Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany)

Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany)

G Model ARTICLE IN PRESS ANNPAL-2286; No. of Pages 12 Annales de Paléontologie xxx (2016) xxx–xxx Disponible en ligne sur ScienceDirect www.scien...

7MB Sizes 563 Downloads 378 Views

G Model

ARTICLE IN PRESS

ANNPAL-2286; No. of Pages 12

Annales de Paléontologie xxx (2016) xxx–xxx

Disponible en ligne sur

ScienceDirect www.sciencedirect.com

Original article

Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany) Macrofaune d’invertébrés et milieux de dépôts de la formation Oberhäslich du Cénomanien supérieur basal dans le bassin crétacé de Saxe (Allemagne) Markus Wilmsen Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Königsbrücker Landstrasse 159, 01109 Dresden, Germany

a r t i c l e

i n f o

Article history: Received 27 July 2016 Accepted 7 November 2016 Available online xxx Keywords: Early Late Cretaceous Shallow siliciclastic shelf Paleoecology Macrobenthos

a b s t r a c t In Saxony (southeast Germany), the global early Late Cretaceous transgression is reflected by the onlap of shallow-marine siliciclastics of the lower Upper Cenomanian Oberhäslich Formation (Calycoceras naviculare Zone) onto the eastern Erzgebirge, the central part of the emergent Mid-European Island. Based on detailed logging of sections south of Dresden and the study of extensive collection material, the depositional environment and macroinvertebrate assemblages of the Oberhäslich Formation have been reconstructed. This unit, with a mean thickness of 10–15 m, usually shows a fining-upward trend that may become reversed towards the top, was laid down in a single 3rd-order sea-level cycle and is capped by an unconformity at the base of the overlying upper Upper Cenomanian Dölzschen Formation (sequence boundary Cenomanian 5; junction of the Calycoceras naviculare and Metoicoceras geslinianum zones). The macroinvertebrate assemblage of the Oberhäslich Formation, collected mainly from bioturbated, fineor rarely medium-grained, quartz-rich sandstones, is fairly diverse, comprising nearly 50 taxa, predominantly bivalves (94.3%). Most conspicuous and abundant are relatively large forms such as Rhynchostreon (R.) suborbiculatum (25%) and Inoceramus pictus spp. (21%), eponymous taxa of the Rhynchostreon suborbiculatum/Inoceramus pictus assemblage. Non-bivalve benthic invertebrates are rare and represented by rather poorly preserved irregular and regular echinoids, siliceous sponges, a few gastropods, crustacean remains and a single starfish. Common Thalassinoides and Ophiomorpha burrows indicate that crustaceans were an important part of the infauna. Pervasive bioturbation resulted in a post-depositional homogenization of the sediments while all body fossils are preserved as (composite) internal moulds. The guild structure of the Rhynchostreon suborbiculatum/Inoceramus pictus assemblage shows a predominance of epifaunal and semi-infaunal suspension feeders (95.3%), suggesting eutrophic and unstable “green-water conditions” of an inner-shelf setting. Deposit-feeding biota are rare. The common occurrence of articulated bivalves and storm-induced shell beds indicate episodic rapid burial, most probably by tempestites. A current-influenced, well-oxygenated and nutrient-rich environment slightly below fair-weather base is inferred for the fine-grained sandy, fossiliferous sediments of the Oberhäslich Formation. © 2016 Elsevier Masson SAS. All rights reserved.

r é s u m é Mots clés : Crétacé Supérieur basal Plateforme siliciclastique peu profonde Paléoécologie Macrofaune d’invertébrés benthiques

En Saxe (sud-est de l’Allemagne), la transgression globale du Crétacé Supérieur est enregistrée par l’onlap des dépôts siliciclastiques peu profonds de la formation Oberhäslich du Cénomanien supérieur basal (Zone à Calycoceras naviculare) sur l’Erzgebirge oriental, partie centrale émergée de l’Europe (« MidEuropean Island »). À partir d’une exploitation détaillée de coupes géologiques au sud de Dresde et de l’étude d’un vaste échantillonnage paléontologique, l’environnement de dépôt et les assemblages de

E-mail address: [email protected] http://dx.doi.org/10.1016/j.annpal.2016.11.003 0753-3969/© 2016 Elsevier Masson SAS. All rights reserved.

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

2

macrofaune d’invertébrés de la formation Oberhäslich ont été reconstruits. Cette unité, d’une épaisseur moyenne de 10 à 15 m, montre habituellement une tendance à la hausse du niveau marin qui peut s’inverser à son sommet ; elle est intégrée dans un cycle de 3e ordre et est coiffée par une discordance à la base de la formation Dölzschen (Cénomanien supérieur terminal, limite de séquence du Cénomanien 5, jonction des zones à Calycoceras naviculare et à Metoicoceras geslinianum). L’assemblage de macrofaune d’invertébrés de la formation Oberhäslich, recueilli principalement dans des grès à grain fins, plus rarement à grain moyen, riches en quartz bioturbé, est assez diversifié et comprend près de 50 taxons, principalement des bivalves (94,3 %). Les plus remarquables et abondants sont des formes relativement grandes telles que Rhynchostreon (R.) suborbiculatum (25 %) et Inoceramus pictus spp. (21 %), taxons éponymes de l’assemblage à Rhynchostreon suborbiculatum/Inoceramus pictus. Les invertébrés benthiques non-bivalves sont rares et représentés par des échinides réguliers et irréguliers mal préservés, des éponges siliceuses, quelques gastéropodes, des restes de crustacés et une seule étoile de mer. Les traces fréquentes de types Thalassinoides et Ophiomorpha indiquent que les crustacés étaient une partie importante de l’endofaune. La bioturbation omniprésente a abouti à une homogénéisation post-dépôt des sédiments alors que tous les fossiles sont conservés sous forme de moules internes. La structure de guilde de l’assemblage à Rhynchostreon suborbiculatum/Inoceramus pictus montre une prédominance des suspensivores d’épifaune et de semi-endofaune (95,5 %), ce qui suggère des conditions « d’eaux vertes eutrophes » et instables d’un milieu de plateforme interne. Les biotas comprenant des dépositivores sont rares. L’occurrence fréquente de valves en connexion et de couche de coquilles indique un enfouissement rapide épisodique, probablement par des tempêtes. Les sédiments fossilifères sableux à grains fins de la formation Oberhäslich sont interprétés comme issus d’un environnement riche en nutriments, bien oxygéné et influencé par les courants, situé légèrement sous la limite d’action des vagues de beau temps. ´ ´ es. © 2016 Elsevier Masson SAS. Tous droits reserv

