Lothar Collatz-On the Occasion of his 75th Birthday L. Elmer
Fakultiit ftir Mathematik t’niversitiit Bielefeld Postfach 8640 4800 Bielefeld, West Gennuny K. P. Hadeler
Lehrstuhl ftir Biomuthemutik der Universitiit Tiibingen Auf der Morgenstelle 10 7400 Tiibingen, West Gemany
Submitted
by Hans Schneider
Lothar Collatz was born on July 6, 1910 in Amsberg, Westphalia. Because his father worked as a surveyor in government service, the family moved quite often. Lothar Collatz graduated from high school in Stettin in Pomerania (now Szeczin, Poland). Between 1928 and 1933 he studied at the universities of Gottingen, Berlin, Greifswald, and Munich. In Berlin, he attended the lectures of Issai Schur, together with Alfred and Richard Brauer, Walter Ledermann, and Helmut Wielant, who were to become well-known algebraists. At Gottingen he studied with Richard v. Mises, Richard Courant, and Edmund Landau. At that university Carl Runge had founded in about 1904 the first group in applied mathematics and numerical analysis in Germany, and Gottingen continued to offer an active program in these areas. Collatz soon came into contact with problems in numerical analysis and mathematical physics. It would seem that he himself felt attached to the work of Runge. Collatz earned his doctoral degree in Berlin 1935, and he obtained his habilitation in 1937 at the Technische Hochschule Karlsruhe, where he became a Privat-Dozent. It was here that he met his wife Martha, nee Togny. During the war, like many other mathematicians, Collatz worked for the aircraft industry. He was faced, in the era of mechanical calculators, with huge numerical problems from mechanical engineering and hydrodynamics. In 1943 he was offered a chair of mathematics at the Technische Hochschule Hannover. The following period brought about close cooperation with colleagues from engineering departments and a tremendous scientific output mainly in the fields of numerical analysis of differential equations and of LINEAR ALGEBRA G Elsevier
Science
52 Vanderbilt
AND ITS APPLICATIONS 68:1-B
(1985)
Publishing Co., Inc., 1985
Ave., New York, NY 10017
00243795/85/$3.30
2
L. ELSNER AND K. P. HADELER
eigenvalue problems, resulting in two important monographs, reprinted several editions [2, 41. In 1952 Collatz accepted a chair of mathematics at the University
in of
Hamburg, in a highly reputed department. He founded the Institute of Applied Mathematics at the university which became the home of several generations of young mathematicians. He also laid the foundation for one of the first university computer centers in Germany. He retired officially in 1978, but he is still teaching and actively participates in the scientific and social life of the Institute. Lother Collatz’s outstanding scientific work and his active role in the scientific community have been honored on many occasions. In spite of his strong emotional ties to southern Germany and the mountains he refused an offer in 1969 from the University of Stuttgart. He is currently a member of the Academia Leopoldina (Halle), the Academies of Bologna and Modena, honorary member of the Hamburgische Mathematische Gesellschaft, and of the Gesellschaft fur Angewandte Mathematik und Mechanik (GAMM). He received honorary doctoral degrees from the Universities of Sao Paulo, Dundee, Hannover, from Technische Hochschule Vienna, and from Brunel University. He has been and remains a member of the board of editors of several journals; he had been an associate editor of this journal at one time. Though in this brief account many outstanding features of his career must be omitted, mention must be made of Collatz’s early recognition of the importance of electronic computers, his interest in teaching applied mathematics in high schools, the many Oberwolfach Conferences organized by him, and his vigorous efforts to maintain contacts between mathematicians in Eastern Europe and the West. His strenuous hiking tours with students and fellow scientists, his hospitality to visitors and staff (shared by his wife and his daughter Gudrun), and his personal modesty, are memorable to his many friends and colleagues, whom he delights with Seasons Greetings, illustrated by himself, showing sights of last year’s travel. The