International Journal of Solids and Structures 44 (2007) 5316–5335 www.elsevier.com/locate/ijsolstr
Magneto-thermo-elastic stresses induced by a transient magnetic field in a conducting solid circular cylinder M. Higuchi *, R. Kawamura, Y. Tanigawa Department of Mechanical Systems Engineering, Osaka Prefecture University, Gakuencho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan Received 1 August 2006; received in revised form 8 December 2006; accepted 3 January 2007 Available online 10 January 2007
Abstract In the present paper, dynamic and quasi-static behaviors of magneto-thermo-elastic stresses induced by a transient magnetic field in a conducting solid circular cylinder are investigated. It is assumed that a transient magnetic field which is defined by an arbitrary function of time acts on the surface of the solid cylinder in the direction parallel to its surface. Fundamental equations of plane axisymmetrical electromagnetic, temperature, and elastic fields are formulated. Then, solutions of magnetic field, eddy current, temperature change and both dynamic solutions and quasi-static ones of stresses and deformations are analytically derived in the forms including the arbitrary function. The solutions of stresses are determined to be sums of thermal stress caused by eddy current loss and magnetic stress caused by Lorentz force. For this case that the arbitrary function is given by the smoothed ramp function with sine function, the dynamic and quasi-static behaviors of the stresses are examined by numerical calculations. 2007 Elsevier Ltd. All rights reserved. Keywords: Magneto-thermo-elasticity; Eddy current loss; Lorentz force
1. Introduction Mechanical components or structural elements which are activated in magnetic field have been increasing in recent years with the rapid progress of electromechanics. When a time-varying magnetic field acts on a conducting medium, the eddy currents are induced in the medium by electromagnetic induction, and the electric currents cause heat generation called the eddy current loss due to the Joule effect. The conducting medium is subjected to Lorentz force as well as the heat supply of eddy current loss. Thus, two kinds of stress should be generated by time-varying magnetic field: one is thermal stress caused by eddy current loss and the other is magnetic stress caused by Lorentz force. In the field of magneto-elasticity or magneto-thermo-elasticity, many studies have been conducted on an analytical treatment of an interaction between elastic, electromagnetic, and temperature fields (e.g., Kaliski and Nowacki, 1962; Kaliski and Michalec, 1963; Paria, 1967; Eringen and Maugin, 1990; Wauer, 1996 Wang *
Corresponding author. Tel.: +81 72 254 9208; fax: +81 72 254 9904. E-mail address:
[email protected] (M. Higuchi).
0020-7683/$ - see front matter 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijsolstr.2007.01.001
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5317
