J. Quant. Spectrosc.
Radiat. Transfer Vol. 40, No. 4, pp. 513-517,
1X122-4073/88 $3.00+ 0.00 Copyright 0 1988Pergamon Pressplc
1988
Printedin Great Britain.All rightsreserved
LINE SHIFTS OF Kr II, Kr III, AND Xe III IN HIGH-CURRENT, PINCHED DISCHARGES H. 0. DI Rocco and G. BERTUCCELLI Departmentof Physics,UniversidadNational de1Centro, Pinto 399,Tandil, Argentina J. REYNAALMANDOS,F. BREDICE,and M. GALLARDO Centro de InvestigacionesOpticas,CC. 124, 1900La Plata. Grgentina (Received 25 November
1987)
Abstract-Line shifts, originating in a discharge tube crossed by a high current, are presented for Kr II, Kr III, and Xe III. We find regularities between shifts that may be attributed to the microscopic Stark effect.
INTRODUCTION In a previous study, Di Rocco et al’ reported the shifts of Xe lines produced in high-current, pinched discharges. These shifts were observed when comparing values obtained by Gallardo and Almandos’ and by Humphreys.3 Using a collisional model, we showed that these shifts depend on the energy levels involved in the transitions and may be ascribed to the microscopic Stark effect. We have obtained and studied spectra belonging to Xe III, Kr II, and Kr III. The results have been compared with those of Humphreys. @ We have found similarities between line shifts for 5s-5p, 5p5d, 4d-5p, and 5p6s transitions in Kr and 6&p, 6p6d, 5d-6p, and 6~7s transitions in Xe. The observed line shifts may be assigned to the microscopic Stark effect. EXPERIMENTAL
FACILITIES
For Xe III, the experimental details are the same as those used previously for Xe II.’ For singly and doubly-ionized Kr, the same light source was used as before.’ All spectra were obtained with spectroscopically pure gases. RESULTS
AND
DISCUSSIONS
In Tables 1-3, we present representative results for Xe III, Kr II and Kr III, respectively.? In the first column, we give the line classification. In the second and third columns, we show our measurements and those of Humphreys (subscript Hum), respectively. In the last column, we give differences between these measurements. For Xe III, the line classification is based on a complete study by Persson et a1.8 Classifications of Kr II lines are based on Ref. 5. For Kr III, the classifications are based on Ref. 6. The last columns in Tables l-3 show similar trends in the shifts for lines corresponding to similar and equivalent transitions. For the 6~7s and 6p6d transitions in Xe III, line shifts have generally the same sign as in the 5~6s and 5p5d transitions of Kr II and Kr III. Similar trends were observed previously’ for the 6p6d and 6~7s transitions in Xe II. We note similar differences between the 6s-6p in Xe III and 5s-5p transitions for Kr II and Kr III. Finally, line shifts for the 5d-6p transitions in Xe III show the same erratic differences as the observed for the 4d-5p transitions in Kr II and Kr III. The average values of the line shifts have similar magnitudes for isonuclear species (i.e., Kr II and Kr III, as Xe II and Xe III). tMore
extensive
data
may be obtained
from
