149
CHAPTER 7 LIQUID SPILLS O N W A T E R - T H E P R O B L E M O F OIL POLLUTION
T h e types of spills of present interest are those of liquids lighter t h a n water, w h i c h , w h e n spilled o n the surface, t e n d to s p r e a d
out
u n d e r t h e a c t i o n o f g r a v i t y or s u r f a c e t e n s i o n . M a n y l i q u i d s i n t h i s category are transported in large quantities b y ships, not only crude oil a n d r e f i n e d p r o d u c t s , b u t a l s o c h e m i c a l s s u c h a s a m m o n i a . I n a special category w e h a v e the cryogenic fluids, m a i n l y L N G (liquefied natural gas) or L P G (liquefied p e t r o l e u m g a s ) . Spills of such fluids o n w a t e r give rise to v i g o r o u s boiling a n d
to o t h e r p h y s i c o - c h e m i c a l
reactions. The spreading process and the physico-chemical processes often i n t e r a c t , a n d it m a y b e n e c e s s a r y to c o n s i d e r a c o u p l e d a n a l y s i s . E v e n for u n s t a b i l i z e d c r u d e o i l w e h a v e a c o n s i d e r a b l e m a s s l o s s , perhaps
5 0 % i n t h e first
12 h o u r s for o i l f l o w i n g d i r e c t l y f r o m
an
underwater well ("blowout"). T h e spreading theory, without correction for m a s s l o s s , g i v e s r e a s o n a b l e
estimates
and
ad-hoc
corrections
i m p r o v e t h e r e s u l t s f u r t h e r w i t h o u t m u c h effort. L a t e - t i m e e s t i m a t e s of oil spills h a v e n e v e r t h e l e s s p r o v e d to b e o f d u b i o u s v a l u e ,
not
b e c a u s e t h e t h e o r y i s w r o n g , b u t b e c a u s e c r u d e o i l is a c o m p o u n d o f m a n y substances, a n d the drifting a n d spreading slick c h a n g e s properties
substantially
over
time. W h e r e a s the
late-time
its
theory
predicts a very large slick of thickness only a few microns, in reality tar b a l l s or e m u l s i o n , t h e s o - c a l l e d " c h o c o l a t e m o u s s e " , a r e o b s e r v e d . A theory which assumes constant
and
uniform properties, clearly
will b e of limited value. A t e a r l y t i m e s , t h e t h e o r y d e v e l o p e d for o i l s l i c k s h a s p r o v e d v e r y useful, n o t o n l y for o i l , b u t a l s o for o t h e r a n d l e s s v i s c o u s s u b s t a n c e s s u c h as L N G . ( T h e t i m e scales, early a n d late, will d e p e n d o n spill size, a n d w i l l b e d i s c u s s e d l a t e r . ) T h e theory of oil spills also p r e d a t e s a n d m a y well h a v e inspired many
of the
atmosphere. solutions
theories
developed
"Box-models",
for m o v i n g
"slab
sources
or
for h e a v y - g a s d i s p e r s i o n models"
and
sources
in
certain
streams,
in
the
similarity were
first
d e v e l o p e d for t h e s p r e a d o f o i l o n w a t e r . T h e s e t h e o r i e s w e r e i n t u r n inspired b y classical solutions in g a s d y n a m i c s [ G . I . T a y l o r ' s "strong explosion"
(1950)]
mathematical
or
from
connections
are
"shallow-water" perhaps
clearer
wave than
theory. the
The
physical
s i m i l a r i t i e s , b u t it is w o r t h w h i l e t o a t t e m p t a u n i f y i n g v i e w o f t h e s e methods and results.
Chapter 7
150
7.1 7.1.1
Physical Processes and Spreading
Blokker
Forces
(1964)
and
Simplifications Parameters
proposed
what
amounts
to
a
semi-empirical
spreading l a w of limited range, a n d although incorrect (in terms of t i m e d e p e n d e n c e ) it s e r v e d t o d r a w a t t e n t i o n t o i m p o r t a n t
parameters.
F a y (1969) derived the correct spreading laws b y the m e t h o d discussed i n C h a p t e r 6. H e i d e n t i f i e d t h r e e r e g i m e s c h a r a c t e r i z e d r e s p e c t i v e l y b y the balance between gravity a n d inertial forces, gravity and viscous f o r c e s a n d finally s u r f a c e t e n s i o n a n d v i s c o u s f o r c e s . T h e importance o f gravity, as a spreading force, is illustrated
in
Fig. 7-1. A bucket of water si!bmerged in water will experience no p r e s s u r e o n t h e b u c k e t w a l l w h e n t h e free s u r f a c e s i n s i d e a n d o u t s i d e are o n the s a m e level. If the w a t e r in the b u c k e t is r e p l a c e d b y the s a m e w e i g h t o f a fluid o f lesser d e n s i t y ( e . g . o i l ) , the free
surface
i n s i d e w i l l b e e l e v a t e d a n d t h e b u c k e t w a l l is s u b j e c t e d t o a n o u t w a r d pressure.
O n denoting oil and
w a t e r w i t h i n d i c e s o a n d w,
the
condition of equal weight can be expressed Po9 o S
=
Pw9$
w
a n d t h e h e i g h t Ay a b o v e t h e w a t e r is A
z
*
& \Pw~Po)
water Fig.
7-1;
Ap
£
water Unbalanced hydrostatic
lateral pressure equilibrium.
Ap for
AP oil
volume
in
Liquid Spills on Water - The Problem of Oil Pollution The
parameter
Ap
= p
- p
w
will
0
occur
151
frequently
in
later
developments. A s t h e o i l , i n h y d r o s t a t i c e q u i l i b r i u m v e r t i c a l l y , is f o r c e d o u t w a r d d u e to t h e u n b a l a n c e d
lateral pressure,
the water layers in
contact
w i t h t h e oil a r e f o r c e d t o f o l l o w d u e t o t h e a c t i o n o f v i s c o u s s t r e s s e s (Fig. 7 - 2 ) . T h e s t r e s s o n t h e t o p s u r f a c e c a n b e n e g l e c t e d , a l t h o u g h w e w i l l l a t e r c o n s i d e r t h e effect o f w i n d s t r e s s o n t h e drift o f oil s l i c k s . O n t h e w a t e r s i d e , t h e "sudden" m o t i o n o f t h e s p r e a d i n g oil g i v e s r i s e to a v i s c o u s layer a n a l o g o u s to that d i s c u s s e d
in S e c t i o n 6.3,
the
Stokes' P r o b l e m . T h e v i s c o s i t y o f oil will m o s t often b e o n e to t w o orders of magnitude stress,
[i (du /dy) 0
0
higher than that of water. T h e continuity of
= ii (du /dy), w
w
s h o w s that the velocity
gradient
inside the slick will b e negligible in c o m p a r i s o n w i t h that in adjacent
the
w a t e r layer. Relative to the water, the slick m o v e s as
homogeneous
slab.
For
substances
less
viscous
than
oil,
a
this
conclusion can be questioned, but experimental observations indicate that
the
results
obtained,
using
this condition,
give
reasonable
a g r e e m e n t a l s o for l i q u i d s o n l y s l i g h t l y m o r e v i s c o u s t h a n w a t e r ( e . g . Diesel oil). T h e initial m o t i o n of the
oil is d r i v e n b y g r a v i t y a n d
resisted
primarily b y inertia in the usual case of negligible initial velocity. A s t h e s l i c k s p r e a d s , t h e r e is a r a p i d g r o w t h i n t h e w e t t e d a r e a , o i l - t o water, a n d the v i s c o u s stress at the oil-water interface b e c o m e s the p r i m a r y r e t a r d i n g f o r c e . T h e c h a n g e o v e r b e t w e e n t h e t w o r e g i m e s is gradual, but w e can estimate the characteristic time scales (the early a n d late times) from the equations o f motion. A s the slick is r e d u c e d ,
the gravity force will b e c o m e negligible in
thickness
comparison
w i t h the intermolecular forces, a n d surface tension t a k e s over as the
Fig.
7-2;
Water boundary spreading slick.
layer
and
velocity
distribution
for
Chapter 7
152
driving force. In w h a t
follows w e will s h o w h o w the
derived from the equations proportionality
(as
in
spreading
laws can
be
of motion, not only as expressions of
Fay's
similarity analysis), but
as
definite
solutions. T h e analysis will b e p u r s u e d in rather detailed form, as the effort
expended
will
lead
to
a
better
understanding
of
mathematically related problems of heavy-gas dispersion and
the
strong
explosions. We
will
follow
Waldman (1971,
here
the
original
solution
of Fannelop
and
1972) rather than the elaboration (with a changed
n o m e n c l a t u r e ) a p p e a r i n g i n H o u l t ' s r e v i e w ( 1 9 7 2 ) . A s a p r e l u d e to t h e somewhat
complicated
exact
solution,
w e will
first
derive
the
a p p r o x i m a t e "flat-slick" s o l u t i o n , w h i c h i n effect w a s t h e first " b o x model"
solution.
T h e flat-slick results
are
remarkably
accurate,
w h i c h i s e a s y to u n d e r s t a n d , b e c a u s e t h e s l i c k c r o s s - s e c t i o n p r e d i c t e d i n t h e e x a c t a n a l y s i s i s n e a r l y flat. A n early, but frequently forgotten p a p e r b y A b b o t t ( 1 9 6 1 )
should
a l s o b e m e n t i o n e d . It c o n s i d e r s t h e s p r e a d i n g p h e n o m e n o n f r o m t h e viewpoint of w a v e theory and discusses also the important role of the front
and
the
relevant boundary
condition. W e will discuss
this
p r o b l e m in detail later.
7.1.2
The Flat-Slick
Approximation
or "Box
Model"
W e c o n s i d e r a g i v e n oil v o l u m e V s p r e a d i n g e i t h e r i n a c h a n n e l (j = 0 ) o r r a d i a l l y (j = 1 ) . O n d e n o t i n g t h e l e a d i n g - e d g e p o s i t i o n x
L E
,
the
slick thickness will b e given b y
where
L defines the
corresponds
to a
length
channel
scale
such
that V = L
2
of unit width. Our
+
J and j = 0
slick has
a
finite
t h i c k n e s s at its l e a d i n g e d g e , a n d it w i l l i n t r u d e f o r w a r d i n t h e w a t e r in accord w i t h the l a w s discussed in Chapter 4
^ - ( k
a 5
\
l
/
w h e r e k\ is a n e m p i r i c a l c o n s t a n t , a = g Ap/p
2
w
a n d 6IE i s t h e l e a d i n g -
Liquid Spills on Water - The Problem of Oil Pollution edge
thickness.
On
substituting
8LE = & f r o m
153
(7-2), w e obtain
a
d i f f e r e n t i a l e q u a t i o n for xi£ w h i c h c a n b e i n t e g r a t e d d i r e c t l y
dx LE dt
k
a(l
l
1/2
+j)L J 2+
W i t h t h e u s u a l "similarity" c o n d i t i o n x integration _f
LE ~
X
which
3
+
A2/(3 j) +
fcj
(l+j)/2
LE
(2^
o(l
(t = 0 ) = 0, w e o b t a i n u p o n
L E
2 + j 11/(3 +J)
+J)L
2/(3 +J)
[-2-J
corresponds
very closely to the
result
from
the
(7-3)
complete
analysis. It m a y b e w o r t h w h i l e t o w r i t e o u t t h e r e s u l t s for t h e t w o c a s e s o f interest: f A \ 1/4. 1/4 ( r a d i a l , J = 1) :
x
(planar, J = 0) :
x
LE
LE
The empirical constant discussed.
