Line tension of a superdislocation

Line tension of a superdislocation

Scripta M E T A L L U R G I C A Vol. 3, pp. 233-238, 1969 Printed in the United States LINE TENSION Pergamon Press, Inc OF A SUPERDISLOCATION P...

202KB Sizes 5 Downloads 72 Views

Scripta M E T A L L U R G I C A

Vol. 3, pp. 233-238, 1969 Printed in the United States

LINE TENSION

Pergamon

Press,

Inc

OF A SUPERDISLOCATION

P. Chaudhari and Ao Gangulee I B M Watson Research Center, Yorktown Heights, N e w York (Received

February

3, 1969)

The simplest case of a superdislocation in an ordered alloy consists of two dislocations

with an antiphase

region between them.

the line tension of such a superdislocation energy.

alloys,

hardening.

(3)

as for example,

1.

The lead dislocation was perturbed

amount

e

e'

L'

and

over a length

L

in understanding

the deformation

the operation of dislocation sources

The dislocation configuration assumed Fig.

n o t e we h a v e c a l c u l a t e d

for several values of the antiphase boundary

T h e v a l u e of line t e n s i o n is of i n t e r e s t

of o r d e r e d

In t h e p r e s e n t

(1, 2) a n d w o r k

in c a l c u l a t i n g the l i n e t e n s i o n is s h o w n in from its equilibrium position ABDE by a small

to a p o s i t i o n A B C D E .

were varied until a minimum

behavior

Keeping this assumed

position fixed,

in energy was obtained.

C A

~

D

~

A'

FIG. 1 Assumed

configuration of a small bow-out in a superdislocation.

233

E

234

LINE TENSION

The self energy, Table

Es,

1 were calculated

formula.

(5)

OF S U P E R D I S L O C A T I O N

and the interaction

using the expressions

cut-off parameter.

(4)

using the cut-off parameter

for dose

cut-off parameter

open structures

for more

and the line tension are larger

H

where

boundary bZ P 4~K

=

energy,

by J~ssang

e t a l . (4)

listed in based on Blin's

was included in the self energy by making

All the results

packed

of t h e s e g m e n t s

3, No. 4

structures.

presented

here were calculated

Additional calculations

using the

indicated that in this case the energy minimum

forming

structure

a superdislocation

using the expression

by 10-1 5 pct.

The

was obtained from the

(6)

_2 y

~ is the shear

one for a screw

y,

El,

than those of the close packed

H, b e t w e e n t w o d i s l o c a t i o n s

antiphase

derived

The core energy of the dislocations

use of an appropriate

spacing,

energy,

Vol.

(I)

modulus,

superdislocation

b the Burgers

vector,

and

K

a constant whose value is

a n d (1 - v } f o r a n e d g e s u p e r d i s l o c a t i o n

where

v is the

Poisson's ratio. TABLE

I.

The Self and Interaction Energy T e r m s ,

Es and ~

respectively,

of the Dislocation Configuration shown in Figure I. Self

energy

Interaction

Es(BD) energy

between segments w i t h i n l the same dislocation Interaction

energy

b e t w e e n segments o f Idifferent

dislocations

;

Es(B'D')

;

due t o

;

Es(B'C')

Ei(BD.AB)

;

Ei(B'D'.A'B')

Ei(BC.AB)

;

Ei(BC.CD)

;

Ei(BC.DE)

Ei(BICI.AIB ')

;

EI(BICI. C'D')

;

Ei(B'CI.D'E')

EI(BD.A'E')

;

Ei(B'D'.AE)

;

Ei(BD.B'D')

Ei(BC.A'B')

;

Ei(BC.B'C')

;

EI(BC.D'E')

EI(BIC'.AB)

;

Ei(B'CI.CD)

;

EI(BlCI.DE)

Es(CD)=Es(BC)

Equalities

Es(BC)

;

Es(CIDI)=Es(BIC t )