M. Gallardo 513
on request.
H. 0. DI Rocco et al
514
Table 1. Lines and line shifts for different transitions of Xe III. Transition
GobsIem-'I
~Hum[cm-'l
Aa[cm-'1
:2D)5d 'P, - (4S)6p 3P1
31275.11
5.08
0.03
:2P)5d 'D2 - (2D)6p 3F3
30331.65
1.72
-0.07
:'P)Sd 3D3 - (2P)6p 3P2
29928.23
8.02
0.21
c2D)5d 3D3 - (2D)6~ 'D2
20833.32
3.46
-0.14
c2P)5d 'D2 - (2D)6p 'F3
28071.09
70.99
0.10
(2D)5d 302 - (2D)6p 3P2
25002.02
2.06
-0.04
('D)Sd 3G3 - (4S)6p 3P2
23708.53
827
c2P)5d 3D, - (2P)6p 3P,
22628.50
8.68
-0.18
(2P)5d 3D2 - (2P)6p 3D,
21337.87
7.97
-0.10
0.26
(2D)5d 3S, - (2D)6~ 3P,
20288.55
a48
0.07
(2P)5d 3D2 - (2D)6p 'D2
18096.73
6.55
0.18
(2D)5d 'F3 - (2D)6p 'F3
16025.88
5.70
0.18
(4S)6s 5S2 - (4S)6~ 3P2
30581.79
1.95
-0.16
(4S)6s 5S2 - ('S)~P 'P,
28825.01
5.23
-0.22
(2P)6s 3Pl - ('P)~P 3D2
26473.31
3.43
-0.12
(4S)6s 5S2 - (4S)6~ 5P2
25486.43
6.53
-0.10
(4S)6s 3S1 - (4S)6~ 3Pl
24683.98
4.08
-0.10
(2P)6s 'P, - ('P)6p 3S1
22745.84
6.12
-0.28
('D)6s 'D2 - (2D)6~ 'F3
21390.46
0.52
-0.06
(2D)Bs 30, - (2D)6~ 3D1
20851.44
1.49
-0.05
('D)6p 'D2 - ('D)6d 'D2
31386.06
5.73
0.33
(4S)6p 3P2 - (4S)6d 5D1
30493.55
3.15
0.40
(4S)6p 3P2 - (4S)6d 5D2
30280.20
79.63
0.57
(2D)6p 'D2 - (2D)6d 3D2
29522.92
2.28
0.64
(2D)6p 3P, - (2D)6d 3D1
20790.72
0.12
0.60
(2D)6p 'P, - (4S)6d 3D1
22077.47
6.81
0.66
(2D)6p 3F4 - (4S)6d 5D3
15909.68
9.21
0.47
(4S)6p 3PD - (4S)7s*3S1
30978.08
7.29
0.79
(4S)6~ 3P2 - (4S)6s 5S2
30425.07
4.39
0.68
(2D)6p 3PD - (2D)7s 3D,
29965.27
4.62
0.65
(20)6p 3P, - (2D)7s 3q
27821.04
20.47
0.57
(2P)6p 3D2 - (2D)7s 3D3
22077.47
6.81
0.66
(2D)6p 3D2 - (4S)7s 3S1
21526.33
5.93
0.40
15416.46
5.89
0.57
(20)6p 3P2 - (4S)7s 5S2
Kr II, Kr III, and Xe III line shifts in high-current, pinched discharges
Table 2. Lines and line shifts for different transitions of Kr II. Transition
~obs[cm-'l
~Hum[cm-'l
Ao[cm-'1
3P)4d 4P3,2 - ($5~
2P,,2
37367.08
7.76
0.12
3P)4d 4P5,2 - ('WP
2P,,2
36885.76
5.78
-0.02
3P)4d 2D3,2 - ('sj5p 2P3,2
35971.74
2.15
-0.41
3P)4d 2P3,2 - ('S)5p 2P3,2
34316.23
6.14
0.09
3P)4d 4D,,2 - ('0)5p 2P3,2
28421.88
2.24
-0.36
3P)4d 4D,,2 - (3P)5p 2S,,2
20582.20
2.26
-0.06
3P)E.s4P3,2 - ('D)5P 2P3,2
35109.81
9.96
-0.15
3P)5s 4P5,2 - (3P)SP 203,2
29165.46
5.66
-0.20
3P)5s 4P5,2 - (3P)Sp
27306.94
7.19
-0.25
3P)5s 4P5,2 - (3P)5P 403,2
25551.02
1.31
-0.29
'D)5s 2D5,2 - ('0)5p 2D3,2
24328.42
8.62
-0.20
'S)5s 2Q2
2p3,2
- ('S)5P 2P3,2
23125.53
5.71
-0.18
3P)% 4P,,* - (3P)Sp 2P3,2
22532.29
2.41
-0.12
'D)5s 2D5,2 - ('0)5p 2F
21841.15
1.32
-0.17
3P)5s 2P,,2 - (3P)5p 2D3,2
20991.68
1.83
-0.15
3P)5s 2P3,2 - (3P)5P 2P,,2
20627.13
7.28
-0.15
3P)SP 4P3/2 - (3P)5d 2F5,2
33230.91
0.38
0.53
3P)SP 4P,,2 - (3P)sd 2P3,2
29359.03
8.80
0.23
'0)Sp 'F5,2 - ('0)5d 'F5,2
28537.08
6.79
0.29
'D)5p 2P3,2 - ('0)5d *F5,2
21507.17
6.89
0.28
3P)5p 2P3,2 - (3P)5d 2F5,2
27381.96
1.83
0.13
C3p)5p 40,,2 - (3P)5d 2p,,2
26790.25
0.06
0.19
('0)Sp 2F5,2 - ('0)5d 2G7,2
26718.44
a.32
0.12
C3p)5p 2p,,2 - (3P)5d 2p3,2
26038.76
8.58
0.18
l/2
('0)s~ 2p,,2 - ('0)5d 2P3,2
25443.08
2.91
0.17
(3p)5P 403,2 - (3P)5d 405,2
23070.61
0.42
0.19
(3p)5~ 2D3,2 - (3P)5d 4D,,2