1. Introduction In Saxony (Germany), the area between Meißen, Dresden, Pirna and the Czech border is characterized by sedimentary rocks of early Late Cretaceous age (Cenomanian–Coniacian Elbtal Group), the exposures of which more-or-less follow the Elbe river valley (Fig. 1A). Following a first transgression in the late Early Cenomanian (Meißen Formation), the main progression of the global early Late Cretaceous transgression is documented by the onlap of shallow-marine sandstones of the lower Upper Cenomanian Oberhäslich Formation onto Paleozoic rocks of the eastern Erzgebirge, the central part of the Mid-European Island. During this time, extensive shallow-marine siliciclastic environments developed in the Saxonian Cretaceous Basin, characterized by a diverse and abundant invertebrate fauna, derived from the Oberhäslich Formation. Based on detailed logging of sections south of Dresden and the study of extensive collection material housed in the Museum für Mineralogie und Geologie of the Senckenberg Naturhistorische Sammlungen Dresden, the depositional environment and macroinvertebrate assemblage of the Oberhäslich Formation have been reconstructed. 2. Geological setting The Elbtal Group (Tröger and Voigt in Niebuhr et al., 2007) was laid down in a relatively narrow basin, the so-called Saxonian Cretaceous Basin (SCB), between the Osterzgebirge as the central part of the Mid-European Island in the southwest and the West-Sudetic Island (Lausitz Block) in the northeast (Fig. 1B, C). During the early Late Cretaceous, the SCB connected the Bohemian Cretaceous Basin (BCB) in the southeast with the wide Boreal epicontinental shelf sea in the northwest. The strata of the Elbtal Group show thus great overall similarity in terms of bio- and lithofacies to coeval successions in the BCB. Today, the fill of the SCB is preserved in a tectonic halfgraben whose active northeastern margin is represented by the Lausitz Fault (Fig. 1A), an important structural element of Late Cretaceous inversion in central Europe (Voigt, 2009). A first marine transgression from the north started during the late Early Cenomanian (Mantelliceras dixoni Zone), only reaching the extreme northeast of the present-day outcrop belt of the

Elbtal Group. The resulting Meißen Formation (lithostratigraphy after Tröger and Voigt in Niebuhr et al., 2007; Fig. 2) consists of conglomeratic bioclastic limestones that reflect high-energy nearshore conditions. It ranges into the Middle Cenomanian (Wilmsen and Nagm, 2014) and is thus a lateral equivalent of the fluvial to estuarine Middle Cenomanian Niederschöna Formation that back-fills river valleys in the Osterzgebirge (Voigt, 1998). The major phase of the early Late Cretaceous transgression followed during the Late Cenomanian, having taken place in two main pulses. During the first pulse in the Calycoceras naviculare Zone (early Late Cenomanian), the shallow-marine and fossiliferous sands of the Oberhäslich and the more distal clayey silts of the Mobschatz formations accumulated, often missing on swell areas (Tröger, 2003). The second pulse, dated as mid-Late Cenomanian Metoicoceras geslinianum Zone (plenus Transgression of authors), resulted in the onlap of the Dölzschen Formation onto formerly emergent basement areas and the final drowning of remaining islands in the Elbe-Zone (e.g., Tröger, 1955, 2003; Voigt et al., 1994; Voigt et al., 2006; Wilmsen et al., 2011; Janetschke and Wilmsen, 2014). In the aftermath of the Late Cenomanian facies leveling and submergence of the pretransgression topography, homogeneous and more widespread sedimentation patterns of a graded shelf became established during the Early Turonian (Voigt, 1994, 1999; Janetschke and Wilmsen, 2014). The proximal area of the Elbsandsteingebirge (Fig. 1A) was dominated by sandy nearshore facies (Schmilka Formation) while in the distal Dresden–Meißen area, offshore marls and silty limestones (so-called Pläner) were deposited (Brießnitz Formation). In between, there was a facies transition zone near Pirna (Faziesübergangszone) in which intercalated Pläner and sandstone deposits occur (Fig. 2). 3. Scope and methods Strata of the Elbtal Group have been a classical field of paleontological research in Germany for almost two centuries (e.g., Geinitz, 1871–1875, 1872–1875; see also recent revision of Cretaceous fossils from Saxony by Niebuhr and Wilmsen, 2014). However, quantitative paleoecological studies integrating sedimentological, paleontological and taphonomic data have only rarely been carried out so far (see brief paleoecological account of Föhlisch, 1998 on

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

3

Fig. 1. Paleogeographical and geological overview. A. Distribution of the lower Upper Cretaceous strata of the Elbtal Group (green) in Saxony and the northern part of the Czech Republic with indication of the study area south of Dresden. B. Paleogeography of the Late Cenomanian along the northern Tethyan margin (modified after Philip and Floquet, 2000). C. Paleogeography of the Cenomanian–Turonian in the periphery of the central Mid-European Island (the map area is indicated in Fig. 1B). Cadre paléogéographique et géologique. A. Répartition des couches du Crétacé supérieur du groupe d’Elbtal (vert) en Saxe et du nord de la République tchèque avec indication de la zone d’étude au sud de Dresde. B. Paléogéographie de la fin du Cénomanien le long de la marge nordique de la Téthys (modifiée d’après Philip et Floquet, 2000). C. Paléogéographie du Cénomanien-Turonien à la périphérie de l’île centrale de l’Europe centrale (« Mid-European Island », la zone de la carte est indiquée sur la Fig. 1B).

the upper Upper Cenomanian Dölzschen Formation). The scope of the present paper is thus an integrated paleobiological analysis of the macroinvertebrate assemblage collected from the lower Upper Cenomanian Oberhäslich Formation of a certain area south of Dresden based on stratigraphical-sedimentological studies of outcrops as well as a quantitative paleoecological and taphonomic analysis of the fauna. In order to reach these goals, abandoned quarry

sections near Bannewitz (Goldene Höhe and Horkenberg) as well as sections at Götzenbüschchen near Oelsa and the Gebergrund near Goppeln have been logged in detail bed-by-bed (for further data see Janetschke and Wilmsen, 2014). Observations on fabrics, trace and body fossil content and taphonomy have been integrated into a synoptic stratigraphic section (Fig. 3). The paleontological part is based on 902 specimens from these sections housed in the Museum

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

4

Fig. 2. Chrono-, bio- and lithostratigraphy of the lower Elbtal Group (modified after Janetschke and Wilmsen, 2014). Chrono, bio- et lithostratigraphie du groupe Elbtal inférieur (modifiée d’après Janetschke et Wilmsen, 2014).

