Biochemical Systematicsand Ecology, Vol. 16, No. 2, pp. 203-212, 1988. Printed in Great Britain.
0305-1978/88 $3.00+0.00 © 1988 PergamonJournals Ltd.
Lipid Metabolism of the Crab Pachygrapsus marrnoratus during Vitellogenesis JACQUES LAUTIER and JEAN-G. LAGARRIGUE Laboratoire de Physiologie des Invert~br6s, Universit~ des Sciences et Techniques du Languedoc, Place E. 8ataillon, 34060 Montpellier Cedex, France
Key W o r d Index--Pachygrapsus marmoratus, female crab; lipid metabolism; fatty acids; vitellogenesis; moulting cycle. Abstract--Vitellogenesis in the female crab Pachygrapsus marmoratus induces important variations in all lipid classes of the whole animal, the hepatopancreas, hemolymph and ovary. Exuviation (moulting), which happens during the reproductive cycle of Pachygrapsus marmoratus, reduces the mobilization of the lipids in the hepatopancreas and their transfer via the hemolymph to the ovary. All lipid fractions decrease after egg laying. Eggs are rich in phospholipids which are essential constituents of embryonic membranes and in triglycerides which serve as nutrients. The polyunsaturated fatty acids increase during the ovocyte maturation and are transported to the eggs.
Introduction
The growth of crustacea is conditioned by moulting. The hepatopancreas is the seat of considerable metabolic and physiological change during the different stages of the moulting cycle. Likewise, during vitellogenesis, the ovary shows metabolic and physiological modifications parallelling anatomical variations. The reproductive cycle of female Pachygrapsus marmoratus occurs during two moults. It is thus of interest to examine the variation in lipids, phospholipids, triglycerides, cholesterol and fatty acids in the hepatopancreas, ovary, hemolymph and whole animal in this crustacean during vitellogenesis. Results and Discussion Lipid metabolism of whole animals The total lipids of whole animals increase progressively to moulting (stage A, Table 1 ) which happens during the maturation of gonads. They then fall and later increase again (Tables 1 and 2). After egg laying, total lipids and all lipid fractions (Table 2) are low, especially in animals which may have laid twice. Phospholipids increase markedly in the whole animal at first but later become stable. At the
(Received 4 November 1986)
moult which involves large quantities of organic material, the phospholipids fall, before increasing again progressively to laying. During vitellogenesis, the increase of phospholipid fraction of the whole animal results mainly from accumulation of polar lipids in the ovary in relation to formation. The triglycerides fraction of whole animal changes in the same way as the phospholipids during ovary maturation. At the laying stage, the triglycerides do not, however, reach the phospholipid level which are the main fraction in Pachygrapsus marmoratus. Triglycerides variation during the reproductive cycle are the results of two factors: moulting which uses neutral glycerides when the new exoskeleton is formed (1) and vitellogenesis which induces triglyceride accumulation in the ovary (2). Cholesterol increases from stages C4 to D 2 (Table 1) before moulting. The percentage of cholesterol decreases during moulting and then increases again progressively before egg laying. The different classes of fatty acids show distinct changes during the vitellogenesis (Tables 3 and 4). Saturated fatty acids decrease at the beginning of ovary maturation, remain constant, and then further decrease at the end of vitellogenesis. Unsaturated fatty acids vary in the opposite way. In particular, linolenic and linoleic acids (18:2 and 18: 3) increase during vitellogenesis reaching closely similar values at the end of 203
204
JACQUES LAUTIER and JEAN-G. LAGARRIGUE TABLE 1. PERCENTAGE OF TOTAL LIPIDS, PHOSPHOLIPIDS, TRtGLYCERIDES, CHOLESTEROL IN THE CRAB PACHYGRAPSUS MARMORATUS DURING MOULTING AND EGG LAYING
Percentage of"
C4
DO
Total lipids Phospholipids Triglycerides Cholesterol
1152 535 3.56 14 9
12.64 5.70 3.91 1.70
Moulting stages D1 D2 17.71 7.89 6.04 2.19
18.16 7.90 6.19 2.36
A
B
C1
C3
10.81 4.80 363 1.24
1092 4.95 3.50 1.40
13 15 5 84 443 164
15.26 6.82 4.96 19 5
*Concentration of different fractions are expressed as percent of dry weight of the whole animal
TABLE 2.THE PERCENTAGE OF TOTAL LIPIDS, PHOSPHOLIPIDS, TRIGLYCERIDES, CHOLESTEROL OF EGGS, WHOLE ANIMALS, HEPATOPANCREAS, OVARIES, HEMOLYMPH IN PACHYGRAPSUS MARMORA TUS AFTER LAYING Female after laying Percentage of $
Eggs
Whole animal
Hepatopancreas
Ovaries
Hemolymph
Total lipids
32.82" 31.95t 14.28 13.96 1303 12.87 1.90 173
12.06" 981 t 5.40 422 3.97 3.33 1.46 1.15
16.28 20.05 775 9.28 6.05 7.48 0.78 1.03
40.48 3360 17.60 14.99 13.61 10.69 5.09 4.07
951 6.09 4.42 2.68 3.06 2.06 10 4 0.66
Phospholipids Triglycerides Cholesterol
"Analysis of animals collected in June: tanalysis of animals collected at the end of July: other figures are given similarly. tConcentration of different fractions are expressed as percent of dry weight.
the cycle. In contrast, oleic acid (18:1 ), which is more abundant, does not much vary on aggregate. Among the other unsaturated fatty acids, only palmitoleic acid (1 6:1 ) decreases quantitatively during vitellogenesis. The increase of polyethylenic unsaturated fatty acids (P.U.F.A.) in Pachygrapsus marmoratus is certainly specific of vitellogenesis for it is not a result of changes in external factors such as temperature. Several workers [3-7] have found that polyethylenic unsaturated fatty acids in some Crustacea and marine fish increase as the ambient temperature decreases. But in Pachygrapsus marmoratus, vitellogenesis begins during winter and ends in spring when the water temperature is higher. During this period, there is a decrease of saturated fatty acids. In this case, the temperature does not seem to play an important part since Penaeus japonicus [8] shows a very high concentration of saturated fatty acids during summer months which decrease as the ambient temperature falls. After laying, there is no important modification in the distribution of the different fatty acids.
