284
Short Reports EXPERIMENTAL
Chromatography. Meaters were analyzed by GLC as previously described [S]. For GC-MS, columns and conditions were essentially the same except when ozonolysis products were analyzed. In &ese instances, aprecolumn co&&g palladium chloride was used with H, as the carrier gas r9.101. Initially, the catalyst reduced compo&nts to their c&b& skiletons; iowever, injection of S-10 pl of CS, adjusted the catalyst activity so that ozonidea were reduced to aldehydes. HPLC was carried out on a preparative scale (25 mg injections) with the following columns and solvent systems: p -Porasil, 1 ft x 4 in. OD, and hexane-Et,0 (9:l); p-Bondapak C,,, 2 (lft x &in. OD) (Waters Assoc.), and MeOH-H,O (3 : 1). For column chromatography, a 50 x 1.5 cm column was packed with 25 g of 60-200 mesh Hi-Flosil. Esters (ca 2 g total) were eluted with 11. hexane followed by 11. of bexane-Et,0 (9: 1). Spectral analysis. For GC-MS, the GC was coupled to the MS through ajet-type separator. The computerized data acquisitionreduction system has been detailed elsewhere [ll]. PMR spectra were measured in CDCl, and IR spectra in CS,. To permit comparison with the data of rcf [7], ORD curves were obtained ss hexane solns. Sample preparation Oil was extracted from the ground seeds with petrol (bp 35-60”), and the Me esters prepared by NaOMe transesterification [12]. Hydra&e reduction was carried out in EtOH [S]. Samples were ozonixed in CH,Cl, [13] and injected directly into the GC-MS system without the addition of triphenylpbosphine. For location of epoxy groups, derivatives were prepared by treatment with BF,/MeOH followed by silylation [6].
PbyfockmiWg,
1977, Vol. 16, pp. 284-285,
Perpmon
LES MONOTERPENES
Acknowledgements-F. R Eark grew and harvested the C. conyzaefoliu seeds from a collection originally received from the USDA Plant Introduction Station, Chico, California D. Weisleder provided the PMR spectra and R. G. Powell the ORD measurements.
REFERENCES 1. Mikolajczak, K. L, Smith, C. R, Jr., Bagby, M. 0. and Wolfi, I. A. (1964) J. Org. Chem 29, 318. 2. Taller& W. H., Cope, D. G, Hagemann, J. W., Earle, F. R. and WolQ I. A. (1966) Lipids 1,335. 3. Earl& F. R (1970) J. Am Oil Chem Sot. 47, 510. 4. Miwa, T. K (1963) J. Am. Oil Chem Sot. 40,309. 5. Kleiman, R, Spencer, G. F., Tjarks, L. W. and Earle, F. R. (1971) Lipids 6,617. 6. Kleiman, R and Spencer, G. F. (1973) J. Am Oil Chem Sot. 50,31.
7. Powell, R G., Smith, C. R., Jr. and Wolff, I. A. (1967) Lipids 2, 172. 8. Plattner, R D., Spencer, G. F. and Kleiman, R. (1975) Lipids 10, 413. 9. Plattner, R. D., Spencer, G. F. and Kleiman, R. (1976) Lipids 11, 163. 10. Beroza, M. and Sermiento, R (1966) Anal. Chem 38, 1042.
11. Spencer, G. F., Plattner, R. D. and Powell, R. G. (1976) J. Chromatog. 120,335.
12. Miwa, T. L, Earle, F. R, Miwa, G. C. and Wolff, I. A. (1963) J. Am Oil Chem Sot. 40,225. 13. Kleiman, R., Spencer, G. F., Earle, F. R and Wolff, I. A. (1969) Lipids 4, 135.
Pmw, Printed in England.