most important aspect of Lothar Collatz’s work lies in the fields of numerical analysis and applied mathematics. His scientific career began early. He started with difference schemes for ordinary and partial differential equations. As early as 1934 he gave a talk on this topic at a GAMM-meeting (one of only 16 lectures). In 1938, at the GAMM meeting in Gottingen, he presented the numerical treatment of eigenvalue problems in a survey lecture, which was published in two long articles [13] and became the nucleus of the monograph [l]. In this way he came in contact with the then developing matrix theory. The problem of finding error bounds lead him to quotient theorems [21]. He investigated monotonicity of matrices ([41, 501) and the convergence of iterative methods for linear systems [32, 33, 481. In particular,
LOTHAR COLLATZ-ON
THE OCCASION OF HIS 75TH BIRTHDAY
3
two of his contributions [21,41] had a very large influence on the subsequent development of matrix theory. During his stay at the Technical Universities Karlsruhe and Hannover, while in close contact with engineers, he wrote a series of (often joint) papers on problems in mechanical and mathematical physics. For extended periods Lothar Collatz directed his interests towards other fields of mathematics, such as approximation theory, optimazition, combinatorics, and bifurcation theory. It appears that he often provided an important stimulus by introducing a basic idea or by writing a textbook. Others carried on his ideas, while he moved on to another field. The paper by Collatz and Quade [lo] on Abminderungsfaktoren, and his paper with Sinogowitz [56] on spectra of graphs, are particularly well known. As a student, Collatz showed a great interest in geometric and combinatorial problems and he still enjoys to pose and solve such problems. It seems that he was one of and probably the first inventor of the now famous 3n + 1 algorithm (Collatz-, Kakutani-, Hasse-, Syracuse-Algorithm) which has intrigued so many mathematicians (see e.g., the article of R. Guy, Am. Math. Monthly 90: 35-41 (1983)). Collatz had many students, among them G. Bertram, J. Schrijder, J. Albrecht, H. Bartsch, G. Gloistehn, H. Werner, G. Meinardus, H. J. Weinitschke, W. Wetterling, R. Nicolovius, H. Feldmann, W. Krabs, E. Bohl, K. P. Hadeler, L. Elsner, J. Werner, G. Opfer, F. Natterer, E. Bredendiek, F. Lempio, J. Spiess, B. Monien, B. Werner, several of whom have contributed to the theory of matrices, in such areas as monotonicity, iterative methods, Kantorovich inequality, linear programming, positive matrices, inverse, and nonlinear eigenvalue problems. BOOKS Eigenwertprobleme und ihre numerische Behandlung, Akademische Verlagsgesellschaft, Leipzig, 1945, 338 pp. Eigenwertprobleme mit technischen Anwendungen, Akademische Verlagsgesellschaft, Leipzig, 1949, 466 pp. 2nd Edition. 1962, 500 pp. Diffeentialgleichungen fir Ingenieure, Wissenschaftliche Verlagsanstalt K. G. Hannover, 1949, 156 pp. 2nd Edition: Teubner-Verlag, Stuttgart, 1960, 197 pp. 6th Edition, 1981, 287 PP. Numerische Behandlung eon LIiff~entialgleichungen, Springer-Verlag. 1951, 458 pp. 2nd Edition: 1955, 526 pp. 3rd Edition: The Numerical Treatment of Differential Equations, (Transl. P. G. Williams), Springer-Verlag, 1960, 568 pp., 2nd printing 1966. Funktionalonalysis und Numerische Mathematik, Springer-Verlag, Berlin, 1964, 371 pp. Functional Analysis and Numerical Analysis, (Transl. Hansjijrg oser), Academic Press, New York, 1966, 473 pp. (with W. Wetterling) Optimierungsaufgaben (Heidelberger Taschenbiicher, Bd 15), Springer-Verlag, 1966, 181 pp. 2nd ed. 1971, 222 pp.
4
L. ELSNER AND K. P. HADELER 8
Optimization
9
(with
J.
Braunschweig, 10
(with
(Transl.
Probbns
Alhrecht)
Part I: 1972,
W. Krabs)
aus
Springer-Verlag,
der Angewandten
141 pp., Part II: 1973,
Approximutionstheorie.
Teuhner-Verlag,
dungen,
6. Wadsack),
Aufguben
Stuttgart,
1975. Un-Text,
Muthematik,
Vieweg,
141 pp.
Tchebyscheffsche
Approximotiown
mit Anuw-
1973, 208 pp.
PAPERS 1
Fehlerahsch’tzung
2
Gleichungen
3
fiir Differenzenverfahren,
geometrischer
Eigenschwingungen 315-317
Ornamente,
gleichseitig
Z. Angew.
Verdgerneinerung
5
Differenzenverfahren
dreieckiger
Membran,
des Differenzenverfahrens, mit hdherer (1935).