However, since the crabs are less rich in total lipids there is a decrease of all classes of fatty acids.
Lipid metabolism of the hepatopancreas Hepatopancreatic lipids decrease during vitellogenesis. After laying (Tables 5-7), total lipids remain low but yet rise again at the end of July when the majority of animals have ceased laying. Collatz [9] and Guary et al. [8] have previously observed similar phenomena in Orconectes limosus and in Penaeus japonicus. According to Adiyodi and Adiyodi [10] fats are removed from the ovaries as they are used for egg formation. Unlike the two other lipid fractions hepatopancreatic cholesterol decreases over the period to the end of vitellogenesis. Before laying cholesterol levels reach a minimum (stages B, C1, C3, C,). Similar decreases of cholesterol to that in the hepatopancreas of Pachygrapsus marmoratus during vitellogenesis has been observed in Paratelphusa hydrodromus [10] and Cancer pagurus [11 ]. Whitney [12] showed that during vitellogenesis Callinectes sapidus, esterified sterols of
LIPID METABOLISM OF THE CRAB PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS
205
TABLE 3, DISTRIBUTION OF WHOLE ANIMAL FATTY ACIDS IN PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS
Moulting stages Fatty acids 10:0 10:1 11:0 11 : 1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1m7 17:0 17:1 16:2m7 18:0 18:1m9 18:2m6 19:1 18:3m3 18:4 20:1 m9 20:2 20:3 20:4m6 20:4m3 20:5m3 22:3 22:4w6 22:5m3 22:6w3 Total ° S.F.A. M.U.F.A. P.U.F.A.
C4
Do
D1
D2
A
B
C1
C3
1.73 0.30 0.03 1.70 0.61 0.10 0.32 1.55 3.38 0,45 1.77 0.83 16.18 11.50 9.94 1.71 1.06 6.14 19.65 1.22 0.25 1.48 1.49 6.85 1.93 1.42 0.98 0.60 1.87 0.92 0.80 0.14 1.08
1.26 0.25 0.02 1.44 0.45 0.08 0.10 1.15 3.42 0.56 1.52 0.76 15.73 12.98 8.40 1,30 0.72 5.66 21.42 1.49 0.35 3.26 2.95 6.98 1.36 0.73 0.82 0.51 1.42 0,67 0,77 0.25 1.21
1,07 0.15 0,02 1.27 0.39 0.08 0.05 0,94 3.17 0.44 1.18 0,72 15.67 12.67 7.96 1.00 0.61 5.45 21.25 2.68 0.52 6,02 2.65 6.65 1.28 0,66 0,74 0.43 1.37 0.55 0.71 0,62 0.95
0.77 0.10 0.02 1.09 0.35 0,06 0,03 0.90 3.03 0.41 1.00 0.68 15.50 12.50 7,90 0.78 0.58 5,23 22.19 4.36 0.66 8.86 2.61 4.03 1,00 0.61 0,71 0,35 1.21 0.50 0.66 0.91 0.40
0.79 0.12 0,02 1,33 0.39 0.06 0.05 0,85 3,24 0.30 0.49 0.55 15.96 12.76 7.86 0.52 0.42 5.37 21.98 4.25 0.59 8.48 2.55 4.41 1,03 0.43 0,79 0,32 1.23 0.75 0.79 0.89 0.42
0.80 0.14 0.03 1.34 0.40 0.07 0.06 0.86 3.24 0.31 0,52 0,56 15.75 12.65 7.86 0.53 0.42 5.38 21.90 4.25 0.60 8,52 2.57 4.43 1,05 0.44 0.81 0.35 1.25 0.76 0.80 0.90 0.44
0.84 0.21 0.07 1.49 0.50 0.14 0.21 0.44 3.34 0.50 0.64 0,59 14.74 11,52 7,20 0.57 0.50 5.53 22.20 4.34 0.64 8,73 2.70 4.57 1.10 0,53 0.88 0.48 1.40 0.79 0.83 1.06 0.68
1.93 0.41 0.08 1.67 0.58 0.15 0.36 0.53 3.41 0.65 0,85 1.00 11.98 9.31 8.00 0,60 0.54 5.80 22.30 4.30 0.65 8.70 2.70 4.59 1.12 0,60 0.92 0.72 1.46 0.94 0.98 1.10 1.06
40.10 44.89 14.99
36.56 47.27 16.16
34.96 45.69 19.27
33.83 43.40 22.76
34.17 43.47 22.35
34.04 43.39 22.56
33.07 42.87 24.01
32.99 41.86 25.14
• S. F.A.: Saturated fatty acids: M. U. F.A.: monoethylenic unsaturated fatty acids; P.U. F,A.: polyethylenic unsaturated fatty acids.
the hepatopancreas were converted into free sterols which were transported to the ovaries at oocyte formation. Esterified cholesterol may play a part in vitellus composition, After the first laying in June (Table 2) hepatopancreatic cholesterol remains constant and does not decrease as do the phospholipids and triglycerides. In July, cholesterol increases more markedly. Vitellogenesis induce a total drop in saturated fatty acids, a decrease in monoethylenic unsaturated fatty acids at the end of cycle and a progressive increase in polyethylenic unsaturated fatty acids (except near moulting). (Tables 6 and 7.)