für Mineralogie und Geologie of the Senckenberg Naturhistorische Sammlungen Dresden (repository abbreviation SaK). All specimens have been identified to species level (where possible; for the use of open nomenclature see Bengtson, 1988) and interpreted in terms of their inferred autecology (Table 1). All data have been integrated into the paleoecological reconstruction. 4. Results 4.1. Stratigraphic framework of the Oberhäslich Formation South of Dresden, the Oberhäslich Formation attains a maximum thickness of ca. 30 m (Voigt, 1994), but it is usually less and it may even be completely missing due to considerable pretransgression topography (Voigt, 1994; Voigt et al., 1994; Tröger, 2003; Wilmsen et al., 2011; Janetschke and Wilmsen, 2014). The biostratigraphy is based on numerous finds of Inoceramus ex gr. pictus Sowerby (Tröger and Niebuhr, 2014; Tröger, 2015). As a rarity, also the zonal index ammonite Calycoceras (C.) naviculare (Mantell) has been found, confirming the early Late Cenomanian age (Wilmsen and Nagm, 2013a, 2014). The mean thickness of the Oberhäslich Formation in the study area is 10–15 m (Fig. 3). Near-swell sections are characterized by fossil-poor, high-energy pebbly coarse-grained sandstones with planar cross-stratification, indicating permanent deposition above fair-weather wave base in high-energy nearshore settings (e.g., Reinhardtsgrimma near Glashütte, Götzenbüschchen near Oelsa). In the study area between Freital and Dippoldiswalde (Fig. 1A), the Oberhäslich Formation consists mainly of bioturbated, fine- or rarely medium-grained quartz-rich sandstones. From this facies, occurring in thick, up to two-meters-thick beds, most of the fossils from the Oberhäslich Formation were collected during the 19th century in now abandoned quarries that produced freestones for construction purposes.

Only the lower part of the formation contains coarse-grained, shellrich layers (Fig. 3). Up-section, the Oberhäslich Formation usually shows a fining-upward trend that may be reversed towards the top. The top surface of the formation is commonly strongly burrowed and iron-stained. The base of the overlying upper Upper Cenomanian Dölzschen Formation is sharp to erosional (Fig. 3). It often starts with a fine-grained argillaceous–silty bed (“plenus clay”) that yielded rare belemnites, Praeactinocamax plenus (de Blainville), indicative of the Metoicoceras geslinianum ammonite Zone. Finds of the index ammonite Metoicoceras geslinianum (d’Orbigny) just above support this age assignment and the Dölzschen Formation ranges into the uppermost Cenomanian Neocardioceras juddii Zone (Wilmsen and Nagm, 2013a, 2014). The Dölzschen Formation, which is only ca. 5 m thick, shows a fining-upward trend that culminated in the deposition of sandy–silty limestones of the labiatus Pläner of the Lower Turonian Brießnitz Formation (Fig. 3). 4.2. Macroinvertebrates of the Oberhäslich Formation In total, 902 specimens of macroinvertebrates from the Oberhäslich Formation of the area between Freital and Dippoldiswalde have been considered, mainly from the former quarries near Bannewitz (Goldene Höhe), Horkenberg and Welschhufe. The specimens have been identified to species level (where possible) and taxa have been listed, counted and illustrated (Figs. 4–6A, Table 1). The macrobenthos of the Oberhäslich Formation predominantly comprises bivalves which make up 93.4% of the total fauna distributed over 32 taxa (Fig. 6A); for a recent revision of bivalves from the Elbtal Group of Saxony, see Niebuhr et al. (2014a) and Tröger and Niebuhr (2014). Relatively large bivalves, most notably Rhynchostreon (R.) suborbiculatum (Lamarck) (25%, Fig. 4H) and Inoceramus pictus ssp. (21%, Fig. 4F), are commonest. Pinna spp. (4.5%, Fig. 4C), Rastellum carinatum (Lamarck) (Fig. 4E) and

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

5

Fig. 3. Synoptic stratigraphic log of the lower Upper Cenomanian Oberhäslich Formation in the area between Freital and Dippoldiswalde, south of Dresden. Br. Fm: Brießnitz Formation; L. Tur.: lower Turonian. Coupe stratigraphique synoptique de la formation Oberhäslich (Cénomanien supérieur basal) dans la région située entre Freital et Dippoldiswalde, au sud de Dresde. Br. Fm : formation Brießnitz ; L. Tur. : Turonien inférieur.

R. diluvianum (Linnaeus) (3.5%), Pycnodonte (Phygraea) vesicularis (Lamarck) (3%) and Gervillaria neptuni (Goldfuss) (2%, Fig. 4I) are other large bivalves, next in rank. Moderately common are smaller bivalve taxa such as representatives of the genera Neithea and Neithella (11%) (Fig. 4D, G), the small oyster Gryphaeostrea canaliculata (Sowerby) (7%), other pectinids (∼4%) and limids (7%). Woodboring bivalves, Teredina amphisbaena (Goldfuss) and bored wood remains with the resulting trace fossil Teredolites isp. (i.e., the borings) are not rare (see Niebuhr and Wilmsen, 2016). However,

gastropods are nearly absent (0.2%) and due to their very poor preservation indeterminate. Non-molluscan benthic invertebrates are likewise scarce and represented by a few rather poorly preserved irregular (Hemiaster sp., Catopygus sp., Holasteridae indet.; Fig. 4J) and regular echinoids (spines of cidaroids) as well as a single starfish, Calliderma ottoi (Geinitz) (Fig. 4A). In total, echinoderms account for 3.2% of the fauna of the Oberhäslich Formation. Siliceous sponges (e.g., “Siphonia” sp., Fig. 4B) are subordinate elements (1.7%).

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12 6

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

7

Fig. 5. Quantitative composition of the macroinvertebrate fauna from the lower Upper Cenomanian Oberhäslich Formation in the area between Freital and Dippoldiswalde, south of Dresden. Composition quantitative de la macrofaune d’invertébrés de la formation Oberhäslich (Cénomanien supérieur basal) dans la région située entre Freital et Dippoldiswalde, au sud de Dresde.

The nektonic invertebrate fauna (0.5%) is represented by a few specimens (mostly large fragments) of the index ammonite Calycoceras (C.) naviculare (Mantell), the nautilid Cymatoceras elegans (Sowerby) and a single find of the belemnite Praeactinocamax sp. (see Tröger, 1976). A large shark vertebra has also been recorded, documenting vertebrate nekton as well. Large burrows of Ophiomorpha saxonica (Geinitz) and Thalassinoides isp. indicate that crustaceans were an important constituent of the infauna (see Niebuhr and Wilmsen, 2016, for details), in rare cases also directly documented by finds of claws of Protocallianassa antiqua (Roemer) inside the burrow fills (the composition of Protocallianassa Beurlen needs to be reevaluated and the species may in fact be a representative of Mesostylus Bronn and Roemer; see Schweitzer and Feldmann, 2012). Within the sediment, crustaceans were associated by the above mentioned deposit-feeding irregular echinoids and polychaetes. The presence of the latter was proved by conspicuous burrows of the Skolithos ichnofacies: connected with a shallowing at the top of the Oberhäslich Formation, Skolithos-like burrows have been observed in the Bannewitz area at Goldene Höhe (Janetschke and Wilmsen, 2014) and the rosetted trace fossil Dactyloidites ottoi (Geinitz) occurred in abundance towards the top of the formation in an abandoned quarry near Dippoldiswalde (Wendischkarsdorf). D. ottoi is interpreted as a special