et al., 2002; Wang and Dai, 2004; Ezzat and Youssef, 2005; Wang and Dong, 2006). However, few studies have been carried out on analytical development of thermal stresses induced by time-dependent magnetic field (Moon and Chattopadhyay, 1974; Chian and Moon, 1981). Moon and Chattopadhyay (1974) have studied thermal stresses and magnetic stresses in a conducting half-space caused by an applied jump in tangential magnetic field at the boundary. Chian and Moon (1981) have extended the above work, investigating those stresses in a cylindrical conductor with a cavity caused by a pulsed magnetic field at the cavity. Pantelyat and Fe´liachi (2002) have studied mechanical behavior of metals in induction heating devices by using of finite element method. They have calculated thermo-elastic-plastic stresses induced by an alternating magnetic field, taking into account temperature dependences of material properties. In the present paper, dynamic and quasi-static behaviors of magneto-thermo-elastic stresses induced by a transient magnetic field have been investigated in a conducting solid circular cylinder which consists of nonferromagnetic metals such as copper or aluminum. Assuming that a time-dependent magnetic field which is defined as an arbitrary function of time acts on the surface of the solid cylinder in the direction parallel to its surface, we have formulated fundamental equations of plane axisymmetrical electromagnetic, temperature and elastic fields. Then, solutions of electromagnetic field, temperature change and both dynamic and quasistatic solutions of stresses and displacements have been analytically derived, respectively, in the forms including the arbitrary function. The solutions of stresses have been determined to be sums of thermal stress caused by eddy current loss and magnetic stress caused Lorentz force. Carrying out numerical calculations for the case that the arbitrary function of time is given by the smoothed ramp function with sine function, we have examined the dynamic and quasi-static behaviors of the thermal stresses and the magnetic stresses induced by a transient magnetic field in the solid cylinder. 2. Fundamental equation systems 2.1. Electromagnetic field Let us consider a conducting solid circular cylinder of radius b with cylindrical coordinate system, as shown in Fig. 1. We assume that a time-dependent axial magnetic field H0/(t), which is uniform along the h and z directions, acts on the surface of the cylinder in the direction parallel to its surface, from time t = 0. H0 is a reference magnetic field strength, and /(t) is an arbitrary function of time. If the magnetic field vector is assumed to have only the plane axisymmetric axial component, namely to be H = (0,0,Hz(r, t)), then the electric field vector is given by E = (0, Eh(r, t),0). The governing equations and the constitutive relations of electromagnetics in cylindrical coordinate are given by 1 o oBz ðrEh Þ þ ¼ 0; r or ot
ð1Þ
oH z ¼ J h; or
ð2Þ
Fig. 1. Conditions and coordinate system of solid cylinder.
5318