6
@adratwurzelziehen
mit der Rechenmaschine,
7
Differenzenverfahren
hei
Anger.
16:239-247
10
M&h.
und Fehlerahsch&ung Differentialgleichungen,
Schranken
fiir ersten
(with W. quade)
I\4ec/t. 14:
Muth.
(with
Th.
Eigenwert,
Konvergenz
des
Gen&erte
18:186-194
Berechnung
16:.59%60 (19:36). Z.
hei Eigenwertaufga2: 189-215
Mothemntik
(1937).
(1937).
der reellen periodischen
Funktionen,
Si!;.
Bw
(1938).
homogener
Maschinen
wit
Zusatztlrel~rnassen,
Z.
(1938).
Differenzenverfahrens Math.
Deutsche
McJ~/I.
Differentialgleichungen,
fiir Differenzenverfahren
Zng. Arch. 8:325-331
Eigenfrequenzen
M&I.
(1934).
SCVI. Inst. ungew.
A~cJ(~~/I. Mrd~.
partieller
Phys. -Mat/~. Kl. 30:383-429
P&&l),
Math.
14:35%351
iM~~t/l.Mwh. math.
Z. Angeco.
Deutsche
Zur Interpolationstheorie
Wiss.
zialgleichungen, 13
Angew
(1936).
Konvergenzheweis
Angew. 12
Mech.
Srhr.
Anfangswertprohlemen
hen gewiihnlicher
Preup Akad. 11
Z.
Z. Angelo.
Approximation.
Clnio. Berlin 3:1-34
9
(1933). (1934).
(1934).
4
8
1:3:56-57
McJ~/~.MK~.
Math. ~Va/urw.Unterr.64:164-169
Z.
bei
3:2OC-212
von Eigenwerten,
Eigenwertproblemen
partieller
Differew
(1938).
Mat/r. Mcd~. 19:224&249,
Z. Angetc.
297-318
(1939). 14
Ginstiger
15
Hornersches
Wert
der Kopplungskonstanten,
Schema
hei
komplexen
Zng. Arch. Z.
Wurzeln,
l&269-282 Angerc.
(1939). ,M&h.
Mcth.
2023.5-236
(1940). 16
Schrittweise
17
Vergleich
der
Aswonom.
Nwhr.
Ntierungen
18
EinschlieBungssatz
19
(with
R.
271:116-120
LM~zt/l.Z. 46:692-708 Bucerius
von Inte~algleichungell,
Interpolationsverfahren Z. Angetu.
(with R. Zurmiihl)
van
mit
dem
(1940).
Ritzschen
Verfahren,
(1941).
fiir Eigenwerte
‘Zurmiihl)
ferentialgleichungen, 20
hei I~~tegralgleichungen,
Integralgleict~ut~gsmethode
Genauigkeit
Moth.
der
Me&
verschiedener
A4c~t/2,Z. d7:395-398
numerischen
22:42%55
Integration
(1941). von
Dif
(1942).
Integrationsverfahren,
Ing.
A&.
13:34&36
(1942). 21
EinschlieBungssatz
fiir charakteristische
Zahlen
van
Matrizen,
McJ~/~.Z. 48:
221-226
(1942). 22
Nat&&he
Schrittweite
hei numerischer
Integration,
Z. Angctu.
M&h.
Me&.
22:216-225
(1942). 23
Fehlerahsch%.tzung fiir Iterationsverfahren Math. Me&. 22:357-361 (1942).
24
Graphische
Liisung
gleichungen
2. Ordnung,
25
(with
R.
Zurmiihl)
VDI-Zeitschr. 26
Liisung
von
gewisser
Randwertprohlemen Z. Angetu.
Gritten
88:511-515
hei linearen
Math.
und Vertafeln
hei Me&.
Gleichurrgssyste~~le~l,
gewiihnlichen 23:237-239
empirischer
linearen
Z.
Angew.
Differential-
(1943).
Funktionen
mitt&
Differenzen,
(1944).