type of lugworm burrow (see Wilmsen and Niebuhr, 2014, for details). The pervasive bioturbation resulted in post-depositional homogenization of the sediments, i.e., sediment structures are not preserved in this thick-bedded, fine-grained sandstone facies (Quadersandstein). All carbonate shells of body fossils were dissolved early during diagenesis and specimens are preserved as simple or composite internal moulds. 5. Discussion 5.1. Faunal guilds and paleoecology The benthic assemblage of the Oberhäslich Formation is fairly diverse, consisting of 47 taxa (Table 1). The living and feeding modes of the macroinvertebrate fauna are the topic of the present paleoecological analysis and thus, all taxa were assigned to guilds. Guilds are clusters of species that are not necessarily systematically related (i.e., guilds are polyphyletic) but all taxa within a guild have similar feeding modes (nutrition strategies) and ecological resource requirements. Therefore, they occupy similar niches in faunal communities. Guild classifications consider habitat, life site and mode of feeding as well as morphological adaptations of

Fig. 4. Typical faunal elements from the lower Upper Cenomanian Oberhäslich Formation in the area between Freital and Dippoldiswalde, south of Dresden (all specimens from the paleozoological collection of the Museum für Mineralogie und Geologie, Senckenberg Naturhistorische Sammlungen Dresden). A. Calliderma ottoi (Geinitz), × 0.5 (MMG: SaK 390). B. “Siphonia” sp., × 1 (MMG: SaK 633). C. Pinna cretacea (Schlotheim), × 0.5 (MMG: SaK 535). D, G. Neithea aequicostata (Lamarck), × 1 (D = MMG: SaK 619, G = MMG: SaK 4472). E. Rastellum carinatum (Lamarck), × 0.5 (MMG: SaK 629). F1, 2. Inoceramus pictus bannewitzensis Tröger, × 0.5 (MMG: SaK 592). H. Rhynchostreon suborbiculatum (Lamarck), × 1 (MMG: SaK 4562). I1, 2. Gervillaria neptuni (Goldfuss), × 0.5 (MMG: SaK 5641). J. Holasteridae indet., × 0.5 (MMG: SaK 4455). Éléments fauniques typiques de la formation Oberhäslich du Cénomanien supérieur basal dans la région située entre Freital et Dippoldiswalde, au sud de Dresde (tous les spécimens proviennent de la collection paléozoologique du Musée de la Minéralogie et de la Géologie, Senckenberg Naturhistorische Sammlungen Dresden). A. Calliderma ottoi (Geinitz), × 0,5 (MMG : SaK 390). B. “Siphonia” sp., × 1 (MMG : SaK 633). C. Pinna cretacea (Schlotheim), × 0,5 (MMG : SaK 535). D, G. Neithea aequicostata (Lamarck), × l (D = MMG : SaK 619, G = MMG : SaK 4472). E. Rastellum carinatum (Lamarck), × 0,5 (MMG : SaK 629). F1, 2. Inoceramus pictus bannewitzensis Tröger, × 0,5 (MMG : SaK 592). H. Rhynchostreon suborbiculatum (Lamarck), × l (MMG : SaK 4562). I1, 2. Gervillaria neptuni (Goldfuss), × 0,5 (MMG : SaK 5641). J. Holasteridae indet., × 0,5 (MMG : SaK 4455).

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model

ARTICLE IN PRESS

ANNPAL-2286; No. of Pages 12

M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

8

Table 1 Taxonomic and autecological list of macrofossils from the Oberhäslich Formation. Liste taxonomique et autoécologique de la macrofaune fossile de la formation Oberhäslich. Taxon name

Abundance [%], n = 902

Mode of living/feeding

Rhynchostreon (R.) suborbiculatum (Lamarck, 1801) Inoceramus pictus ssp. Neithea aequicostata (Lamarck, 1819) Gryphaeostrea canaliculata (Sowerby, 1813) Pseudolimea granulata (Nilsson, 1827) Pinna cretacea (Schlotheim, 1813) Rastellum carinatum (Lamarck, 1806) Pycnodonte (Phygraea) vesicularis (Lamarck, 1806) Lima sp. Gervillaria neptuni (Goldfuss, 1837) Neithella notabilis (Münster in Goldfuss, 1834) Entolium membranaceum (Nilsson, 1827) Pseudoptera anomala? (Sowerby in Fitton, 1836) Rhynchostreon (Laevigyra) obliquatum (Pulteney, 1813) Pinna cottai Geinitz, 1840 Spondylus hystrix Goldfuss, 1831 Rastellum diluvianum (Linnaeus, 1767) Chlamys elongata (Lamarck, 1819) Chlamys? subacuta (Lamarck, 1819) Merklinia aspera (Lamarck, 1819) Camptonectes virgatus (Nilsson, 1827) Neithea quinquecostata (Sowerby, 1814) Teredina amphisbaena (Goldfuss, 1831) Pseudoptera glabra (Reuss, 1846) Plagiostoma hoperi? Mantell, 1822 Neithea sp. Mytilus galliennei d’Orbigny, 1844 Ctenoides tecta (Goldfuss, 1836) Gervillia solenoidea? Defrance, 1820 Brachidontes sp. Myoconcha sp. Pinna sp. Gastropoda indet. Cidaroids Catopygus sp. Holasteridae indet. Hemiaster sp. Hyposalenia sp. Calliderma ottoi (Geinitz, 1849) Protocallianassa antiqua (Roemer, 1841) “Siphonia” sp. “Cribrospongia subreticulata” “Phlocoscyphia pertusa” Cymatoceras elegans (J. Sowerby, 1816) Calycoceras (C.) naviculare (Mantell, 1822) Praeactinocamax? sp. Shark vertebrae

25

esf

21 7.3 7

esf esf esf

4.5 3.2 3 3

esf ssf esf esf

2.5 2 2

esf ssf esf

2

esf

2

ssf

1

esf

1 1 0.5 0.5 0.5 0.5 0.5 0.5

ssf esf esf esf esf esf esf esf

0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.2 0.2 0.2 1 1 0.5 0.3 0.3 0.1 0.2

wbb ssf esf esf esf esf? ssf esf ssf? ssf – g mid mid mid g? med bsp

1.2 0.3 0.2 0.2 0.2

esf esf esf n n

0.1 0.1

n n

esf: epifaunal suspension feeder; ssf: semi-infaunal suspension feeder; wbb: woodboring bivalve; med: mobile epifaunal detritivore; mid: mobile infaunal detritivore; g: grazer; bsp: benthic scavenger/predator; n: nekton. esf : suspensivore de l’épifaune ; ssf : suspensivore de la semi-endofaune ; wbb : bivalve perforant de bois flotté ; med : détritivore mobile de l’épifaune ; mid : détritivore mobile de l’endofaune ; g : brouteur ; bsp : « charognard » ou prédateur benthique ; n : nekton.

