Low energy chiral lagrangian parameters for scalar and pseudoscalar mesons

Low energy chiral lagrangian parameters for scalar and pseudoscalar mesons

SUPPLEMENTS ELSEVIER Nuclear Physics B (Proc. Suppl.) 119 (2003) 242-244 www.elsevier.com/locatclnpc Low Energy Chiral Lagrangian Parameters for S...

193KB Sizes 0 Downloads 59 Views

SUPPLEMENTS ELSEVIER

Nuclear Physics B (Proc. Suppl.) 119 (2003)

242-244

www.elsevier.com/locatclnpc

Low Energy Chiral Lagrangian Parameters for Scalar and Pseudoscalar Mesons W. Bardeena, E. Eichten*aand

H. Thackerb

aFermilab, PO Box 500, Batavia, IL 60510 bDept. of Physics, U niversity of Virginia,

Charlottesville,

VA 22901

We present results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched QCD at two values of lattice spacing, p = 5.7 and 5.9, with clover-improved Wilson fermions. The study of the chiral limit is facilitated by the pole-shifting ansatz of the modified quenched approximation. Pseudoscalar masses and decay constants are determined as a function of quark mass and quenched chiral log effects are estimated. A study of the flavor singlet q’ hairpin diagram yields a precise determination of the 7’ mass insertion. The corresponding value of the quenched chiral log parameter 6 is compared with the observed QCL effects. Removal of QCL effects from the scalar propagator allows a determination of the mass of the lowest lying isovector scalar qtj meson.

1. Quenched

Chiral

Perturbation

Theory

The lowest order chiral Lagrangian mented by the chiral symmetry breaking L5 of O(p2mz) and La of O(mi) (which the mass-dependence of the chiral slope meson decay constants) is given by[l]:. L = $Tr(L$UtPU)

+ cTr(XtU

suppleterms model for the

M;

3 -+n~$(~Trln(Li’)

- iTrln(U))2

(1)

fP;ij=

JZfro(1

-

- LS)Xij[l

$L,axij[(

+

(3)

xi = 2romi, xij = 1/(2~i) - l/(2&,)). and jij = Jijfxij. are defined in [l]. constants:

+ S(fij + Iij)]

+ Iij) - (jii + Jjj)]}

(4)

While for the axial vector decay constants: f*;ij

= &f(l

+ 0*256(Iii + Ijj - 2Iij))

{ 1 + $XijL,[l masses and chiral

- Ls)xij[l

+ 0.25d(Iii + Ijj + 2Iij)){l

+ $(4&3

(2)

We use explicit formulas for the pseudoscalar masses, and pseudoscalar and axial vector decay constants, consistent through order p” (for details see [l]). The coefficients L5, Lg follow the notation of Gasser and Leutwyler [2]. 2. Pseudoscalar eters

+ $8(2La

where TOis a slope parameter, (xi + sj)/2 and rni q ln(1 + Here Iij = (Iiixi + Ijjxj)/xij The 100~ integrals Iij and Jij For the pseudoscalar decay

where Chairpin

+ SI,j){l

+ S(&j + Iij)] + ~8LsXij~~ij) l

+ utx)

+ Lgr(d,UWU(XW + UQ) + LsTr(XtUXtU + UtxUtx) + Lhairpin

= xij(l

+ d(PIij - ?ij)}

(5)

param-

squared up to first order in the hairpin mass, LS and Lg is:

We study 350 configurations on a 163 x 32 lattice with /3 = 5.9. Clover fermions 1.50) and the MQA proce(Csw = dure[3] was used. We consider six K values (.1397, .1394, .1391, .1388, .1385, .1382) with

*Presenter

IC, = .140143.

The

expression

0920-5632/03/$

- see front

for

matter

doi: 10.1016/S0920-5632(03)01514-7

the

pseudoscalar

0 2003 Published

mass

by Elsevier

Science

B.V.

The fits are shown

in Figures

l-2.

FV Burdeen

Diagonal

et ul. /Nuclear

Pion

Physics

B (Proc.

Suppl.)