It
consideration
is
= (±)
(7-3a,b)
[aL*) \"* l/
=
(aL ) 2
1 / 3
t ' 2
3
k\ i s s e t e q u a l to u n i t y for r e a s o n s y e t to b e
evident
from
the
analysis
that,
of both geometries simultaneously
although
leads to a
the more
c o m p a c t a n a l y s i s , t h e r e s u l t i n g e x p r e s s i o n i s a l s o m o r e d i f f i c u l t to assess a n d interpret. The
f l a t - s l i c k s o l u t i o n i s s o s i m p l e t h a t a d - h o c c o r r e c t i o n s for
m a s s loss ( e v a p o r a t i o n ) or c h a n g i n g oil properties (emulsification) easily can be incorporated. W e will discuss analogous i m p r o v e m e n t s i n c o n n e c t i o n w i t h t h e d e r i v a t i o n o f b o x - m o d e l s o l u t i o n s for h e a v y gases w h e r e m a s s addition ( e n t r a i n m e n t ) is of p r i m a r y interest.
7.2 7.2.1
T h e Mathematical T h e o r y of Spreading Oil Equations
of Motion
and Relation
of
Terms
In the flow r e g i m e s first c o n s i d e r e d , three nondimensional p a r a m e t e r s appear, the ratio o f oil a n d w a t e r densities or rather
154
Chapter 7
Aplp
, t h e o i l s l i c k d e p t h - t o - l e n g t h r a t i o < 5 / L , a n d (for t h e v i s c o u s
w
0
force) the characteristic
Reynolds number
layer. T h e nature of the
flow
0
for the w a t e r
boundary
(e.g., gravity-inertial or gravity-viscous)
m u s t be determined from the relationship b e t w e e n these
parameters.
T h e e q u a t i o n s o f m o t i o n , i n a f o r m v a l i d i n b o t h flow r e g i m e s , a r e given below. du Tdx ~
+
du
.u
Tdy "
-X
8U dU dU — : + u—- + u — = dt dx dy
^ =
(
0
1 dp Po d U -f- + FT p dx p dy
7
"
4
)
2
(7-5)
2
0
0
1 dp
dv dv dv — +u — +v — = dt dx dy
~ - g dy
p
7-6
y
0
H e r e j = 0 for t h e p l a n a r c a s e a n d j = 1 for t h e r a d i a l c a s e , w i t h x t a k e n to
be
the
radial
perpendicular
coordinate
in
that
to the w a t e r surface
instance.
The
coordinate
is y , a n d y = 0 represents
the
horizontal water surface prior to the spill. W e integrate E q u a t i o n s ( 7 4 ) t o ( 7 - 6 ) a c r o s s t h e o i l l a y e r o f t h i c k n e s s <5 f r o m t h e o i l - a i r i n t e r f a c e ( s u b s c r i p t e) to t h e o i l - w a t e r i n t e r f a c e ( s u b s c r i p t
(Fig. 7-2). In accord
w i t h the thin-layer a s s u m p t i o n w e will neglect vertical accelerations. Eq. (7-6) then yields the hydrostatic relation b e t w e e n the pressure the layer a n d the oil thickness: p - p
=g p
e
(y
Q
in
- y). B y d i f f e r e n t i a t i n g
e
the pressure relation w i t h respect to x a n d m a k i n g use of (7-1), i.e. o f t h e fact t h a t t h e w e i g h t o f t h e o i l e q u a l s t h e w e i g h t o f d i s p l a c e d w a t e r , we
derive
an
expression
for
the
pressure
gradient,
which
is
independent of y ^P^
Pw-Po^d
g
dx
b
h
G
p
ApdS dx
w
y
H
o
p
w
d x
It f o l l o w s f r o m E q . ( 7 - 5 ) , n e g l e c t i n g t h e s m a l l t e r m v du/dy v i s c o u s t e r m (\i ip ) d u/dy , 2
Q
that
even
if the
independent
2
Q
viscous
and the
that u is i n d e p e n d e n t o f y . W e note also term
is
retained,
u
is still v e r y
nearly
o f y . T h e r e a s o n for t h i s i s t h a t t h e v i s c o s i t y o f o i l i s
v e r y m u c h greater (by, say, o n e to t w o orders of m a g n i t u d e ) than that of water, so that the slick tends to m o v e locally as a h o m o g e n e o u s slab relative to the water, (Fig. 7-2). B y integrating the m o m e n t u m equation ( 7 - 5 ) across the layer, w e c a n express the v i s c o u s t e r m in a m o r e c o n v e n i e n t form
Liquid Spills on Water - The Problem of Oil Pollution
dU dU — + U dx j
dt
* Pw
dx
Po
[dy)
i
C o n t i n u i t y o f s t r e s s a t t h e i n t e r f a c e r e q u i r e s t h a t ii
Q
where r
= C u
w
2
Re
w
~
1
/
155
(du/8y)
= r ,
t
w
is the interfacial stress exerted b y the water
2
b o u n d a r y l a y e r , ( F i g . 7 - 2 ) . T h e ( w a t e r ) R e y n o l d s n u m b e r Re
w
on a suitably chosen reference velocity and
is b a s e d
the distance from
the
slick leading e d g e to the point considered. W e then h a v e
^ dt
(7-8)
u ^ =- g ^ - - ^ dx * Pw dx Po $
+
The normal velocity difference v
e
- v is obtained from the t
continuity
equation (7-4) [ ejdU
ll\
y
_
. U
JdU
T h e v a l u e s o f t h e n o r m a l v e l o c i t y at t h e t o p a n d b o t t o m o f t h e l a y e r , v
e
and v , are given b y {
d
y
(dd
Ap
dS
e —— | — + u — dX P \dt dX ^1 , „ f o _ ^ 83 UdX • e
dt
+ u
w
_ _ _
As 8 = y
e
- y, t
+
u
_
„
_____
( F i g . 7 - 2 ) , w e find
88 in88 u\ ^ — — Jdu fo —+ j— =0 dt dX \ dX X,
(7-9)
The integral m o m e n t u m and continuity equations (7-8) and (7-9) govern
the
motion
of an
oil slick
and
are
subject
to
suitable
conditions describing the m o d e of release of the oil. T h e y have
the
s a m e form as the e q u a t i o n s g o v e r n i n g tidal w a v e s of finite a m p l i t u d e (the shallow water theory, L a m b , 1945). T h e nonlinear terms u a n d u 88/8x a s du/dt a n d
8u/8x
cannot b e neglected, b e i n g of the s a m e order of magnitude 88/dt
To gain insight, w e shall simplify the problem b y assuming
that
Chapter 7
156
the
flow
is p l a n a r as
instantaneously,
o p p o s e d to radial,
that the
a n d t h a t it i n i t i a l l y h a s
oil is
a rectangular
released
shape. W e
take a =g
Ap — Pw
A t s o m e t i m e ti i n t h e d e v e l o p m e n t o f t h e s l i c k , let 8\ a n d L\ d e n o t e a characteristic depth and length of the slick s u c h that L cross-section
of
the
slick
in
the
plane
of
= 8\ L\ is t h e
2
motion.
We
nondimensionalize the terms in the equations b y setting i -
L
t =t t, x
x - L
x
x
, 8 - 88
, u = -—u
X
and r - L t ~ W ~ 1 1 T
W e then obtain
U
3 / 2
1
lo a \ yW "wJ
l
T W
,
2
°Z + u ^ +8 - ^ =0 dt dX dX du _ du — + dt dX
a8 t o Y
2 L
S
2
x
l
(7-10)
I
d
1
F~ \Pw Pw ^ l ) P8 \ >
dU
w
Q
X
w
/
2
^ -
(7-11)
l
d
F r o m E q . ( 7 - 1 0 ) , w e s e e t h a t all t e r m s i n t h e c o n t i n u i t y e q u a t i o n a r e o f e q u a l o r d e r . F r o m E q . ( 7 - 1 1 ) , w e f i n d t h a t t h e r a t i o o f v i s c o u s to inertial terms is proportional to L [PwPw]
t
1
/
2
——jPo ^
W e c a n c o n c l u d e t h a t i n t h e e a r l y s t a g e o f d e v e l o p m e n t o f t h e slick, the v i s c o u s t e r m in the m o m e n t u m e q u a t i o n is m u c h smaller t h a n t h e i n e r t i a l t e r m s ( b o t h L\ a n d t\ s m a l l ) a n d c a n t h e r e f o r e b e n e g l e c t e d , l e a v i n g a b a l a n c e b e t w e e n t h e i n e r t i a l a n d g r a v i t y (a d8/dx) t e r m s . In the later stages, h o w e v e r , the v i s c o u s t e r m c o m e s to p r e d o m i n a t e o v e r t h e i n e r t i a l t e r m s ( b o t h L\ a n d t\ l a r g e ) , s o t h a t t h e inertial terms o n the left-hand side o f Eq. ( 7 - 1 1 ) c a n b e neglected, a n d the v i s c o u s term is b a l a n c e d b y the g r a v i t y term. T h e crossover time b e t w e e n the gravlty-inertial and gravity-viscous regimes w o u l d be
Liquid Spills on Water - The Problem of Oil Pollution
157
e x p e c t e d to o c c u r w h e n t h e r a t i o o f v i s c o u s to i n e r t i a l f o r c e s b e c o m e s u n i t y , or w h e n L\ t\
=p
1/2
L /(p
fx ) .
2
0
If the inertial and gravity
l/2
w
w
t e r m s a r e t h e n still a p p r o x i m a t e l y i n b a l a n c e , w e w o u l d h a v e for t h e c r o s s o v e r t i m e t\ ~ a '
2
/
7
(p /p )
(PwlAW
6/7
0
for a c r u d e - o i l s l i c k w i t h L
3/7
w
2
^
8
/
7
» °
r
a b o u t 10 m i n
= 2 5 m . It is t h e r e f o r e s e e n t h a t 2
the
d u r a t i o n o f t h e g r a v i t y - i n e r t i a l r e g i m e is r e l a t i v e l y s h o r t .
7.2.2
One-Dimensional
Slick: Initial
Growth
W e r e t u r n to t h e d i m e n s i o n a l f o r m o f t h e i n t e g r a l e q u a t i o n s ( 7 - 9 ) a n d ( 7 - 8 ) , t a k e j = 0, a n d n e g l e c t t h e v i s c o u s t e r m . W e follow L a m b (1945) and
multiply Eq. (7-9) b y an
unknown
f u n c t i o n J' (8), w h e r e t h e p r i m e d e n o t e s d i f f e r e n t i a t i o n w i t h r e s p e c t to S. B y a d d i n g t h e e q u a t i o n w h i c h r e s u l t s to E q . ( 7 - 8 ) w e o b t a i n
provided
It f o l l o w s t h a t / = ± 2 c, w h e r e (7-12) is t h e w a v e v e l o c i t y . W e d e f i n e t h e R i e m a n n i n v a r i a n t s
ol
"
= C+U
(7
Q = 2 C-IL
13)
such that dP dt
i y
]
^^P dx
~
— + (u - c) — = 0 dt dx v
]
T h e n P is c o n s t a n t for a g e o m e t r i c a l p o i n t m o v i n g t o t h e r i g h t w i t h a v e l o c i t y u + c a n d Q is c o n s t a n t for a p o i n t m o v i n g to t h e left w i t h a velocity
u-c.
T h e p r o b l e m o f t h e i n i t i a l g r o w t h o f t h e s l i c k is a n a l o g o u s to t h e
Chapter 7
158
w a t e r c o n f i g u r a t i o n after a d a m s e p a r a t i n g t w o b o d i e s o f w a t e r
has
broken, Stoker (1957). T h e solution c a n b e d e t e r m i n e d b y the m e t h o d of characteristics.
T h e c o n d i t i o n s at t = 0 for a s l i c k w h i c h is i n i t i a l l y
flat a n d at r e s t a r e , u (x,0) = 0; 8 (x,0) = 8\ for 0 <; x <; x\, x > x\.