Differentialgieichungen
mit dem harmonischen
Analysator,
Bwicht
ii/xv
LOTHAR COLLATi-ON
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
THE OCCASION OF HIS 75TH BIRTHDAY
die Mathematiket-Tagung in Tiibingen, 60-61 (1946). Stabilit’at von Regehmgen mit Nachlaufzeit, 2. Angew. Math. Mech. 25/27:6X-63 (1947). Eigenwertaufgaben bei Iinearen IntegmDifferentialgleichungen, Z. Anger. Math. Mech. 25/27: 129- 130 (1947). Differenzenschemaverfahren filr gewijhnliche Differentialgleichungen n-ter Ordnung, Z. Angew. Math. Mech. 29:199-209 (1949). Graphische und numerische Verfahren: in FIAT-tie&m ofGerman Science 1939- 1946, Wiesbaden, 1948. Iterationsverfahren fiir komplexe NullsteUen algebraischer Gleichungen, Z. Angew. Math. Mech. 30:97-101 (1950). Konvergenzkriterien bei Iterationsverfahren fiir lineare Gleichungen, Math. Z. 53:149-161 (1950). Zur Herleitung van Konvergenzkriterien, Z. Anger. Math. Mech. 30:278-280 (1950). Das Mehrstellenverfahren bei Plattenaufgaben, Z. Angew. Math. Mech. 30:385-388 (1950). Neuere Forschungen iiber numerische Behandlung van Differentialgleichungen, Z. Angew. Math. Mech. 31:230-236 (1951). Zur Stabilitat des Differenzenverfahrens bei der Stabschwingungsgleichung, Z. Angew. Math. Mech. 31:392-393 (1951). SuIla maggiorazione dell’errore nel probleme de Dirichlet, Atte del IV. Congesso della Unione matem. Ital., Taormina, 25-31, 1951 Einschliessungss’atze fiir Iteration und Relaxation, Z. Angew. Math. Mech. 32:76-84 (1952). Numerische Bestimmung periodischer Liisungen bei nichtlinearen Schwingungen, Z. Angew. Math. Phys. 3:193-205 (1952). Zur 1. Randwertaufgabe bei elliptischen Differentialgleichungen, Z. Anger. Math. Mech. 32:202-211 (1952). Aufgaben monotoner Art, Arch. Math. 3:36&376 (1952). Einschliessungss’gtze fiir Prod&e von Eigenwerten, Wiss. Z. TH Dresden, 343-346 and 347-352 (1952/1953). (with H. Gortler) Rohrstromung mit schwachem DraU, Z. Anger. Math. Phys. 5:95-110 (1954). Fehlerabschatzungen zum Iterationsverfahren bei hnearen und nichtlinearen Randwertaufgaben, Z. Angew. Math. Mech. 33:116-127 (1953). Instabilitat bei Verf. der zentralen Differenzen fiir Differentialgleichungen 2. Ordnung, Z. Angew. Moth. Phys. 4:153-l% (1953). Funktion alytische Methoden in der praktischen Analysis, Z. Angew. Math. Phys. 4:327-357 (1953). Das vereinfachte Newtonsche Verfahren bei algebraischen und transzendenten Gleichungen, Z. Angew. Math. Mech. 34:70-71 (1954). Zur Fehlerabschatzung bei linearen Gleichungssystemen, Z. Angau Math. Me&. 34:p.72 (1954). Vereinfachtes Newtonsches Verfahren bei nichtlinearen Randwertaufgaben, Arch. Math. 5:233-240 (1954). iiber monotone Systeme Iinearer Ungleichungen, I. reine Angem. Math. 194:193-194 (1955). Numerische und graphische Methoden Artikel Handb. Phys., herausgegeben von S. Fhigge, 11:349-470 Springer, 1955. Fehlermassprinzipien in der praktischen Analysis, Proc. Znt. Math. Congress Amsterdam, 111:209-215 (1954).
6
L. ELSNER AND K. P. HADELER
53 54
Approximation
v. (1956).
Carl Runge
als Angewandter
4:1-10
wien
Zur Berechnung
<56
(with (with
J.
,5S
Albrecht)
61
hiiherer
2:66-75
Auswertung
(with
J.
Albrecht)
Ordnung
4:67-68
Abhnndl.
J.
Mech.
Hochschrde
(1957).
Math.
Sem. (‘Go.
Hamburg
Integrale,
Z.
Angrtc.