119 (2003)

Chiral

Masses

243

242-244

Slope

Parameter

1.7 12( 39)

2.0

--I

0.20 x

0.15 -

*

N* E

CI 0.10 -

i) LI

0.05 -

I

0.00 * 0.00

0.01

0.02 quark

Diagonal

0.03 0.04 mass

Pseudoscalar

0.05

0.06

i.6 c 0

10

Decay

Pseudoscalar

Constant

0.22

1

Decay

30

20 scan

(*,,nJ

Constant

f-ps

= 0.1501(27)

0.22 L

-7

0.21 0.20 & ,’

0.19 0.16 -

I-

0.14

0.00

0.05

0.10 z

0.15

0.20

ala’

I

0

10

Diagonal

Axial

Vector

Decay

0.14

Axial

Constant

0.16

Vector

30

20

(np$

m,

Decay

scan

Constant

f-ax

= 0.0915(13)

I

1

:::Fr-1

0.12 2 2

0.10 -

x

f

I

5

0.12

x

x

x 0.11

P

f

xx

x 0.10

$

xx

I

xx xx

x

I

xx

I.

x

I XX

XXX

I f

$

I

1

0.06 -

006t . 0.00

0.05

0.10

m,

Figure

2

0.15

0.20

1. rnz, fps and fax versus diagonal masses.

o.oet

0

’ 10 (K,JC,)

I 20 scan

I 30

Figure 2. rni, fps and fax and ratios to chiral fits.

I+! Bardeen et al. /Nuclear Physics B (Proc. Suppl.) I19 (2003) 242-244

244

0.01 0

’ 5

’ 10

’ 15

II

-0.002’

0

.

’ 5

’ 10

’ 15

1

T

Figure 3. Hairpin propagattr for K.= .1394.

3. Hairpins

and Scalar

and double pole fit

Propagators

In the quenched theory the disconnected part of the eta prime correlator (hairpin term) has

Figure 4. Isovector scalar correlators for K~ = K~ = .1397 (0) and K~ = K@= .1382 (x).

1

Parameter

f = f7T

( p = 5.9 ( 0.091(2)

1 p = 5.7 1 0.100(2)

a double pole (~z~~\)2 whose coefficient determines me. The corr”elator for K = .1394 and a double pole fit(m, = 0.261 and me = 0.211) is shown in Figure 3. The S parameter is given by:

As the quenched chiral limit is approached the isovector scalar correlator shows negative norm behaviour. The correlators for the lightest and heaviest K values are shown in Figure 4. Properly accounting for the effects of the hairpin - pion bubble[4] allows a good fit of the isovector scalar correlator for all quark masses. One output is the (a,-,) mass.

and .613(17) for m, = .666,.612,.553,.492,.423 and .330 GeV respectively. Extrapolating to - 0 we obtain mo = .642(15). The corresniing value for p = 5.7 is mo = .548(25). Extracting an and al masses (at /cc) from scalar and axial vector propagators gives ma,, = 1.33(5) and 1.34(6) GeV and m,, = 1.27(4) and 1.12(8) Gev for p = 5.9 and 5.7 respectively. The value for m,o = 1.330(50) GeV suggests that the observed as (980) resonance is a KK “molecule” and not an ordinary qQ meson.

4. Results

REFERENCES

Using the MQA technique, meson properties (masses and decay constants) can be extracted with sufficient accuracy to allow a fit of higher order chiral parameters, L5 and LB. The physical results for p = 5.9 (l/alp = 1.619 GeV ZA = 0.865) are compared with our /3 = 5.7 (l/al, = 1.115 GeV ZA = 0.845) results[l]. The physical values of me (in GeV) extracted from the hairpin analysis (at /? = 5.9) are .526(14), .533(14), .554(14), .580(14), .606(014)

1. W. Bardeen, A. Duncan, E. Eichten, and H. Thacker, Phys. Rev. D62 (2000) 114505. 2. J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465. 3. W. Bardeen, A. Duncan, E. Eichten, and H. Thacker, Phys. Rev. D57 (1998) 1633; Phys. Rev. D59 (1999) 014507. 4. W. Bardeen, A. Duncan, E. Eichten, N. Isgur and H. Thacker, Phys. Rev. D 65 (2002) 014509.

(6)