Near
characteristic
the
leading
edge
of the
slick,
8 (x,0) = 0 for
we have
from
the
equations P = 2c + u = 2 c
l
Q=2c-u=0 A d d i n g a n d s u b t r a c t i n g , it f o l l o w s t h a t t h e t h i c k n e s s a n d v e l o c i t y o f t h e e x p a n d i n g slick n e a r t h e l e a d i n g e d g e a r e g i v e n b y
(7-14a)
8 = -^ 4 u = c
l
(7-14b)
=
(7-14c)
l
A c c o r d i n g l y , t h e i n i t i a l s p r e a d o f t h e s l i c k is d i r e c t l y p r o p o r t i o n a l time: x
L E
= x\
+ c\ t. E q u a t i o n s
to
( 7 - 1 4 ) a p p l y to a finite region of
constant properties near the leading edge, see Fig. 7-3. T h e receding e d g e o f t h e d i s t u r b e d r e g i o n t r a v e l s w i t h t h e v e l o c i t y - ci ( s e e S t o k e r ( 1 9 5 7 ) for t h e d e t a i l s o f t h i s d e r i v a t i o n ) . B e t w e e n t h e r e c e d i n g e d g e a n d t h e r e g i o n o f c o n s t a n t t h i c k n e s s n e a r t h e l e a d i n g e d g e , t h e r e is a n expansion
r e g i o n i n w h i c h P = 2 c\.
The
straight
characteristics
within this region are given b y dx
^
x
~
=—
x
\
=
u-c = 2 c 3 c r
T h e r e g i o n is b o u n d e d o n t h e l e a d i n g - e d g e s i d e b y t h e l i n e dx/dt
= u-c
= 1 / 2 c i (from E q u a t i o n s ( 7 - 1 4 ) ) , x = x\ + 1 / 2 c\ t. F r o m t h e p r e c e d i n g c o n s i d e r a t i o n s , w e h a v e for t h e d i s t r i b u t i o n o f t h i c k n e s s
Liquid Spills on Water - The Problem of Oil Pollution
(x-
X l
159
) x
9
l
- c
l
t
< x <
X j + ^ C j t l
(7-15)
(see Fig. 7-3). T h e velocity of the leading e d g e in this solution is consistent
with
overall m a s s conservation: the m a s s contained in the region b o u n d e d by
the
advancing
and
receding edges equals
the
mass originally
c o n t a i n e d i n t h e r e g i o n s w e p t b y t h e r e c e d i n g e d g e . It is i n t e r e s t i n g to note that the solution obtained b y linearizing Equations ( 7 - 8 ) and (79) d o e s n o t satisfy this overall m a s s conservation r e q u i r e m e n t hence
must
be
rejected.
In the
corresponding
acoustic
and
problem,
linearization is possible, b u t in that case the signal v e l o c i t y greatly e x c e e d s the b u l k velocity in the fluid. A s a r e s u l t o f finite r e l e a s e r a t e s a n d o f r e f l e c t i o n s f r o m t h e c l o s e d end, the ideal w a v e s y s t e m d i s c u s s e d a b o v e will b e s o m e w h a t different from that o b s e r v e d in e x p e r i m e n t s . In addition, the slick is not thin initially a n d t h u s m a y not b e described adequately b y our differential
Fig.
7-3:
Initial
growth
of
slick.
Chapter 7
160
equations.
Since the initial m o d e of propagation (constant
e d g e v e l o c i t y ) h a s n o t b e e n o b s e r v e d i n e x p e r i m e n t s , it is to turn to the
p r o b l e m of slick spreading
at l a t e r
leading-
appropriate
times, w h e n
a
similarity solution can be derived. A numerical solution based on the method of characteristics
w h i c h a c c o u n t s for w a v e r e f l e c t i o n s
and
i n t e r a c t i o n s , w o u l d p r o d u c e t h e s a m e r e s u l t s , b u t o n l y after t h o u s a n d s of time-steps.
7.2.3
Similarity
Solution,
Gravity-Inertial
Regime
W e h a v e o b s e r v e d , for t h e s p r e a d i n g p r o b l e m s c o n s i d e r e d s o far, t h a t the l e a d i n g e d g e p r o p a g a t e s a s a p o w e r o f t i m e , x also
seen
that
the
front
velocity
is
controlled
condition, i.e. the Froude n u m b e r b a s e d
by
on frontal
~ t.
W e have
an
auxiliary
n
L E
thickness
and
d e n s i t y is c o n s t a n t . I n t h e a b s e n c e o f e v a p o r a t i o n or o t h e r l o s s e s , t h e total oil v o l u m e i s c o n s e r v e d ( g l o b a l c o n d i t i o n ) . F r o m s y m m e t r y it is a l s o o b v i o u s t h a t t h e v e l o c i t y at t h e s l i c k c e n t e r m u s t v a n i s h . W e can c o m b i n e these conditions w i t h the equations of m o t i o n in integral form, i.e. E q u a t i o n s ( 7 - 8 ) a n d (7-9), a n d attempt to find
an
appropriate
as
similarity solution. T h e outlook is hopeful i n a s m u c h
the mathematical
p r o b l e m is a close a n a l o g u e
to the
problem of
strong blast w a v e s considered b y G.I. Taylor (1950). W e introduce the n e w similarity variable
X =—
(7-16)
LE
X
where x
=At
L E
(7-17)
n
a n d A a n d n a r e c o n s t a n t s to b e d e t e r m i n e d . T h e equations of m o t i o n are transformed from the original system o f v a r i a b l e s (x,t) t o t h e s y s t e m (X,t) a s
a
nX
"di~
t
a ~di X
a ax t With this transformation,
follows
l LE
X
a ax
a ax
Equations (7-8) and (7-9) become
Liquid Spills on Water - The Problem of Oil Pollution
dS
( u
dt
\x du d
t
L E
X\
dd
8
t
dX
x \dX
( u
(du
' I le
tj
x
dX
X
a
' x
„
J
LE
X\ du n - — +
+I
. u\
161
dd ^ — = 0 dX
L E
The equation o f constancy o f m a s s o f the oil
r 8x dx LE
(2rif
J
=L
2
+
j
(7-18)
Jo where L J 2+
is the initial v o l u m e o f the spill, c a n o n l y b e satisfied in
terms of similarity if .7-19) LE
X
a n d w e find
f
L J 2+
D (X)X dX =
(7-20)
J
Jo
I n o r d e r t o satisfy s i m i l a r i t y , t h e v e l o c i t y m u s t h a v e t h e f o r m
u = _ ( X ) ^
(7-21)
and the continuity equation can b e written
(U' - n) D + (U - n X) D ' + j D | ^ - nj = 0
(7-22a)
or -£-[(U-nX)DX ] J
(U-nX)DX
J
=0
(7-22b)
= const.
(7-22c)
T h e o n l y s o l u t i o n t o t h i s e q u a t i o n s a t i s f y i n g t h e c o n d i t i o n U ( 0 ) = 0 is U=nX
(7-23)
Chapter 7
162
Substituting into the m o m e n t u m equation, integrating, a n d imposing E q . ( 7 - 1 8 ) , w e o b t a i n for t h e t h i c k n e s s d i s t r i b u t i o n o f t h e s l i c k
jf _{_ 2
1
+
D =
(l j)L J 2+
x
+
l+J
K
3
+
(7-24)
i
+
(3+j)
(2^
2
[3+jf
w h e r e K is an integration constant, a n d 2 3+j A
=
K
a
(7-25)
i / ( 3
+/ ) { 2 + /)/{3+/) L
The value of the constant K m u s t b e determined b y considering
the
rate o f p r o p a g a t i o n o f the b l u n t l e a d i n g e d g e o f the slick. Dimensional arguments lead us to the conclusion that the leadinge d g e v e l o c i t y m u s t b e p r o p o r t i o n a l t o t h e c h a r a c t e r i s t i c w a v e s p e e d for a s m a l l d i s t u r b a n c e c = y/ a SLE
u
Theoretical
^LE L
~
E
determination
dt of
= k
the
yJad
(7-26)
LE
constant
of proportionality
p r e s e n t s s o m e difficulty. A t late times, h o w e v e r , w h e n the
k
leading
e d g e is v e r y thin, the velocity w o u l d b e e x p e c t e d to e q u a l the
wave
s p e e d (k - 1 ) , b y a n a l o g y w i t h t h e a c o u s t i c l i m i t i n g a s d y n a m i c s . T h i s m a y b e contrasted w i t h the initial b e h a v i o r of the leading edge, w h e n according to E q u a t i o n s (7-14) u -
L E
= c\ = 2 c, g i v i n g k = 2 . T h e v a l u e s k
1 a n d 2 represent lower a n d u p p e r b o u n d s in the possible range of
v a r i a t i o n o f k. I f w e s u b s t i t u t e E q . ( 7 - 2 6 ) i n t o E q u a t i o n s ( 7 - 1 6 , 7 - 1 9 , 724
and
7-25)
integration
evaluated
at
the
leading
edge,
w e obtain
for
the
constant 1/(3 + / )
(3 + j ) ( l + j ) k" 3
K =2{2JV)J[2
(3 + j ) ~ ( l + j )
(7-27) k
2
w h i c h r a n g e s for p l a n a r flow (f = 0 ) f r o m ( 3 / 1 0 )
1 / 3
= 1.39 (k = 1) to 3 (fc
= 2 ) . F o r r a d i a l flow (J = 1), K r a n g e s f r o m 1.14 (k = 1) to oo (k = 2 ) .
Liquid Spills on Water - The Problem of Oil Pollution
163
S i n c e o u r s i m i l a r i t y s o l u t i o n i s v a l i d for l a t e t i m e s , it i s l o g i c a l to adopt
the late-time value k = 1 corresponding
to an
infinitesimal
d i s t u r b a n c e at the l e a d i n g e d g e . S u b s t a n t i a l empirical justification for t h i s c h o i c e h a s b e e n p r o v i d e d b y A b b o t t , w h o s e e x p e r i m e n t a l d a t a a r e m o s t s a t i s f a c t o r i l y c o r r e l a t e d b y t h e v a l u e k = 1. W e h a v e t h e n t h e f o l l o w i n g f o r m u l a for t h e s p r e a d o f a o n e - d i m e n s i o n a l s l i c k
(7-28)
T h e c o e f f i c i e n t 1.39 c o m p a r e s f a v o r a b l y w i t h t h e v a l u e o f 1.5 o b t a i n e d b y H o u l t et al. ( 1 9 7 0 ) , in their e x p e r i m e n t a l w o r k . For the radial case, we have (7-29)
This and
the previous solution do not give constant energy in
slick; i n d e e d , t h e e n e r g y c a n b e s e e n t o v a r y a s t ~ E n e r g y is p r e s u m e d
lost through
2
( 1
+
^
/
(
3+
the
A
turbulent dissipation near
the
blunt leading e d g e of the slick. S o m e features of this solution deserve c o m m e n t . Eq. (7-23) s h o w s a linear velocity distribution characteristic
property
inside
of this
the
slick. T h i s a p p e a r s to b e
type
of similarity
linearity prevails also in cases w i t h m a s s transfer clouds with entrainment).
solution.
(e.g. heavy gas
O n e could m a k e use of this property
develop simplified solutions; w e will d o so in the next subsection. ( 7 - 2 4 ) for t h e t h i c k n e s s
distribution
a
The
D , s h o w s this to b e
to Eq.
parabolic
w i t h the m a x i m u m v a l u e at the l e a d i n g e d g e . B u t the v a r i a t i o n
in
t h i c k n e s s is s m a l l , for p l a u s i b l e v a l u e s o f t h e i n t e g r a t i o n c o n s t a n t K . This is w h y the flat-slick a p p r o x i m a t i o n p r o d u c e s accurate results. Given
the
uncertainty
concerning
spill
external conditions of a real accident, a p p r o x i m a t e s o l u t i o n s u f f i c e s for m o s t
7.2.4
Gravity-Viscous
volume,
properties
one will conclude that
and this
purposes.
