Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55 www.elsevier.com/locate/jqsrt
Line intensities of
14
N216O: the 10 micrometers region revisited
L. Daumonta , C. Claveaua , M.-R. Debacker-Barillyb , A. Hamdounib , L. R8egalia-Jarlotb , J.-L. Te9oa; ∗ , S. Tashkuna; c , V.I. Perevalovc a
Laboratoire de Physique Moleculaire et Applications, C.N.R.S., (laboratoire associe a l’Universite Pierre et Marie Curie), Universite Pierre et Marie Curie, Boite 76, 4 Place Jussieu, 75252 Paris Cedex 05, France b Groupe de Spectrometrie Moleculaire et Atmospherique, (ESA CNRS 6089), Universite de Reims, Faculte des Sciences, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France c Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 1, Akademicheskii av., 634055 Tomsk, Russia Received 2 October 2000; received in revised form 7 December 2000; accepted 2 January 2001
Abstract New line intensity measurements in the 10 m region of 14 N2 16 O have been performed using FTS in Paris and Reims. About 150 lines in hot bands, including those of the forbidden 0330 – 0110 band, have been measured for the ?rst time. The new observations together with those available in this region have been used in the ?t of e9ective dipole moment parameters. A dimensionless weighted standard deviation of 1.28 and a RMS deviation of 4.2% have been obtained. Some disagreements with previous measurements and with the HITRAN and GEISA databases have been pointed out for the 0001–1000 and 0220 – 0000 bands. ? 2001 Elsevier Science Ltd. All rights reserved.
1. Introduction The 10 m region of 14 N2 16 O was extensively studied by Toth who reported line positions [1] and line intensities [2,3] in the 900 –1400 cm−1 window. His e9ort is the main contribution to the HITRAN [4] and GEISA [5] databases for 14 N2 16 O in this spectral region. All the available Toth data were processed using the method of e9ective operator, previously applied to the CO2 molecule both for ?tting of line positions [6] and line intensities [7]. ∗
Corresponding author. Tel.: +33-1-44-27-44-76; fax: +33-1-44-27-70-33. E-mail address:
[email protected] (J.L. Te9o). 0022-4073/01/$ - see front matter ? 2001 Elsevier Science Ltd. All rights reserved. PII: S 0 0 2 2 - 4 0 7 3 ( 0 1 ) 0 0 0 5 4 - 1
38
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
While the ?tting of Toth line positions was found satisfactory [8], some disagreements between calculated and measured band intensities were noticed [9]. They mainly concern the intensities of the two laser bands, 0001–1000 and 0001– 0200, centered at 939 and 1056 cm−1 , respectively. In order to clarify this issue new accurate line intensity measurements have been performed using FTS in Reims in the region of these bands. On the other hand, a comparison of Toth line intensities with those reported in HITRAN and GEISA exhibits a disagreement for the 0220 – 0000 forbidden band. Then line intensities of this band have been measured again by FTS in Paris and Reims. In addition, some line intensities have been obtained for the ?rst time in the associated 0330 – 0110 hot band. The new measurements performed in Reims and Paris have been included in a ?tting procedure of an e9ective dipole moment to all available experimental line intensities in the 10 m region of 14 N2 16 O. The result of this ?t is presented and discussed below. 2. Experimental results A ?rst spectrum of N2 O in the 1000 –1400 cm−1 region has been recorded using the long path Fourier transform spectrometer built at the LPMA in Paris and described elsewhere [10]. In the experiment, the N2 O sample was contained in a multiple path cell with a 36:07 m maximum optical path used at room temperature. The temperature and the pressure were, respectively, 297:6 K and 6.00 Torr. The temperature was measured using a Pt thermistor set beside the ◦ entrance window of the cell. This thermistor provides an accuracy of 0:3 C. As the room is ◦ thermostated, the temperature did not vary by more than 0:5 during the interferogram recording. The pressure was measured with a 0 –10 Torr capacitance manometer characterized by a reading reproducible within 0.15% and an overall accuracy of 0.5%. The maximum di9erence path was 2:8 m, yielding an apparatus function width between 3.5 and 3:6×10−3 cm−1 after numerical apodization. The width of spectral lines was close to 5×10−3 cm−1 , which is to be compared with the full Doppler line width of 2:1×10−3 cm−1 in this region. The signal to noise ratio obtained was about 500. A portion of the spectrum is shown in Fig. 1. In order to record a symmetric line pro?le within the noise, the phase error is corrected during the interpolation procedure as described in Ref. [11]. The observed line Ia ()=I ˜ 0 () ˜ is compared with a synthetic line obtained by convolution product of the apparatus function A() ˜ with a theoretical line shape: Ia () ˜ ˜ p))]: = A() ˜ ∗ [1 − exp(−‘k(; I0 () ˜
(1)
A Voigt pro?le is assumed for the absorption coePcient k(; ˜ p), where p is the gas pressure, and the line position and line intensity are determined through a least square ?t to the observed line contour. Two examples of ?tting of the line contour are given in Figs. 2 and 3. The line intensities measured in the 0220 – 0000 and 0330 – 0110 band are listed in Tables 1 and 2, respectively. The line widths have been constrained to the values given by Toth [3]. As the experimental conditions have been chosen to observe the hot band, only the weakest lines of the cold band could be measured in Paris, namely the lines for high J values. It can be seen from Table 1 that their intensities are a few percents lower than the corresponding
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
39
Fig. 1. Transmittance spectrum of N2 O bands obtained at LPMA: total absorption path of 36:07 m, pressure of 6 Torr, temperature of 297:6 K.
Fig. 2. Observed and calculated spectrum of the R34 line of the 0330e– 0110e band. The residuals given at the bottom of the table are extended 10 times.