DE CONOCEPHALUM CONICUM, PORELLA PLATYPHYLLA*
FRULLANIA
TAMARISCI
m
CLAUDE SUIRE et GUY BOURGEOIS Laboratoire de Botanique, Universitk de Bordeaux I, Avenue des Facultts-33405 Talence Cedex, France Laboratoire de Chimie appliqu&, Universitt de Bordeaux I, 351, tours de la Libkation-33405 Talence Cedex, France (Received 28 July 1976) Key Word I&x-Conocepbalum conicum; Frullania tamarisci ssp. mmar2sci; PeUia epiphylla; P. jiibronkma furcigera; Porella platyphylla; Hepaticae (liverworts); Bryophytes; essential oil; monoterpenes.
Des sesquiterp&nes ont Ct&mis en tvidence dans les essences extraites de nombreuses Htpatiques [l]; des monoterp&nes n’ont et6 identifib que chez cinq esp&ces [2-51, dont ConocephaZum conicum [3]. Conocephahun conicum (L.) Dum. (Marchantiale), Pellia epiphyllu (L.) Corda et P. fabbroniana Raddi f. jiucigeru (Hook.) Mass, (Metzgkriales), Frulluniu tamarbci (L.) Dum. ssp. tamarisci Hatt. et Porellaplatyphyllu
* Note 4 de la s&e ‘Lcs essence extraites du thalle des H&patiques’, 3: Rev. Bryol. Lich&ol. (a paraitre).
f.
(L.) Lindb. (Jungermanniales) ont Cti r6coltb dans le SW de la France (Dordogne, Gironde). Des 6chantillons ont &ti d&o& dans 1’Herbier de Bryophytes du Museum National d’Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue de Buffon, 75005 Paris, France. Les 6chantillons (100-200 g poids frais) sont triCs, lavb et s6chb 24 hr g temp&ature ambiante, puis broy6s en prCsence de n-pentane distill& chromatographiquement pur. Apr&s 48 hr de ma&ration g l’abri de la lumi&re, l’extrait (environ 11) est chromatographit sur colonne d’alumine neutre (150 g). La fraction Bu6e par le pentane (21) est cont. puis ttudiCe par GC-MS. Les monoterp&es sont identifib par comparaison de leurs spectres de
Short
Tableau 1. Rbultats
en % de la fraction monoterp&s I’extrait total
Conocephalum co&urn
u-pin&e camph&ne fi-pin&ne sabin&ne myr&e a-terpinbne limon&ne /I-phellandn?ne y-terpin&ne p-cymbe terpinol&ne monoter*nes non identifibs y0 monoterp&s mono + sesqui.
f-xl 2s
Frldlania tamarisci
Al,6 894 3690
6493 [31 4,2
Reports
de
Porella platyphylla
44,Of
authentiques, obtenus par introduction dire&e. Les r&sultatssont don& dans le Tableau 1. Il n’a pas 6ti mis en tvidence de monoterp&nes dans les extraits des deux Pellia &udi&.
PARTIE EXPiRIMENTALE GLC: colonne l/8’ x 2m, 10% Carbowax 20 M/Chromosorb W 60-8Omeshs. He 25 ml/min. temp. inject. 200”. Isothenne 70”, 10 min. temp. programmk 70-160” g 3”/mn. S&arateur type Biemann (temp. 200”) coup16 & AEI MS 12, temp. source 180” 70eV. Les principales caracttistiques MS des monoterp&nes identifiCs sent en accord avec la litt., en part. [6].
4491 493 14,0
0.8
M avec ceux d’&hantillons
3,7 15,0 097
399 [31
279 1,O 14.3t
RiFkRENCES
66,O
2,3
70,o
[3] : compods
pr&&demment identifies par IR. * Les difficult& d’identification sent accrues par la faible teneur de l’essence en monoterp&nes. t L’un des deux monoterp&nes non identifies repr6sente 14,2x de la fraction mono&p&s. m/e 93 (lOOo/,), 91 (30), 77 (27), 136 (M+, 17), 92 (17), 41 (lo), 39 (9).