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
J h ¼ rEh ;
ð3Þ
Bz ¼ lH z ;
ð4Þ
where the displacement current is disregarded in Eq. (2), and Bz is the axial component of the magnetic flux, Jh is the circumferential component of the electric current density, r and l are the electric conductivity and the magnetic permeability in the cylinder, respectively. From Eqs. (1)–(4), the fundamental equation of magnetic field is obtained as follows: 1 o oH z oH z r : ð5aÞ ¼ lr r or or ot The boundary condition and the initial condition are written as r ¼ b;
H z ðb; tÞ ¼ H 0 /ðtÞ;
ð5bÞ
t ¼ 0;
H z ðr; 0Þ ¼ 0:
ð5cÞ
The electric current density Jh(r, t) induced by time variation of magnetic field is called the eddy current, which is obtained from Eq. (2) 2.2. Temperature field The eddy current Jh generates Joule heat called the eddy current loss. The eddy current loss w(r, t) per unit time per unit volume is given by 2
½J h ðr; tÞ r: ð6Þ : We assume that the cylinder with zero initial temperature change is heated by the eddy current loss w(r, t) from time t = 0, and that the surface is insulated or subjected to surrounding medium, of which temperature is zero, with relative heat transfer coefficient h. Then, the fundamental equation of heat conduction taking into account the eddy current loss, the boundary condition and the initial condition are written as oT 1 o oT w ¼j r ; ð7aÞ þ ot r or or Cq wðr; tÞ ¼
r ¼ b; t ¼ 0;
oT þ hT ¼ 0; or T ¼ 0;
ð7bÞ ð7cÞ
where T = T(r, t) is temperature change, and j, C and q denote the thermal conductivity, the specific heat and the mass density, respectively. If the surface is insulated, then the value of h in Eq. (7b) is zero. 2.3. Elastic field The conducting solid circular cylinder is subjected to both temperature change and Lorentz force. Lorentz force vector f is defined by 1 0 l 0 1 0 1 0 0 2 oro ½H z ðr; tÞ2 B C B B C z C f ¼ J B ¼ @ oH @ 0 A¼@ A: 0 or A 0
lH z
ð8Þ
0
From Eq. (8), Lorentz force has only the radial component as follows: l o 2 ½H z ðr; tÞ : ð9Þ 2 or Because temperature change and Lorentz force are plane axisymmetric, we analyze stresses and deformations under the axisymmetric plane strain state. fr ðr; tÞ ¼
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5319
The equation of motion in the radial direction taking into account Lorentz force is written as orrr rrr rhh o2 u þ þ fr ¼ q 2 ; ot or r
ð10Þ
where rrr and rhh are the radial stress component and the circumferential stress component, respectively, and u is the radial displacement. Stress–displacement relations taking into account temperature change are given by ou 9 ð1mÞE m u 1þm þ aT ;= rrr ðr; tÞ ¼ ð1þmÞð12mÞ or 1m r 1m ; ð11Þ rhh ðr; tÞ ¼ ð1mÞE u þ m ou 1þm aT ; ð1þmÞð12mÞ r
1m or
1m
where E, m and a denote the Young’s modulus, the Poisson’s ratio and the coefficient of linear thermal expansion, respectively. The axial stress component is given by rzz ðr; tÞ ¼ mðrrr þ rhh Þ aET :
ð12Þ