The distribution of the different classes of hepatopancreatic fatty acids is similar before and after laying. Consequently, all fatty acids classes decrease slightly in the hepatopancreas of females at the end of June since total lipids also decrease. On the other hand, unsaturated fatty acids (essentially monoethyienic) increase in the hepatopancreas of animals collected at the end of July when total lipids begins to increase again. Saturated fatty acids decrease very slightly. Lipid metabolism of the ovary The total lipids of ovaries increase progressively during the vitellogenesis at the expense of
206
JACQUES LAUTIER and JEAN-G. LAGARRIGUE
TABLE 4. DISTRIBUTION OF WHOLE ANIMAL FATTY ACIDS IN PACHYGRAPSUS MARMORATUS AFTER LAYING Fatty acids 10:0 10:1 11:0 11:1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1~7 17:0 17:1 16:2•7 18:0 18:1 w9 18:2w6 19:1 18:3w3 18:4 20:1 ~9 20:2 20:3 20:: 4w6 20:4w3 20:5e~3 22:3 22 : 40..,6 22:5w3 22:6w3 Total* S.FA. M.U.FA. P,UF.A.
June
July
1.91 0.38 0.06 1.71 0.56 0,14 0.35 0.56 3.48 0.61 0.66 0.89 12.58 9.16 8.46 0.50 1.53 5.29 21.82 3.93 0.58 851 2.51 4.83 1.08 0.47 0.83 0.84 1 51 0.83 0.87 1.41 1.14
1.34 0.34 0.04 1.53 0.52 0.17 0.42 0.50 3.11 0.72 0.69 0.78 14.78 9.03 8.29 0.65 14 0 4.97 22,46 3.87 0.66 7.64 2.09 4.35 1.18 0,43 1.17 0.79 1,68 0.99 0 70 1.40 1.30
33.35 41.18 25.46
3416 41.19 24.64
*S.F.A.: Saturated fatty acids: M.U.F.A.: monoethylenic unsaturated fatty acids: P.U.F.A.: polyethylenic unsaturated fatty acids.
hepatopancreas. This lipid accumulation in ovaries during maturation has been shown to occur in numerous Crustacea: Penaeus setiferus [13], Panulirus polyphagus and Palaemon carcinus [14], Orconectes species [15], Crangon crangon, Rithropanopeus harrisL Astacus fluviatilis,
Palaemonetes varians [16], Carcinus maenas [17], Uca annulipes, Portunus pelagicus, Metapaeneus affinis [18]. Our results are similar to those of Collatz [19] on Orconectes limosus, Adiyodi and Adiyodi [10] on Paratelphusa hydrodromus and Armitage et al. [19, 20] on Orconectes nais. Hepatopancreatic lipids are transfered in the form of lipoproteins [21 ] participate as the gonads develop. In contrast to Pachygrapsus marmoratus, the ovarian lipids of Penaeus duorarum increase only at the beginning of vitellogenesis and decrease somewhat before laying [22]. In Pachygrapsus marmoratus, there is no decrease in fats in the gonads during vitellogenesis. However, accumulation of lipids in the ovaries is greatly reduced at moulting which happens during gonad maturation. Gehring [22], suggest that this decrease of ovarian lipids at the end of vitellogenesis could be due either to the conversion of a part of the fats into other compounds, or by their utilization as an energy source for effecting morphological changes before laying, or through ovary resorption before the end of maturation. After laying, the ovarian lipids decrease, especially in animals collected in July which have probably laid twice (Table 2). Eggs are rich in lipids (Table 2). In Pachygrapsus marmoratus this difference between eggs and ovaries after laying is a result of the transfer of a large part of ovarian lipids to the eggs; these fats are stored and used as nutrients during embryonic development. Similar observations have been made in the decapod Homarus vulgaris which has a larval development stage and in the isopod Ligia oceanica which develops directly [23]. Ovarian phospholipids, triglycerides and cholesterol increase during vitellogenesis, whereas as mentioned above, all these fractions decrease in the hepatopancreas. Besides Pachygrapsus marmoratus, phospholipid accumulation in the ovar-
TABLE 5. PERCENTAGE OF TOTAL LIPIDS, PHOSPHOLIPIDS, TRIGLYCERIDES, CHOLESTEROL OF THE HEPATOPANCREAS IN PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS
Percentage of"
C4
Do
D1
Moulting stages D2 A
B
C1
C3
Total lipids Phospholipids Triglycerides Cholesterol
41.27 19.05 14.78 3.13
42.11 19.25 15.64 2.42
33.07 15.61 12.60 1.37
25.93 12.29 9.90 1.03
20.30 9.68 7.57 0.81
18.31 8.34 7.43 0,72
17.91 8.55 6,79 077
23.14 10.91 8.90 0.91
*Concentration of different fractions are expressed as percent of dry weight.
