Limits on MASSES of Light Stable Right-Handed v (with necessadlysuppressed interaction strengths) VALUE(eV~
DOCUMENT ID
TECN
REFERENCES FOR Neutrino Bounds from Astrophysics and Cosmology COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • <100-200 <200-2000
4 OLIVE 4 OLIVE
82 82
COSM COSM
Dirac u Majorana u
4 Depending on interaction strength gR where gR
Limits on MASSES of Heavy Stable Right-Handed v
(with necessarilysuppressed interaction strengths) VALUE(GeV)
DOCUMENT IO
TECN
COMMENT
• • I We do not use the following data for averages, fits, limits, etc. • • • > 10 >100
5 OLIVE 5 OLIVE
82 82
C O S M ER/GF < 0 . 1 C O S M g R / G F <0.01
5These results apply to heavy Majorana neutrinos and are summarized by the equation: re(u) > 1 . 2 GeV ( G F / g R ) .
u Radiative MEAN LIFE versus MASS In these papers it is assumed that a neutrino can decay to a lighter neutrino plus a photon. The limits often depend on assumptions; see references for details. Additional papers appear in the ~e and up sections.
VALUE
DOCUMENT ID
TECN
• ! • We do not use the following data for averages, fits, limits, etc. • • • WALKER CHUPP FIELD KOLB HATSUDA KAWASAKI TERASAWA KAWASAKI LINDLEY BINETRUY SARKAR KRAUSS HENRY KIMBLE REPHAELI TURNER DERUJULA STECKER COWSIK GOLDMAN LINDLEY DICUS DICUS FALK GUNN MIYAMA COWSIK DICUS GOLDMAN
90 89 89 89 88 88 88 86 85 84 84 83B 81 81 81 81 80 80 79 79 79 78 78B 78 78 78 77 77 77
COSM ASTR COSM ASTR COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM COSM
DECAMP WALKER CHUPP ENQVIET FIELD KOLB CALDWELL HATSUDA KAWASAKI OLIVE SPERGEL SREDNICKI TERASAWA AHLEN GRIEST Also KAWASAKI KAWASAKI TAKAHARA COWSIK LtNDLEY MADEEN BINETRUY FREESE MADSEN SARKAR SCHRAMM FREESE KRAUSS LIN PRIMACK Also OLIVE BERNSTEIN BOND DAVIS HENRY KIMBLE REPHAEU SCHRAMM TURNER DERUJULA STECKER Also COWSIK GOLDMAN HUT LINDLEY TREMAINE DICUS DICUS FALK GUNN MIYAMA COWSIK DICUS GOLDMAN HUT LEE VYSOTSKY
90F 90 89 89 89 89 88 88 88 88B 88 88 87 87 88 86 8EB 8E 85 85 85 84 84 84 84 84 83 838 83 83 82 82 81 81 81 81 81 81 81 81 80 80 81B 79 79 79 79 79 76 78B 78 78 78 77 77 77 77 77 77
5ZALAY SZALAY COWSIK MARX GEREHTEIN
76 74 72 72 66
88
PL B23E 511 +Deschizeaux, Lees, Minard+ PR D41 689 PRL 62 505 +Vestrand, Reppin NP B317 647 +Kainulainen, Maalampi PRL 63 117 +Walker PRL 62 509 +Turner PRL 61 510 +Eisberg, Grumm, Witherell+ PL B203 462 +Lim, Voshirnura PR D38 1321 +Sato PL B205 553 +5rednicki PR D38 2 0 1 4 +Weinberg,Gott NP B310 693 +Watkins, Olive NP B302 697 +Kawasaki, Sato PL B195 603 +Avignone, Brodzinski+ (BOST, NP B283 681 +Seckel NP B296 1034 (efratunl) Griest, Seckel PL B178 71 +Terasawa, Sato PL 1EgB 280 +Sato PL B174 373 +Sato PL 151B 62 APJ 294 1 PRL 54 2720 +Epstein PL 134B 174 +Girardi, Salati NP B233 167 +Schramm APJ 282 11 +Epstein PL 148B 347 +Cooper PL 141B 337 +Steigman PR D27 1689 +Kolb, Turner PL 128B 37 APJ 266 L21 +Faber Phil. 4th Workshop on Grand Unification Nature 299 37 BlurnenthaL Pagels, Primack PR D25 213 +Turner PL 101B 39 +Feinberg Nu Conf. Hawaii +Szalay APJ 250 423 +Lecar, Pryor, Witten PRL 47 618 +Feldrnan PRL 46 80 +Bowyer, Jakobsen PL 10EB 73 +Szalay APJ 243 1 +Steigman Nu Conf. Hawaii PRL 45 942 +Glashow PRL 45 1460 Hawaii Nu 1 124 5tecker PR D19 2219 PR D19 2 2 1 5 +Stephenson PL 67B 144 +Olive MNRAS 188 ]SP PRL 42 407 +Gunn PR D17 1529 +Kolb, Teplitz, Wagoner APJ 221 327 +Kolb, Teplitz PL 79B 611 +Schramm APJ 223 1015 +Lee, Lerche+ (CIT, CAMB, PTP E0 1703 +Sato PRL 39 784 PRL 39 168 +Kolb, Teplitz PR D16 2 2 5 6 +Stephenmon PL 69B 86 PRL 39 165 +Wei~berg JETPL 26 188 +Dolgov, Zeldovich Translated from ZETFP 26 200, AA 49 437 +Man APAH 35 8 +Marx PRL 29 669 +McClelland Nu Conf Budapest +Szalay JETPL 4 120 +Zeldovich Transiated from ZETFP 4 189.
(ALEPH Collab,) (HARV) (UNH, MPIM) (HELS) (HARV) (CHIC, FNAL) (UCSB. UCB, LBL) (KEK) (TOKY) (MINN, UCSB) (PRIN) (MINN, UCSB) (TOKY) SCUC, HARV, CHIC) (UCSC, CERN) (UCSC, CERN) (TOKY) (TOKY) (TOKY) (TATA) (FNAL) (AARH, LANL) (LAPP) (CHIC, FNAL) (AARH, LANL) (OXF, CERN) (FNAL 8ART) (CHIC, LANL) (HARV) (UCSC) (UCSC) (UCSC, ROCK) (CHIC, UCSB) (STEV, COLU) (UCB, CHIC) (HARV, PRIN) (JHU) (UCB) (UCSB, CHIC) (CHIC, BART) (UCSB, CHIC) (MIT, HARV) (NASA) (NASA) (TATA) (LASL) (AMST, EFI) (SUSS) (CIT, CAMB, CAIW) (TEXA, VPI, STAN) (TEXA, VPI) (CHIC) FNAL, CHIC, YALE) (KYOT) (MPIM, TATA} (TEXA, VPI) (LASL) (UTRE) (FNAL, STAN) (ITEP} (EOTV) (EOTV) (UCB) (EOTV) (KIAM)