Long-range HH coupling in silylgermyl-sulphide and selenide

Long-range HH coupling in silylgermyl-sulphide and selenide

1N0R6. NUCL. CHEM. LE77ER5 V01. L0N6-RAN6E H-H C0UPL1N6 6, pp, 713-715, 1970. Per9am0n Pre55. 1N 51LYL6ERMYL-5ULPH1DE Pr1nted 1n 6 r e a t...

90KB Sizes 0 Downloads 50 Views

1N0R6.

NUCL.

CHEM.

LE77ER5

V01.

L0N6-RAN6E H-H C0UPL1N6

6,

pp,

713-715,

1970.

Per9am0n Pre55.

1N 51LYL6ERMYL-5ULPH1DE

Pr1nted 1n 6 r e a t 8~ta1n.

AND 5ELEN1DE

J. E. Drake and C. R1dd1e Department

0f Chem15try,

Un1ver51ty 0f W1nd50r,

~e~ed

8 ~

1~7~

7he a6501ute va1ue 0f the 10n9-ran9e H-H• 15 kn0wn f0r 5evera1

5u1phUr der1vat1ve5

c0up11n9 c0n5tant 0f the 9r0up 1V

hydr1de5 MH3-5-M~H~ 3
(M ~ M~) 5uch c0up11n9

f1r5t-0rder

hydr1de5

1H n.m.r.

d15tance

0f 1JH~,1 .

51m11ar c0up11n9

% -0-M~H~3. d-0r61ta15 t1nct1ve

0f 5u1phur p1ay an 1mp0rtant

1 JHH, 1 1ncrea5e5.

that 5e1en1Um,

15 a150 Capa61e 0f 1nv01vement have exam1ned the 2951

r01e

that the (1~2).

A d15-

7hu5 1n the 5er1e5

50 1JHH, 1 = 0 . 3 0 9 0 . ~ 5 ~ 0 . 6 0 H 2 .

0f 5 1 ~ 5 6 e H 5 c0mp1ete5

C0up11n9 ha5 6een 065erved 1nd1Cat1n9

51nce

50 that a5 M 0r M•• are rep1aced

a5 M = C ~ 5 1 ~ 6 e ,

0ur preparat10n

the va1ue

1n the 0xY9en ana109ue5,

1t ha5 6een 5u99e5ted theref0re

6y heav1er e1ement5,

(3)

1n determ1n1n9

15 the extent 0f 7-60nd1n9

15 n0t 065erved

trend 15 065erved

CH3-5-MH~3,

1n a 5ate111te peak.

data 1t appear5 the H-H•

1mp0rtance

N0r apparent1y

F0r the

5pectrum 6ut 1n the 51mp1e

5tructura1

15 n0t 0f pr1me

~1>.

15 d1rect1y 065erved 1n

(M = M~) may 0n1y 6e 065erved

Fr0m the ava11a61e

0ntar10

the 5er1e5 51H~-5-MH 5.

(JHH• = +0.15 H 2 ) 1 n w1th

~ava11a61e ~ d-0r61ta15,

1n 10n9-ran9e

(~-7~ a6Undant; 713

CH35eCH~ 3

c0up11n9.

We

1 = 1/2) 5ate111te5

714

L0N6-RAN6E

H0H C 0 U P L 1 N 6

0f 51H35e51H 3 and, a5 the 736e (7-~; are n0t 065erved 1n 6eH35e6eH3, 51H356e ~

V01. 6, N0. 8

1 = 9/2)

5ate111te5

have 5tud1ed 51H35e6eH 3.

wa5 prepared 6y the c0-c0nden5at10n

0f 5 1 ~ 5 H

and 6eH35H , pr0duced 1n a 511ent e1ectr1c d15char9e react10n (4).

51H35e6eH 3 wa5 51m11ar1y f0rmed fr0m 5 1 ~ 5 e H

6eH35eH.

and

7he1r f0rmat10n wa5 c0nf1rmed 6y ma55 5pectr05c0py.

80th 9ave f1r5t-0rder,

1

H n.m.r.

5pectra cQn515t1n9 0f tw0

re1ated 1:3:3:1 4uartet5 0f e4ua1 1nten51ty.

~ (51R)

~(6eH~3)

JH~

51H356eH ~3

4.40

4.64

0.80

51H 3 5e6eH•3

4.15

4.25

0.73

7he ~va1ue5,

(H2)

wh1Ch are 91ven 1n p.p.m, t0 10w f1e1d 0f 7M5,

C0mpare fav0Ura61y w1th th05e f0r (51H3)25 , (6eH3)25 , (51~)25e , and (6eH3)25e 0f 4-35, 4.67, 4.09, and 4.32 ~ re5pect1ve1y

(5)-

51H35e51H 3 wa5 prepared 6y 511ent e1ectr1C

d15Char9e 0f 51H 4 and H25e (~) and charaCter15ed 6y 1t5 n.m.r.

5peCtrum (5)-

1

H

A 5tudy 0f the 2951H 5ate111te re910n

5h0wed 1:3: 3:1 4Uartet5 w1th 1JH1{• 1 = 0.63 H2. 7he 10n9-ran9e C0Up11n9 1n 51H3551H• 3 15 0.70 H2, 50 the trend ment10ned a60ve f0r the 5er1e5 CH3-5-MH• 3 15 repeated 1n the 5er1e5 51H3-5-1~ 3 W1th 1JHH,1

= 0.45~0.70~0.80

H2.

A1th0u9h n0 va1ue can 6e 06ta1ned fr0m the d19ermy1 5pec1e5, the va1ue5 1n the 5e1en1de5 a150 c0nf0rm t0 an 1ncrea51n9 c0up11n9 c0n5tant w1th 1ncrea51n9 ma55.

0ther 5e1en1de5 are

a5 yet unava11a61e 6ut we w0u1d expect e.9. CH35e51 ~

and

V ~ . 6, N0. 8

L0N6-RAN6E

H~

C0UPUN6

CH35e6eH 3 t0 c0nf0rm t0 the5e trend5.

715

7he 519n1f1cance

the va1ue5 15 p05ed a5 a pr061em t0 the the0ret1c1an5, 1t 15 n0ta61e

that the trend 1n the 5u1ph1de5

0f 6ut

extend5 t0 the

5e1en1de5.

7h15 c0u1d 1nd1cate

determ1n1n9

effect 0n the va1ue 0f the c0up11n9 c0n5tant5,

p055161y the ava11a6111ty

the prep0nderance

0f 0ne

0f d-0r61ta15.

Reference5 1. J.7. WAN6 and C.H. VAN DYKE, 2. E.A.V. Pre55,

E85W0R7H, v01at11e 135 (1963).

3- H. DREE5KAMP

Chem. C0mm.,

5111c0n C0mp0und5,

and 6. PF157ERER,

~. J.E. DRAKE and C. R1DDLE,

612

M01.

(1967). Per9am0n

Phy5., 1~,

295

(1968).

t0 6e pu6115hed.

5- C. 6L1DEWELL, D. W0H. RANK1N, and 6. M. 5HELDR1CK, Faraday 50C., 6~, 1~09 (1969).

7ran5.