LIPID METABOLISM OF THE CRAB PACHYGRAPSUS MARMORATUS DURING VITELLOGENE$1S
207
TABLE 6. DISTRIBUTION OF HEPATOPANCREATIC FATTY ACIDS IN PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS
Fatty acids
C4
Do
D1
D2
Moulting stages A
8
C1
C3
10:0 10:1 11 : 0 11:1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1 ¢u7 17:0 17:1 16:2~7 18:0 18:1~9 18:2t~J6 19:1 18:3w3 18:4 20:1w9 20:2 20:3 20:4u~6 20:4w3 20:5w3 22:3 22:4uJ6 22:5~3 22:6w3
1.57 0.28 0.04 1.18 0.44 0.06 0.14 0.80 4.94 0.49 1.71 0.94 16.62 11.34 9.25 0.48 1.89 6.31 19.71 0.52 0.43 2.91 2.90 8.35 1.60 0.56 0.73 0.77 0.95 0.49 0.37 0.45 0.73
0,89 0.21 0.03 1.06 0.36 0.07 0.10 0.60 5.16 0.81 1.47 0.82 17.81 9.51 8.15 0.53 1.99 6.38 22.51 1.54 0.75 2.94 3.50 6.17 1.23 0.49 0.87 0.96 0.92 0.76 0.35 0.50 0.55
0.62 0.18 0.03 0.81 0.34 0.06 0.09 0.57 4.26 0.66 1.38 0.74 14.44 9.36 7.26 0.48 1.56 6.36 22.97 2.01 0.83 6.93 6.05 5.50 1.20 0.48 0.85 0.94 0.90 0.67 0.34 0.65 0.47
0.58 0,15 0.03 0.60 0.30 0.05 0.08 0.44 3.53 0.44 1.33 0.50 11.68 9.02 7.26 0.42 1.10 6.38 29.54 1.19 0.78 8.00 5.80 4.81 1.18 0.46 0.82 0.80 0.82 0.50 0.32 0.70 0.37
0.54 0.10 0.02 0.66 0.20 0.04 0.07 0.38 3.34 0.41 1.35 0.53 11.55 9.08 7,37 0.38 1.05 6.38 32.85 1.23 0.57 8.00 4.23 3.93 1.15 0.41 0.89 0.74 0.84 0.30 0.28 0.67 0.45
0.64 0.11 0.02 0.97 0.33 0.04 0.07 0.38 3.36 0.42 1.39 0.57 11.67 9.32 7.45 0.39 1.14 6.99 28.08 1.37 0.54 8.14 4.26 4.14 1.43 0.42 1.23 0.75 1.54 0.30 0.85 0.68 0.98
0.66 0.15 0.06 1.36 0.38 0.06 0.08 0.40 3.70 0.43 1.42 0.62 11.97 9.73 7.49 0.48 1.32 7.16 21.35 2.09 0.68 8.26 5.18 4.40 1.75 0.45 1.96 1.16 1.82 031 0.87 0.77 1.47
0.72 0.20 0.08 1.79 0.52 0.09 0.10 0.45 4.41 0.50 1.69 1.00 12.06 9.80 8.09 0.56 1.50 8.17 15.07 2.11 089 8.53 5.24 4.50 1.79 0.48 2.45 1.26 2.04 0.37 1,00 0,97 1,55
41.02 44.08 14.87
40,35 43.04 16.60
34.78 42.16 23.05
31.17 46.75 22.06
30,82 48.93 20.24
31,92 44.96 23.09
32.92 39.66 27.41
35.84 34.85 29.29
Total S.F.A. M.U.F.A. P.U.F.A.
S.F.A.: Saturated fatty acids; M.U.F.A.: monoethylenic unsaturated fatty acids; P.U.F.A.: polyethylenic unsaturated fatty acids.
ies has been observed in two shrimps, Penaeus duorarurn [22] and P. japonicus [8]. However, in Japanese shrimps, the amounts are low compared to these two other Crustacea. Likewise, phospholipids are less abundant than triglycerides and sterols (Table 8). In Carcinus maenas [24] and Penaeus duorarum [22] as in Pachygrapsus marmoratus, phospholipids are the predominant fraction in the ovarian lipid fraction. The accumulation of triglycerides in the ovaries during the vitellogenesis is common in Crustacea [8, 22] except for Carcinus maenas [17]. But in Pachygrapsus marmoratus, as in Penaeus duorarum [22], triglycerides are less important than phospholipids. Cholesterol storage in ovaries of Pachygrapsus
marmoratus during vitellogenesis is similar to that found by Gehring [22] in Penaeus duorarum. The cholesterol level increases significantly but is less than that of the triglycerides. There is, then, mobilization of phospholipids, triglycerides and cholesterol during ovarian development in these two species of Crustacea. It is not always the case, since Brodzicki [16] and Adiyodi and Adiyodi [10] did not find cholesterol in the ovaries of Crangon crangon, Palaemonetes varians, P. microgenitor, Rhithropanopeus harrisi, R. tridentata, Astacus fluviatilis and Paratelphusa hydrodromus. On the other hand, sterols are predominant in the ovaries of Penaeus japonicus [2]. After laying, ovarian phospholipids, triglycer-
208
JACQUES LAUTIER and JEAN-G. LAGARRIGUE
TABLE 7. DISTRIBUTION OF HEPATOPANCREATIC FA'FI'Y ACIDS IN PACHYGRAPSUS MARMORATUS AFTER EGG LAYING Fatty acids 10:0 10:1 11:0 11:1 12:0 12:1 13:0 13:1 14:0 14:1 15 : 0 15:1 16:0 16:1w7 17:0 17:1 16:2w7 18:0 18:1 w9 18:2w6 19:1 18:3w3 18:4 20:1 w9 20:2 20:3 20:4w6 20:4w3 20:50.,'3 22:3 22:4w6 22:5w3 22:6w3 Total S.F.A. M.U.F.A. PU.F.A.
