Les Facteurs Des Graphes

Les Facteurs Des Graphes

Annals of Discrete Mathematics 8 (1980) 1-5 @ North-Holland Publishing Company LES FACTEURS DES GRAPHES W.T. TUTTE Department of Combinatorics and Op...

391KB Sizes 26 Downloads 151 Views

Annals of Discrete Mathematics 8 (1980) 1-5 @ North-Holland Publishing Company

LES FACTEURS DES GRAPHES W.T. TUTTE Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Onr. N2L 3G1, Canada

J’ai rencontrk la thtorie des graphe-facteurs a l’tcole, il y a presqu’un demisikcle. Car c’ttait environ en l’an dix-neuf cent trente que j’ai trouvk dans la bibliothkque de 1’Ccole un livre de Rouse Ball, intitulC “Mathematical Recreations and Essays”. I1 m’a appris le thkorkme de Petersen, qui concerne la rtsolution d’un graphe cubique convenable en deux graphes partiels rtguliers, l’un de degr6 1 et l’autre de degrt 2. J’appelle le premier un 1-fucteur du graphe, et le second un 2-facteur. J’ai lu aussi une proposition de P.G. Tait sur trois 1-facteurs, kquivalente au thkorkme des quatre couleurs. Quelques anntes plus tard, a 1’Universitk de Cambridge, je trouvais une oeuvre de M.A. Sainte-Lague intitulke “Les rtseaux (ou graphes)” [ 3 ] . O n y trouve une dtmonstration du thkorkme de Petersen. J’ai lu. J’ai compris. J’ai rempli les lacunes. J’ai meme fait une petite amklioration du rksultat du texte. “Regardetoi” me suis-je dit, “Tu peux travailler sur les rtseaux. Peut-etre la thtorie des graphes sera ton sujet de recherche 2 l’avenir!” E n effet aprts quelques annees la guerre passke, je me mis a la recherche dans cette thkorie. Une de mes premikres tiches naturellement ktait la gtnkralisation du thtorkme de Petersen a tous les graphes finis [4]. Mon rksultat, le thkorkme des 1-facteurs, est maintenant bien connu. Permettez-moi de le poser de la manikre suivante. Soit G un graphe. Un G-couple est une paire ordonnke B = (S, U ) d’ensembles complkmentaires S et U de sommets de G. L’ensemble U dktermine un sousgraphe Ind(G, U ) . Les sommets de Ind(G, U ) sont ceux de U, et ses aretes sont les arttes de G ayant leurs extrkmitts dans U. Nous appelons les composantes de Ind(G, U ) cornposantes de U. Nous kcrivons h ( B ) pour le nombre de composantes impaires de U, c’est a dire de composantes ayant un nombre impair de sommets. Alors nous kcrivons et nous appelons l’entier 6 ( B ) la dkficience de B. Le G-couple B s’appelle une barritre si sa dificience est positive. Voici le thtorkme des 1-facteurs: G a soit un 1-facteur, soit une barritre, mais jamais les deux. J’ttais trks heureux d’avoir ce rksultat, mais il me semblait que les autres mathtmaticiens n’ktaient pas intkressks. Un jour j’ai rencontrk un mathkmaticien

2

W.T. Tutte

Cminent. “Ah, M. Tutte” dit-il, “Comment va votre recherche?”. “J’ai un thkoreme general sur les facteurs des graphes, qui contient le theoreme de Petersen comme cas particulier”. I1 Ctait mecontent. “Quoi!” dit-il, “Nous avons deja assez de preuves du theoreme Petersen!” Le theoreme des 1-facteurs resemble au thCoreme plus ancien de P. Hall, sur les 1-facteurs des graphes bipartis. Cette resemblance a CtC utilisCe par Tibor Gallai pour sa demonstration nouvelle du thtoreme des 1-facteurs [l]. La demonstration part d’un graphe hypothetique G minimal, sans 1-facteurs et sans barrieres. Elle se decompose en trois parties. Premikrement Gallai montre que G a un G-couple B = (S, U ) telle que sa dCficience est zero et l’ensemble S n’est pas vide. Puis Gallai trouve un ensemble M d’arCtes de G tel que chaque sommet de S est incident a une seule arCte de M, et tel que chaque composante impaire de U est incidente a une seule arCte de M. Une application du theoreme de Hall traite les composantes impaires de U comme de simples sommets, et a Ia fin Gallai ajoute a M quelques aretes des composantes de U, et obtient un 1-facteur de G. Contradiction et demonstration. I1 y a une thCorie plus genkrale des facteurs des graphes. Soit f une fonction sur I’ensemble V(G) des sommets de G, f(x) etant un nombre entier pour chaque sommet x. Un f-facfeur de G, est un graphe partiel H tel que val(H, x ) = f(x). Ici val(H, x ) est le degre‘ (ou ualence) du sommet x dans H. Remarquons que chaque boucle incidente a x compte deux fois dans l’tvaluation de val(H, x). La thCorie des f-facteurs est par certains c6tCs plus intkressante que celle des 1-facteurs. Elle a, par exemple, une dualite. Considerons la fonction f ‘ , dCfinie par I’Cquation f’(x) = val(G, x ) - f ( x ) .