~Math. Labor
T&n.
Hochschulr
in BanachrLmen,
Arch.
Rutional
Me&.
Mech.
Schrtier)
mit unendlichem
Grundgebiet,
Z. Angetc.
(1958). fiir
Numerische
Mathernatik
Unterricht
Methoden
Math.
bei numerischer
Schulunterricht,
DIT
(1958/59).
Behandhmg
van Differentialgleichungen,
(1958).
38:264&267
EinschlieDen
inr
11:252-258
der L.i%ungen
van
Randwertaufgaben.
Numc+r
M&/I.
(1959).
Monotonic
65
Tschebyscheffsche
operators
24:70-78
and boundary Ann&erung
Monotone
Operatoren
67
Monotonic
Proceed.
Funktionen,
68
Funktionalanalysis
bei Anfangswertaufgaben,
u. Extremalprinzip.
Wien,
value problems,
mit rationalen
Madison ADA. Moth.
35-45
59,
(1959).
Scnrr. Uninic. Hun-
(1960).
66
schule
Mitteilungen
f. Gleichungen
Beispiele
Funktionalanalytische
64
70
Labor Techn.
mehrdimensionaler
part. Differentialgleichungen
Phys. IXa:llS-128
1:61-72
69
Math.
(1958).
Randwertaufgaben
burg
Graphen,
zum 60. Geburtstag,
Math.
(with
Moth.
Angew.
(1958).
NAerungsverf.
Z. Angew. 63
Z.
(1958).
~~ath~nlatisch-Nuturwiss~chaftliche 62
Mitteilungen Schi~fitechnik
endlicher
Numerische
38:1-15
5:71-73
Analysis
60
Spektren
Prof. Dr. A. Walther Wien
Mathematiker,
Vertiderl.,
(1957).
LMath. Me&.
58
mehreren
van Potentialfunktionen,
U. Sinogowitz)
21:63-77
van
(1957).
55
57
Funktionen
36:198-211
u. numerische
8:101-105
Mathematik,
Verf.,
Z. 74:150-160 Numer.
Mitteilungen
(196Q.
Mad.
Math.
3:99-106 Labor
(1961).
Techn.
Ho&
(1961).
Monotones
Verhalten
Numerique,
Mons, 61-88
Funktionenfolgen
M&It.
bei Newtonschen
bei
gewGhn1.
u. part.
Differentialgleichungen,
&loll.
[‘Atu~lyse
(1961).
mit 2 dreigliedrigen
Rekursionsformeln,
Monutschefle
Math. 66:193-202
(1962). 71
(with
H.
Werner)
tionalanalytische 72
Eigenvalue
73
Theoretische
74
Potenzbilder
75
Giinther
Anfangswertaufgaben
Beh.,
Problems,
Math.
Phys.
Differentialgleichungen
der numerischen
Mathematik,
in
funk-
(1962).
9:22-40
of EngineeringMechanics,
in Handbook
Grundlagen
gewBhn1.
Semesterbtichte
New York, 1962,
luhresb&cht
DW’
Chap.
18.
65:72-96
(1962). endlicher
Schulz
+,
Gruppen,
Z. Angau.
I. Reine Angelo. Math.
fiir Eigenwerte
Mech.
Math. 211:169-175
43:96
76
Einschliessungssatz
77
Angew. Math. Mech. 43:277-280 (1963). iiber einige neuere Entwicklungen bei Differenzenverfahren tieller Differentialgleichungen,
78
Inclusion
theorems
several variables, 79
Applications
80
(RaU, Ed.), Functional
81
(1965). tiler Nmnerische
Apl.
for the minimal
bei partiellen
Math. distance
in Proc. Approrimation
of functional
analysis
Mathematik,
Differentialgl.
10: 165-177
Tschebyscheff
mathematics, 11:133-148
fiir Randwertaufgaben
(Garabedian,
to error estimation,
Leopoldina
2. und 4. Ordnung,
Z. par-
(1965).
in rational
ofFunctions
Vol. 2, lS65, pp. 253-269. analysis as an aid in numerical
(1962).