the organism (see Bambach, 1983; Aberhan, 1994; Brenchley and Harper, 1998). The scope of any guild analysis should be the study of habitat structure of a living community (or fossil assemblage) as it thrives in a certain place and time (or as it is preserved in a certain stratigraphic unit and area). The guild assignments of the present

Fig. 6. Taxonomic (A) and guild composition (B) of the macroinvertebrate fauna from the lower Upper Cenomanian Oberhäslich Formation in the area between Freital and Dippoldiswalde, south of Dresden (data in %, see chapter 5.1 for guild abbreviations). Composition taxonomique (A) et structure des guildes (B) de la macrofaune d’invertébrés de la formation Oberhäslich (Cénomanien supérieur basal) dans la région située entre Freital et Dippoldiswalde, au sud de Dresde (données en %, voir le chapitre 5.1 pour les abréviations des guildes).

paper are based on autecological literature and databases (e.g., Paleobiology database: fossilworks.org), on comparison with closely related extant relatives and/or on the interpretation of functional morphologies (e.g., Carter, 1972; Stanley, 1970; Thayer, 1975; La Barbera, 1981; Seilacher, 1984; Aberhan, 1994). In order not to split the bivalve fauna into too many guilds, the epibyssate, juvenilecemented and libero-sessile epifaunal suspension feeders were combined into one guild. This guild amalgamation respects life site, habitat and mode of feeding of the organisms, only disrespecting

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

9

Fig. 7. Paleoecological reconstruction of the lower Upper Cenomanian Oberhäslich Formation (modified and supplemented after McKerrow, 1992). 1, Pinna cretacea; 2, Thalassinoides/Ophiomorpha isp.; 3, open crustacean burrow; 4, Protocallianassa antiqua; 5, Holasteridae indet; 6, Gervillaria neptuni; 7, Chlamys elongata; 8, Pseudolimea granulata; 9, Rhynchostreon (R.) suborbiculatum; 10, Calliderma ottoi; 11, bored driftwood with Teredina amphisbaena; 12, Rastellum carinatum; 13, Inoceramus pictus ssp.; 14, siliceous sponge; 15, “Siphonia” sp.; 16, Calycoceras (C.) naviculare; 17, Cymatoceras elegans; 18, shark. Reconstruction paléoécologique de la formation Oberhäslich du Cénomanien supérieur basal (modifié et complété d’après McKerrow, 1992). 1, Pinna cretacea ; 2, Thalassinoides/Ophiomorpha isp. ; 3, terrier de crustacé ouvert ; 4, Protocallianassa antiqua ; 5, Holasteridae indet ; 6, Gervillaria neptuni ; 7, Chlamys elongata ; 8, Pseudolimea granulata ; 9, Rhynchostreon (R.) suborbiculatum ; 10, Calliderma ottoi ; 11, bois flotté perforé par Teredina amphisbaena ; 12, Rastellum carinatum ; 13, Inoceramus pictus ssp. ; 14, éponge siliceuse ; 15, “Siphonia” sp. ; 16, Calycoceras (C.) naviculare ; 17, Cymatoceras elegans ; 18, requin.

the different morphological adaptations to achieve a stable position on the sea floor. In total, eight guilds were identified (Table 1, Fig. 6). Guild 1, epifaunal suspension feeders (esf): Most bivalves (inoceramids, oysters, pectinids, limids) are classified as epifaunal suspension feeders and this guild also includes the siliceous sponges. Guild 2, semi-infaunal suspension feeders (ssf): Some bivalves (bakevelliids, modiolines, pinnids) lived as semi-infaunal suspensions feeders. Guild 3, wood-boring bivalves (wbb): Teredina amphisbaena (Goldfuss), constitutes this guild, documenting the Teredolites ichnofacies (index trace fossil genus Teredolites isp.). Guild 4, mobile (shallow-)infaunal deposit feeders (mid): All irregular echinoids are mobile infaunal deposit feeders. Guild 5, epifaunal herbivores (grazers, g): Regular echinoids are epifaunal herbivores (grazers). Guild 6, mobile epifaunal detritivores (med): This guild is represented only by a single specimen of a starfish (Calliderma ottoi). Guild 7, benthic scavengers/predators (bsp): This guild is documented by only a few finds of crustacean remains (Protocallianassa antiqua) but certainly was more important because of the conspicuous trace fossil record of Ophiomorpha and Thalassinoides isp., representing the fills of former crustacean burrows.

Guild 8, nektonic organisms (n): Ammonites, nautilids, belemnites and shark remains constitute this guild thriving in the water column. The epifaunal suspension feeder (esf) guild completely predominates the guild composition of the Oberhäslich Formation, accounting for nearly 86% (Fig. 6B). The guild next in line is the semi-faunal suspensions feeder (ssf) guild that comprises almost 10%. The mobile (shallow-)infaunal deposit feeder (med) and grazer guilds are nearly equally important with 1.8% and 1.3%, respectively. All other guilds are of subordinate rank: nektonic (n) guild, 0.6%; wood-boring bivalve (wbb) guild, 0.5%; benthic scavenger/predator (bsp) and mobile epifaunal detritivore (med) guilds, 0.3%. It should be noted that both the deep-infaunal bivalve and the pedunculate suspension feeder (brachiopod) guilds are completely missing. The trophic nucleus, comprising the numerically most important elements that make up 80% of the fauna (Aberhan, 1994), is formed by the following taxa: Rhynchostreon (R.) suborbiculatum, Inoceramus pictus ssp., Neithea aequicostata, Gryphaeostrea canaliculata, Pseudolimea granulata, Pinna cretacea, Rastellum carinatum, Pycnodonte (Ph.) vesicularis, Lima sp., Neithella notabilis, Entolium membranaceum and Gervillaria neptuni. All taxa are epifaunal suspension feeders. Based on the two most relevant taxa, the benthic

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12 10

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

Fig. 8. Sandstone slab (MMG: SaK 4301, field of view 400 mm) with several current-aligned Pinna cottai Geinitz and interpretative sketch explaining the taphonomic background. Dalle de grès (MMG : SaK 4301, largeur de l’image 400 mm) avec plusieurs Pinna cottai Geinitz alignés dans le sens du courant et un schéma interprétatif expliquant l’histoire taphonomique.