21038.11
7.82
0.29
(3p)5P 4p3,2 -
30150.96
0.72
0.24
t3P)5p 4S3/2 - (‘0)6s *‘J5/2
28848.60
8.36
0.22
(3p)5~ 4p3,2 - (3p)6s 4p,,2
27589.08
a.95
0.13
(3p)5~ 403,2 -
26057.96
1.79
0.17
(3p)5~ 4p5/2 - (3p)6s 4p3/2
23959.87
9.66
0.21
(3p)5P 4p5/2 - (3p)6s 4p5,2
23153.59
3.40
0.19
(‘SNs 2S,,2
(‘S)5s 2S,,2
('p)SP 4p,,2 - (3p)6s 'p3,2
22102.58
2.36
0.22
(3p)5~ 405,2 - (3p)6s 4p3,2
21814.61
4 .39
0.22
(3p)5P 40,,2 - (3p)6s 4p,,2
21714.30
4 .09
0.21
515
H. 0. Dr Rocco et al
516
Table 3. Lines and line shifts for different transitions of Kr 111. -1 [cm I
Transition
aobs[P-’ 1
'P)4d 3D, - (2P)Sp 3P,
29998.83
'P)4d 'F3 - (2P)5P 'Dz
29156.35
6.14
0.21
+l)4d '02 - (2D)5P 3F2
28391.98
2.05
-0.07
'P)4d 3f3 - (20)5p 'cl2
28065.64
5.50
0.14
'0)4d 'D2 - (20)5p 3D2
27238.40
a.52
-0.12
%)4d 3F2 - (4S)Sp 3P,
26065.86
5.73
0.13
$)4d 'iI2- ('D)Sp 3D,
25260.09
60.27
-0.18
'Hum
a.90
Ao[cm-'1
-0.07
'D)4d 3D, - ('D)Sp 3F2
23653.10
3.15
-0.05
'0)4d 3D2 - (2D)Sp 3F2
21390.08
89.90
0.18
2P)5s 3P, - (2P)Sp.3S,
30350.52
0.62
-0.10
45)5s 5s2 - (4s)5P 5P2
30059.72
9.79
-0.07
4s)5s 5s2 - (4S)SP 5P,
29824.95
5.02
-0.07
2P)5s 3PD - ('P)Sp 3D,
29003.64
3.72
-0.08
2D)5s 3D3 - (20)5P 3D3
28771.57
1.67
-0.10
2D)5s 3D3 - (2D)5p 3D2
27648.27
a.39
-0.12
2D)5s 3D2 - (2D)5p 3D,
27087.71
7.81
-0.10
2D)5s 'D2 - ('D)Sp 'F3
24578.86
a.99
-0.13
2D)5s 'D2 - (2D)5p 'P,
23221.08
1.22
-0.14
4s)5p 5P, - (4S)5d 5D,
40970.68
0.34
0.34
4S)5p 5P2 - (4S)5d 5D3
40766.20
5.86
0.34
4S)5p 5P2 - (4S)5d 5D,
40735.97
5.47
0.50
2D)5p 3F3 - ('D)Sd 'G4
40393.80
3.47
0.33
(4S)5p 5P3 - (4S)5d 5D3
40024.77
4.50
0.27
c20)5p 3F4 - (2D)5d 'G4
39682.26
1.78
0.48
(4S)5p 3P2 - (4S)5d 3D2
37292.47
2.35
0.12
(4S)5p 3P2 - (4S)5d 5D2
36445.39
5.14
0.25
(4S)5p 5P, - (4S)6s 5S2
39978.19
7.71
0.48
(4S)5p 5P3 - (4S)6s 5S2
39002.04
1.29
0.75
(20)5p 3P, - (2D)6s 3p*
38647.14
6.55
0.59
(20)5p 3p2 - (2D)6s 'D2
38074.89
4.61
0.28
(2D)5p 3P, - (2D)6s 'D2
37358.25
a.12
0.13
(2~)5p 3P2 - ('p)6s 3p,
36109.72
9.48
0.24
(4s)5p 3p2 - (4S)6s 5S2
35439.00
a.64
0.36
Kr II, Kr III, and Xe III line shifts in high-current, pinched discharges
517
Acknowledgements-The authors wish to thank the Conscjo National de Investigaciones Cientificas y T&micas (CONICET) and the Facultad de MatemLica, Astronomia y Fisica (FAMAF), Universidad National de Cbrdoba, for lending to CIOp its Ebert-mounting spectrograph.
REFERENCES 1. H. 0. Di Rocco, G. Bertuccelli, J. Reyna Almandos, and M. Gallardo, JQSRT 35, 443 (1986). 2. M. Gallardo and J. Reyna Almandos, “Xe Lines in the Range from 2000 to 7000 A,*’ Report No. 1, CIOp, CC. 124, 1900 La Plata, Argentina (1981). 3. C. J. Humphreys, J. Res. N&n. Bur. Stand. 22, 19 (1939). 4. C. J. Humphreys (unpublished). 5. T. L. deBruin, C. J. Humphreys, and W. F. Meggers, J. Res. Natn. Bur. Stand. 11, 409 (1933). 6. C. J. Humphreys, Phys. Rev. 47, 712 (1935). 7. J. Reyna Almandos, F. Bredice, H. 0. Di Rocco, and M. Gallardo, Opticu Puru Apl. 18, 87 (1985). 8. W. Persson, C. G. Wahlstriim, G. Bertuccelh, H. 0. Di Rocco, J. Reyna Almandos, and M. Gallardo, Phys. Scripta, in press (1988).