(2)

Soit F un f-facteur de G. Le graphe partiel F‘, dCterminC par les ar&tesde G qui n’appartiennent pas a F est un f’-facteur de G. La dualit6 est entre les f-facteurs et les f’-facteurs. Dans la thCorie des 1-facteurs nous avons utilise les G-couples. Pour les f-facteurs nous devions utiliser les G-triples. Un G-triple est un triple ordonnC B = (S, T, U ) d’ensembles de sommets, tel que chaque sommet appartient a un seul membre de B. Nous considerons encore les composantes de U, en les classant comme paires ou impaires. Mais avec les f-facteurs la classification est plus difficile. Soit C une composante de U. Soit h ( T , x ) le nombre d’arCtes joignant un sommet x de C a l’ensemble T. Nous posons. J ( B ,f, C )=

c x

{f(x)+ h ( T , x)).

(3)

Nous disons que C est paire ou impaire selon que l’entier J ( B , f , C ) est pair ou impair. Nous Ccrivons h(B, f ) pour le nombre de composantes impaires de U. La

Les facteurs des graphes

3

dtficience 6 ( B ,f ) de B est defini de la maniere suivante.

Ici h ( S , T ) est le nombre d’arctes joignant S a T. Le G-triple B est une f-bam‘dre de G si sa dCficience est positif. Et voici le grand theorbme des f-facteurs: G a soit un f-facteur, soit une f-barridre, mais jamais les deux. Revenons a notre dualite. Le G-triple dual de B = ( S , T, U ) est par definition B ’ = (T,S, U ) . On trouve que h(B, f ) = h(B’,f’). Donc 6 ( B ,f ) = 6 ( B ‘ ,f’). La formule (4) est auto-duale. On peut arriver au thtorkme des f-facteurs par beaucoup de chemins. Ma premibre demonstration Ctait par la mCthode des chaines alternees, la mCthode de Petersen. Plus tard j’ai dtduit le thCorkme en partant du thkorbme des 1-facteurs. Aujourd’hui j’ai une dCmonstration nouvelle. Elle est une gtntralisation de la mtthode de Gallai pour les 1-facteurs. Au lieu du theorkme de Hall elle fait usage d’un thCorbme de Oystein Ore. Ce thCorkme est une gCnCralisation du thCorbme d e Hall, et il donne une condition, nkcessaire et suffisante, pour qu’un graphe biparti ait un f-facteur [8]. On a prCtendu que le thtorkme des f-facteurs est trop difficile a appliquer. Donc j’ai ecrit un essai pour montrer quelques simplifications [6]. Le message de cet article est a peu prks le suivant. “Si vous avez une f-barrikre B = ( S , T, U ) vous pouvez quelquefois transporter un sommet d’un membre de B 2 un autre, sans diminuer la dkficience de B”. Par exemple, si x est un sommet de T tel que f(x) = 0 ou 1 on peut le transporter dans U. A l’aide de telles transports beaucoup d’applications deviennent faciles. Peut&tre voulez-vous dCduire le thCorkme des 1-facteurs du thCorkme gCntral? Eh bien vous dites “Pas de f-facteur, donc une f-barriere B = ( S , T, U ) . Mais f(x) = 1, toujours. Donc tous les sommets de T peuvent Ctre transportCs dans U. A la fin T sera vide. Le G-triple ( S , T, U ) sera alors un G-couple ( S , U)”. Que le thtorkme soit difficile ou non, quelques mathkmaticiens ont voulu le gCnCraliser. Mais quelquefois, je pense, les rksultats ne sont pas de vraies gkneralisations d u t h k o r h e mais plutBt des conskquences de celui-ci. ConsidCrons par exemple le theorbme de Lovasz [ 2 ] . A chaque sommet de G on associe deux entiers g(x) et f ( x ) , tels que

0 s g ( x ) s f ( x ) < v a l ( G , x).

On demande existe-t-il un graphe partiel H tel que, pour chaque x, g(x) G val(H, x ) s f ( x ) ?