Substitution Eqs. (9) and (11) into Eq. (10) yields the displacement equation of motion: o 1 oðruÞ 1 o2 u 1 þ m oT ð1 þ mÞð1 2mÞ l o 2 a þ ðH z Þ : ¼ 2 2þ or r or ot 1 m or ð1 mÞE 2 or CL
ð13aÞ
The cylinder is at rest prior to time t = 0 and we suppose that the surface of the cylinder is traction free (rrr = 0). Then, the mechanical boundary condition and the initial conditions are given by r ¼ b; t ¼ 0;
ou m u 1þm þ ¼ aT ; or 1 m r 1 m ou u¼ ¼ 0: ot
In Eq. (13a), CL denotes the velocity of longitudinal wave, which is given by sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1 mÞE : CL ¼ ð1 þ mÞð1 2mÞq
ð13bÞ ð13cÞ
ð14Þ
2.4. Dimensionless quantities We define the following dimensionless quantities: 9 z ¼ H z ; s ¼ t 2 ; Jh ¼ bJ h ; r ¼ br ; H > > H0 H0 lrb > > = bf CcT rb2 w r ¼ H 2 ; T ¼ lH 2 ; w h ¼ bh; f r ¼ lH 2 ; 0 0 0 > > ð1mÞE > 2 hh ; r zz Þ ¼ ðrrr ;rlHhh2;rzz Þ ; ð rrr ; r u ¼ ð1þmÞð12mÞ 2 u> ; blH 0 0
ð15Þ
2
and v1 ¼ lrj;
v2 ¼ lrbC L ;
v3 ¼
2aE : ð1 2mÞCq
ð16Þ
By use of these dimensionless quantities, Eqs. (2), (5)–(7), (9), (11)–(13) take the following form: (1) Electromagnetic field Fundamental equation system: 1 o oH z oH z r ; ¼ r or or os r ¼ 1;
H z ð1; sÞ ¼ /ðsÞ;
ð17aÞ ð17bÞ
5320
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
s ¼ 0;
H z ðr; 0Þ ¼ 0:
ð17cÞ
Eddy current: J h ðr; sÞ ¼
oH z ðr; sÞ ; or
ð18Þ
(2) Temperature field Eddy current loss: ðr; sÞ ¼ ½J h ðr; sÞ2 : w Fundamental equation system: oT o oT r ; ¼ v1 þw os or or r ¼ 1; s ¼ 0;
oT þ hT ¼ 0; or T ðr; 0Þ ¼ 0:
ð19Þ
ð20aÞ ð20bÞ ð20cÞ
(3) Elastic field Lorentz force: 1 o ½H z ðr; sÞ2 f r ðr; sÞ ¼ 2 or
ð21Þ
Stress–displacement relations: 9 u m u rr ðr; sÞ ¼ o þ 1m v3 T ; r > = r or m o u u hh ðr; sÞ ¼ r þ 1m or v3 T ; r > ; zz ðr; sÞ ¼ mðr rr þ r hh Þ ð1 2mÞv3 T : r Fundamental equation system: o 1 oðr uÞ 1 o2 oT o u þ ðH z Þ2 ¼ 2 2 þ v3 or r or v2 os or or r ¼ 1; s ¼ 0;
o u m u þ ¼ v3 T ; or 1 m r o u ¼ 0: u¼ os
ð22Þ
ð23aÞ ð23bÞ ð23cÞ
3. Solutions 3.1. Magnetic field In order to transform the inhomogeneous boundary condition (17b) into the homogeneous one, we assume that the solution H z of Eq. (17a) is given by the following expression: H z ðr; sÞ ¼ hz ðr; sÞ þ /ðsÞ: Substitution of Eq. (24) into Eq. (17) gives 1 o ohz ohz o/ðsÞ r ; þ ¼ r or os or os
ð24Þ
ð25aÞ
r ¼ 1;
hz ð1; sÞ ¼ 0;
ð25bÞ
s ¼ 0;
hz ðr; 0Þ ¼ /ð0Þ:
ð25cÞ
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5321
By using the separation of variables technique, the solution of Eqs. (25) will be assumed in the following form: hz ðr; sÞ ¼
1 X
an ðsÞJ0 ðk nrÞ;
ð26Þ
n¼1
where an(s) are unknown functions of s, J0(Æ) is the Bessel function of the first kind of zeroth order, and kn are the positive roots of the following eigen equation: J0 ðk n Þ ¼ 0:
ð27Þ