(1963).
in Error Proc. (1965).
approximation
with
Ed.), 1965, pp. 43-,56. in cfigitul computation,
IFIP-Congress
1:145-153
LOTHAR 82 83 84
COLLATZ-ON
Hans Ehrmann
+,
Einige
abstrakte
1 nung),
Computing
Monotonicity
Z. Angew.
Begriffe
85 86
and related
Alwin Walther Monotonic
87 88
Inclusion
Mathematische Nichtlineare
van Laugwitz,
Approximationstheorie Applications
Math.
equations
(Greenspan,
Mech. 47:213-215 4.
problems,
in Proc.
(1967).
Ordnung,
Intern.
Ser.
Num.
und
3:113-l=
(1968).
Tschebyscheff-Approximation 413-421
Anwendungen,
bei
der M&em&k,
(1969).
und Anwendungen,
Inter. Ser. Num. Math.
to approximation
15:X-127
151-162,
Some applications
(1970).
problems, in Integer and nonlinear
(J. Abadie, Ed.), North Holland, 1970, pp. 285-308. bei Randwertaufgaben, Proc. Internat. Congr.
Warna,
mehreren
(1968).
iiberblicke
ofConstructioe
T-Approximation
Functions,
der HaIbord-
Ed.), 1966, pp. 65-87.
Colloque Besun~on 1966, 63-73
rationalen
of nonlinear optimization
programming,
95
der
Optimierungsaufgaben
92
94
differential
equations,
Differentialgleichungen
for matrix problems,
91
Einseitige
in nonlinear
Apl. Math. 13:137-146 (1968). Optimienmg, Bild der Wissenschoft,
herausgegeben
93
methods
Z. Anger.
Behandlung
Vertiderlichen,
89 90
(Anwendungen
(1967).
theorems
Numerische
Mathematik
(1966).
gewijhnlichen
Math. 7:171-178
Mech. 563 (1966).
ofnonlineardiff@xmtial
1898-1967,
bei
Moth.
in der numerischen
1:235-255
Numerical solution
7
THE OCCASION OF HIS 75TH BIRTHDAY
1970.
of functional analysis, particularly
Nonlinear Functional
Analysis and Applications,
l%chenzerlegungen
1.11, Math.
to nonlinear integral equations,
Madison,
l-43
Bild o’er Wissenschuft,
Kabinett,
Proc.
(1971). 404-412,
510-516
(1971). 96
Einseitig
Tschebyscheff-Approximation
hren der Math. 97
Approximationstheorie 16X-39
98
Approximation Finite
bei Differentialgleichungen:
Methoden
und Verfa-
(1971).
und Dualit% bei Optimierungsaufgaben,
Intern.
Ser. Num. Math.
(1972).
Dundee 99
Phys. 5:89-99
1972,
Conf.
Theory.
Springer Lecture Notes in Math. 280:16-31
by functions
of fewer
(1972).
und infinite Optimierung
variables,
mit einigen
Anwendungen
VI.
ord.
part.
diff.
IKM Weimnr,
Equ.,
148-157
(1972). 100
Hermitean
Numer. 101
Anwendungen aufgaben,
102
methods
Methods,
Ordnung
for initial value problems in partial differential
Dublin, 41-61
der
Intern.
Dualitat
und Abstand in der numerischen
Monotonicity March
104
Optimierungstheorie
Ser. Num. Math. 17:21-27
Mathematisch-physikalische 103
der
Mathematik,
in partial
Different
applications
equations,
Symp. Dundee, July 1974,
105
Bemerkungen
106
(with H. Giinther metrischen
auf nichtlineare
zur verketteten
F. Reutter zum 60. Ceburtstag,
differential
and nonconvex
Approximation,
an einfachen
equations,
Conference
Dundee
(1974).
optimisation,
especially
to differential
Springer Lecture Notes in Math. 448:112-125
and J. Sprekels) VergIeich
Methoden
Approximations-
(1973).
2056-71
Springer Lecture Notes in Math. 415:85-102 of convex
Proc. Sym.
(1973).
Semesterberichte
with discontinuities
1974,
equations,
(1972).
Intern. zwischen
Testbeispielen,
Ser. Num.
(1975).
Math. 26:41-45
Diskretierungsverfahren Z.
Angew.
M&h.
(1975). und para-
Mech.
56:1-11
(1976). 107
Einige
Beziehungen
zwischen Graphentheorie,
Num. Math. 29:27-56 108
(with E. Bredendiek)
Math. 30:147-174 109
Approximation
Geometric
und Kombinatorik,
Intern. Ser.