June
July
0,70 0.18 0.07 1.66 0.48 0.08 0.09 0.46 4.67 0.58 1.44 0.75 12.80 9.18 8.11 0.58 1.31 7,60 15.41 1.95 0.77 9.05 5.05 4.93 1.71 0.61 2.79 1.36 1.84 0.39 0.84 0.97 1.55
0,89 0.22 0,13 1.77 0.56 0.07 0.07 0.51 3.69 0.74 1.34 0.85 11.86 11.48 8.46 0,45 0.87 734 16.92 1.52 0.63 8.50 4.81 441 1.70 0.54 2.73 1 27 157 0.51 1.01 1.05 1.50
35.96 34.58 29.42
34,34 38.05 27.58
S.F.A.: Saturated fatty acids; M.U.F.A.: monoethylenic unsaturated fatty acids; P.U.F.A.: polyethylenic unsaturated fatty acids.
ides, cholesterol (Table 2) decrease especially in animals collected in July which have probably layed twice (Table 2). Eggs contain slightly less triglycerides than phospholipids. The values observed in Pachygrapsus marmoratus are comparable with those found by Dawson and Barnes [25] in Balanus balanoides and by Martin [26] in Palaemon serratus. In Pachygrapsus marmoratus, as in Balanus balanoicles [25], the eggs contain very small quantities of cholesterol which, according to Whitney [1 2] should be mainly present as an ester. During vitellogenesis of Pachygrapsus marmoratus, the percentage of saturated fatty acids
in the ovaries remains roughly constant. But monoethylenic unsaturated fatty acids decrease while polyethylenic unsaturated fatty acids increase (Table 9). After laying, there is not perceptible change in the distribution of the different classes of ovarian fatty acids (Table 10). As total lipids and consequently fatty acids are low in laying females, there is a decrease in all fatty acids classes. In eggs (Table 11 ), as in ovaries, unsaturated fatty acids are predominant especially oleic acid derivatives (18:1 ). The relatively high amounts of polyethylenic unsaturated fatty acids is reflected in high percentages of w 3 fatty acids, particularly linolenic, eicosapentenoic and docosahexenoic acids. The saturated fatty acids are in comparison less abundant than corresponding unsaturated fatty acids. Palmitic, stearic, heptadecanoic and myristic acids are quantitatively the most important. The polyethylenic unsaturated fatty acids which compose the half of unsaturated fatty acids are as abundant in the eggs of Pachygrapsus marmoratus as those of Callinectes sapidus [12] and Palaemon serratus [26]. C20 and C22 fatty acids are predominent in the eggs of Pachygrapsus marmoratus, since there are necessary for growth [27]. Lipid metabolism of hemolymph Total lipids of the hemolymph increase progressively but not linearly during ovarian maturation. They double between the beginning and the end of vitellogenesis (Table 12). The rise is much higher (62%) in Cancermagister [28]. It might be similar in Pachygrapsus marmoratus if vitellogenesis did not proceed over two intermoults. Indeed, a very marked decrease of hemolymph lipids happens at moulting. In laying females of Pachygrapsus marmoratus, hemolymph lipids decrease especially in animals collected in July. Phospholipids, triglycerides and cholesterol all increase in the hemolymph during ovarian maturation. This rise ceases at moulting which happens during the vitellogenesis cycle. After moulting, phospholipids increase again in the hemolymph until egg laying occurs. Hemolymph phospholipids and triglycerides change similarly during vitellogenesis in Pachygrapsus marmoratus and in Cancer magister [28]. In the hemolymph, phospholipids, triglycerides and cholesterol levels are low after egg laying (Table 2).
209
LIPID METABOLISM OF THE CRAB PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS TABLE 8. TOTAL LIPIDS, PHOSPHOLIPIDS, TRIGLYCERIDES, CHOLESTEROL PERCENTAGE OF OVARIES IN THE CRAB PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS
Percentage of"
C4
Do
D1
Moulting stages D2 A B
C1
C3
Total lipids Phospholipids Triglycerides Cholesterol
37.07 15.53 13.32 4.70
38.42 16.29 13.39 4.70
40.14 16.84 13.88 5.07
41.55 17.67 14.23 5.28
44.56 19.66 13.97 6.04
46.47 20.00 15,20 6,17
41.85 17.71 14.22 5.52
42.80 18.32 14.95 5.29
"Concentration of different fractions are expressed as percent of dry weight.
TABLE 9. DISTRIBUTION OF OVARIAN FATTYACIDS IN PACHYGRAPSUS MARMORATUS DURING THE VITELLOGENESIS Fatty acids 10:0 10:1 11:0 11:1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1 ¢u7 17:0 17:1 16:2eu7 18:0 18:1u~9 18:2uj6 19:1 18:3uj3 18:4 20:1aJ9 20:2 20:3 20:4o,16 20:4uJ3 20:5~3 22:3 22:4¢~6 22:5uJ3 22:6uJ3 Total S.F.A. M.U.F.A. P.U,F.A.
