Magnetic properties of some rare-earth phosphides

Magnetic properties of some rare-earth phosphides

Volume 11, number 2 P HYS I C S L E T T E R S MAGNETIC PROPERTIES OF SOME 15 July 1964 RARE-EARTH PHOSPHIDES G. BUSCH, P. SCHWOB and O. VOGT ...

149KB Sizes 3 Downloads 147 Views

Volume 11, number 2

P HYS I C S L E T T E R S

MAGNETIC

PROPERTIES

OF

SOME

15 July 1964

RARE-EARTH

PHOSPHIDES

G. BUSCH, P. SCHWOB and O. VOGT Laboratoriurn f l i t Feslh~rperphysih ETH, Zi~rich, Switzerland and

F. H U L L I G E R Cyanamid European R e s e a r c h Institute, Geneva, Switzerland Received 15 June 1964

The spin s t r u c t u r e s of s o m e r a r e - e a r t h phosphides have been d e t e r m i n e d by Child et al. 1), who found a r a t h e r unusual spin a r r a n g e m e n t in HoP. The s t a b i l i t y of d i f f e r e n t spin a r r a n g e m e n t s in t h e s e compounds has b e e n d i s c u s s e d in detail by T r a m m e l l 2). We have now m e a s u r e d the m a g ne t i c m o m e n t s of TbP, DyP, HoP and E r P , and our e x p e r i m e n t a l r e s u l t s a r e in good a g r e e m e n t with T r a m m e l l ' s a n a l y s i s . Our c r y s t a l s which w e r e grown by t r a n s p o r t r e a c t i o n a r e not l a r g e enough to allow m e a s u r e m e n t s on one single c r y s t a l only. It was n e c e s s a r y , t h e r e f o r e , to fill the s a m p l e h o l d e r with as many as 50 c r y s t a l s . By r e p e a t e d l y exposing them in the f e r r o m a g n e t i c s t a t e to f i e l d s of about 100 kOe we w e r e able to o r i e n t m o s t of the c r y s t a l s with t h e i r e a s y a x i s p a r a l l e l to the applied field. The p a r a m a g n e t i c C u r i e t e m p e r a t u r e 6 p and the e f f e c t i v e n u m b e r of m a g n e t o n s Pelf w e r e der i v e d f r o m the i n v e r s e s u s c e p t i b i l i t y v e r s u s t e m p e r a t u r e c u r v e s . The s h a r p kink found in s o m e of t h e s e c u r v e s is c h a r a c t e r i s t i c for the a n t i f e r i i Bo r magnetons

hi

i

i

i

i

I

I ~

r o m a g n e t i c t r a n s i t i o n at the N~el t e m p e r a t u r e TN. In all t h e s e compounds the e f f e c t i v e magneton n u m b e r s d e t e r m i n e d at t e m p e r a t u r e s well above T N a r e only a few p e r c e n t l o w e r than those of the c o r r e s p o n d i n g f r e e ions. Little o r no quenching of the angular m o m e n t u m , t h e r e f o r e , o c c u r s in the p a r a m a g n e t i c state. The magneton n u m b e r n s in the o r d e r e d f e r r o m a g n e t i c st at e was d e t e r m i n e d at the lowest a v a i l a b l e t e m p e r a t u r e (~ 1.8°K) by an induction method with pulsed f i e l d s of up to 130 kOe. As in GdP, on which we r e p o r t e d e a r l i e r 3), we obtained a l m o s t c o m p l e t e spin alignment in all the phosphides c o n s i d e r e d h e r e . In the a b s e n c e of an e x t e r n a l field the spins in TbP a r e coupled a n t i f e r r o m a g n e t i c a l l y like in MnO 1) and in a s m a l l e x t e r n a l field the m a g n e t i c m o m e n t of this compound shows the m a x i m u m at the N6el point typical of an a n t i : f e r r o m a g n e t i c spin a r r a n g e m e n t . As soon as the applied field e x c e e d s a c r i t i c a l value H c an abrupt t r a n s i t i o n to a diff e r e n t spin s t r u c t u r e o c c u r s (fig. 1). I m m e d i a t e l y above Hc the m a g n e t i c m o m e n t is, h o w e v e r , s t i l l well below the f e r r o m a g n e t i c s a t u r a t i o n value and

i r I Bo r m a g n e t o n s

T-1)87 °K

i

i

I

i

i

i

I

i

I

I

gl f

T- 1,74 ° K

81 71

TbP

HoP

6t 5t

41

6

3) 4

2} 2

0

,~ 2~ 3'0 ,'0

510

I

60

I 70

l, I 80

8 I 90

12 I 100

16 I 110

I I 120 130 H in kOe

Fig. 1. Magnetisation of Tb~ versus magnetic field. 100

o[

H kOe""

ol 0

[

,

,

]

0,2

i

i,~-l,B~o . . . . ~

6

~

|O ] k(..le

,oo ,Io ,~o ,~o H in kOe

Fig. 2. M a g n e t i s a t i o n of HoP v e r s u s m a g n e t i c field.

Volume 11, number 1

PHYSICS LETTERS

15 July 1964

Table 1 Magnetic data of some rare-earth phosphides. The figures in brackets are the free ion values.