40
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Fig. 3. Observed and calculated spectrum of the P58 line of the 0220e– 0000e band. The residuals given at the bottom of the table are extended 10 times.
values of Toth [2]. New measurements in hot bands belonging to the same region have also been carried out. They concern the 0310 – 0110, 0420 – 0220, 1200-1000, and 1310 –1110 bands. The corresponding line intensities are reported in Tables 3– 6, respectively. Other spectra of N2 O in the 900 –1300 cm−1 region have been recorded using the Fourier transform spectrometer built at the GSMA in Reims and described elsewhere [12,13]. A 12:16 m path length cell operating at 296 K was used. The temperature of the whole set-up (spectrometer and absorbing cell) was controlled with a precision of 0:5 K, during the record of the spectra. Three di9erent N2 O samples were used corresponding to pressures of 5.00, 15.00 and 50.60 Torr. These pressures were measured with a 100 Torr MKS Baratron gauge characterized by an overall accuracy of 0.3%. The path di9erence was 1:5 m corresponding to an unapodized resolution of 3:3×10−3 cm−1 . In the used spectral range (10 m), the signal to noise ratio obtained was of the order of 700. The line intensities in the 0220 – 0000, 0001–1000, 0001– 0200 and 0200 – 0000 bands are obtained using a multispectrum ?tting software [14] and are reported in Tables 1, 7, 8 and 9, respectively. It can be seen from Table 9 that the measured line intensities of the strongest band are about 4% lower than the corresponding values of Toth [2]. 3. Line intensity calculation The approach based on the method of e9ective operators has been used for the line intensity calculations, as already successfully applied for ?tting of line intensities of 14 N2 16 O in the
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
41
Table 1 Observed line intensities (at 296 K) of the 0220e– 0000 forbidden banda Line
Position
Obsb
P66 P63 P62 P60 P58 P57 P56 P54 P52 P50 P49 P47 P42 P35 P34 P33 P31 P28 P25 P19 R23 R24 R25 R27 R30 R31 R32 R33 R34 R35 R36 R53 R57 R60 R63 R64
1128.215 1130.157 1130.811 1132.132 1133.467 1134.141 1134.817 1136.182 1137.562 1138.955 1139.658 1141.073 1144.671 1149.845 1150.597 1151.352 1152.870 1155.169 1157.493 1162.215 1198.536 1199.432 1200.330 1202.134 1204.861 1205.775 1206.692 1207.611 1208.533 1209.458 1210.386 1226.614 1230.564 1233.560 1236.586 1237.599
0:61p 1:08p 1:27p 1:92p 2:64p 3:01r 3:63r 4:70r 6:18r 7:79r 8:63r 10:26r 14:85r 17:46r 18:90r 17:98r 16:85r 14:40r 13:08r 4:91p 12:47r 13:71r 15:56r 17:60r 20:66r 21:79r 23:12r 22:19r 21:90r 23:30r 23:38r 6:22p 3:67p 2:21p 1:31p 1:14p
Obsc
Obsb −Obsc /Obsb (%)
0.67
−9:8
1.29 1.99 2.60 3.05 3.62 4.68 5.97 7.58 8.27 10.17 14.03 17.30 17.31
−1:6 −3:6
16.06
4.7
4.92 12.62 13.39 14.92 17.95 21.41 22.98 22.91
−0:2 −1:2
23.51 22.91 22.63 6.53 3.98 2.38 1.41 1.15
−7:3
1.5
−1:3
0.3 0.4 3.4 2.7 4.2 0.9 5.5 0.9 8.4
2.2 4.5 −2:3 −3:4 −5:5 0.9 1.7 3.4 −5:0 −8:4 −7:7 −7:6 −0:9
Positions in cm−1 ; intensities in 10−24 cm=molecule. This work. Line intensities measured in Paris(p ) or Reims(r ). c Line intensities measured by Toth [3]. a
b
4 m region [15]. The main feature of this approach is that the rovibrational energy levels are gathered within separate polyads that can be assigned a quantum number P = 2v1 + v2 + 4v3 ;
(2)
42
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Table 2 Observed and calculated line intensities (at 296 K) of the 0330 – 0110 forbidden banda 0330e– 0110e
0330f– 0110f
Line
Position
Obs
Calc
P50 P45 P42 P26 P24 P23 R21 R22 R23 R24 R25 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R41
1140.044 1143.486 1145.593
1.52 2.46 2.83
1.54 2.45 3.00
a
(o − c)=o
Position
Obs
Calc
(o − c)=o
1156.781 1158.387 1159.193 1196.974 1197.846 1198.717
2.90 2.01 2.18 1.92 2.38 2.75
2.91 2.37 2.10 2.12 2.44 2.77
−0:3 −17:9
1200.468 1202.224 1203.105 1203.987 1204.872 1205.755
3.59 4.06 4.12 4.57 4.28 4.97
3.43 4.06 4.35 4.61 4.84 5.04
4.5 0.0 −5:6 −0:9 −13:1 −1:4
1207.531
5.44
5.32
2.2
1209.309 1210.201 1211.095 1211.991
5.67 5.70 5.30 4.90
5.43 5.42 5.37 5.28
4.2 4.9 −1:3 −7:8
−1:3
0.4
−6:0
1199.153 1200.066 1200.981
2.45 2.43 3.18
2.54 2.82 3.10
−3:7 −16:0
1207.474
4.04
4.45
−10:1
1209.356
4.13
4.54
−9:9
1216.042
3.02
3.78
−25:2
2.5
3.7
−10:4 −2:5 −0:7
Positions are in cm−1 ; intensities are in 10−25 cm=molecule; (o − c)=o are in %.
and that the line intensities of all transitions corresponding to a given value of the quantum number di9erence QP are processed simultaneously. To each series of transitions de?ned by a QP value corresponds a set of parameters of the matrix elements of an e9ective dipole moment, which can be ?tted to the experimental line intensities with the help of the wavefunctions obtained from ?tting of the e9ective Hamiltonian to the experimental wave numbers [8]. The transitions we are dealing within the present work belong to the QP = 2 series. A ?rst set of the corresponding parameters of the e9ective dipole moment was determined in Ref. [9] from ?tting to Toth band intensities [3] only. Our line intensity measurements have been included in a new ?t of these parameters to all the available experimental data belonging to this series. It is to be stressed that concerning Toth data, only the experimental line intensities reported in his papers have been included in the input data set. It means that a number of bands for which only band intensities and Hermann–Wallis coePcients were given have not been considered in this work, contrary to the previous one [9].