Regime
W h e n t h e s l i c k b e c o m e s v e r y l o n g c o m p a r e d to its t h i c k n e s s , it i s apparent from Eq. (7-11) that the acceleration terms can b e neglected in the m o m e n t u m equation, a n d Eq. ( 7 - 8 ) b e c o m e s
Chapter 7
164
a 6
Before
the
w
dx
simplified equations
(7-30)
Po of motion
can
be
s o l v e d , it
n e c e s s a r y to d e t e r m i n e the d r a g e x e r t e d b y the w a t e r o n the This
can
be
layer/water
accomplished
either
boundary-layer
by
equations
solving in
detail,
the
is
slick.
matched
oil
or b y d e r i v i n g a
s i m p l i f i e d m o d e l for t h e d r a g e x e r t e d b y t h e w a t e r b a s e d o n e x i s t i n g s o l u t i o n s . W e h a v e f o l l o w e d t h e latter c o u r s e . In our simplified drag m o d e l , w e can m a k e use of either the k n o w n Blasius boundary-layer
s o l u t i o n or s o l u t i o n s o f t h e r e l a t e d
Stokes'
p r o b l e m . Neither m e t h o d is e x a c t or u n i q u e in its application, various
approximations
accuracy
in
special
can
be
regions.
made
Unlike
with the
a
and
varying degree of
analogous
problem
of
boundary-layer g r o w t h in a shock tube, the present u n s t e a d y viscous problem cannot
be reduced
Galilean transformation
to o n e of steady flow b y m e a n s
because
of a
the leading-edge speed varies with
t i m e . A v a i l a b l e u n s t e a d y s o l u t i o n s a r e a l s o difficult t o a p p l y s i n c e t h e s p e e d v a r i e s f r o m p o i n t t o p o i n t (at f i x e d t i m e ) a l o n g t h e s l i c k . T h e s i m p l e s t d r a g l a w is t h a t for S t o k e s ' flow, d i s c u s s e d i n C h a p t e r 6.
T h e p r o b l e m n o w i s t o f i n d r e l e v a n t e x p r e s s i o n s for t h e velocity u
Q
and time t
R
in terms of slick variables.
T h e average velocity is
A n average time in m o t i o n t can b e expressed as
where U
dx LE
If w e b a s e the d r a g l a w o n a v e r a g e d p r o p e r t i e s , w e o b t a i n
reference
Liquid Spills on Water - The Problem of Oil Pollution
1/2
Pw
2
165
f \-l/2 - ' LE
Jt
Y X
(7-31)
LE
L
If w e a p p r o x i m a t e u b y a s t r a i g h t l i n e b e t w e e n x = 0 a n d x = x £ , u = L
" L E (1 + J'J/(2 + j j , w e h a v e 1/2
r
(2 j) +
-1/2
3/2 LE
(7-32)
LE
This is p r o b a b l y the simplest drag l a w that can be sensibly e m p l o y e d . We
can
reason,
as
an
improvement,
that
the
region near
the
l e a d i n g e d g e is m o s t a f f e c t e d b y v i s c o u s f o r c e s , a n d t a i l o r o u r t i m e in motion t
R
to b e as correct as possible in this region [ LE~ ) X
X
LE W e can also use the local velocity rather than an a v e r a g e velocity; i.e. u
Q
= u. W e t h e n o b t a i n
Pw PL
1/2
LE
JV
-1/2
1/2/
(7-33)
LE'
Eq. ( 7 - 3 3 ) c o r r e s p o n d s to local flat-plate similarity in b o u n d a r y - l a y e r t h e o r y . It h a s t h e a p p r o p r i a t e s i n g u l a r i t y at t h e l e a d i n g e d g e , a n d its f o r m is s u c h t h a t a s i m i l a r i t y - t y p e s o l u t i o n a p p e a r s p o s s i b l e . B e c a u s e Eq. (7-33) represents a superior description of the drag variation, w e w i l l u s e it i n t h e latter p a r t o f t h i s s e c t i o n a s o u r b e s t d r a g l a w . If w e e m p l o y t h e a v e r a g e d r a g l a w E q . ( 7 - 3 2 ) , t h e equation can b e integrated directly. W e will a s s u m e x £ L
a n d n a r e u n k n o w n c o n s t a n t s . S u b s t i t u t i n g for
x-momentum =A t
and u £ L
n
where A
-
dx /dt LE
in Eq. (7-32) and, o n introducing the result in (7-30), w e obtain
after
integration
8 (x,t)-S {x ,t) 2
2
LE
= (7-34)
Chapter 7
166
It is a p p a r e n t f r o m t h e e x p r e s s i o n d e r i v e d a n d f r o m t h e p h y s i c s o f the p r o b l e m that the m a x i m u m thickness
is at the center a n d
the
m i n i m u m t h i c k n e s s o c c u r s at t h e l e a d i n g e d g e . I n v i e w o f t h e fact t h a t t h e p r o b l e m c o n s i d e r e d h a s t w o u n k n o w n s ( i . e . , A a n d dig) a n d o n l y o n e c o n d i t i o n ( g l o b a l m a s s c o n s e r v a t i o n ) w h i c h c a n b e i m p o s e d , it b e c o m e s necessary to m a k e an additional assumption. W e will a s s u m e here that the slick thickness
v a n i s h e s a t t h e l e a d i n g e d g e . T h i s is
both
and
physically
reasonable
consistent
with
experimentally
observed behavior. Taking
<5
(x ,t)
= 0
LE
in
Eq.
(7-34)
and
invoking
the
mass
conservation condition Eq. (7-18), w e obtain
n =
3JZ (2 +
"2"
7j
jf
(7-35)
4(2 +j)
"(«P.)*V*A(Pvl>v)
4
< *J"2
17-36)
12
W e t h e n h a v e for t h e s p r e a d o f a o n e - d i m e n s i o n a l s l i c k LE
L
= j 2 ( 3 ^ ( a p s
L
1.87
[*W
0
)
1
/
4
( p
n x) --l /" 8 t3 / 8
(7-37a)
8 f
w
w
1 1 / 8
t
3 / 8
for
P
o
« p
(7-37b)
u
Pw
A c c o r d i n g to H o u l t e t al. ( 1 9 7 0 ) , t h e e x p e r i m e n t s i n d i c a t e a v a l u e for t h e coefficient o f 1.5, w h i c h c o m p a r e s r e a s o n a b l y w e l l w i t h o u r v a l u e o f 1.87. If w e h a d b a s e d o u r d r a g l a w o n t h e B l a s i u s
skin-friction
coefficient
value,
rather
than
theoretical coefficient
the
corresponding
aforementioned would be
ratio of the predicted v i s c o u s forces ( J _ ~
1 / 2
Stokes
the
1.74. A l t h o u g h t h e
/ 0 . 3 3 2 ) is a b o u t
1.7,
the
s p r e a d i n g l a w s a r e n e a r l y e q u a l d u e to t h e (1 / 8 ) - p o w e r in E q . ( 7 - 3 7 ) . For the radial case, w e h a v e
15 4TT
J
Is)
M
/12 l/4 t
[Pw Pw)
(7-38a)
Liquid Spills on Water - The Problem of Oil Pollution
167
1/12
t
1.18
for
1 / 4
p ~p 0
(7-38b)
u
Pw Let us n o w consider an i m p r o v e d analysis based on the best drag law, Eq. (7-33). Equations (7-9) a n d (7-30) are n o w coupled through the presence of the local velocity u on the right-hand side of Eq. (7-30). W e will look
for a s i m i l a r i t y s o l u t i o n s u c h
as
that developed in
the
previous section. W e introduce the similarity variable X as defined in Eq. (7-16), a n d observe that the treatment of the continuity equation leading
to Eq.
(7-23)
is
equally applicable here.
Hence we
can
substitute E q u a t i o n s (7-19), (7-21) a n d (7-23) in E q u a t i o n s (7-30) a n d (7-33),
obtaining
(7-35)
as
e q u a t i o n for t h e t h i c k n e s s
DD' =
3
/
2
before,
and
the
following
differential
distribution
f^ f
/
2
_ ! _
A
2 (2 J) +
x
(
x
_
x
)
- 1 /2
(
?
_
3
9
)
4 ( 2 +J)
O n integrating Eq. (7-39), imposing the condition D (1) = 0 discussed previously and
substituting the
result
in the
mass
conservation
condition Eq. (7-18), w e obtain
D = ± — - ( 2 + X ) {2jry i
1
/
2
( l - X )
1
/
(7-40)
4
where 1=
f X- (2+X) Jo 1
/
1
/
2
(l-X)
1
/
4
dX
(7-41)
and
(D" 2" (2 ) ' 4
2
3
+J
A =
{2rf
J
(2+J)
4
(a
P o
) 2 (2 +j) [p
w
pjf
4 (2 + / )
L
(7-42)
I
For the one-dimensional case, this gives LE
=
1/8*3/8
1.39(ap ) (p » )-"»t 1/4
0
w
w
(7-43a)
Chapter 7
168
1/8
t
1.39
3 / 8
for
(7-43b)
p ~p Q
w
Pw with the coefficient in g o o d a g r e e m e n t w i t h the experimental value of 1.5. F o r t h e r a d i a l c a s e , w e h a v e LE
0.98[ap ) {p
a)
l/6
o
w
1/12^1/4
(7-44a)
w
1/12
0.98
t
l / 4
for
(7-44b)
p ~p 0
w
Pw ( N o e x p e r i m e n t a l r e s u l t s a r e k n o w n for t h e r a d i a l c a s e . ) The
results
given
by
Equations
(7-43)
and
(7-44)
indicate
a
s o m e w h a t slower rate of spread t h a n that calculated w i t h the simpler drag law. This can be explained b y noting that the simpler drag law g i v e s c o n s t a n t d r a g f r o m t h e c e n t e r t o t h e e d g e at a n y i n s t a n t o f t i m e . T h e d r a g f r o m t h e b e s t d r a g l a w , E q . ( 7 - 3 3 ) , v a n i s h e s at t h e c e n t e r , is infinite at t h e l e a d i n g e d g e , a n d m a t c h e s the v a l u e o f t h e s i m p l e r d r a g l a w at t h e m i d p o i n t ; h e n c e m o r e d r a g i s c o n c e n t r a t e d n e a r t h e front. B o t h s o l u t i o n s g i v e a n infinite s l o p e at t h e l e a d i n g e d g e .
7.2.5
Surface
Tension-Viscous
Regime
A t v e r y l a t e t i m e s (or for v e r y t h i n s l i c k s ) t h e d o m i n a n t
spreading
force is t h e n e t d i f f e r e n c e o f t h e s u r f a c e t e n s i o n s b e t w e e n a ) t h e oil-air and oil-water interface a n d b ) the water-air interface. This difference Is d e n o t e d b y t h e s p r e a d i n g c o e f f i c i e n t a ^ a s
discussed in Chapter 2.
T h e d o m i n a n t retarding force is again the viscous drag of the water b e n e a t h t h e slick. A n exact analysis of this flow p r o b l e m a p p e a r s to be a c o m p l e x task.
In
what
follows
we
will
present
a
simple
approximation. W e note that the rate of spread in the d r i v e n r e g i m e is i n d e p e n d e n t
engineering
surface-tension
o f the v o l u m e of the spill (see Fay,
1969), and w e w o u l d therefore
expect the different
configurations
( p l a n a r or r a d i a l ) to s p r e a d at n e a r l y t h e s a m e r a t e . T h e f o r c e b a l a n c e for t h e p l a n a r a n d r a d i a l c a s e s c a n b e e x p r e s s e d as
follows
Liquid Spills on Water - The Problem of Oil Pollution
a =£
LE
[2jtx y
J
w
dx
(7-45)
e q u a t i o n for t h e u n k n o w n p o s i t i o n o f t h e l e a d i n g - e d g e XIE is
o b t a i n e d b y s u b s t i t u t i n g t h e e x p r e s s i o n for r Eq.