Hence, it can be seen that the solution hz ðr; sÞ shown in Eq. (26) satisfies the homogeneous boundary conditions Eq. (25b). Substituting of Eq. (26) into Eq. (25a) with Eq. (25b), multiplying both side by rJ0 ðk mrÞ, and then integrating with respect to r from zero to one, we obtain Z Z 1 Z 1 1 1 X X dan ðsÞ 1 d/ðsÞ J0 ðk mrÞr dr; k 2n an ðsÞ J0 ðk nrÞJ0 ðk mrÞr dr ¼ J0 ðk nrÞJ0 ðk mrÞrdr þ ð28Þ ds ds 0 0 0 n¼1 n¼1 Using the orthogonality of Bessel functions, we can derive the following equation: ( 2 Z 1 J1 ðk n Þ ðm ¼ nÞ 2 J0 ðk nrÞJ0 ðk mrÞrdr ¼ 0 0 ðm 6¼ nÞ; Substitution of Eq. (29) into Eq. (28) gives Z 1 dan ðsÞ 2 d/ðsÞ 2 þ k n an ðsÞ ¼ 2 J0 ðk nrÞr dr: ds ds J1 ðk n Þ 0
ð29Þ
ð30Þ
The solutions of Eq. (30) under the initial condition (25c) are expressed as an ðsÞ ¼
2 ^ an ðsÞ; k n J1 ðk n Þ
where aˆn(s) are determined by the function /(s), which are given by Z s 0 2 0 d/ðs Þ ^ an ðsÞ ¼ ekn ðss Þ ds0 : ds0 0
ð31Þ
ð32Þ
From Eqs. (24), (26) and (31), the magnetic field H z is written as H z ðr; sÞ ¼ /ðsÞ 2
1 X n¼1
1 J0 ðk nrÞ^ an ðsÞ: k n J1 ðk n Þ
ð33Þ
Substituting Eq. (33) into Eq. (18), we obtain the circumferential component J h of the eddy current as follows: J h ðr; sÞ ¼ 2
1 X n¼1
1 J1 ðk nrÞ^ an ðsÞ: J1 ðk n Þ
ð34Þ
3.2. Temperature field By using the separation of variables technique, the solution of Eq. (20) will be assumed in the following form: ( 1 X b ¼ 0 ð h ¼ 0Þ; T ðr; sÞ ¼ bj ðsÞJ0 ðpjrÞ ð35Þ b ¼ 1 ð h > 0Þ; j¼b
5322
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
where bj(s) are unknown functions of s, and pj are the nonnegative roots of the following eigen equations: ) J1 ðpj Þ ¼ 0 ðpj P 0 ðj ¼ 0; 1; 2; ÞÞ for h ¼ 0; : ð36Þ hJ0 ðpj Þ ¼ 0 ðpj > 0 ðj ¼ 1; 2; 3; ÞÞ for h > 0; pj J1 ðpj Þ þ Using the orthogonality of Bessel functions, we can derive the following equation: Z 1 M j ðl ¼ jÞ; J0 ðpjrÞJ0 ðplrÞr dr ¼ 0 ðl 6¼ jÞ; 0
ð37Þ
where
Mj ¼
81 > > > 22 < > > > :
J0 ðpj Þ 2 ð h2 þp2j ÞJ20 ðpj Þ 2p2j
for for
9 h ¼ 0= h > 0;
ðj ¼ 0Þ; ðj > 0Þ:
ð38Þ
In the same manner as Section 3.1, substituting Eq. (35) into Eq. (20a) with Eq. (20b), and utilizing Eq. (37), we can derive the following equation: Z 1 dbj ðsÞ 1 2 ðr; sÞJ0 ðpjrÞr dr: þ v1 pj bj ðsÞ ¼ w ð39Þ ds Mj 0 The solutions of Eq. (39) under the initial condition (20c) are expressed as 8 R 1 R s <2 0 0 w ðr; s0 Þ ds0 dr; i bj ðsÞ ¼ R hR 0 0 : 1 1 s ev1 p2j ðss0 Þ w Þ ds ð r ; s J0 ðpjrÞr dr 0 Mj 0 Here, substitution of Eq. (34) into Eq. (19) yields 1 X 1 X 1 ðr; sÞ ¼ 4 w J1 ðk mrÞJ1 ðk nrÞ^am ðsÞ^an ðsÞ: J ðk ÞJ ðk Þ m¼1 n¼1 1 m 1 n Substitution of Eq. (41) into Eq. (40) gives 8 P 1 > ^ð0Þ > ðj ¼ 0Þ; < 4 bn ðsÞ n¼1 bj ðsÞ ¼ 1 P 1 P > I 1jmn > ^ : M4j b ðsÞ ðj > 0Þ; J ðk m ÞJ ðk n Þ jmn m¼1 n¼1
1
ð40Þ
ð41Þ
ð42Þ
1
where ^ bnð0Þ ðsÞ, ^ bjmn ðsÞ are determined by the function /(s), which are given by ) Rs 2 ð0Þ ^ bn ðsÞ ¼ 0 ½^ an ðs0 Þ ds0 ; ; Rs 2 0 ^ an ðs0 Þ ds0 am ðs0 Þ^ bjmn ðsÞ ¼ 0 ev1 pj ðss Þ ^ and I1jmn are given by the following equation, and are calculated by numerical integration: Z 1 I 1jmn ¼ J1 ðk mrÞJ1 ðk nrÞJ0 ðpjrÞr dr:
ð43Þ
ð44Þ
0
Substituting Eq. (42) into Eq. (35), we obtain temperature change as follows: 1 1 1 X 1 X X X 4 I 1jmn ^ ^bjmn ðsÞ; T ðr; sÞ ¼ 4 J0 ðpjrÞ bð0Þ n ðsÞ þ M J ðk ÞJ ðk Þ j n¼1 j¼1 m¼1 n¼1 1 m 1 n in which for h > 0, the first term of right hand side in Eq. (45) is ignored.