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
43
Table 3 Observed and calculated line intensities (at 296 K) of the 0310 – 0110 banda 0310f– 0110f Line P64 P63 P62 P59 P57 P56 P55 P54 R58 R59 R60 R61 a
Position
0310e– 0110e Obs
Calc
(o − c)=o
1111.291
9.69
10.01
−3:3
1116.431 1117.168
46.38 57.25
47.05 57.68
−1:4 −0:8
1213.140 1214.071 1215.002 1215.934
34.58 27.15 21.99 17.13
34.92 28.15 22.60 18.06
−1:0 −3:7 −2:8 −5:4
Position
Obs
Calc
(o − c)=o
1108.011
8.35
7.55
9.6
1109.620 1112.035 1113.645 1114.450 1115.255 1116.061
12.00 23.06 35.05 44.21 53.68 65.97
12.12 23.89 36.77 45.33 55.62 67.99
−1:0 −3:6 −4:9 −2:5 −3:6 −3:1
Positions are in cm−1 ; intensities are in 10−25 cm=molecule; (o − c)o are in %.
Each branch of each band has been assigned a statistical weight inverse to the estimated accuracy of measurements, when they are indicated in the original references. An accuracy of 2% has been assumed for Toth measurements. The results of the adjustment is summarized in Table 11, which provides the number of ?tted lines and the RMS deviations corresponding to each experimental reference. The RMS deviation is de?ned according to the equation N obs − S calc )=S obs )2 i i i = 1 ((Si RMS = ×100%: (3) N The calculated line intensities for the bands studied in this work are given and compared with our measurements and those of Toth in Tables 2 –10. The statistics of the ?t for each branch are given in Table 12 both in terms of RMS and of mean residual (MR) de?ned according to the equation MR =
N
1 Siobs − Sicalc ×100%; N Siobs
(4)
i=1
where N is the number of ?tted line intensities for a given branch. A small value of MR associated with a large RMS reRects a rather large dispersion of the data, while a systematic deviation between observations and calculations is evidenced when both values are large. The mean residuals are also plotted in Fig. 4, which gives an overview of our calculated line intensities, and of the corresponding values of HITRAN and GEISA, compared with experimental ones. The large disagreements between our values and those reported in the two databases for the 0001–1000 band and for the P branch of the 0220 – 0000 band are con?rmed.
44
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Table 4 Observed and calculated line intensities (at 296 K) of the 0420 – 0220 banda 0420e– 0220e Line P52 P51 P50 P49 P48 P45 P44 P42 P41 P40 P39 P38 P36 P35 P34 R34 R35 R38 R39 R48 R49 R50 R51 a
Position
0420f– 0220f Obs
Calc
(o − c)=o
1112.705 1113.447 1114.192
8.13 9.67 12.19
8.18 9.81 11.72
−0:6 −1:4
1117.197 1117.954 1119.476 1120.240 1121.007 1121.777 1122.549 1124.101 1124.880 1125.662 1183.714 1184.613 1187.325 1188.233 1196.505 1197.435 1198.366 1199.300
22.59 26.44 37.05 40.78 46.84 55.73 60.37 83.04 86.90 99.70 109.5 97.70 66.18 57.87 15.10 12.66 10.82 8.78
22.82 26.67 35.92 41.44 47.54 54.33 61.77 78.82 88.38 98.64 108.2 97.02 67.97 59.82 15.49 13.05 10.93 9.13
−1:0 −0:9
3.9
3.0
−1:6 −1:5
2.5
Position
Obs
Calc
(o − c)=o
1111.266 1112.052
7.84 7.32
6.66 8.03
−9:7
15.1
1114.413
15.04
13.74
8.6
1119.153 1119.946 1120.739
35.88 42.18 47.62
35.63 41.09 47.20
0.7 2.6 0.9
−2:3
5.1
−1:7
1.1 1.2 0.7 −2:7 −3:4 −2:6 −3:1 −1:0 −4:0
Positions are in cm−1 ; intensities are in 10−25 cm=molecule; (o − c)o are in %.
The parameters of the e9ective dipole moment are listed and compared with those previously determined [9] in Table 13. These parameters are de?ned by Eqs. (4) and (9)–(11) of Ref. [7]. The corresponding matrix elements are given in columns 2–5 of the table. 4. Discussion and conclusion Table 11 and Fig. 4 show that the ?t of line intensities has been achieved near to the experimental errors, and that the data from the di9erent sources are generally consistent. An overall dimensionless weighted standard deviation of 1.28 and a RMS of 4.2% have been obtained. It can be seen from Tables 2–10 that the agreement between the line intensities calculated from the e9ective dipole moment parameters with those measured in this work is fairly good, ranging from 2% to about 10% for the weakest band, namely the 0330 – 0110 forbidden band. The main contribution to the intensity of the forbidden band arises from Q‘2 = 2 type
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
45
Table 5 Observed and calculated line intensities (at 296 K) of the 1200 –1000 banda Line
Position
Obs
Calc
(o − c)=o
P50 P42 P40 P39 P38 P37 P35 P34 P32 P4 P2 P1 R1 R34 R36 R40 R41 R42 R43 R48 R50
1137.254 1143.436 1144.987 1145.764 1146.542 1147.321 1148.881 1149.663 1151.230 1173.766 1175.426 1176.258 1178.767 1207.289 1209.058 1212.601 1213.488 1214.376 1215.263 1219.703 1221.479
5.46 19.50 27.64 31.42 35.46 41.97 51.74 56.93 66.00 72.95 37.56 18.21 36.72 63.24 50.58 30.81 27.77 23.56 20.26 9.21 6.40
6.01 21.73 28.65 32.68 37.10 41.93 52.80 58.80 71.98 69.03 35.53 17.92 35.96 64.81 52.06 31.79 27.77 24.17 20.93 9.53 6.75
−10:1 −11:4 −3:7 −4:0 −4:6
a
0.1
−2:0 −3:3 −9:1
5.4 5.4 1.6 2.1 −2:5 −2:9 −3:2 0.0 −2:6 −3:3 −3:5 −5:5
Positions are in cm−1 ; intensities are in 10−25 cm=molecule; (o − c)=o are in %.