Ei(BD.DE)=Ei(BD.AB)

;Ei(BIDI.DIEI)=Ei(B

Ei(CD.AB)=Ei(BC.DE)

;

fDloAwBI)

Ei(CD.DE)=Ei(BC.AB)

IEi(CtDt.AWBI)=Ei(BICI.DIEI);Ei(CIDI.DIEI)=Ei(BICI.AIB syn~etry

of bow out

I)

;

Ei(BC.C'D')=Ei(~'C'.CD)

Ei(CD.C'D')=Ei(BC.B'C')

;

Ei(CD.b'E')=Ei(BC.A'B

Ei(C'D'.AB)=Ei(B'CI.DE)

;

EI(C'D'.DE)=Ei(B'CI.AB)

Ei(CD.A'B')=Ei(BC.D'E

')

' )

Vol.

3, No.

4

LINE

TENSION

The change in energy of the system in Fig.

OF S U P E R D I S L O C A T I O N

235

d u e t o t h e b o w - o u t of t h e s u p e r d i s l o c a t i o n

shown

1 is given by:

z~E = Z E s ( B C )

+ ZEi(BC.AB)

+ 2Ei(B'C'.A'B') + 2Ei(BC.A'B')

+ ZEi(BC. D E ) + Ei(BC. C D ) - E s ( B D )

- ZEi(BD. A B ) + ZEs(B'C')

+ 2Ei(B'C'. D'E') + Ei(B'C'. C'D') - Es(B'D') - 2Ei(B'D'.A'B') + ZEi(BC.B'C')

+ ZEi(BC.D'E'}

+ 2Ei(B'C'. D E ) + Ei(BD. B'D') - Ei(BD.A'E')

+ ZEi(B'C'.AB)

- Ei(B'D'.AE)

+ Z(B'C'.CD)

+ y(areaBCD

- areaB'C'D')

(z) Typical variations of

Z~E with

8' and L' at fixed values of 8, L, and

Fig. 2a and Fig. 2h for an edge and a s c r e w superdislocation, of the B u r g e r s length

AE

vector, b, w a s taken as Z. 943 A . U . ~

as 2 ram.

The minimum

Z~E , increased with increasing increasing

1 .~5

II H

value of

e, L

and

y.

y

respectively.

T h e magnitude

the Poisson's ratio as 0. 33, and the

A~. as a function of 8' and L', designated F o r small

8, A~.

increased linearly with

e.

I /

I I

EDGESUPERDISLOCATION .

\ \\\\\

eo,-,L=,OOOA.U.

\ \\\\\

~--oo~(,~,..)

l/a\\\\\\

i 7.5

SCREW SUPERDISLOCATION 8=P,L=IOOOA.LI J

/'~

\\

\ \

I

\ \\ \ \

MINIMUM ENERGY,Z~E~

" 5

0

are s h o w n in

L

IO00

2000

i

0

3000

i

i

I

I000

2000 C (AU.)

t~ (A.u.)

(a)

(b) FIG.

Typical

I0 15 25

variations

with changes

2

of the minimum

energy

in units of ~bg/4=

i n L ' o r e ' a t f i x e d v a l u e s o f y, L , a n d e.

3000

236

LINE TENSION OF SUPERDISLOCATION

Vol. 3, No. 4

The line tension, T, of a dislocatlon is conventionally defined as: T

.tim :

(~LE)

(3)

AT.--O

In the case of a superdistocation consisting of two dislocations, the corresponding definition would be:

=

T

t im

s

AT.

~

(~_~) (4)

0

s

where

AT.

s

= AL + AT.,, AT. = B C D - B D ,

and

AT.'

= B'C'D'-

the change in length corresponding to A E . While T

B'D',

and

AT., r e f e r s

to

conforms to the usual definition of s

line tension, it suffers from the drawback that L

and L' are not necessarily equal.

Calculation of the change in energy, knowing the change in length of one of the dislocations, is therefore

not feasible.