(5)

Le theorkme de Lovasz donne une condition necessaire et suffisante pour l’existence d’un tel graphe partiel. Le cas f = g, est le thkorkme des f-facteurs, dont le theorbme Lovasz est Cvidemment une gkntralisation.

4

W.T. Tutte

Mais le thCoreme Lovasz est aussi une conskquence du theoreme des f-facteurs! Ajoutons ti G un sommet nouveau k. Joignons k a chaque sommet x de G par f ( x ) - g(x) nouvelles arttes. Ajoutons de plus rn boucles incidents a k . Ainsi nous avons construit ainsi un graphe L. Maintenant nous Ccrivons f(k) = n, ou n est un entier ayant la paritC de la somme des entiers f ( x ) de G. Pour n et rn est assez grands, on vCrifie facilement 1’Cquivalence le thtorkme de Lovisz pour G est la mEme chose que le thtorkme des f-facteurs pour L. Si nous avons un graphe partiel H de G satisfaisant (5) nous pouvons lui ajouter quelques arites de L incidentes 2 k et obtenir un f-facteur de L. D e cette manikre on va du thCorkme des f-facteurs au thCoreme de Lovasz [8]. Comment gCnCraliser la theorie des f-facteurs aux matroi‘des? Premierement sans doute nous devons faire une Ctude algkbrique des f-facteurs. ConsidCrons une fonction p sur les sommets de G, telle que p ( x ) un entier positif, negatif ou soit nu1 pour chaque x. Avec C. Berge nous appelons p un potentiel. A chaque potentiel p est associCe une tension 6p qui est une fonction sur Ies arites de G. Si A est un arete et si x et y sont les sommets incidents nous Ccrivons

(@)(A)= p b ) + P ( Y ) .

(6)

Si A est une boucle sur A nous Ccrivons x = y et (6p)(A)= 2 p ( x ) .

“Quoi?” dPtes vous peut-&re, “C’est une dr6le de tension! Elle a une somme la ou les tensions vkritables ont une diffkrence”. NCanmoins nos tensions bizarres sont les ClCments d’un groupe additif, car

pour des potentiels quelconques p et 4. Nous appelons ce groupe A(G). Nous parlons maintenant des homomorphismes du groupe A(G). Un tel homomorphisme h, est une fonction sur les ClCments de A(G) telle que h ( T ) soit un entier et

h ( S + T ) =h ( S ) + h ( T ) , pour des ClCments arbitraires S et T de A(G). I1 faut remarquer que chaque potentiel f dttermine un homomorphisme h, de A(G), de la manikre suivante:

Encore une dkfinition algkbrique; celle d’une solution d’un homomorphisme h. C’est une fonction g sur les arttes de G telle que

h ( 6 p )=

1M A ) . (+)(A)} A

pour chaque potentiel p.

Les facteurs des graphes

5

On vCrifie qu’un f-facteur F dktermine une solution g de l’homomorphisme hf. Cette solution est tres spkciale: g(A) vaut 1 si A est une aiete de F, et 0 autrement. Disons que g est une solution unipositive de h,. Ainsi nous arrivons a une formulation algtbrique de la thCorie des f-facteurs: le probleme est de trouver une solution unipositive d’un homomorphisme donnC de ~71. Comme toujours la thtorie est plus facile pour les graphes bipartis. Pour un tel G le groupe A(G) est un module totalement unimodulaire, et nous avons dCja une thCorie des homomorphismes de ces modules [5]. La thCorie algCbrique pour les graphes gtntraux est moins satisfaisante pour l’instant. Elle s’applique naturellement aux modules de la forme A(G), mais elle n’a pas de gCnCralisations connues aux autres modules.

Bibliographie [1.1 T. Gallai, Neuer Beweiss eines Tutte’schen Satzes. Magyar Tud. Akad. Mat. Kutato Int. kozl. 8 (1963) 135-139. [2] L. Lovasz, Subgraphs with prescribed valencies, J. Combinatorial Theory 8 (1970) 391-416. [3] M.A. Sainte-Lague, Les reseaux (ou graphes), MCmorial des Sciences Mathematiques, Fascicule XVIII, Paris 1926. [41 W.T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107-111. [5] W.T. Tutte, A class of Abelian groups, Canad. J. Math. 8 (1956) 13-28. [ 6 ] W.T. Tutte, Spanning subgraphs with specified valencies, Discrete Math. 9 (1974) 97-108. [7] W.T. Tutte, On chain-groups and the factors of graphs, Research Report C O R R 76/45, University of Waterloo, 1976. [ 8 ] W.T. Tutte, Graph factors, Research Report C O R R 79-21, University of Waterloo, 1979.