(1975). Simultanapproximation
bei Randwertaufgaben,
Intern.
Ser. Num.
(1976). of fixed points of contractive
and expanding
operators.
Proc. Conftience
8
L. ELSNER AND K. P. HADELER
Austin, Approx. Theory II, Austin:327-340 (1976) 110 Approximation methods for expanding operators, Proc. Conjiicnce Numer And. Springer Lecture Notes in Math. 506:149-59 (1976). 111 Bifurcation diagrams, Proc. Confmence Or&n. Part. Diff. Equ., Springer Lecture Notes in Math. 564:41-s (1976). 112 Numerical treatment of some singular boundary value problems, Colloyu. Mdz. So&et. Janos Bolyni, 22 Num. Meth., Keszthely, Hungary, 133-151 (1977). 113 Verzweigungsdiagmmme und Hypergraphen, Intern. Ser. Num. Math. 38%42 (1977). 114
Graphen
bei
362-46
(1977).
Ornamenten
und
Intern. ST. Mrn~. Math.
Verzweigungsdiagrammen,
of some singular boundary value problems, 115 Numerical treatment Springer Lecture Notes in Math. 636:41-50 (1978). 116 Spektren periodischer Graphen, Resultate Math. 1:42-53 (1978). 117
Typen
van Hypergraphen
Math. 46:37-65
innerhalb
Idee und Erfahrung
119
Lower
Infern.
Ser.
Nurrr.
120
Approxim.
Methods
boundaries,
Proc. 4, Symp.
aus der Sicht des Mathematikers,
and upper
lems, Durham,
Monotonicity
der Mathematik,
And.,
(1979).
118
121
und aui3erhalb
Proc. Nwnrr.
bounds
147-157
GAMM-Mitteilungen, 3-24 (1976). Proc. Symp. Free. Boundary Vduc Prob.
for free boundaries, (1979).
for
boundary
and free boundary
value
problems
with
unbounded
Math. (I. Mar&, Ed.), Plzen, CSSR,
Nun.
value problems,
Springer Lecture
domains 51-61
No’otesin
or
free
(1978).
Math. 773:33-45
(1980). 122
Numerical Congress
123
Iteration Bolyui
124
procedures
Anwendung Probleme
van der
Inclusion
with hidden
singularities,
I’roc.
(1986).
using only one step of iteration.
Monotoniesatzen
Proc. Colloqtricz mech
Sot.
Jwws
der
Liisurlgen
van
Gleichungen,
(Prod&ion
van Badeanziigen),
Tetm,
Z. (%cvr.
(1982).
of certain
by Numerical
EinschlieBung
(1981).
Optimierung
52-53
of solutions
zur
189-225
Math.
infiniten
Math.,
Equations
value problems
III, Austin: 311-329
(1986).
iiberblicke
Natorwiss. 126
of some boundary Tlieory
35:399-322
Jahrbuch 125
treatment on Appror.
types
of integral
(Chris Baker,
Methods
equations,
in Trecztment
G. F. Miller, Eds.) Academic
of Integral Press.
1982,
pp. 4777488. I27
Some numerical
Applications, 128
test problems
(Whiteman,
Anwachsende
Schwingungen
Verzogenmgsglied, 129
EinschlieBung gleichungen. Richard
(with H. Krisch,
H. Werner,
Elektronische
theorems
monotonicity,
1985
bei
einer
Math. 62:49-s Mathematiker,
Rechenanlagen
for solutions
of Finite Elements
Differentialgleichungen
Math. 62:37-47
and P. Janssen)
Springer Lecture
14 Junuary
einigen
Losungen
van Mises als numerischer
Mathematik,
Received
bei
Ser. Num.
in The Mathem.
and
1982, pp. 65-76.
Ser. Num.
periodischer
131
Inlcusion
Intern.
Intern.
130
132
with singularities,
Ed.),
mit
Klasse
van
Differenzen-Differential-
(1983). Z. Angew.
Math.
Der EinfluB
der Computer
25: 118-125
(1983).
of differential
Notes in Math.
multiplikativem
(1983).
equations 1632:93-191
Mcch. (1983). auf die Numerische
with aid of pointwise (1983).
or vector