T
(2JTX)
N
LE
An
169
( 7 - 3 3 ) . B y l e t t i n g XIE = A t
from our best drag law,
w
w e find that dimensional
n
consistency
requires n = 3 / 4 , in a g r e e m e n t w i t h experimental observations (Lee, 1 9 7 1 ) . W e take u = u
(x/xi )
L E
( t h i s i s c o n s i s t e n t w i t h all t h e p r e v i o u s
E
solutions). Substituting and
integrating Eq. ( 7 - 4 5 ) ,
w e f i n d for
the
planar case
V, _ - ( g r The
(4JT/3)
coefficient
1
/
=
4
L'
3/4 17-46,
1 . 4 3 is in g o o d
agreement
with
the
experimental value 1 . 3 3 in L e e ( 1 9 7 1 ) . For the radial case w e obtain 1/2 LE
= 1-6
X
rn
t
3
/
C -
4
7
4
7
)
[Pw V ) w
a l m o s t t h e s a m e r e s u l t a s for t h e o n e - d i m e n s i o n a l s l i c k .
7.2.6
Summary
of
Results
T a b l e 7 - 1 s u m m a r i z e s t h e s p r e a d i n g l a w s for t h e t h r e e r e g i m e s . I n each case, the best
solution is given, involving the m o s t
accurate
description of v i s c o u s drag a n d the m o s t sophisticated a p p r o a c h to a similarity
solution.
In
those
cases
where
experimental
available, the experimental c o n s t a n t is a d d e d in parenthesis. 7 - 1 , w e have m a d e the approximation p Our
f i n d i n g s for the
planar
0
data
are
In Table
»PL_.
slick are
summarized
in Fig. 7 - 4 .
Initially a l a m i n a m o v e s out from the e d g e of the slick, j o i n e d to the contracting thickness
central of the
part
by
advancing
a
smooth
lamina
transitional
is
one
quarter
contour. the
The
original
t h i c k n e s s o f t h e s l i c k . T h e w a v e f o r m p r e d i c t e d a t t h e l e a d i n g e d g e is square,
but
the
retarding
action
of the
water
and
the
vertical
acceleration of the oil in the vicinity o f the w a v e , n e g l e c t e d in this analysis,
would
intermediate
tend
time, the
to
round
off
the
wave
front.
At
some
slick is e x p e c t e d to b e a p p r o x i m a t e l y flat.
Chapter 7
170
Table 7-1; Predicted spreading lawsfor the oil slicks. One-dimensional Gravllyinertial regime
/ 3 f
i
Radial
1/4
2/3
^
{PA,*-)
=
L
1 . 1 4 ( ^ ] [PW j
t
1 / 2
L
(1.5 from exp.) Gravityviscous regime
g
2
^=1.39
L
(4P) ' 2
1/8 t
3/8
^
PW V
= 0.98
1/12
\g M 2
2]
,1/4
PW V
W
W
(1.5 from exp.) Surface tensionviscous regime
X= LE
,3/4
1.43
X= LE
(Pu,^]
1 / 4
1.6
°N (PW
'
t
3/4
V)
1
W
(1.33 from exp.)
Later, the slick w o u l d tend to a p p r o a c h the parabolic form predicted by
t h e s i m i l a r s o l u t i o n for t h e g r a v i t y - i n e r t i a l r e g i m e , w i t h a l a r g e r
part of the m a s s in the outer region. A l t h o u g h this solution predicts a v e r t i c a l front for t h e s l i c k , t h e r e t a r d i n g a c t i o n o f t h e w a t e r a n d
the
v e r t i c a l a c c e l e r a t i o n a g a i n w o u l d t e n d t o r o u n d off t h e l e a d i n g e d g e . Still later, v i s c o u s d r a g c o m e s to d o m i n a t e o v e r t h e i n e r t i a l t e r m s
as
the slick slows d o w n , a n d m o s t of the slick tends to a s s u m e the form predicted b y the similarity solution for the g r a v i t y - v i s c o u s r e g i m e . The
l a r g e r p a r t o f t h e m a s s is n o w f o u n d i n t h e i n n e r r e g i o n o f t h e
s l i c k . S i n c e t h e d e n s i t y o f oil d i f f e r s t y p i c a l l y f r o m t h a t o f w a t e r b y 20%
or less; m o s t
of the
slick lies b e l o w the water level. A s
deceleration of the slick continues,
the
t h e effect o f g r a v i t y e v e n t u a l l y
falls off to z e r o a n d s u r f a c e t e n s i o n t a k e s o v e r a s t h e d r i v i n g f o r c e .
7.3
Additional Similarity
The
mathematical
Solutions
theories discussed
in the previous section
are
c o n c e r n e d w i t h a s o m e w h a t idealized case in w h i c h the oil, initially c o n s t r a i n e d b y a b a r r i e r , is s u d d e n l y free t o m o v e . T h e a c c u r a c y o f t h e similarity solution is n o t sensitive to the details of the release. fact, t h e i n i t i a l c o n d i t i o n s a r e s a t i s f i e d o n l y a p p r o x i m a t e l y (x
LE
In = 0
w h e n t = 0) a n d globally t h r o u g h the i n v a r i a n c e of the initial v o l u m e of oil. T h e r e are m a n y practical p r o b l e m s w h e r e these solutions
do
n o t a p p l y , e.g. t h e c a s e w h e n oil l e a k s i n t o a s t r e a m a n d w h e n
the
Liquid Spills on Water - The Problem of Oil Pollution
i
*±*r
i *\
initial
171
wave
"A "A "A • % •_% • % • % • \ • v^t?
flat
slick
gravity
- inertial
(
similar)
gravity
- viscous
(
similar)
(X (distorted Fig.
leak
7-4:
Evolution
rate varies with
of a
scales) slick.
can
be
obtained b y extensions of the similarity analyses. W e note that
time.
Solutions
to
such
problems
the
p r o b l e m s o f a m o v i n g s o u r c e o r a l e a k i n t o a s t r e a m a r e i n fact t h e s a m e as l o n g as the velocity is c o n s t a n t ( G a l i l e a n transformation) a n d for t h e s e c a s e s a s i m i l a r i t y s o l u t i o n h a s b e e n f o u n d . S i m i l a r i t y a l s o e x i s t s for t h e t i m e - d e p e n d e n t
source as long as the leak rate
v a r i e s a s p o w e r o f t i m e . A c o m p l e t e s e t o f s o l u t i o n s w a s first g i v e n b y W a l d m a n et al. ( 1 9 7 2 ) a n d t h e s e r e s u l t s a r e s u m m a r i z e d i n T a b l e s 7-2 a n d 7-3. A m o n g the solutions included w e find the equivalent of the "slab m o d e l " d e v e l o p e d m u c h l a t e r for a p p l i c a t i o n s r e l a t e d to h e a v y g a s d i s p e r s i o n , a s w e l l a s o t h e r r e s u l t s p r e s e n t e d a s "new" s o l u t i o n s i n more recent publications.
Chapter 7
172
Table 7-2; Summary of spreading laws for leaks onto calm water: m-Mt , £
One-dimensional
yregime inertial
=At . n
LE
Radial
In M An\ 1 / 3 ,„ .
G m V i t
x
,
(„ M An\ 1 / *
n
Surface tensionviscous regime
1.43 V
« (,„,,,„,)-»/« t ' «
r
3
LE
- 1.6 a „ > « ( p „ ^ J " " * t
(1.33fromexp.)
Gravity-inertial:
Gravity-viscous:
D=— n
aMD 2
3 +
P o
M-D MP
D=
2
—- , n A J'
+
, n=
' l0...u. \
l/4
~ . '
n
For both:
*J
—
l 2
?
+
, L
3 + 4^
"4(2+J)
V DX dX = (2jr)"A Jo J
In applications, numerical evaluation required to determine K j. t
Table 7-3: Summary of spreading laws for plumes with drift velocity U : m evaluated at t - z/U . T
T
L E
regime
rr regime Surface tensionviscous regime
U
t\2
2 P w
^.^|t*p(jt.]" (i)"',» ,
T [P j
U
2
w
[PwPwJ
C^{u o ^ 112
T
x
N
\ ) 2
J
3
/
4
Liquid Spills on Water - The Problem of Oil Pollution Note:
173
I n T a b l e 7-3 z i s t h e l e n g t h c o o r d i n a t e i n t h e d i r e c t i o n o f
drift a n d l /
t h e n e t drift v e l o c i t y , d u e t o w i n d s o r c u r r e n t s o r b o t h .
T
The equivalence of the
spreading
time
t of the
one-dimensional
s o l u t i o n ( T a b l e 7 - 2 ) , a n d the drift t i m e z / i 7 , is also n o t e d . A s the r
p l u m e d o w n s t r e a m of the continuous source, g r o w s in b o t h directions transverse to the plane o f s y m m e t r y , the equivalent source strength is only half of that of the one-dimensional solution derived in Section 7 . 2 . T h e o i l v o l u m e i n a s l a b o f p o s i t i o n z = If? t i s t h a t p r o d u c e d b y t h e s o u r c e a t t i m e t - z / If?. T h e e q u i v a l e n c e c a n b e s t a t e d a s m(t-z/U \
z
T
using the nomenclature in the tables.
7.4
T h e Containment and Collection of Oil Slicks
The only commonly accepted
method
for c l e a n i n g u p
oil spills
from the sea, is m e c h a n i c a l r e m o v a l ; in practice, c o n t a i n m e n t b y oil b o o m s (i.e. floating vertical barriers, stream) and removal by skimmers designed
to
straightforward inventive
remove
thin
problem, has
engineering
and
t o w e d b y ships or fixed in
(i.e. suction or a d h e s i o n
layers).
To
solve
this
the
devices
seemingly
p r o v e d e x t r e m e l y difficult. In spite o f large
expenditures
on
research
and
d e v e l o p m e n t , a r e l i a b l e s y s t e m for u s e o n t h e h i g h s e a s i s y e t n o t i n sight. T h e p r i m a r y element in the oil containment and collection system, is t h e oil b o o m . I t s p u r p o s e i s t o a r r e s t t h e s p r e a d o f t h e s l i c k a n d t o concentrate
the oil to a t h i c k n e s s sufficient to allow s k i m m e r s
and
p u m p s t o p i c k it u p a n d t r a n s f e r it t o h o l d i n g t a n k s w i t h o u t t o o m u c h w a t e r . T h e o r i e s for t h e r e q u i r e d d e p t h o f b o o m s a n d o f t h e i r e x p e c t e d performance w e r e developed in the early seventies. Most of these early theories are w r o n g as they ignore both the appearance of a h e a d w a v e a n d t h e a s s o c i a t e d e n t r a i n m e n t , w h i c h for a b o o m o f d e p t h
sufficient
to a v o i d d r a i n a g e , r e p r e s e n t s t h e m a j o r s o u r c e o f oil l o s s e s ( F i g . 7 - 6 ) . These early theories attempt to relate the hydrostatic pressure of the oil p o o l forced against
the barrier,
to the applied stress o n
the
pool surfaces, w i n d side, w a t e r side or both. D e n o t i n g the stress r a n d A = (p w
p )/Pw 0
w e have (Fig. 7-5)
Chapter 7
174
r=p Agh
—
0
W i t h T specified in terms of the turbulent stress, w e can write
where
i s t a n d s for w a t e r or air. O n a s s u m i n g
cj = c o n s t a n t
and
v a n i s h i n g t h i c k n e s s a t t h e l e a d i n g e d g e , t h e e q u a t i o n s a b o v e l e a d to a parabolic thickness
d i s t r i b u t i o n a n d a s l i c k l e n g t h far i n e x c e s s o f
t h a t o b s e r v e d , F i g . 7-5 ( H o u l t , 1 9 6 9 , a n d C r o s s a n d H o u l t , 1 9 7 0 ) . An
approach,
based
on
the
dynamic
equilibrium between
the
h e a d w a v e a n d the o p p o s i n g current, w o u l d c o m e closer to the truth. T h e t h i c k n e s s o f t h e h e a d w a v e w o u l d h a v e to i n c r e a s e u n t i l its r a t e o f propagation equals the speed of the opposing current. T h e thickness increases with increasing current speed until breaking w a v e s develop. T h e s e are r e s p o n s i b l e for s h e d d i n g d r o p l e t s into the w a t e r
flowing
Ah
U
dx oil
i
pressure
f-H
water depth x turbulent Fig.