assemblage of the Oberhäslich Formation may also be termed Rhynchostreon suborbiculatum/Inoceramus pictus assemblage. It corresponds well in general composition to Late Cretaceous coarsegrained shallow-shelf assemblages as documented by Aberhan (1994). 5.2. Depositional environment The predominance of deposit feeders indicates ample supply of nutrients/particulate organic matter (POM) in the water column. Thus, eutrophic and unstable “green-water conditions” of an innershelf environment have to be expected (Brasier, 1995), probably influenced by tidal stirring of sediments (Wilmsen et al., 2005). This is in accord with the paleogeographical position of the Oberhäslich Formation as a nearshore deposit in the Saxonian Cretaceous Basin, bordering the emergent Osterzgebirge in the south (Fig. 1A–C). The unstable, nutrient-rich environment may also account for the absence of brachiopods which (during the Mesozoic) rather preferred nutrient-poor offshore areas (e.g., Aberhan, 1994) where they were superior to competing bivalves due to morphological adaptations of their lophophores and the potential to uptake dissolved organic matter (see McCammon and Reynolds, 1976; Thayer, 1986). Deposit-feeding biota such as irregular echinoids are comparably rare in the Oberhäslich Formation, possibly related to the organic-poor character of the substrate (mature quartz sand), making deposit-feeding inefficient. The trace fossil suite of the Oberhäslich Formation contains elements of the Skolithos and Cruziana ichnofacies of Seilacher (1967), thus confirming the overall shallow-marine environment.

The common occurrence of bored drift wood (Teredolites ichnofacies of Bromley et al., 1984) indicates the presence of a nearby, wood-covered, humid hinterland. However, the often strongly bioturbated fabric of most of the commonly fine-grained fossiliferous sandstones of the Oberhäslich Formation excludes a high-energy coastal environment (e.g. beaches, sand bars) – a depositional setting permanently above fair-weather wave base would have resulted in coarser grained sedimentary fabrics and the presence of sedimentary structures which are well known from more proximal facies of the Oberhäslich Formation. Thus, a current-influenced, well-oxygenated and nutrient-rich environment with sandy substrates slightly below fair-weather and well above storm-wave bases is inferred for the fine-grained, fossiliferous sediments of the Oberhäslich Formation (Fig. 7). 5.3. Taphonomy Storm deposition is also documented by the taphonomy of bivalves from the Oberhäslich Formation. The common occurrence of articulated epifaunal bivalves suggest episodic rapid burial, most probably in the form of tempestites. Normally, after the death of the bivalve, the pull of the elastic ligament will open the valves (resulting in gaping) and, after the decay of all organic material (including the ligament), shells will be separated (e.g., Wilmsen, 2008). The occurrence of numerous articulated inoceramids (e.g., Fig. 4F) suggests their rapid burial. Even more convincing evidence of storm processes is a large slab of sandstone from the Oberhäslich Formation of Wendischkarsdorf near Dippoldiswalde with a shell pavement of exhumed, current-aligned large Pinna cottai

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

(Fig. 8). For the explanation of this taphonomic picture a major storm is needed that erodes at least 10–20 cm of unconsolidated sand at the sea bottom by means of ground-touching waves and/or currents, including a living Pinna community. During the waning of the storm, the shells settled to the sea-floor first, their length axis oriented parallel to the current direction, followed by deposition of fine-grained sediments (post-storm deposition). The importance of storms for the deposition of Turonian sandstones of the Elbtal Group (Postelwitz Formation) has also been stressed by Voigt (2011). The taphonomic story, however, was not yet over, because after the biostratinomic processes of death and initial burial had come to an end, fossil diagenesis started. All formerly calcareous-shelled organisms are now preserved as simple or composite internal moulds. The shells have been completely dissolved. This process of shell dissolution obviously occurred very early after burial as can be seen from wrinkles and kinks of organic periostraca impressed onto internal moulds of several bivalves, meaning that the shell was already gone and the periostracum still intact when the composite internal moulds formed (see also Voigt, 1999). This special fossil diagenesis was certainly related to carbonate under-saturated pore fluids vigorously circulating in the porous and permeable sands. It may also have been enhanced by subaerial exposure of the Oberhäslich Formation at the end of the Calycoceras naviculare Zone during the mid-Late Cenomanian in response to a major sea-level fall and lowstand at sequence boundary Cenomanian 5 (Robaszynski et al., 1998; Wilmsen, 2003; Janetschke and Wilmsen, 2014; see below). From the taphonomic data discussed above, it may follow that the bias towards large fossils in the Oberhäslich Formation may at least in part be taphonomically induced (rapid burial needed, increased resistance of thick and large shells to dissolution and thus preferential formation of internal moulds of large organisms). 5.4. Sequence stratigraphy The sequence stratigraphy of the Elbtal Group is now well understood. After the pioneering works of Voigt (1994), Voigt et al. (1994), Tröger and Voigt (1995) and Voigt and Tröger (1996), the paper by Janetschke and Wilmsen (2014) presented a synoptic view of Cenomanian–Turonian depositional sequences and bounding unconformities in the Saxonian Cretaceous Basin. It showed that the Elbtal Group can be sequentially correlated with contemporaneous successions around the Mid-European Island with great stratigraphical accuracy (Janetschke et al., 2015). The Oberhäslich Formation corresponds to the transgressive (TST) and highstand systems tract (HST) of a single 3rd-order sea-level cycle of ca. 1 myr duration (ca. 95.4–94.4 Ma according to the GTS 2012; Ogg and Hinnov, 2012). The transgressive surface of this depositional sequence Cenomanian 5 equates to the regional Cenomanian onlap surface (Fig. 3) and the accommodation generated by the relative sea-level rise was filled by lower Upper Cenomanian sediments of the Oberhäslich Formation. It is capped by an unconformity at the base of the overlying, upper Upper Cenomanian Dölzschen Formation (Janetschke and Wilmsen, 2014), corresponding to the major global sequence boundary Cenomanian 5 at the boundary of the Calycoceras naviculare and Metoicoceras geslinianum zones (Robaszynski et al., 1998; Wilmsen, 2003; Wilmsen and Nagm, 2013b; Niebuhr et al., 2014b; Janetschke et al., 2015). 6. Conclusions In Saxony (Germany), the global early Late Cretaceous transgression is documented by the onlap of shallow-marine sandstones of the lower Upper Cenomanian Oberhäslich Formation onto Paleozoic rocks of the eastern Erzgebirge, the central part of the emergent