Typical values of

V, L , L ' ,

the ratio of the two areas,

A'/A,

generated

by the bowed out segments, and T are listed in Table 2 for both edge and screw s o superdislocations at 0 = 1 As V or L increases, the values of L and L' approach

each other and the ratio of the areas

approaches

unity, i.e.

t~/e t w o d i s l o c a t i o n s t e n d t o b e

parallel. The results

of the present

dislocation is larger dislocation increases a disordered

material

calculations

show that the line tension of a screw super-

than that of an edge superdislocation. monotonically with except when

found to be true for all values of L

¥

V or

L.

approaches

It i s l a r g e r zero,

substantially

smaller.

than that of a dislocation in

where the two are equal.

estimates

with a pure screw component compare

(2, 3} b u t t h a t o f t h e p u r e e d g e c o m p o n e n t i s

The ratios of the line tension of a superdislocation

dislocation in a disordered edge and screw components.

material

This is

investigated.

The values of line tension of a superdislocation favorably with some of the earlier

The line tension of a super-

are within a factor of approximately

In a r r i v i n g

at t h i s f i g u r e ,

to that of a single 1 to 2.5 for both

the values of line tension of a single

d i s l o c a t i o n (4} c a l c u l a t e d b y a t e c h n i q u e s i m i l a r t o t h e o n e u s e d h e r e w e r e e m p l o y e d .

Vol.

3, No. 4

LINE T E N S I O N TABLE

OF S U P E R D I S L O C A T I O N

237

2.

Typical Values of Line Tension of an Edge and Screw Superdislocation as Functions of the Antiphase Energy, N, and Perturbed Length

Edge Superdislocation Y

L

L'

A'/A

L.

Screw Superdislocation T

L'

A'/A

S

T S

(~b2 ) (A. U.) 0.001

4000

13320

0.665

2.7

15200

0.578

12.5

0.001

10000

20420

0.876

3.9

30800

0.830

16.2

0.001

20000

27820

0.929

4.7

37940

0.882

20.4

0.005

2000

3920

0.883

3.0

5600

0.823

12.9

0.005

4000

5310

0.934

3.8

7106

0.884

16.7

0.005

i0000

10740

0.980

4.4

11938

0.952

19.8

0.005

20000

20460

0.994

4.9

21188

0.982

21.2

0.010

i000

1790

0.897

2.6

2730

0.814

11.4

0.010

2000

3620

0.944

3.4

3480

0.893

15.2

0.010

4000

4400

0.974

3.8

5040

0.937

17.7

0.010

i0000

I0200

0.994

4.6

10640

0.998

20.0

0.050

400

490

0.945

2.4

638

0.890

11.4

0.050

i000

1050

0.981

3.1

1146

0.959

14.3

0.050

2000

2030

0.994

3.7

2092

0.985

16.2

0.050

4000

4010

0.998

4.3

4052

0.995

18.5

0. I00

200

240

0.950

2.0

304

0.901

9.8

0. i00

400

430

0.982

2.6

476

0.949

12.1

0. I00

I000

i010

0.995

3.3

1040

0.984

14.7

0. I00

2000

2004

0.999

4.0

2026

0.995

17.1

238

LINE TENSION OF SUPERDISLOCATION

Vol. 3, No. 4

REFERENCES Io

P. Chaudhari, Acta Met., 14, 69 (1966).

2.

M. F. Ashby, Acta Met., I_~4, 679 (1966).

3.

G. Schoeck, Scrlpta Met., --2, 283 (1968).

4.

T. J~bssang, J. L o t h e , and K. Skylstad, A c t a M e t . ,

5.

J. Blin, A c t a M e t . , _3, 199 (1955).

6.

M. J. Marcinkowski, Electron Microscopy and Strength of Crystals, p. 333, John Wiley & Sons, N e w York (1963).

I.~3, 271 (1965).