9p (OK)

TN~ Peff (g~/J(J+1)) ns (g~ J1 (°K)

J2 (°K) Spin structure H = 0 Critical field Hc (kOe) Spin structure for H = Hc

GdP

TbP

DyP

HoP

ErP

0 15

1 8

6 -

4.2 -

0 4

7.7 (7.9) 7.1 (7.0) 0.12

9.2 (9.7) > 8 (9) 0.10

9.9 (10.6) 7.8 (10) 0.23

10.2 (10.6) 9.2 (10) 0.23

9.3 (9.6) > 8.5 (9) 0.11

-0.25

-0.18

-0.28

-0.28

-0.26

antiferromagnetic 95 ferromagnetic

antiferromagnetic 4.3 HoP type

HoP type

HoP type

17 ferromagnetic

1.9 ferromagnetic

antiferromagnetic 5.2 HoP type

it i s p r o b a b l e that the c o r r e s p o n d i n g spin s t r u c t u r e is s i m i l a r to that met in HoP. As in GdP, one can, by i n c r e a s i n g the m a g n e t i c field, g r a d u a l l y r i s e the m a g n e t i s a t i o n to a l m o s t the s a t u r a tion value gJ = 9 m a g n e t o n s of the f r e e Tb 3+ ion. The s a m e gJ value also i s found for the ground state of E r 3+. It i s not s u r p r i s i n g , t h e r e f o r e , that except for a slight d i f f e r e n c e of Hc (see table 1) the m a g n e t i s a t i o n c u r v e s for E r P and T b P a r e a l m o s t identical. HoP, on the other hand, has a spontaneous m a g n e t i c m o m e n t at low t e m p e r a t u r e s (fig. 2). This r e s u l t is in full a g r e e m e n t with the model p r o p o s e d by Child et al. 1). The t h e o r e t i c a l value of the HoP s t r u c t u r e m a g n e t i c m o m e n t was not, however, r e a c h e d e x p e r i m e n t a l l y , b e c a u s e at 1.9 kOe the applied field changed the HoP-type spin s t r u c t u r e into a n o r m a l f e r r o m a g n e t i c a r r a n g e m e n t long before the d o m a i n s of the HoP type w e r e c o m p l e t e l y oriented. The c o r r e s p o n d ing s a t u r a t i o n m a g n e t i s a t i o n obtained in high fields is about 10% lower than the value c a l c u l a t e d for the f r e e Ho3+ ion at T = 0°K. The ground s t a t e s of Ho 3+ and of Dy 3+ lead to the s a m e gJ value of 10. As in the c a s e of T b P and E r P m e n t i o n e d above, one t h e r e f o r e now finds a close s i m i l a r i t y between the m a g n e t i c p r o p e r t i e s of HoP and DyP. However, the c r i t i c a l field in DyP is about ten t i m e s l a r g e r than in HoP. When plotting the m a g n e t i c m o m e n t of HoP v e r s u s t e m p e r a t u r e as m e a s u r e d in different ext e r n a l fields one finds that even far beyond the C u r i e point the m e a s u r e d v a l u e s a r e lower than the ones c a l c u l a t e d a c c o r d i n g to the C u r i e W e i s s theory with the B r i l l o u l n function for J = 8. This shows that above the C u r i e point as well the HoP

s t r u c t u r e is m o r e stable than n o r m a l f e r r o m a g netic spin a r r a n g e m e n t . Our r e s u l t s a r e s u m m a r i s e d in table 1 together with the data of GdP 3). It is c h a r a c t e r i s t i c for this f a m i l y of compounds that in the p a r a m a g n e t i c as well as in the f e r r o m a g n e t i c r e g i o n the m a g n e t o n n u m b e r s a r e only about 10% s m a l l e r than in the f r e e ion. F o r the a n t i f e r r o m a g n e t i c phosphides TbP and E r P the exchange e n e r g i e s J1 and J 2 between n e a r e s t and next n e a r e s t neighbours, r e s p e c t i v e l y , were calculated a c c o r d i n g to the m o l e c u l a r - f i e l d approximation. T r a m m e l l ' s s t a b i l i t y condition for the HoP-type spin s t r u c t u r e r e a d i l y gives the r a t i o of J1 and J 2 f o r DyP and HoP. S i n c e t h e i r sum can be calculated f r o m the p a r a m a g n e t i c C u r i e t e m p e r a t u r e Op they can be d e t e r m i n e d s e p a r a t e l y also for these compounds. All exchange e n e r g i e s J2 b e tween second n e a r e s t n e i g h b o u r s a r e found to be negative, as is expected for superexchange. It is p e r h a p s s u r p r i s i n g that in spite of the difference in t h e i r m a g n e t i c behaviour the i n v e s t i g a t e d phosphides all have J1 and J2 values of the s a m e o r d e r of magnitude. This would s e e m to s u g g e s t that the exchange e n e r g i e s do not, depend v e r y much on the n u m b e r of f e l e c t r o n s but a r e d e t e r m i n e d l a r g e l y by the c r y s t a l s t r u c t u r e and the lattice spacings.

References 1) H,R.Child, M.K.Wilkinson, J.W.Cable, W.C. Koehler and E.O.Wollan, Phys.Rev. 131 (1963) 922. 2) G.T.Trammell, Phys.Rev. 131 (1963) 932. 3) G.Busch, P.Junod, P.Schwob, O.Vogt and F.Hulliger, Physics Letters 9 (1964) 7.

* * * * *

101