7-5:
stress
Approximate hydrostatic arrested by a barrier (no
balance for headwave).
idealized
oil
pool
Liquid Spills on Water - The Problem of Oil Pollution
175
underneath, leading to entrainment loss. T h e process, as depicted b y M i l g r a m ( 1 9 7 7 ) , i s r e p r o d u c e d i n F i g . 7-6. O f p a r t i c u l a r i n t e r e s t i n t h e s t u d y o f o i l b o o m s , w o u l d b e first t o d e t e r m i n e t h e i r c a p a c i t y , t h a t i s h o w m u c h o i l t h e y c a n h o l d for g i v e n conditions and, second, the loss rate o n c e this capacity is e x c e e d e d . F i g . 7-5 a n d t h e h y d r o s t a t i c a n a l y s i s i n d i c a t e d , p e r t a i n t o t h e t w o d i m e n s i o n a l case w h i c h is likely to b e of little interest outside laboratory. Practical oil b o o m s are deployed mostly as a
the
catenary Air
-ZZZZZZZZZZZZZZZZZZZ2 0.5
Water
knot
Barrier
current
Headwave 0.75
knot
current
Headwave
\
Interfacial instability
1.0
knot
current
Droplets off
torn
headwave
1.25
knot
current Fig.
7-6;
O
O
U 0
O ~ °
Entrained
0
*>
O
°
oil droplets
past barrier by
O
o
0
GO
G
swept
current
Headwave formation and oil loss due to entrainment various current velocities (from Milgram, 1977).
for
Chapter 7
176
s h a p e , a n d t h e oil p o o l i s f o u n d t o h a v e a n e a r l y s t r a i g h t l e a d i n g e d g e transverse
as s h o w n in Fig. 7-7. T h e
flow
conditions along the centerline will be nearly two-dimensional
to the direction of
flow,
and
the results from laboratory tests should apply here. This is important as the deepest part o f the oil pool will b e found near the and
centerline
the conditions here will determine the m a x i m u m capacity. A
rather c o m p l e t e r e v i e w o f barrier p e r f o r m a n c e is g i v e n b y F a n n e l o p (1983). This review emphasizes two-dimensional results as very few detailed measurements
for t h r e e - d i m e n s i o n a l
flow
are available, and
most are of poor accuracy. W i t h r e f e r e n c e t o t h e s c h e m a t i c s l i c k c r o s s - s e c t i o n s h o w n i n F i g . 7-
Fig.
7-7:
Headwave
and oil barrier
geometry.
Liquid Spills on Water - The Problem of Oil Pollution
7, w e c a n d i s t i n g u i s h
177
three r e g i o n s : the h e a d w a v e w i t h its
distinct
shape, the n e a r - b o o m r e g i o n w h e r e the s t a g n a n t oil a n d the
flowing
water interact w i t h the solid barrier a n d the large intermediate region w h i c h c o n t a i n s m o s t o f the oil a n d w h e r e hydrostatic e q u i l i b r i u m is a s s u m e d to prevail. It i s p r i m a r i l y t h e responsible boom
headwave and
near-boom
regions which
are
for l o s s e s a n d w h i c h limit the p e r f o r m a n c e . T h e n e a r -
failure
mode
of interest,
i.e.
drainage,
has
already
been
d i s c u s s e d i n S e c t i o n 3.3 o n " S e l e c t i v e w i t h d r a w a l " . The
loss
oil/water
due
to w a v e
interface
of
breaking
the
and
headwave,
droplet is
formation
obviously
a
at
the
stability
phenomenon. Leibovich (1976) and others have carried out the rather complex
analysis
Kelvin-Helmholz critical
speed
required instability
when
to
determine
occurs.
droplets
first
the
critical
T h i s is further appear.
speed
related
when to
the
The problem with
this
analysis is that the results d e p e n d o n slick thickness, b u t a n
answer
has
infinite
been
found
thickness. analysis
o n l y for the
A simple
limiting cases
alternative
for finite t h i c k n e s s ,
to
the
of zero and
complicated
would be
the
use
mathematical
of semi-empirical
criteria from controlled experiments. A g r a w a l a n d Hale (1974)
have
s u g g e s t e d t h e c r i t e r i o n for t h e o n s e t o f d r o p l e t g e n e r a t i o n We
cr
= 28.2
(7-48)
w h e r e the special W e b e r n u m b e r is defined b y
Pw We
cr
=
cr
U c
2
.
r
(7-49)
sj[Pw-Po)9
a
a n d t h e i n d e x (cr) r e f e r s t o d r o p l e t f o r m a t i o n a n d n o t ( a s o f t e n u s e d ) the stability limit. A l t h o u g h t h e h e a d w a v e t h i c k n e s s hj ( F i g . 7 - 7 ) d o e s n o t a p p e a r , w e need
information
on headwave geometry both
slick
cross-section
(and
hence
the
volume
for c a l c u l a t i n g contained)
and
the to
investigate the expected relationship between the headwave thickness and current speed. O n equating the speed of the headwave, seen as the front o f a p r o p a g a t i n g slick, E q . ( 7 - 2 6 ) , a n d the s p e e d o f the current, w e obtain using the usual slick nomenclature
178
Chapter 7
(7-50)
which
can
be rearranged
to give
= k (a constant)
where
the
d e n s i m e t r i c F r o u d e n u m b e r is d e f i n e d b y
a n d A = (p w
p )lp . 0
Milgram and
w
V a n Houton (1978) have carried
out
a series of
d e t a i l e d m e a s u r e m e n t s o f h e a d w a v e g e o m e t r y for v a r i o u s t y p e s o f oil, here roughly classified as l o w viscosity oils ( 1 0 centistoke) a n d highviscosity oils ( 1 0 0 est), ( w h e r e the n u m b e r s o n l y indicate the order of magnitude). F i g . 7-8 s h o w s t h e r e s u l t e x p r e s s e d i n t e r m s o f F r o u d e n u m b e r v s . c u r r e n t s p e e d . A s e x p e c t e d w e find n e a r c o n s t a n t v a l u e s b u t a l s o a t r e n d t o w a r d s l o w e r v a l u e s w i t h i n c r e a s i n g c u r r e n t v e l o c i t y for t h e h i g h - v i s c o s i t y o i l . It i s c h a r a c t e r i s t i c for t h i s f l o w , b o t h h i g h a n d l o w viscosity, that the front is wedge-like rather than r o u n d e d as in the case of the gravity currents discussed g e o m e t r y is s h o w n in Figs.
7-7 a n d
in Chapters
7-9a,b.
4 and
T h e fronts
6. T h e
have
the
character of slender w e d g e s with a w e d g e angle which increases with increasing current velocity. T h e e x c e p t i o n is the Diesel oil w h i c h h a s viscosity not m u c h perhaps
h i g h e r t h a n w a t e r a n d for w h i c h w e r e c o g n i z e
the b e h a v i o u r o f a gravity head, g o v e r n e d b y a balance of
pressure forces and,
not as in the v i s c o u s case, b y pressure
and
v i s c o u s f o r c e s . F o r b o t h t y p e s o f fronts, a d i s t i n c t n e c k r e g i o n a p p e a r s b u t p e r h a p s for d i f f e r e n t r e a s o n s . F o r a g r a v i t y c u r r e n t ( s u c h a s
a
h e a v y gas intruding in air) the flow inside the h e a d is circulatory, in effect a v o r t e x , a n d t h e n e c k i s p r o d u c e d b y i t s i n t e r a c t i o n w i t h t h e main current. For the viscous wedge-like intrusion,
there is little
m o t i o n i n s i d e t h e h e a d , b u t t h e flow g e o m e t r y l e a d s t o s e p a r a t i o n o n t h e w a t e r s i d e a n d w e h a v e i n effect a r e a r w a r d f a c i n g s t e p w i t h i t s a s s o c i a t e d r e c i r c u l a t i n g ( v o r t e x ) flow. T h i s i n t u r n p r o d u c e s t h e n e c k , which
typically
is
one
half
the
headwave
thickness.
These
explanations are tentative b u t plausible, a n d they serve to explain b o t h the differences a n d similarities b e t w e e n the t w o different types of
flow.
Liquid Spills on Water - The Problem of Oil Pollution
• Arzew light Crude, A N 2 Diesel, Light mineral oil,
S
l
2
1.6
179
A = 0.196, A = 0.163, 4 = 0.14,
v = 4.5 c s v = 3.6 c s v=12cs
^
1.4
<•>
J
it
a
1.2 1.0
-
0.8
-
0
0
10
20
low - viscosity
A
h
40
oils
Data/or
\J 9 J
30
50
c
U
(cm/s)
heavy mineral oil, A = 0 . 1 2 , v = 125 c s
1.6 1.4 1.2 h 1.0 h 0.8
0 b)
Fig.
0
•
flagged symbols with surface open symbolsjrom diagrams,
10
high-viscosity
7-8;
Froude Houton,
20
30
^ - S -
tension reducing additive closedfrom photos
40
oil
number vs. velocity. 1978.)
50 c
U
(Data from
(
c
m
/
Milgram
s
)
and
Van
Chapter 7
180
Heavy mineral oil ( c-r with surfactant)
0-
0 ©
0 0 0 ©
0 0 b )
Fig.
10 high - viscosity
7-9;
20
30
oil
Headwave shape vs. Van Houton, 1978.)
40 U
c
velocity.
(Data from
50 (cm/s)
Milgram
and
Liquid Spills on Water - The Problem of Oil Pollution
The minimum thickness
in the n e c k
181
a n d i t s p o s i t i o n xjq a r e
n e e d e d to d e t e r m i n e the oil v o l u m e in the intermediate region. For our purposes the values h
= (1 / 2 ) fy-and x^ = 1.75 Lj suffice. W e c h o o s e
N
to define a t h i c k n e s s
parameter 0 =f
(7-51)
L
f
w h i c h is c o n s i d e r e d k n o w n , for a g i v e n t y p e o f o i l , f r o m F i g . 7 - 9 . T h e volume
of oil per
unit width contained
in
the
headwave can
be
determined from the expression
17 f h
f
h
-
(7 52)
^Je^~^f
A
obtained b y assuming a polygon shape. A
n
is the cross-sectional
area
of the h e a d w a v e in this two-dimensional analysis. In order to find the v o l u m e contained in the intermediate region, we
must
integrate
establish the
the
resulting
hydrostatic
balance
differential equation
prevailing here over
the
and
streamwise
l e n g t h of the slick u s i n g the slick t h i c k n e s s at the n e c k as
boundary
condition. W e will discuss the hydrostatic b a l a n c e w i t h reference to Fig. 7-5. A c o m p l e t e f o r c e b a l a n c e for a n a r r e s t e d s l i c k e l e m e n t i s g i v e n i n V a n Houton's dissertation ( M I T , 1976). A d d i t i o n a l terms arise d u e to the sloping slick b o u n d a r y a n d takes into account the change in direction of the velocity vector (pressure drag) as well as the shear forces. O n assuming the slick to b e slender, the velocity a n d shear forces can b e considered to act in the horizontal direction a n d w e can establish following force balance (Fig. 7-5):
oil On rearranging w e obtain
where terms to order A
2
have been retained.
water
the
Chapter 7
182
Only in near stagnant waters will the w i n d shear b e of primary importance. In o p e n water, the w i n d stress p r o d u c e s a surface current w h i c h exerts stress o n the slick in addition to tidal
components,
t o w i n g s p e e d o r o t h e r c a u s e s o f r e l a t i v e m o t i o n a l o n g t h e oil / w a t e r interface. W i t h o u t m u c h loss in generality, w e can incorporate
the
wind-stress
the
contribution
in
the
water
stress term
to obtain
d i f f e r e n t i a l e q u a t i o n for h (x) i n t h e f o r m
A
g
h
± c = (lTA)2 c U
C
/
M
( ?