C4
Do
D1
Moulting stages D2 A B
C1
C3
2.93 0.30 0.15 1.58 0.24 0.15 0,07 1.30 3.45 0.71 0.71 0.61 11.92 10.94 5.09 1.77 1.36 3.43 31.20 1.84 0.38 2.81 1.23 2.93 0.58 0.47 3.55 1.20 3.54 1.38 0.63 1.25 0.26
2,98 0,31 0,15 1.65 0.22 0.15 0.08 1.32 3.45 0.72 0.73 0.61 11.53 10.73 5.26 1.80 1.42 2.99 30.03 1.99 0.38 2.94 1.31 3.15 0.66 0.48 3.97 1.34 3.62 1.49 0.77 1.44 0.28
3.10 0.33 0.15 1.78 0.24 0.18 0.08 1.33 3.50 0.75 0.75 0.64 10.92 9.99 5.49 1.83 1.54 2.99 29.12 2.19 0.40 3.18 1.37 3.29 0.68 0.50 4.17 1.42 3.78 1.58 0.83 1.58 0.30
3.16 0.34 0.14 1.97 0.40 0.20 0.08 1.35 3.52 0.76 0.77 0.65 10.98 9.75 5.62 1.96 1.56 2.97 26.75 2,36 0.43 3.25 1.42 3.33 0.71 0.53 4.44 1.59 4.10 1.75 0.96 1.73 0.43
3.21 0.36 0.16 2.14 0.43 0.19 0.09 1.36 3.54 0.85 0.75 0.72 9.86 9.02 5.78 2.11 1.57 3.31 25,51 2,48 0.50 3.39 1.50 3.43 0.75 0.54 4.69 1.61 4.58 1.93 1.11 1.92 0.56
3.25 0.41 0.17 2.15 0.39 0.21 0.10 1.44 3.58 0.91 0.77 0.76 9.49 8.58 5.80 2.22 1.68 3.41 24.32 2.53 0.53 3.46 1.56 3.46 0.79 0.55 4.76 1.79 4.68 2,08 1.34 2.17 0.62
3.39 0.45 0.20 2.23 0.45 0.22 0.11 1.43 3.59 0.89 0.78 0.78 8.66 7.45 5.89 2.45 1.72 3.59 22.60 2.79 0.62 3.68 1.63 3.68 0.89 0.56 4.97 1.85 5.11 2.19 1.81 2.59 0.74
3.42 0.46 0.23 2.19 0.47 0.20 0.12 1.59 3.59 0.90 0.83 0.82 8.44 6.28 5.89 2.50 1.83 3.59 20.20 3.33 0.69 3.93 1.76 3.75 1.00 0.60 5.57 1.95 5.89 2.45 1.84 2.81 0.83
27.99 51.87 20.10
27.39 50.95 21.71
27.22 49.64 23.12
27.64 47.49 24.83
27.13 46.19 26.63
26.96 44.99 28,01
26.66 42.80 30.53
26.58 39.58 33.79
S. F.A.: Saturated fatty acids; M.U.F.A.: monoethylenic unsaturated fatty acids; P.U. F.A.: polyethylenic unsaturated fatty acids.
210
JACQUES LAUTIER and JEAN-G. LAGARRIGUE
TABLE 10. DISTRIBUTION OF OVARIAN FATTY ACIDS IN PACHYGRAPSUS MARMORATUS AFTER EGG LAYING
TABLE 11. DISTRIBUTION OF FATTY ACIDS IN THE EGGS PACHYGRAPSUS MARMORA TUS
Fatty acids
Fatty acids
10:0 10:1 11:0 11 : 1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:lw7 17:0 17:1 16:2w7 18:0 18:1 w9 18:2w6 19:1 18:3w3 18:4 20:lw9 20:2 20:3 20:4~6 20:4w3 20:5w3 22:3 22:4w6 22:5w3 22:6w3 Total S.F.A. M.U.F.A P.U.F.A.
June
JuLy
3.39 0.44 0.21 1.98 0.49 0.23 0.10 1.48 3.53 0.90 0.84 0.70 8.54 6.59 5.53 2.46 1.73 3.40 20.27 3.46 0.51 4.21 1.83 3.78 1.33 079 6.06 1.78 5.64 2.36 1.61 2.84 0.98
3.10 0.42 0.19 1.84 0.45 0.22 0.10 1.48 3.52 0.81 0.71 0.68 8 91 6.81 5.55 2.49 1.81 3.55 21.05 3.39 048 410 1.77 3.52 11 9 0,77 6.26 1.90 5.42 2.16 1.61 278 0.90
26.03 39.34 34.62
26.08 39.80 34.06
10:0 10:1 11:0 11 : 1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1w7 17:0 17:1 16:2w7 18:0 18:1 w9 18:2w6 19:1 18:3w3 18:4 20:1 w9 20:2 20:3 20:4w6 20:4w3 20:5w3 22:3 22:4w6 22:5¢u3 22:6w3 Total S.F.A. M.U.F,A PU.F.A.
June
July
0.64 0.10 0.01 0.45 0.21 0.02 0.04 0,41 2.08 0.23 1.09 0.73 16.60 11.99 3.06 0.28 1.05 5,63 20.11 4.90 0.38 6.57 3.19 2.55 0 75 0.51 3.90 1.05 709 0.36 038 0,94 2,65
078 007 0.01 041 021 0 01 003 035 18 8 0.32 0 87 069 1566 1260 2.80 0 39 1 08 497 21.84 548 0 48 5.35 289 2.21 0,66 0.48 437 13 5 795 035 048 0.90 203
29.36 37.25 33,34
27.21 39.37 33,37
S.F.A.: Saturated fatty acids; M.UF.A.: monoethylenic unsaturated fatty acids; P.U,F.A.: polyethylenic unsaturated fatty acids.
S.F.A.: Saturated fatty acids; M.U,F.A.: monoethylenic unsaturated fatty acids; P.U.F.A.: polyethylenic unsaturated fatty acids,
Vitellogenesis induces also modifications in the distribution of hemolymph fatty acids. Saturated fatty acids increase at the beginning of ovarian maturation then decrease very slowly after moulting during the vitellogenesis cycle.
Unsaturated fatty acids decrease progressively up to moulting, then do not vary perceptibly. Oleic (18:1 ) and palmitoleic (16.1 ) acids, which compose a high part of monoethylenic unsaturated fatty acids, increase progressively during
TABLE 12. TOTAL LIPIDS, PHOSPHOLIPIDS, TRIGLYCERIDES, CHOLESTEROL OF THE HEMOLYMPH IN PACHYGRAPSUS MARMORATUS DURING VITELLOGENESlS
Percentage of
C4
DO
D1
Moulting stages 02 A
B
C1
C3
Total lipids Phospholipids Triglycerides Cholesterol
5.31 2.35 1.34 0.63
8.21 3.67 2,85 0,88
11.65 5.22 3.92 1.31
12.31 5.47 4.10 1.38
8.29 3.63 2.98 0.86
8.94 3.97 2,98 1,00
10.09 4.36 3.47 1.15
7.34 3.31 2.48 0.80
Concentration of different fractions are expressed as percent of dry weight.