resonance within the upper polyad [9]. A ?rst calculation of the rotationless transition moment of the 0220 – 0000 band based only on this main contribution yielded a deviation of 16.7% from the experimental value [9]. In addition to the contribution of the upper level wavefunctions, the few lines of the 0330 – 0110 included in the ?t, along with those of the 0220 – 0000 band, have allowed us for the ?rst time to account for a minor contribution arising from the Q‘2 = 2 matrix element parameter of the e9ective dipole moment. Then the deviation between theory and experiment for the 0220 – 0000 band has been reduced to a few percents. The comparison of the parameters of the e9ective dipole moment obtained in Ref. [9] on the one hand, and in the present work on the other hand, shows a good consistency for the main parameters, despite of the large di9erence in the two data set. The former contained rotationless transition moments and the latter line intensities of a smaller number of bands. But twice more parameters have been determined from the present data reduction with better signi?cance. They include two rotational parameters, bQv J (Qv stands for Qv1 ; Qv2 ; Qv3 ), accounting for the linear J dependence of the two principal matrix elements of the e9ective dipole moment, namely Qv = 1; 0; 0 and 0; 2; 0. −4 to that calculated It is interesting to compare our ?tted value of b100 J = (−1:01 ± 0:13)×10 from the molecular constants. Watson [19] has derived theoretical expressions of the linear
46
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Table 6 Observed and calculated line intensities (at 296 K) of the 1310 –1110 banda 1310e–1110e Line P30 P29 P27 P26 P25 P24 P17 P14 P13 P12 P11 P10 P9 R4 R5 R6 R7 R10 R11 R12 R13 R14 R16 R17 R18 R19 R20 R21 R22 R23 R27 R28 R29 R30 R31 a
Position
1310f–1110f Obs
Calc
(o − c)=o
1143.608 1144.429 1145.250
8.26 8.88 9.37
7.63 8.18 8.71
7.6 7.9 7.0
1151.835 1154.313
11.82 12.29
11.70 11.66
1.0 5.1
1156.797 1157.626
11.37 9.56
10.67 10.12
6.2 −5:9
1170.131 1170.970
5.99 7.50
5.94 7.08
0.8 5.6
1172.648 1175.169 1176.011 1176.853 1177.695
9.04 11.52 12.30 12.70 12.19
9.11 11.38 11.92 12.34 12.65
−0:8
1182.758
11.90
12.36
−3:9
1189.527 1190.374 1191.221 1192.068 1192.916
8.39 7.44 7.43 6.85 6.00
8.36 7.76 7.17 6.60 6.03
1.2 3.1 2.8 −3:8
0.4
−4:3
3.5 3.6 −0:5
Position
Obs
Calc
(o − c)=o
1141.704 1142.485 1144.052 1144.839 1145.627 1146.416
5.86 6.66 7.84 8.57 8.25 9.35
6.10 6.63 7.72 8.26 8.80 9.32
−4:1
1154.417 1155.227 1156.040 1156.855 1157.671 1158.490
11.38 11.40 11.64 10.40 9.72 9.63
11.68 11.46 11.13 10.68 10.13 9.47
−2:6 −0:5
1171.861
8.37
8.15
2.6
1175.283 1176.143
11.81 12.31
11.41 11.96
3.4 2.8
1177.869 1178.735 1180.472 1181.343 1182.216
13.30 13.67 13.09 13.38 12.66
12.71 12.92 13.02 12.92 12.74
4.4 5.5 0.5 3.4 −0:6
1183.968 1184.846 1185.725 1186.607 1190.148 1191.037
12.22 11.51 11.48 10.38 8.69 7.83
12.12 11.73 11.26 10.76 8.49 7.89
0:5 1.5 3.6 −6:7 0.3
4.4
−2:7 −4:2
1.7
0.8
−1:9
1.9
−3:7
2.3
−0:8
Positions are in cm−1 ; intensities are in 10−25 cm=molecule; (o − c)=o are in %.