11

Mid-European Island. Based on detailed logging of sections south of Dresden in the area between Freital and Dippoldiswalde as well as study of extensive material from the paleozoological collections of the Senckenberg Natural History Collections Dresden, the depositional environment and the macroinvertebrate assemblage of the Oberhäslich Formation were reconstructed. The formation attains a mean thickness of 10–15 m, but it may be completely absent due to pre-transgression topography. The biostratigraphy is based on numerous finds of Inoceramus pictus spp., associated by rare finds of the early Late Cenomanian zonal index ammonite Calycoceras (C.) naviculare (Mantell). The Oberhäslich Formation usually shows a fining-upward trend that may be reversed towards the top. The unit was deposited in a single 3rd-order sea-level cycle and is capped by an unconformity at the base of the overlying upper Upper Cenomanian Dölzschen Formation (sequence boundary Cenomanian 5 at the junction of the Calycoceras naviculare and Metoicoceras geslinianum zones). Nearshore sections are characterized by fossil-poor, high-energy pebbly coarse-grained sandstones with planar cross-stratification deposited above fair-weather wave base. Bioturbated, fine- or rarely medium-grained quartz-rich sandstones accumulated below fair-weather wave base and yielded the bulk of fossils from the Oberhäslich Formation. The macroinvertebrate assemblage of the Oberhäslich Formation is moderately diverse, consisting of 47 taxa, dominated by bivalves (94.3%). Most conspicuous and abundant are relatively large forms such as Rhynchostreon (R.) suborbiculatum (25%) and Inoceramus pictus spp. (21%), characterizing the Rhynchostreon suborbiculatum/Inoceramus pictus assemblage of the Oberhäslich Formation. Pinna spp. (4.5%), Rastellum carinatum (Lamarck) and R. diluvianum (3.5%) and Gervillaria neptuni (Goldfuss) (2%) are subordinate elements. Moderately common are smaller bivalve taxa such as representatives of the genus Neithea (11%), other pectinids (∼4%) and limids (7%) while gastropods are nearly absent. Nonmolluscan benthic invertebrates are likewise rare and represented by rather poorly preserved irregular (Holasteridae indet., Hemiaster sp., Catopygus sp.) and regular echinoids (cidarid spines) as well as siliceous sponges, crustacean remains and a single starfish. Bored wood remains are common. Common Thalassinoides and Ophiomorpha burrows indicate that crustaceans were an important part of the infauna, associated by irregular echinoids and polychaetes. Pervasive bioturbation resulted in a post-depositional homogenization of the sediments. All body fossils are preserved as internal moulds due to early diagenetic carbonate dissolution. The guild structure of the Rhynchostreon suborbiculatum/Inoceramus pictus assemblage of the Oberhäslich Formation sees a predominance of epifaunal (most bivalves such as inoceramids, oysters, pectinids and limids as well as a few siliceous sponges) and semi-infaunal (bakevelliids, modiolines, pinnids) suspension feeders (95.3%). This observation suggests eutrophic and unstable “green-water conditions” of an inner-shelf setting, probably influenced by tidal stirring of sediments and in accordance with the paleogeographical position of the Oberhäslich Formation. Deposit-feeding biota are comparably rare, possibly related to the organic-poor character of the substrate. The common occurrence of articulated bivalves and storm-induced shell beds suggest episodic rapid burial, most probably by tempestites. A current-influenced, well-oxygenated and nutrient-rich environment between fair-weather and storm-wave bases is inferred for the fine-grained sediments of the Oberhäslich Formation.

Disclosure of interest The author declares that he has no competing interest.

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003

G Model ANNPAL-2286; No. of Pages 12 12

ARTICLE IN PRESS M. Wilmsen / Annales de Paléontologie xxx (2016) xxx–xxx

Acknowledgements The manuscript benefited from the insightful comments of two anonymous reviewers. I wish to thank Nadine Janetschke, Manuel Röthel and Ronald Winkler (all SNSD, Dresden) for help at various stages of manuscript preparation (collection management, digital photography, field work). Many thanks also to Nicolas Morel (Le Mans) and Didier Néraudeau (Rennes) for organizing the Colloque Cénomanien and editing the proceedings volume, respectively. References Aberhan, M., 1994. Guild-structure and evolution of Mesozoic benthic shelf communities, 9. Palaios, pp. 516–545. Bambach, R.K., 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz, M.J.S., McCall, P.L. (Eds.), Biotic interactions in recent and fossil benthic communities, 1. Plenum Press, New York, pp. 719–746. Bengtson, P., 1988. Open nomenclature. Palaeontology 31, 223–227. Brasier, M.D., 1995. Fossil indicators of nutrient levels. 1: eutrophication and climatic change. In: Bosence, D.W., Allison, P.A. (Eds.), Marine palaeoenvironmental analysis from fossils, 83. Geological Society London, Special Publication, pp. 113–132. Brenchley, P.J., Harper, D.A.T., 1998. Palaeoecology: ecosystems, environments and evolution. Chapman and Hall, London, pp. 1–432. Bromley, R.G., Pemberton, S.G., Rahmani, R.A., 1984. A Cretaceous woodground: the Teredolites ichnofacies. Journal of Paleontology 58, 488–498. Carter, R.M., 1972. Adaptions of British Chalk Bivalvia. Journal of Paleontology 46, 325–340. Föhlisch, K., 1998. Palökologie der sandig ausgebildeten Dölzschen Formation (Oberes Obercenoman) Sachsens. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 43/44, 141–149. Geinitz, H.B., 1871–1875. Das Elbthalgebirge in Sachsen (Der untere Quader). Palaeontographica 20 (1), 1–245. Geinitz, H.B., 1872–1875. Das Elbthalgebirge in Sachsen (Der mittlere und obere Quader). Palaeontographica 20 (2), 1–245. Janetschke, N., Wilmsen, M., 2014. Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Cenomanian–Turonian of Saxony, Germany). Zeitschrift der deutschen Gesellschaft für Geowissenschaften 165, 179–208. Janetschke, N., Niebuhr, B., Wilmsen, M., 2015. Inter-regional sequence stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations around the Mid-European Island. Cretaceous Research 56, 530–549. La Barbera, M., 1981. The ecology of Mesozoic Gryphea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean. Paleobiology 7, 510–526. McCammon, H.M., Reynolds, W.A., 1976. Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Marine Biology 34, 41–51. McKerrow, W.S. (Ed.), 1992. Ökologie der Fossili: Lebensgemeinschaften, Lebensräume, Lebensweisen. , 2nd ed. Franckh-Kosmos, Stuttgart, pp. 1–248. Niebuhr, B., Wilmsen, M. (Eds.), 2014. Kreide-Fossilien in Sachsen, Teil 1, 60. Geologica Saxonica, pp. 1–254. Niebuhr, B., Wilmsen, M., 2016. Ichnofossilien. In: Niebuhr, B., Wilmsen, M. (Eds.), Kreide-Fossilien in Sachsen, Teil 2. Geologica Saxonica (in press). Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., et al., 2007. Lithostratigraphie der norddeutschen Oberkreide. Schriftenreihe der deutschen Gesellschaft für Geowissenschaften 55, 1–136. Niebuhr, B., Schneider, S., Wilmsen, M., 2014a. Muscheln. In: Niebuhr, B., Wilmsen, M. (Eds.), Kreide-Fossilien in Sachsen, Teil 1, 60. Geologica Saxonica, pp. 83–168. Niebuhr, B., Wilmsen, M., Janetschke, N., 2014b. Cenomanian–Turonian sequence stratigraphy and facies development of the Danubian Cretaceous Group (Bavaria, southern Germany). Zeitschrift der deutschen Gesellschaft für Geowissenschaften 165, 621–640. Ogg, J.G., Hinnov, L.A., 2012. Cretaceous. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The Geologic Time Scale 2012, 2. Elsevier, Amsterdam, pp. 793–853. Philip, J., Floquet, M., 2000. Late Cenomanian (94.7–93.5). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S., Sandulescu, M. (Eds.), Atlas Peri-Tethys palaeogeographical maps. CCGM/CGMW, Paris, pp. 129–136. Robaszynski, F., Gale, A.S., Juignet, P., Amédro, F., Hardenbol, J., 1998. Sequence stratigraphy in the Cretaceous series of the Anglo-Paris Basin: exemplified by the Cenomanian stage. In: de Graciansky, P.-C., Hardenbol, J., Jacquin, T., Vail, P.R. (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins, 60. SEPM Special Publication, pp. 363–386.