LIPID METABOLISM OF THE CRAB PACHYGRAPSUS MARMORA TUS DURING VITELLOGENESIS
211
TABLE 13. DISTRIBUTION OF HEMOLYMPHATIC FATrY ACIDS IN PACHYGRAPSUS MARMORATUS DURING VITELLOGENESIS Fatty acids 10:0 10:1 11:0 11 : 1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1¢o7 17:0 17:1 16:2uJ7 18:0 18:1ol9 18:2uJ6 19:1 18:3¢u3 18:4 20:lu~9 20:2 20:3 20:4uj6 20:4u~3 20:5uJ3 22:3 22:4oJ6 22:5w3 22:6oJ3 Total S.F.A, M.U.F.A. P.U.F.A.
C4
Do
D1
Moulting stages D2 A B
C1
C3
5.62 0.88 0.09 6.92 1.83 1.73 0.37 0.46 10.82 6.57 0.81 0.46 9.92 7.45 4.12 1.23 3.17 1.69 11.73 1.97 0.51 1.53 4.19 0.97 1.55 0.16 6.80 0.53 3.14 0.64 0.67 0.72 0.74
6.38 1.16 0.23 8.36 2.26 1.95 0.39 0.48 11.14 6.86 0.89 0.55 10.05 7.56 4.18 1.31 3.20 1.76 8.18 1.74 0.49 1.82 2.99 0.99 1.67 0.18 6.42 0.63 3.38 0.57 0.86 0.56 0.78
6.77 1,30 0,24 8,77 2,53 2.79 0.40 0.50 11.67 6.98 0.91 0.90 10.18 7.79 4.24 1.49 3.25 1.86 7.23 1.37 0.39 2.09 2.37 1.06 1.82 0.20 4.04 0.82 3.46 0.40 0.91 0.41 0.85
7.53 1.32 0.26 8.81 2.64 3.02 0.40 0.52 11.78 7.39 0.99 1.70 10.27 7~84 4,37 1,58 3,26 1.91 5.74 0.92 0.33 2.15 1.60 1.18 1.91 0.26 2.83 0.97 3.49 0,38 1.11 0.38 1.11
7.86 1.43 0.30 8.62 2.88 2.97 0.48 0.48 11.43 6.29 1.06 1.50 10.37 8.22 4.61 1.70 3.11 2.21 6.01 0.92 0.28 2.19 1.87 0.99 2.12 0~30 2.72 0,90 3,25 0,37 0.99 0.41 1.15
7.29 1.02 0.27 7.89 1.99 2.53 0.45 0.45 9.08 5.21 0.95 1.18 12.61 11.03 4.29 1.51 2.82 1.61 10.99 0.94 0.22 2.21 1.64 0.73 1.91 0.23 2.65 0.84 2.91 0.36 0.89 0.36 0.90
6.46 0.85 0.15 6.33 1.70 2.17 0.33 0.36 8.84 4.92 0.85 0.87 16.00 12.56 4.04 1.46 2.64 1.55 12.68 0.93 0.18 1.84 1.37 0.71 1.62 0.23 2.54 0.73 2.87 0.32 0.77 0.30 0.83
6.12 0.47 0.14 5.38 1.63 1.41 0.30 0.32 8.21 4.57 0.87 0.55 17.52 15.17 3.77 1.03 2.53 1.30 15.36 0.84 0.16 1.49 1.21 0.70 1.39 0.13 2.41 0.51 2.71 0.27 0.59 0.25 0.68
35.27 38.91 25.81
37.28 37.89 24.80
38.80 39.20 21.99
40.15 39.43 20.37
41.20 38.49 20.30
38.54 42.76 18.66
39.92 43.09 16.94
39.86 45.12 15.01
S. F.A.: Saturated fatty acids; M.U, F.A.: monoethylenic unsaturated fatty acids; P.U.F.A,: polyethylenic unsaturated fatty acids.
vitellogenesis to become predominant at the end of this process. Linoleic (18.2) and linolenic (18.3) acids, on the other hand, decrease during the ovarian cycle. After egg laying (Table 14), there is no significant change in the distribution of the different fatty acids classes in the hemolymph. As the hemolymph lipids decrease, there is a reduction of all fatty acids classes.
Experimental Results are the mean of t w o experiments with t w o pools of 1 0 crabs collected from artificial dikes which protect FrontignanPlage and Palavas-Plage (France). The determination of different stages of the ovarian development was made according to the methods of Vernet-
Cornubert [29] and Pradeille-Rouquette [30].During the first stage of vitellogenesis (December-January), ovaries lose their transparency. As soon as growth continues, their colour changes simultaneously. The organs which are whitish in January, become yellowish, then orange coloured and finally brown by March. The second stage of vitellogenesis begins when oocytes are charged. Oocytes later are transferred to the oviducts. The animal then moults. This moulting period is followed by a rapid growth of the oocytes. Laying begins at the end of M a y and continues to August. After laying, eggs remain attached to the female pleopods. During incubation of egg from the first laying, most of the gonads are highly developed because new vitellogenesis is starting. The second laying usually follows after hatching of a few of the first eggs, Unlike other Crustacea, for instance some shrimps, Pachygrapsus marmoratus does not moult between these t w o layings. At the end of the reproduction period, ovaries enter into a resting phase which continues during the autumn.
212
JACQUES LAUTIER and JEAN-G. LAGARRIGUE
TABLE 14. DISTRIBUTION OF HEMOLYMPHATIC FATTY ACtDS IN PACHYGRAPSUSMARMORATUS AFTER EGG LAYING Fatty acids 10:0 1O:1 11:0 11:1 12:0 12:1 13:0 13:1 14:0 14:1 15:0 15:1 16:0 16:1w7 17:0 17:1 16:2m7 18:0 18:1w9 18:2w6 19:1 18:3m3 18:4 20:1 w9 20:2 20:3 20:4~8 20:4w3 20:5~3 22:3 22:4m6 22:5m3 22:60~3 Total S.F.A. MU.F.A. P.U.F.A.