Herman–Wallis parameters of fundamental bands. For the b100 parameter the formula is J 3=2 2Be e (!1 !2 )1=2 2 32 + 4Be 12 2 : b100 J =2 !1 1 !1 − !22 1
(5)
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
47
Table 7 Observed and calculated line intensities (at 296 K) of the 0001e–1000e banda P branch J
Position
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 9 8 7 6 5 1
900.926 901.897 902.864 903.829 904.790 905.748 906.702 907.653 908.601 909.545 910.487 911.425 912.359 913.291 914.219 915.144 916.065 916.983 917.898 918.809 919.718 920.623 921.524 922.422 923.317 924.209 925.097 925.982 926.864 927.742 928.617 929.488 931.221 932.083 932.941 933.796 934.647 938.019
a
R branch Obs 3.95 4.49 5.96 6.85 7.63 9.90
14.9 16.7 18.2 19.6 21.5 23.2 26.0 27.0 30.2 31.2 32.3 33.3 33.5 33.7 34.0 33.6 30.7 28.4 25.7 20.7 17.6
Calc 3.82 4.43 5.12 5.87 6.72 7.64 8.65 9.74 10.9 12.2 13.5 15.0 16.4 18.0 19.5 21.1 22.7 24.3 25.9 27.4 28.8 30.1 31.2 32.2 33.0 33.6 33.9 34.0 33.7 33.2 32.3 31.1 27.8 25.7 23.2 20.5 17.5 3.72
(o − c)=o 3.1 1.2 1.4 2.0 −0:1 1.6
−0:1
1.4 1.3 0.5 1.5 1.8
0.4 −1:6 0.5 −0:1 0.3 1.0 −0:3 −0:7 0.1 −0:2 −1:4
2.1 0.3 1.0 0.6
Position 971.463 970.779 970.092 969.401 968.706 968.007 967.305 966.600 965.891 965.178 964.461 963.741 963.018 962.291 961.560 960.826 960.088 959.347 958.602 957.854 957.102 956.347 955.588 954.826 954.060 953.290 952.518 951.741 950.962 950.179 949.392 948.602 947.011 946.211 945.407 944.600 943.789 940.512
Obs
5.62 6.39 7.44 8.41 9.47 10.6 11.9 13.4 14.8 16.4 18.0 19.6 21.3 22.9 26.3 28.1 31.4 32.5 33.9 34.9 35.6 36.4 36.6 37.1 36.4 35.8 31.0 29.6 27.0 23.9 21.6 7.45
Calc 4.24 4.91 5.66 6.49 7.41 8.42 9.53 10.7 12.0 13.4 14.8 16.4 18.0 19.7 21.4 23.1 24.8 26.6 28.2 29.9 31.4 32.8 34.1 35.2 36.1 36.8 37.2 37.3 37.1 36.7 35.9 34.7 31.5 29.3 26.9 24.2 21.3 7.47
(o − c)=o
−0:7 −1:6
0.3
−0:2 −0:6 −1:0 −0:6 −0:2
0.0 0.1 0.2 −0:2 −0:2 −0:7 −0:8 −0:6 −0:1 −1:1 −0:6 −0:9 −1:5 −0:9 −1:5 −0:5 −0:6 −0:2 −1:5
0.7 0.4 −1:3 1.4 −0:3
Positions are in cm−1 ; intensities are in 10−24 cm=molecule; (o − c)=o are in %.
The utilization of the molecular constants from Te9o and Chedin [20] in Eq. (5): !1 = 1298:271 cm−1 , !2 = 596:345 cm−1 , Be = 0:42112068 cm−1 , 12 = 0:1894, 32 = − 0:9819; the dipole moment derivatives from Kobayashi and Suzuki [21]: 1 = 19:256×10−2 Debye,: 2 =
48
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Table 8 Observed and calculated line intensities (at 296 K) of the 0001e– 0200e banda P branch J
Position
35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
1021.181 1022.303 1023.418 1024.525 1025.624 1026.715 1027.798 1028.874 1029.942 1031.001 1032.053 1033.096 1034.132 1035.159 1036.178 1037.189 1038.191 1039.185 1040.171 1041.149 1042.118 1043.078 1044.030 1044.974 1045.909 1046.835 1047.753 1048.662 1049.563 1050.455 1051.338 1052.213 1053.079
a
R branch Obs
2.15 2.83 3.03 3.23 3.58 3.97 4.29 4.55 4.82 5.02 5.09 5.34 5.39 5.45 5.54 5.55 5.51 4.94 4.91 4.54 4.21 3.79 3.32 2.88 2.38
Calc 1.65 1.83 2.03 2.25 2.49 2.73 2.98 3.24 3.50 3.76 4.01 4.26 4.50 4.73 4.94 5.12 5.28 5.40 5.49 5.53 5.54 5.49 5.40 5.26 5.06 4.81 4.51 4.16 3.76 3.32 2.84 2.32 1.77
(o − c)=o
5.4 3.5 1.7 −0:3 2.2 −1:0
0.7 1.1 1.9 1.7 −0:6 1.1 −0:2 −0:7 0.2 0.2 0.3 −2:4
2.0 0.7 1.1 0.7 0.1 1.2 2.4
Position
Obs
Calc
(o − c)=o
1080.128 1079.593 1079.050 1078.499 1077.940 1077.373 1076.799 1076.215 1075.624 1075.025 1074.417 1073.801 1073.176 1072.543 1071.902 1071.253 1070.594 1069.928 1069.253 1068.569 1067.877 1067.176 1066.467 1065.749 1065.022 1064.287 1063.543 1062.790 1062.029 1061.259 1060.480 1059.693 1058.897
1.76 2.01 2.23 2.55 2.92 3.07 3.36 3.60 3.90 4.13 4.32 4.76 5.04 5.25 5.39 5.67 5.83 5.93 5.97
1.78 1.99 2.21 2.45 2.70 2.97 3.24 3.51 3.79 4.07 4.35 4.62 4.89 5.13 5.36 5.56 5.73 5.88 5.98 6.04 6.06 6.03 5.95 5.81 5.62 5.38 5.09 4.75 4.35 3.91 3.43 2.92 2.37
−1:4
6.06 6.07 6.19 5.68 5.49 4.35 3.92 3.40 2.97 2.34
1.0 1.0 4.0 7.6 3.2 3.7 2.4 2.8 1.5 −0:6 3.0 2.9 2.2 0.6 2.0 1.6 0.9 −0:1 −0:1
0.6
6.2 1.0 2.0 −0:1
0.1
−0:8
1.7
−1:4
Positions are in cm−1 ; intensities are in 10−24 cm=molecule; (o − c)=o are in %.