-
T h e v a l u e o f cj i s h i g h l y u n c e r t a i n , a v a i l a b l e d a t a differ b y
5 3 )
an
order of magnitude. T h e variation with x deviates considerably from t h a t for t u r b u l e n t (1978) found
flow
(separated
flow)
to a
constant
near
o v e r a flat p l a t e . M i l g r a m a n d V a n H o u t o n
a m a x i m u m value near the head,
a negative value
in the neck region and an asymptotic-like value
in
the
downstream
approach
region. Given
the
u n c e r t a i n t y i n v a l u e a n d f u n c t i o n a l f o r m , it a p p e a r s r e a s o n a b l e to u s e a c o n s t a n t v a l u e o f c j f o r a g i v e n o i l . F r o m a r e v i e w o f all e x i s t i n g data, Fannelop (1983) r e c o m m e n d s
O n a s s u m i n g cjsnd
Cj = 0 . 0 0 4
( l o w - v i s c o s i t y oils)
Cj= 0 . 0 1
( h i g h - v i s c o s i t y oils)
h e a d w a v e g e o m e t r y to be d e p e n d e n t only on the
t y p e o f oil, E q . ( 7 - 5 3 ) c a n b e i n t e g r a t e d to g i v e
h(x) =
^ - ^ ^ ( x - 1 . 7 5 ^ 4
(7-54)
W e h a v e u s e d h e r e t h e initial c o n d i t i o n s x^ = 1.75 Lj, h (x ) = hj/2 0f = hf/Lj is c o n s i d e r e d k n o w n a s n o t e d . N
and
T o obtain the v o l u m e contained per unit width, Eq. (7-54) can b e integrated again from the n e c k to the n e a r - b o o m region. O n e can in fact u s e ( 7 - 5 4 ) all t h e w a y t o t h e b o o m , a s t h e t h i c k n e s s v a r i a t i o n s i n the n e a r - b o o m r e g i o n are relatively unimportant. W h a t is important is t h e d r a i n a g e p r o b l e m w h i c h is a l o c a l p h e n o m e n o n n e a r t h e b o o m . In cases w h e n drainage d o e s not occur, the m a x i m u m v o l u m e of oil is c o n t a i n e d w h e n h e q u a l s the draft d of the barrier in the t w o d i m e n s i o n a l c a s e . W i t h r e f e r e n c e t o F i g . 7-7, t h e m a x i m u m v o l u m e i n
Liquid Spills on Water - The Problem of Oil Pollution
183
the t h r e e - d i m e n s i o n a l c a s e is c o n t a i n e d w h e n b o t h L = D a n d h = d. T h e total v o l u m e is the s u m o f that c o n t a i n e d in the h e a d w a v e V
and
n
that in the m a i n slick V .
F r o m Eq. (7-52) w e have
m
(7-55)
w h e r e W is the w i d t h o f the b o o m (Fig. 7-7). T h e i n t e g r a t i o n o f h o v e r t h e d e p t h a n d w i d t h o f t h e b o o m p o c k e t is tedious. O n e c a n simplify the p r o b l e m b y a s s u m i n g the b o o m s h a p e to be
a
parabola,
rather
than
a
catenary.
With
simplifications a v e r y s i m p l e result is o b t a i n e d
Vr =
5
this
and
other
(Fannelop, 1983)
%dWD
(7-56)
In practical applications outside the laboratory, this v o l u m e will b e m u c h larger than that contained in the headwave. T h e importance of the
latter
lies therein
that
it
mechanism, droplet entrainment, show
h o w the
wave
controls
the
most
important
loss
as already discussed. W e will next
geometry and
the
stability criterion can
be
utilized to correlate existing information on loss rates. Consider the quasi-steady process depicted in the last picture of Fig. 7-6. Oil is lost from the h e a d w a v e d u e to droplet e n t r a i n m e n t the rate q
E
(yet to b e d e t e r m i n e d ) . T h e h e a d w a v e shape
and
at
size
r e m a i n s u n c h a n g e d , w h i c h indicates that oil is fed to the h e a d w a v e from the m a i n slick at the s a m e rate. T h e n o n d i m e n s i o n a l variable q /{h.N E
U ) which
through
c
is
Simpson
ratio
between
the
counterflow
velocity
the n e c k a n d the water velocity, is of potential interest
correlating data. A s h interest
the
and is U . cr
N
Britter
= ( 1 / 2 ) hjwe (1979),
For U
c
in
will use the form suggested b y
i . e . q l(hj
U ).
E
less than U
cr
n o n d i m e n s i o n a l r a t i o i s t h e r e f o r e (U c
A second velocity of
c
no
droplets
occur. A
second
U )/U . cr
c
W e are l e d to attempt a correlation o f form
(7-57)
T o e v a l u a t e t h e f u n c t i o n w e m a k e u s e first o f a l l o f t h e d a t a o b t a i n e d b y the U S C o a s t G u a r d in their o c e a n trials. T h e results o b t a i n e d are
Chapter 7
184
q
°
- 1 0 -
Uh c
f
© calm weather 10
data
•
rough weather
A
Tampa
8
LT = 0.36 cr
( We
r r
test
0
m/sec •
4
/
•
0 Stope:
2
F i g . 7-10:
/
= 28.2 )
6
0
data
/
A
1^
0
1.45- 10"
L
0.1
0.2
Proposed loss Coast Guard.
0.3
0.4
0.5
correlation,
based
0.6
on
data
from
U.S.
s h o w n i n F i g . 7 - 1 0 i n t e r m s o f t h e v a r i a b l e s p r o p o s e d . It i s s e e n t h a t the data c a n b e fitted b y the straight line
U c
c -
U
c r
where C = 1.4510" . 3
I n F i g . 7 - 1 1 a d d i t i o n a l d a t a a r e i n c l u d e d a n d it i s s e e n t h a t
the
c o r r e l a t i o n a p p e a r s t o b e a g o o d fit a l s o for t h e r e s u l t s o b t a i n e d i n t h e l a b o r a t o r y . W h a t i s i m p o r t a n t for t h e v a l i d i t y o f t h i s c o r r e l a t i o n , a n d p e r h a p s surprising, is that the droplets, o n c e entrained, d o not rejoin the slick a l t h o u g h the larger droplets at least are b r o u g h t in contact with the slick d u e to b u o y a n c y . T h e underlying p h e n o m e n o n has b e e n investigated b y M i l g r a m et al. ( 1 9 7 8 ) .
Liquid Spills on Water - The Problem of Oil Pollution
10
Full scale © calm •
9 E * 10
data weather
rough
weather
A Tampa
[m /s] 2
185
test
E> underwater (Miller et
photo al)
O.J
Laboratory
data
in
Graebel-Phelps
c> j I
O.Oi
I
0.2 Fig.
7.5 Oil
7-11:
0.3
I
Haleetal
^
WiJson
0.7
0.8
industries
I
OA
0.5
0.6
Loss data and comparison (For references, see Fannelop,
U
c
with proposed 1983.)
[m/s] correlation.
Oil Spill Drift a n d Ultimate F a t e spilled
in
large
quantities
on
the
ocean
will
eventually
disappear, d u e to a v a r i e t y o f n a t u r a l c a u s e s , or hit a distant coast line. Several billion tons o f oil are transported
in tankers across
the
oceans each year. A g o o d part of the v o y a g e s run parallel to d e n s e l y populated
coastal
regions, in Northern
Europe
as
well as
North
A m e r i c a . T h e well k n o w n accidents w i t h e x t e n s i v e d a m a g e s h a v e all
Chapter 7
186
occurred
in these
waters;
Torrey Canyon, Argo Merchant,
Amoco
Cadiz a n d E x x o n Valdez to m e n t i o n only a f e w n a m e s associated w i t h m a j o r s p i l l s . T h e l o s s r a t e h a s b e e n r e a s o n a b l y c o n s t a n t a t 0 . 1 % for many
years.
The highly publicized major
small fraction of this amount. tropical seas,
the
degradation
spills represent
only
a
F o r oil spilled in the w a r m w a t e r s o f b y the
sun
and
other
"weathering"
a g e n t s o c c u r s o fast t h a t t h e o i l d i s a p p e a r s w i t h l i t t l e v i s i b l e d a m a g e . T h i s is w h y the large losses in the Persian Gulf during recent
wars
h a v e n o t l e d to a n e n v i r o n m e n t a l catastrophy. T h e m i l l i o n t o n s o f oil released in the M e x i c a n Gulf b y the Ixtoc I b l o w o u t , h a d also rather m i l d effects in c o m p a r i s o n w i t h the m u c h smaller A m o c o C a d i z spill w h i c h devastated a large part of the N o r m a n d y coastline. V e r y small spills, of the order of a few tons, numbers
of sea
birds,
far
are k n o w n to have killed large
from shore.
It w i l l for this a n d
other
reasons b e of interest to track a n d forecast the m o v e m e n t of oil spills until their e x p e c t e d d i s a p p e a r a n c e . T h e first s t e p in t h e spreading
and
tracking analysis is the decoupling of the
drifting processes.
o b s e r v i n g or p r e d i c t i n g the
"Tracking" refers in this case
trajectory
of the
centroid of the
to
slick
w h i l e the s p r e a d i n g a n a l y s i s predicts its size. T h e s p r e a d i n g velocity is ( e x c e p t at v e r y early t i m e s ) a n order o f m a g n i t u d e smaller t h a n the c u r r e n t s p e e d r e s p o n s i b l e for t h e drift. T h e c u r r e n t i s u s u a l l y r e s u l t o f s e v e r a l c o m p o n e n t s , w i n d drift, t i d a l c u r r e n t a n d scale o c e a n currents. T h e rapid variations in the tidal
the
larger-
components
m a k e s tracking (even h i n d c a s t i n g ) v e r y difficult n e a r the shore
(an
e x a m p l e i s t h e C h e v r o n spill, d i s c u s s e d b y W a l d m a n e t al., 1 9 7 2 ) . T h e wind-drift c o m p o n e n t can be estimated w h e n the w i n d velocity a n d direction are k n o w n . O n arguing that the turbulent shear stress on both sides of the a i r / w a t e r interface is the same and f r i c t i o n c o e f f i c i e n t s for t h e t w o v e r y h i g h R e y n o l d s n u m b e r
that flows
the also
m u s t b e the same, w e obtain the equation
(7-58)
from w h i c h w e deduce
(7-58a)
F r o m the E k m a n boundary-layer solution w e k n o w that a stress on
Liquid Spills on Water - The Problem of Oil Pollution
187
the o c e a n surface p r o d u c e s m o t i o n in a direction different from the a p p l i e d f o r c e d u e t o t h e E a r t h ' s r o t a t i o n . ( S e e for i n s t a n c e
Prandtl's
Essentials of Fluid Mechanics, 1952.) The importance of this was
effect
first r e c o g n i z e d b y W a r n e r et al. ( 1 9 7 2 ) w h i l e t r a c k i n g the spill
f r o m t h e A r r o w a c c i d e n t ( C h e d a b u c t o B a y , 1 9 7 0 ) . It i s u s u a l t o d a y t o use an empirical correction to the direction of the w i n d . T h e w i n d drift c o m p o n e n t i s t a k e n t o a c t
15 d e g r e e s t o t h e r i g h t o f t h e w i n d
vector at n o r t h e r n latitudes a n d to h a v e a m a g n i t u d e 3.0% o f the w i n d s p e e d . T h e s e v a l u e s i n c l u d e t h e w a v e - i n d u c e d drift c o m p o n e n t , t h e s o c a l l e d S t o k e s ' drift. I n F i g . 7 - 1 2 , t h e "classical" i l l u s t r a t i o n ,
due
to
S v e r d r u p , o f t h e E k m a n l a y e r is r e p r o d u c e d . W h i l e n o r m a l w a v e s h a v e a r a t h e r m o d e r a t e effect o n t h e m o t i o n of drifting slicks, the presence o f b r e a k i n g w a v e s will m a k e the slick disappear altogether. T h e breaking w a v e s beat the surface slick deep into the water m a s s in the form of small droplets. A l t h o u g h the larger
Fig.