Schweitzer, C.E., Feldmann, R.M., 2012. Revision of Decapoda deposited in the Museum national d’Histoire naturelle, Paris. Bulletin of the Mizunami Fossil Museum 38, 15–27. Seilacher, A., 1967. Bathymetry of trace fossils. Marine Biology 5, 413–428. Seilacher, A., 1984. Constructional morphology of bivalves: Evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27, 207–237. Stanley, S.M., 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America, Boulder, pp. 1–296. Thayer, C.W., 1975. Morphologic adaptations of benthic invertebrates to soft substrata. Journal of Marine Research 33, 177–189. Thayer, C.W., 1986. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology 12, 161–174. Tröger, K.-A., 1955. Über die Kreideablagerungen des Plauenschen Grundes (sedimentpetrographische und biostratinomisch-paläontologische Untersuchungen). Jahrbuch des Staatlichen Museums für Mineralogie und Geologie Dresden 2, 22–124. Tröger, K.-A., 1976. Nachweis eines Belemniten im Unterquader (Ober-Cenoman der sächsischen Kreide). Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden 25, 61–63. Tröger, K.-A., 2003. The Cretaceous of the Elbe valley in Saxony – a review. Carnets de Géologie A03, 1–14. Tröger, K.-A., 2015. Obercenomane Inoceramen aus der sächsischen Kreide. Geologica Saxonica 60, 377–425. Tröger, K.-A., Voigt, T., 1995. Event- und Sequenzstratigraphie in der Sächsischen Kreide. Berliner geowissenschaftliche Abhandlungen E16, 255–267. Tröger, K.-A., Niebuhr, B., 2014. Inoceramide Muscheln. In: Niebuhr, B., Wilmsen, M. (Eds.), Kreide-Fossilien in Sachsen, Teil 1, 60. Geologica Saxonica, pp. 169–199. Voigt, S., Gale, A.S., Voigt, T., 2006. Sea-level changes, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretaceous Research 27, 836–858. Voigt, T., 1994. Faziesentwicklung und Ablagerungssequenzen am Rand eines Epikontinentalmeeres–die Sedimentationsgeschichte der Sächsischen Kreide. Unpublished PhD thesis. Technische Universität Bergakademie Freiberg, pp. 1–130. Voigt, T., 1998. Entwicklung und Architektur einer fluviatilen Talfüllung–die Niederschöna Formation im Sächsischen Kreidebecken. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden 43/44, 121–139. Voigt, T., 1999. Ablagerungsbedingungen und Taphonomie der Schmilka-Formation (Unter-Turon) südlich von Pirna (Sächsisches Kreidebecken). Greifswalder geowissenschaftliche Beiträge 6, 193–207. Voigt, T., 2009. Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche Inversionsstruktur: Geologische Hinweise aus den umgebenden Kreidebecken. Zeitschrift für geologische Wissenschaften 37, 15–39. Voigt, T., 2011. Sturmdominierte Sedimentation in der Postelwitz-Formation (Turon) der Sächsischen Kreide. Freiberger Forschungshefte C540, 27–45. Voigt, T., Tröger, K.-A., 1996. Sea-level changes during the Late Cenomanian and Early Turonian in the Saxonian Cretaceous Basin. Mitteilungen aus dem GeologischPaläontologischen Institut der Universität Hamburg 77, 275–290. Voigt, T., Voigt, S., Tröger, K.-A., 1994. Faziesentwicklung einer ertrunkenen Felsküste–die obercenomane Monzonitklippe westlich von Dresden. Freiberger Forschungshefte C452, 23–34. Wilmsen, M., 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research 24, 252–568. Wilmsen, M., 2008. An Early Cenomanian (Late Cretaceous) maximum flooding bioevent in NW Europe: correlation, sedimentology and biofacies. Palaeogeography Palaeoclimatology Palaeoecology 258, 317–333. Wilmsen, M., Nagm, E., 2013a. Upper Cenomanian–Lower Turonian ammonoids from the Saxonian Cretaceous (lower Elbtal Group, Saxony, Germany). Bulletin of Geosciences 88, 647–674. Wilmsen, M., Nagm, E., 2013b. Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt. Newsletter on Stratigraphy 46, 23–46. Wilmsen, M., Nagm, E., 2014. Ammoniten. In: Niebuhr, B., Wilmsen, M. (Eds.), KreideFossilien in Sachsen, Teil 1, 60. Geologica Saxonica, pp. 201–240. Wilmsen, M., Niebuhr, B., 2014. The rosetted trace fossil Dactyloidites ottoi (Geinitz, 1849) from the Cenomanian (Upper Cretaceous) of Saxony and Bavaria (Germany)–ichnotaxonomic remarks and palaeoenvironmental implications. Paläontologische Zeitschrift 88, 123–138. Wilmsen, M., Niebuhr, B., Hiss, M., 2005. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51, 242–263. Wilmsen, M., Vodráˇzka, R., Niebuhr, B., 2011. The Upper Cenomanian and Lower Turonian of Lockwitz (Dresden area, Saxony, Germany): lithofacies, stratigraphy and fauna of a transgressive succession. Freiberger Forschungshefte C540, 27–45.

Please cite this article in press as: Wilmsen, M., Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Annales de Paléontologie (2016), http://dx.doi.org/10.1016/j.annpal.2016.11.003