− 6:845×10−2 Debye; and the permanent dipole moment e = 0:161 Debye from Scharpen et al. [22] gives the calculated value of −1:022×10−4 for this parameter. This value is in excellent
agreement with the ?tted value. As far as the comparison with Toth data is concerned, our calculation con?rms the result of the comparison with our new measurements displayed in Tables 1, 9 and 10. The agreement with Toth data is generally good, especially for the 0220 – 0000 band as shown in Table 10, although a slight deviation appears for high J values. Our calculated values for this band, as
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
49
Table 9 Observed and calculated line intensities (at 296 K) of the 0200e– 0000e banda P branch J
Position
39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1136.689 1137.469 1138.251 1139.033 1139.816 1140.600 1141.386 1142.173 1142.960 1143.749 1144.539 1145.331 1146.123 1146.918 1147.713 1148.510 1149.309 1150.109 1150.910 1151.713 1152.518 1153.324 1154.132 1154.941 1155.752 1156.565 1157.380 1158.196 1159.014 1159.834 1160.656 1161.479 1162.305 1163.132 1163.961 1164.791 1165.624 1166.458 1167.294
a
R branch Obs
1.098 1.251 1.389
−1:8
1.961 2.172 2.364 2.618 2.752 3.021 3.223 3.479 3.739 3.900 4.173 4.322 4.503 4.665 4.770 4.945 4.903 4.963 5.016 4.902 4.882 4.706 4.578 4.346 4.017 3.780 3.380 2.993 2.556 2.086 1.628 1.083
0.2 −0:3 −2:5 −1:7 −4:0
−1
−0:5
−4:2 −3:6 −4:4 −6:3 −3:6 −4:8 −4:6 −5:7 −4:4 −6:9 −8:2 −4:5 −5:3 −4:9 −6:3 −4:8 −5:8 −6:4 −6:0 −6:9 −5:9 −5:4 −4:6 −3:5 −1:3
Calc 0.968 1.101 1.248 1.407 1.580 1.760 1.959 2.166 2.384 2.610 2.843 3.081 3.321 3.560 3.797 4.026 4.245 4.450 4.636 4.801 4.939 5.047 5.121 5.158 5.154 5.108 5.016 4.877 4.691 4.457 4.176 3.849 3.479 3.068 2.620 2.139 1.631 1.101 0.557
(o − c)=o −0:3
0.2
−1:3
0.1 0.3 −0:8 0.3 −3:3 −2:0 −3:0 −2:3 −1:6 −3:2 −1:7 −3:0 −3:0 −2:9 −3:5 −2:1 −4:4 −3:9 −2:8 −4:2 −2:7 −3:6 −2:5 −2:6 −4:0 −1:8 −2:9 −2:5 −2:5 −2:5 −0:2 −1:7 −21
Position
Obs
Calc
(o − c)
1202.917 1202.026 1201.136 1200.246 1199.358 1198.469 1197.582 1196.695 1195.809 1194.924 1194.039 1193.156 1192.274 1191.392 1190.512 1189.633 1188.755 1187.879 1187.003 1186.129 1185.257 1184.385 1183.515 1182.647 1181.780 1180.915 1180.051 1179.188 1178.328 1177.469 1176.611 1175.755 1174.901 1174.049 1173.199 1172.350 1171.503 1170.658 1169.814
1.068 1.208
−2:7 −3:5
0.7 0.1
1.459 1.689 1.933 2.121 2.350 2.600 2.742 3.057 3.347 3.478 3.842 3.995 4.186 4.582 4.701 4.876 5.161 5.139 5.334 5.494 5.395 5.542 5.446 5.273 5.326 5.084 4.816 4.600 4.192
5.5 6.9 −0:8 0.0 −0:2 −0:2 −5:4 −2:7 −1:9 −2:5 −1:1 −4:0 −6:0 −1:2 −5:5 −3:4 −2:3 −5:3 −4:4 −2:8 −6:2 −4:8 −6:6 −8:6 −3:7 −4:0 −4:7 −4:4 −5:8
3.070 2.646 2.154 1.658 1.114
−5:5 −1:8 −3:2 −1:6
1.061 1.207 1.370 1.539 1.725 1.925 2.138 2.362 2.598 2.843 3.095 3.352 3.612 3.872 4.128 4.377 4.615 4.839 5.043 5.225 5.380 5.503 5.592 5.642 5.651 5.615 5.532 5.402 5.223 4.995 4.719 4.396 4.030 3.620 3.175 2.696 2.189 1.659 1.114
1.5
−5:5 −2:1
0.4
−0:8 −0:5
0.1
−3:7 −1:2 −0:1 −3:9 −0:8 −3:3 −4:6 −0:7 −2:9 −3:4 −1:2 −4:7 −3:2 −1:8 −4:6 −2:0 −3:1 −4:9 −1:4 −2:7 −3:7 −2:6 −4:9 −3:4 −1:9 −1:6 −0:1
0.0
Positions are in cm ; intensities are in 10 cm=molecule; obs stands for the line intensities measured in Reims; = (obs − Toth)=obs gives the comparison with Toth measurements [3]; and (o − c)=o are in %.