7-12;
Wind
induced
current
in the ocean
(Ekman
layer).
Chapter 7
188
d r o p s r e s u r f a c e after a s i n g l e w a v e t o f o r m a n e w slick, a
succession
of b r e a k e r s will m a k e the slick disappear altogether. After a
storm
the slick is u s u a l l y g o n e . T h e r e is a large b o d y o f literature w h i c h deals
with
so-called
"fate
and
effect"
studies
of oil spills.
The
p a r t i c u l a r p r o b l e m o f t h e effect o f b r e a k i n g w a v e s h a s b e e n s t u d i e d i n detail b y N a e s s ( 1 9 8 0 ) .
Special A
Nomenclature constant in p o w e r law, x i
=A t
E
n
A
headwave
c
w a v e v e l o c i t y i n o i l l a y e r , c = yj a 8
n
cross-section
cj
turbulent friction coefficient
D
s i m i l a r i t y v a r i a b l e , D = D (X)
h
thickness o f oil pool
hj
height of headwave
k, k
t
empirical constants
/
e x p o n e n t i n p o w e r l a w for l e a k r a t e
Lj
length of headwave
M
c o n s t a n t i n p o w e r l a w for l e a k r a t e
m
leak rate, time-dependent
q
droplet entrainment rate (loss)
t
"time i n m o t i o n " , t
U
s i m i l a r i t y v a r i a b l e , U = U (X)
E
R
R
U
= (x
LE
source -
x)/u
LE
wind velocity
A
U
relative velocity, water and
U
c r i t i c a l v e l o c i t y for o n s e t o f e n t r a i n m e n t l o s s
UT
drift v e l o c i t y ( m o v i n g s l i c k )
U
w i n d drift c o m p o n e n t ( m o v i n g s l i c k )
V
oil v o l u m e
C
CR
W
air
V
oil v o l u m e contained b y b o o m ( m a x . v a l u e )
We
critical W e b e r n u m b e r (onset drop formation)
m
cr
x, y
slick
XIE
leading-edge position
coordinates
X z
similarity variable, X = x/xi position coordinate (drifting slick)
a 8
r e d u c e d g r a v i t y c o n s t a n t , a =g (p slick thickness
Oj A
s h a p e factor ( h e a d w a v e ) , 6j = hj/Lj d e n s i t y p a r a m e t e r ( s m a l l ) , A - (p - p )l
E
w
w
- p )/p 0
Q
or g Apl p
w
x
p
w
Liquid Spills on Water - The Problem of Oil Pollution
a
net surface
TJJJ
shear stress
N
189
tension
Indices o
oil
w
water h e a d w a v e (front)
Special
Notation
overbar
dimensionless
quantity
REFERENCES A b b o t t , M . B . ( 1 9 6 1 ) O n t h e s p r e a d i n g o f o n e fluid o v e r a n o t h e r . P a r t II. La Houille
Blanche
6, p p 8 2 7 - 4 6 .
A g r a w a l , R . K . a n d H a l e , L . A . ( 1 9 7 4 ) A n e w criterion for
predicting
h e a d w a v e instability of an oil slick retained b y a barrier. Paper
OTC
1983.
Blokker, P.C. (1964) Spreading and evaporation of petroleum o n w a t e r . Proc.
4th International
Harbour
Conference,
products
Antwerp, pp
911-19. Cross, R.H. and National
Hoult, D . P . ( 1 9 7 0 ) C o l l e c t i o n o f oil slicks.
Meeting
on Transportation
Engineering,
Boston,
ASCE, Preprint
1236. F a n n e l o p , T . K . ( 1 9 8 3 ) L o s s r a t e s a n d o p e r a t i o n a l l i m i t s for b o o m s u s e d a s oil b a r r i e r s . Applied
Ocean Research
5, N o 2 , p p 8 0 - 9 2 .
F a n n e l o p , T . K . a n d W a l d m a n , G . D . ( 1 9 7 1 ) T h e d y n a m i c s of oil slicks, o r " c r e e p i n g c r u d e " . AIAA Paper No
71-14.
Fannelop, T . K . a n d W a l d m a n , G . D . (1972) T h e d y n a m i c s of oil slicks. A I A A Journal
10, N o 14, p 5 0 6 .
F a y , J . A . ( 1 9 6 9 ) T h e s p r e a d o f oil o n a c a l m sea. I n Oil on the Sea ( E d D.P. Hoult). Plenum Press. H o u l t , D . P . ( 1 9 6 9 ) C o n t a i n m e n t a n d c o l l e c t i o n d e v i c e s for o i l s l i c k s . I n Oil on the Sea ( E d D . P . H o u l t ) , p p 6 5 - 8 0 . P l e n u m P r e s s . H o u l t , D . P . ( 1 9 7 2 ) O i l s p r e a d i n g o n t h e s e a . Annual Mechanics,
Reviews
of
Fluid
pp 341-68.
Hoult, D.P., Fay, J.A., Milgram, J.H. and
Cross, R . H . (1970) The
Chapter 7
190
s p r e a d i n g a n d c o n t a i n m e n t o f oil s l i c k s . AIAA Paper L a m b , H . ( 1 9 4 5 ) Hydrodynamics,
70-754.
6th Ed, C h VIII, p. 278. Dover.
Lee, R . A . S . (1971) A study of the surface tension controlled regime of oil s p r e a d . M . S . T h e s i s , D e p t M e c h . E n g . , M a s s a c h u s e t t s I n s t i t u t e f
of T e c h n o l o g y . L e i b o v i c h , S. ( 1 9 7 6 ) O i l s l i c k i n s t a b i l i t y a n d t h e e n t r a i n m e n t f a i l u r e o f oil c o n t a i n m e n t b o o m s . J. Fluids Milgram,
J.H.
Technology
Eng. 9 8 , p p 9 8 - 1 0 5 .
(1977) Being prepared
Review
for f u t u r e A r g o
Merchants.
J u l y / A u g u s t , p p 15-27.
Milgram, J.H. and V a n Houton, R. (1978) Mechanics of a layer of
floating
o i l a b o v e a w a t e r c u r r e n t . AIAA
restrained
J.
Hydronautics
12, N o 3, p 9 3 . Naess, A . ( 1 9 8 0 ) T h e m i x i n g o f oil spills into the sea b y
breaking
w a v e s . J.P.T. 3 2 , N o 6. P r a n d t l , L . ( 1 9 5 2 ) Essentials ( N e w G e r m a n E d . Filhrer
of Fluid durch
Dynamics.
Blackie and Son Ltd.
die Stromungslehre.
V i e w e g 1990.)
S i m p s o n , J.E. a n d B r i t t e r , R . E . ( 1 9 7 9 ) T h e d y n a m i c s o f t h e h e a d o f a g r a v i t y c u r r e n t a d v a n c i n g o n a h o r i z o n t a l s u r f a c e . Journal Mechanics
of
Fluid
9 4 , P t 3, p 4 7 7 .
S t o k e r , J.J. ( 1 9 5 7 ) Water Waves,
C h . 10, p 3 0 8 . I n t e r s c i e n c e .
Taylor, G.I. (1950) The formation of a blast wave b y a very intense e x p l o s i o n . I . T h e o r e t i c a l d i s c u s s i o n . Proc. Roy.
Soc. A 2 0 1 , p p 1 5 9 -
74. Van
Houton,
R.
(1976)
Hydrodynamics
of contained
oil
slicks.
Doctoral Thesis, Department of Ocean Engineering, Massachusetts Institute of Technology. Waldman, G.D., Fannelop, T.K. and Johnson, R.A. (1972)
Spreading
a n d t r a n s p o r t o f o i l s l i c k s o n t h e o p e n o c e a n . Offshore
Technology
Conference,
Paper N o 1548.
W a r n e r , J.L., G r a h a m , J . W . a n d D e a n , R . G . ( 1 9 7 2 ) Prediction o f the m o v e m e n t of an oil spill o n the surface Technology
Conference,
Paper N o 1550.
of the water.
Offshore
Liquid Spills on Water - The Problem of Oil Pollution
191
PROBLEMS P r o b l e m 1. B y m e a n s o f t h e s i m i l a r i t y m e t h o d o f F a y , o u t l i n e d i n S e c t i o n 6 . 2 , d e r i v e t h e s p r e a d i n g l a w s for o i l s l i c k s o n w a t e r for, ( a ) the gravity/inertial regime, (b) the g r a v i t y / v i s c o u s regime a n d (c) the surface-tension/viscous Problem
2.
regime.
Determine
the
cross-over times
between
the
flow
r e g i m e s o f P r o b l e m 1, a n d p l o t t h e l e n g t h d i m e n s i o n ( s l i c k d i a m e t e r ) v e r s u s t i m e for a s p i l l o f 1 0 , 0 0 0 t o n s . (Data: a
n e t
= 310"
2
N/m, v
= 10" m / s , p 6
w
2
= 1030 k g / m , p 3
w
Q
k g / m . ) W h y i s t h e k i n e m a t i c v i s c o s i t y for w a t e r v 3
w
more
= 850
relevant
t h a n that o f oil, v ? G
P r o b l e m 3. C o n s i d e r a g r o u n d e d tanker leaking oil at the rate V m / s into a current of velocity U .
D e r i v e t h e s p r e a d i n g l a w s for t h e
3
c
t h r e e flow r e g i m e s o f i n t e r e s t . ( H i n t : R e p l a c e t i m e b y t h e flow
t i m e z/U
equivalent
w h e r e z is the distance d o w n s t r e a m from the point of
c
t h e l e a k . N o t e t h a t c o n t i n u i t y i m p l i e s V~xi&
U 8.) C h e c k y o u r r e s u l t s c
against those listed in Table 7-3. Problem
4.
Consider
an
instantaneous
unstabilized crude, with density p
tons of
= 800 k g / m , spreading on 3
Q
ocean, of higher density p
spill of 1000
the
= 1 0 3 0 k g / m . A b o u t 10% o f t h e m a s s i s 3
w
lost d u e to e v a p o r a t i o n in the first hour, a n additional 2 0 % in next four hours. Determine the
size of the
slick after
5 hrs
the and
c o m p a r e w i t h the case o f "stabilized" c r u d e w h i c h h a s h i g h e r density, say,
Po = 8 5 0
kg/m
3
and
negligible evaporation.
The
flat-slick
a p p r o x i m a t i o n m a y b e u s e d i n t h i s a n a l y s i s w i t h "finite" t i m e s t e p s . P r o b l e m 5. A g r o u n d e d t a n k e r l e a k s o i l o f h i g h v i s c o s i t y a t r a t e 10 m / s i n t o a c u r r e n t U = 0 . 6 m / s . A b o o m o f n e a r 3
c
s h a p e s p a n s the oil p l u m e at a distance
the
parabolic
1500 m d o w n s t r e a m of the
l e a k . D e t e r m i n e t h e oil c o n t a i n e d after 2 h r s . W h a t i s t h e s i z e a n d
the
t h i c k n e s s d i s t r i b u t i o n o f t h e s l i c k c o n t a i n e d b y t h e b o o m o f draft
0.5
m after a s t e a d y s t a t e h a s b e e n r e a c h e d ( a ) w i t h o u t s k i m m i n g a n d ( b ) w i t h s k i m m e r s r e m o v i n g oil at the rate 3 m / s . (Use d a t a available in 3
the text.) P r o b l e m 6. O n e h u n d r e d t o n s o f o i l i s r e l e a s e d
instantaneously
into a current r u n n i n g south at o n e knot a n d w i t h the w i n d from n o r t h w e s t b l o w i n g at 15 k n o t s . D e t e r m i n e t h e s i z e a n d l o c a t i o n o f t h e
192
Chapter 7
s l i c k after 4 h r s . ( U s e t h e f l u i d p r o p e r t i e s s p e c i f i e d i n P r o b l e m 2 . )