INHALTSSTOFFE
1. Suire, C. (1975) Rev. Bryol. Lichkl. 41, 105. 2. Suire, C. (1970) Le Botaniste 53, 125. 3. Gleizes, M., Pauly, G. et Suire, C. (1972) Le Botaniste 55,339. 4. Matsuo, A., Nakayama, M. and Hayashi, S. (1974) Z. Natursforsch. 29c, 442. 5. Svensson, L. (1974) Phytochemistry 13,651. 6. Ryhage, R. and Sydow, E. von (1963) Acta Chem. Stand. 17,
2025.
DER LZABUM-GRUPPE*
FERDINAND BOHLMANN, MICHAEL GRENZ
Ins&t
285
und CHRISTA ZDERO
fiir Organ&he Chemie der Technischen UniversitHt Berlin, StraSe des 17. Juni 135 W. Germany (Eingegangen 28 Juli 1976)
Key Word Index-Ferreyanthus verbascifolius; Liabum eggersii. L. joribundum; polymnoides; Philoglossa mimuloides; Compositae; new guaianolide.
Cacosmia rugosa; Munnozia
Pflanzen und Herkunft : Ferreyanthus verbascifolius (HBK) R. et B. (Herbar Nr. 6874, Smithonian Institution), Liabum eggersii Hieron (6949), L. jloribundum Less. (6875), Cacosmia rugosa HBK (6903), Philoglossa mimuloides (Hieron) H. R. et J. C. (6881) und Munnozia polymnoides (DC.) R. et B wurden von Dr. R. King, Smithonian Institution, Washington, im Februar 1976 in Ecuador gesammelt. Von botanischen Gesichtspunkten wird die Abtrennung der Liabum-Gruppe von der Tribus Senecioneae vorgeschlagen [l]. Es ist daher interessant, ob die Inhaltsstoffe eine derartige Trennung statzen. Bisher ist nichts iiber die chemischen Verbindungen dieser Gruppe bekannt. Wir haben daher einige in Ecuador heimische Arten untersucht. Die Wutieln von Ferreyanthus verbascifolius enthalten die bekannten Polyine l-3 [2]. Die oberirdischen Teile liefern dagegen ein neues Sesquiterpenlacton, bie dem es sich nach dem ’ H-NMR-Spektrum urn einen Tiglinsiiureester eines Guajanolids handeln mu& Systematische ‘H-NMR-spektroskopische Untersuchungen llihren zu der Konstitution und Konfiguration 4.
’ H-NMR-Daten(&Werte, TMS als innerer Standard, 270 MHz)
* 86. Mitt. in der Serie ‘Natttrlich vorkommende TerpenDerivate’, 85. Mitt. Bohhnann, F. und Ehlers, D., vorstehend.
Die Zuordnung-wurde gesichert.
CDCl, l&H 2a-H 28-H 3ci-H 3/3-H Sa-H 6B-H 7a-H 8fi-H 9a-H 9B-H 13-H 13-H 14-H 14-H 15-H 15-H 18-H 19-H 20-H
ddd
m
3,Ol 1,87
id(br) ddd(br) dd(br) dd ddaYd ddd
2: 2147 2,83 4,05 3,22 5,07
dd dd
2,33 &71 6,21 5,62 5,30 5,ll 5,05 4,93 6,95 1,85 1,89
:: sfbr) s(br) s(br)
s(br) ; &
CDCl,-CsD6 1: 1 ddd m m
2,64 1,56 1,56
ddd(br) dd(br) dd ddddd ddd dd dd d
2,28 2,47 3,52 2,83 4,87 2,39 2J3 6,13
f(br) sfbr) s(br) s(br)
:‘:g 5106 4,85 4,77 6,88
:;
1,60 1,80
dq durch
systematische
J (Hz) 1&2a l/$2/3 1&5a 2a,2B 2u,3a 2u,3,9 2B,3a 28738 5a,6fi 6/?,7a 7a,8/3 7a,13 8/?,9a 8/?,9p 9.9’
= = = = = = = _ = = = = = = =
9 9 9 16 8 8 8 8 10 9 9 3 5 5 14
Eutkoppelung