50
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Table 10 Calculated line intensities (at 296 K) of the 0220e– 0000e banda P branch
R branch
J
Position
Calc
71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27
1125.052 1125.677 1126.306 1126.940 1127.576 1128.214 1128.858 1129.505 1130.157 1130.811 1131.469 1132.132 1132.798 1133.467 1134.141 1134.818 1135.499 1136.183 1136.871 1137.562 1138.257 1138.956 1139.658 1140.364 1141.073 1141.786 1142.502 1143.222 1143.945 1144.671 1145.400 1146.133 1146.868 1147.609 1148.350 1149.096 1149.845 1150.597 1151.351 1152.109 1152.870 1153.633 1154.400 1155.169 1155.941
0.214 0.268 0.333 0.412 0.508 0.622 0.758 0.918 1.11 1.33 1.58 1.88 2.21 2.59 3.02 3.50 4.04 4.62 5.26 5.96 6.70 7.49 8.32 9.19 10.08 10.98 11.89 12.79 13.66 14.48 15.20 15.90 16.54 17.04 17.40 17.66 17.76 17.71 17.50 17.20 16.69 16.00 15.29 14.40 13.50
b
c
6.3 8.6 9.2 7.7 5.6 1.4 −2:8
1.9 5.7
−2:1 −3:3 −4:3
2.5
0.4 1.0 3.4
−0:3
1.6
1.2
1.7
0.2
3.6
1.2 −0:7 −1:8 0.9 −2:3 −3:5 −2:6 −5:8 −3:2
3.8 3.5
3.5
1.8
2.7
−3:1 −4:5 −2:6 −2:7 −2:3
−1:7
−3:9
1.2
−2:5
6.3 2.8
0.0
Position
Calc
1244.792 1243.755 1242.722 1241.691 1240.664 1239.640 1238.616 1237.599 1236.584 1235.574 1234.565 1233.560 1232.559 1231.560 1230.564 1229.573 1228.583 1227.597 1226.614 1225.635 1224.659 1223.686 1222.716 1221.749 1220.785 1219.825 1218.867 1217.913 1216.962 1216.013 1215.068 1214.126 1213.186 1212.250 1211.316 1210.386 1209.458 1208.533 1207.610 1206.691 1205.775 1204.861 1203.949 1203.041 1202.134
0.258 0.322 0.401 0.497 0.612 0.750 0.915 1.11 1.34 1.61 1.92 2.27 2.68 3.15 3.68 4.27 4.92 5.65 6.44 7.30 8.23 9.22 10.30 11.30 12.48 13.63 14.79 15.94 17.07 18.16 19.20 20.10 20.94 21.65 22.21 22.61 22.84 22.89 22.80 22.42 21.90 21.21 20.34 19.32 18.17
b
c
8.1 3.5 5.2
−2:3
0.6 4.4
−2:7
7.6
−0:3
3.9 0.7 1.4
−3:5
2.8
2.3
4.4 0.9 1.7 −1:1 −1:5 −0:8 −1:4 −0:4
0.4 0.1 0.3 2.6
2.1 4.7 0.9 −3:0 −5:7 −1:2
3.4 2.2 −4:4 −2:7 3.0 −0:5 −2:7 −3:4
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
51
Table 10 (continued) P branch
R branch
J
Position
Calc
b
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
1156.716 1157.493 1158.274 1159.057 1159.842 1160.631 1161.421 1162.215 1163.011 1163.809 1164.610 1165.413 1166.219 1167.027 1167.838 1168.651 1169.466 1170.283 1171.103 1171.926 1172.750 1173.577 1174.406
12.41 11.30 10.20 9.07 7.95 6.87 5.85 4.89 4.02 3.23 2.54 1.95 1.46 1.06 0.740 0.497 0.318 0.191 0.107 0.055 0.025 0.0093 0.0026
−1:6
c
−0:3 −2:2
0.7 −1:3 −0:2
0.4
−3:9 −0:9 −1:8
Position
Calc
1201.231 1200.330 1199.432 1198.536 1197.643 1196.752 1195.863 1194.978 1194.094 1193.213 1192.334 1191.457 1190.584 1189.711 1188.842 1187.975 1187.110 1186.247 1185.387 1184.529 1183.673 1182.819 1181.968 1181.119 1180.272
16.91 15.56 14.16 12.73 11.30 9.90 8.55 7.27 6.08 5.00 4.03 3.18 2.45 1.84 1.34 0.946 0.642 0.416 0.256 0.147 0.078 0.037 0.015 0.0050 0.0012
b 0.6
−4:3 −5:8 −0:9 −1:5 −4:9 −4:8 −0:5 −6:8 −0:7
0.4 −0:2
Positions are in cm−1 ; intensities in 10−24 cm=molecule; = (obs − calc)=obs in %. Refer to line intensities measured by Toth3 . c Refer to line intensities measured in this work. a
b
Table 11 Summary of the observed data and statistics of the global ?t References
Region (cm−1 )
a
Nb of lines
RMS (%)
Toth [3] Varanasi et al. [16] Tang et al. [17] Levy et al. [18] FTS Reims FTS Paris
1108.9 –1348.4 1249.7–1279.0 1142.2–1180.9 1134.4 –1327.4 900.9 –1202.9 1127.6 –1238.6
2 2 3 5 2 3– 6
603 7 5 157 188 176
2.4 3.2 1.9 8.6 2.4 5.2
a
is the estimated experimental error in %.
c 0.0
−3:3 −2:1
52
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Fig. 4. Comparison of observed line intensities with calculated ones (from this work and HITRAN and GEISA databases) in the 10 m region.
Fig. 5. Comparison of calculated line intensities with those of HITRAN and GEISA databases in the 10 m region.
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
53
Table 12 Results of the ?t of line intensities for each brancha P ← P
V ← V
2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5
0200e 0200e 0220e 0220e 1000e 1000e 0310e 0310f 0310f 0310f 0330e 0330e 0330f 0330f 1110e 1110e 1110f 1110f 1200e 1200e 0420e 0420e 0420f 0001e 0001e 0001e 0001e 1310e 1310e 1310f 1310f
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3
0000e 0000e 0000e 0000e 0000e 0000e 0110e 0110e 0110f 0110f 0110e 0110e 0110f 0110f 0110e 0110e 0110f 0110f 1000e 1000e 0220e 0220e 0220f 0200e 0200e 1000e 1000e 1110e 1110e 1110f 1110f
Br
Jmax
Nbr
RMS ()
MR ()
References
P R P R P R P Q P R P R P R P R P R P R P R P P R P R P R P R
76 74 72 66 87 87 65 24 64 62 51 42 27 39 80 80 81 80 51 51 52 52 53 34 36 43 41 28 32 31 29
151 145 51 45 121 105 7 4 3 4 3 6 3 14 57 65 60 67 12 9 13 8 6 26 43 30 33 7 13 12 14
4.1 3.8 3.6 3.3 6.1 6.6 4.8 8.3 2.1 3.5 3.4 12.4 10.1 5.5 2.4 2.0 2.0 1.9 5.9 3.1 2.4 2.6 8.6 2.7 4.4 1.5 0.9 6.4 3.1 3.3 2.9
1.1 1.1 −0:4 0.2 2.0 2.6 −1:2 −5:3 −1:8 −3:2 −2:3 −9:6 −4:5 −1:8 −0:9 −0:5 1.0 0.5 −2:8 −2:3 0.4 −1:8 3.4 1.3 −0:8 0.7 −0:6 4.4 0.6 −0:7 1.5
[3,14,15]r [3,14,15]r [2] p r [2] p r [3,13,15] [3,15] p p p p p p p p [3] [3] [3] [3] p p p p p r r r r p p p p
a P and P are numbers of upper and lower polyad (Eq. (1)), V and V are upper and lower vibrational states according to HITRAN notation, Br is the branch identi?er, Jmax is the maximum value of the rotational quantum number in the ?le of observed data for a given branch, Nbr is the number of the observed line intensities for a given branch, RMS (%) is the root mean squares of the residuals for a given branch (Eq. (2)), MR (%) is the mean value of the residuals for a given branch (Eq. (3)), “r” and “p” refer to present work FTS measurements from Reims and Paris, respectively.