June
July
6.03 0.51 0.14 5.76 1.84 1.24 0.38 0.35 8.52 4.69 0.82 0.49 18.52 14.73 3.68 0.88 2.63 1.27 14.31 0.82 0.14 1.56 1.20 0.88 1.49 0.15 2.32 0.63 2.00 0.27 0.65 0.37 072
5.90 0.45 0.21 517 1.57 1.16 0.26 0.39 8.34 4.55 0.75 056 18.76 15.58 3.39 0.94 2.66 1.33 14.09 071 017 1.85 1.76 1.01 0.95 0.26 2.21 0.71 1.87 0.30 0.81 0.45 0.82
41.20 43.98 14.81
40.51 44.07 15,36
S.F.A.: Saturatedfatty acids; M.U.F.A.: monoethylenic unsaturated fatty acids; PU.F.A.: polyethylenic unsaturatedfatty acids. Determination of moulting stages was made according to the nomenclature of Drach and Tchernigovtzeff [31 ]. Total lipids were determined according to ref. [32], phospholipids according to ref. [33], and triglycerides according to refs [35, 36]. Fatty acids analysis was made by gas chromatography [37]. References 1. Gilbert, L. I. and O'Connor, J. D. (1970) in Chemical Zoology V (A) Arthropoda (Florkin, M. and Scheer, B, T., eds), p. 229. Academic Press, New York. 2. Guary, J. C. (1973) Th~se Doctorat SpecialitY, Universit~ Aix- Marseille, 147. 3. Kayama, M., Tsuchiya, J. F. and Mead, F. (1963) Bull. Jpn Soc. ScL Fish. 29, 452.
4. Farkas, T. and Herodek, S. (1964) J. LipidRes. 5, 369. 5. Morris, R. J. (1971) Deep-Sea Res. 18, 525. 6. Stickney, R. R. and Andrews, J. W. (1971) J. Nutr. 101, 1703. 7. Andrews, J. W. and Stickney, R. R. (1972) Trans. Am. Fish. Soc. 101, 94. 8. Guary, J. C., Kayama, M. and Murakami, Y. (1975) Mar. BioL 29, 335. 9. Collatz, R. G. and Adiyodi, K. G. (1971) IndianJ. Exp. BioL 9, 514. 10. Adiyodi, R. G. and Adiyodi, K. G. (1971 ) Indian J. Exp. BioL 9, 000. 11. Zandee, D. J. and Kruitwagen, E. C. J. (1975) NetherL J. Sci. Res. 9, 214. 12. Whitney, J. O. (1969) Acta EmbryoL Exp. 111. 13. King, J. E. (1948) BioL Bull. Mar. Biol. Lab. Woods hole 94, 244. 14. George, J. C. and Patel, B. S. (1956)J. AnimaL Morphol. Physiol. 3, 49. 15. Beams, H. W. and Kessel, R. G. (1963) J. Cell. Biol. 18, 621. 16. Brodzicki, S. (1963) Folia Histochem. Cytochem. 1,259, 17. Heath, J. R. and Barnes, H. (1970) J. Exp. Mar. BioL Ecol 199. 18. Pillay, K. K. and Nair, N. B. (1973) Mar. Biol. 18, 167. 19. Armitage, K. B., Buikema, A. L., Willems, Jr and N. J. (1972) Comp. Biochem. PhysioL 41,825. 20. Armitage, K. B., Buikema, A. L., Willems, Jr and N. J. (1973) Comp. Biochem. PhysioL 44, 431. 21. Guary, J. C., Kayama, M. and Murakami, Y. (1974) Bull. Jpn Soc. ScL Fish. 40, 1027. 22. Gehring, W. R. (1974) Comp. Biochem. PhysioL 49, 511. 23. Saudray, Y. (1954). C, R. S~anc. Soc. Biol. 814. 24. Munn, E. A. (1963) Ph.D. Thesis. University of Southampton. 25. Dawson, R. M. C. and Barnes, H. (1966) JMar. BioL Ass. U.K. 46, 249. 26. Martin, B. J. (1978) C,R. Seanc, Soc. Biol, 814 172, 1168. 27. Kanazawa, A., Tokiwa, S., Kayama, M. and Hirata, M. (1977) Bull. Jpn Soc. Sci. Fish. 43, 1111. 28. Allen, W. V. (1972) Comp. Biochem. Physiol. 43, 193. 29, Vernet-Cornubert, G. (1958) Th~se Doctorat ~s-Sciences naturelles, Universit~ Nancy, Archs ZooL Exp. G~n. 96, 101. 30. Pradeille-Rouquette, M. (1974) Th~se Doctorat es Sciences Naturelles, Universit(~ Montpellier, 1. 31. Drach, P. and Tchernigovtzeff, C. (1967) Vie Milieu, 597. 32. Folch, J., Lee, M. and Sloane-Stanley, G. H. (1957) J. BioL Chem. 226, 497. 33. Fiske, C. H. and Subbarow, Y. (1925) J. BioL Chem. 66, 375. 34. Van Handel, E. and Zilversmit, D. B. (1957) J. Lab. Clin, Med. 50, 152. 35. Liebermann, C. (1885) Bet. Dtsch. Chem. Ges. 18, 1803. 36. Burchard, H. (1890) Chem. Zent 1, 61 O, 37. Lautier, J. and Lagarrigue, J. G. (1986) Biochem. Syst, EcoL 15, 611.