the observed ones, deviate systematically from those reported in HITRAN and GEISA, as it can be seen in Figs. 4 and 5. On the other hand, the good agreement between our calculated and measured line intensities in the two laser bands also con?rms that Toth values for these bands are questionable, as already pointed out [9]. The same holds for the corresponding HITRAN and GEISA values, as shown in Fig. 5.
54
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
Table 13 E9ective dipole moment parameters for the QP = 2 series of transition Parametera
Qv1
Qv2
Qv3
Ql2
This work
M 2 bJ M 1 2 bj M M M M
1 1 1 0 0 0 0 0 −1 2 0
0 0 0 2 2 2 2 −2 0 −2 2
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 2
0.13537 (12)b 0.45 (12) −1:01 (13) −1:0890 (25) 0.154 (15) 3.41 (35) −2:60 (38) 0.2521 (27) −6:180 (12) 0.0 (?xed) 0.387 (32)
a b
Ref. [9] 0.13592 (44)b −0:867 (11)
0.173 (50)
−5:566 (247) −0:040 (6)
Order 10−2 10−4 10−2 10−2 10−4 10−2 10−2 10−3 10−6
The parameters M are given in Debye, while the other parameters are dimensionless. The numbers in parentheses are one standard deviation in units of the last digit.
Acknowledgements The authors from LPMA and GSMA wish to thank Dr. A. Valentin, X. Thomas and P. Von der Heyden for their assistance in the experimental part of this work. We also thank Dr. J-J. Plateaux for the use of “Multi?t software” and Pr. A. Barbe for helpful discussions. This work has been supported in part by CNRS-RFBR PICS grant 98-05-22021. References [1] [2] [3] [4] [5]
[6] [7] [8] [9] [10] [11] [12] [13]
Toth RA. J Opt Soc Am B 1986;3:1263–81. Toth RA. Appl Opt 1984;23:1825–34. Toth RA. Appl Opt 1993;32:7326–65. Rothman LS, Rinsland CP, Goldman A, Massie T, Edwards DP, Flaud J-M, Perrin A, Camy-Peyret C, Dana V, Mandin J-Y, Schroeder J, Mc Cann A, Gamache RR, Wattson RB, Yoshino K, Chance KV, Jucks KW, Brown LR, Nemtchinov V, Varanasi P. JQSRT 1998;60:655–710. Jacquinet-Husson N, Ari8e E, Ballard J, Barbe A, Bjoraker G, Bonnet B, Brown LR, Camy-Peyret C, Champion JP, Ch8edin A, Chursin A, Clerbaux C, Duxbury G, Flaud J-M, Fourri8e N, Fayt A, Graner G, Gamache RR, Goldman A, Golovko Vl, Guelachvili G, Hartmann JM, Hilico JC, Hillman J, Lef8evre G, Lellouch E, Mikhailenko SN, Naumenko OV, Nemtchinov V, Newnham DA, Nikitin A, Orphal J, Perrin A, Reuter DC, Rinsland CP, Rosenmann L, Rothman LS, Scott NA, Selby J, Sinitsa LN, Sirota JM, Smith MAH, Smith KM, Tyuterev VlG, Tipping RH, Urban S, Varanasi P, Weber M. JQSRT 1999;62:205–54. Tashkun SA, Perevalov VI, Te9o J-L, Rothman LS, Tyuterev VlG. JQSRT 1998;60:785–801. Tashkun SA, Perevalov VI, Te9o J-L, Tyuterev VlG. JQSRT 1999;62:571–98. Tashkun SA, Perevalov VI, Te9o, J-L. J Mol Spectrosc, to be published. Lyulin OM, Perevalov VI, Te9o J-L. J Mol Spectrosc 1995;174:566–80. Valentin A. Spectrochim Acta 1995;51A:1127–42. Margottin-Maclou M, Rachet F, Henry A, Valentin A. JQSRT 1996;56:1–16. Plateaux J-J, Barbe A, Delahaigue A. Spectrochim Acta 1995;51A:1153–69. R8egalia L. Thesis, Universit8e de Reims, France, 1996.
L. Daumont et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 37–55
[14] [15] [16] [17] [18] [19] [20] [21] [22]
Plateaux J-J, R8egalia L, Boussin C, Barbe A. JQSRT 2001;68:507–20. Lyulin OM, Perevalov VI, Te9o J-L. J Mol Spectrosc 1996;180:72–4. Varanasi P, Chudamani S. JQSRT 1989;41:359–62. Lai-Wa Tang, Nadler S, Daunt SJ. JQSRT 1989;41:97–101. Levy A, Lacome N, Guelachvili G. J Mol Spectrosc 1984;103:160–75. Watson JKG. J Mol Spectrosc 1987;125:428–41. Te9o J-L, Chedin A. J Mol Spectrosc 1989;135:389–409. Kobayashi M, Suzuki I. J Mol Spectrosc 1987;122:157–70. Scharpen LH, Muenter JS, Laurie VW. J Chem Phys 1970;53:2513–9.
55