ð45Þ
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5323
3.3. Elastic field 3.3.1. Dynamic solutions In order to transform the inhomogeneous boundary condition Eq. (23b) into the homogeneous one, we assume that uðr; sÞ is given by following expression: uðr; sÞ ¼ u1 ðr; sÞ þ u2 ðr; sÞ; where u1 ðr; sÞ satisfies o 1 oðru1 Þ ¼ 0; or r or r ¼ 1;
ou1 m u1 ¼ v3 T : þ or 1 m r
ð46Þ
ð47aÞ ð47bÞ
The solution of Eqs. (47) is expressed as u1 ¼ ð1 mÞv3 T ð1; sÞr: Substitution of Eq. (46) with Eq. (47) into Eq. (23) yields o 1 oðru2 Þ 1 o2 u2 1 o2 u1 oT o 2 þ þ þ v3 Hz ; ¼ 2 or r or or or v2 os2 v22 os2 r ¼ 1; s ¼ 0;
ou2 m u2 þ ¼ 0; or 1 m r ou2 ou1 u2 ¼ u1 ; ¼ : os os
ð48Þ
ð49aÞ ð49bÞ ð49cÞ
By using the separation of variables technique, the solution of Eq. (49) will be assumed in the following form: u2 ðr; sÞ ¼
1 X
ci ðsÞJ1 ðgirÞ;
ð50Þ
i¼1
where ci(s) are unknown functions of s, and gi are the positive roots of the following eigen equation: gi J0 ðgi Þ
1 2m J1 ðgi Þ ¼ 0: 1m
ð51Þ
In the same manner as Sections 3.1 and 3.2, substituting Eq. (50) with Eq. (49b) into Eq. (49a), and utilizing the orthogonality of Bessel functions, we can derive the following equation: Z 1 2 Z Z o2 ci ðsÞ 1 o u1 v22 1 oT v22 1 oH 2z 2 J J1 ðgirÞr dr; þ X c ðsÞ ¼ J ðg ðg r Þ r d r v r Þ r d r ð52Þ i 1 1 i 3 i i os2 N i 0 os2 N i 0 or N i 0 or where 2
Ni ¼
1 ð1 mÞ g2i ð1 2mÞ 2 J0 ðgi Þ; 2 ð1 2mÞ2
ð53Þ
and Xi are the natural angular frequencies of ith order mode in dimensionless form, which are given by Xi ¼ v2 gi : The solutions of Eq. (52) under the initial condition Eq. (49c) are expressed as
ð54Þ
5324
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
1 ci ðsÞ ¼ Ni
Z
1
Z
s 0
0
0
u1 ðr; sÞ þ Xi sin Xi ðs s Þu1 ðr; s Þ ds J1 ðgirÞr dr 0 Z 1 Z s v o sin Xi ðs s0 ÞT ðr; s0 Þds0 J1 ðgirÞr dr v3 2 gi N i 0 or 0 Z 1 Z s
2 v o sin Xi ðs s0 Þ H z ðr; s0 Þ ds0 J1 ðgirÞr dr: 2 gi N i 0 or 0 0
ð55Þ
Substitution of Eqs. (34), (45) and (48) into Eq. (55) gives ci ðsÞ ¼ cTi ðsÞ þ cM i ðsÞ;
ð56Þ
where cTi ðsÞ and cM i ðsÞ are the terms due to temperature change and due to Lorentz force, respectively, which are given by ( 9 i P 1 h 1 1 1 P > J0 ðpj Þ P P I 1jmn T ð0Þ 4J1 ðgi Þ > T ð0Þ ^ > ci ðsÞ ¼ g2 N i v3 bn ðsÞ þ Xi^cin ðsÞ J1 ðk m ÞJ1 ðk n Þ > Mj > i > n¼1 j¼1 m¼1 n¼1 > > > " ) = 2 g ðg Þ hJ T 0 i i ; ð57Þ ^ bjmn ðsÞ þ p2 g2 1 gi J1 ðgi Þ Xi^cijmn ðsÞ ; > j i > > > > > > 1 1 P 1 P P > Mð1Þ Mð2Þ 4v2 I 2imn > M 1 ; ^c ðsÞ þ ^c ðsÞ c ðsÞ ¼ J ðg Þ i
0
Ni
i
n¼1
T ð0Þ
k 2n g2i
in
m¼1 n¼1
Mð1Þ
k m k n J1 ðk m ÞJ1 ðk n Þ imn
Mð2Þ
in which ^cin ðsÞ, ^cTijmn ðsÞ, ^cii ðsÞ and ^cimn ðsÞ are defined by the function /(s), which are given by 9 Rs T ð0Þ 0 0 > ^cin ðsÞ ¼ 0 sin Xi ðs s0 Þ^ bð0Þ > n ðs Þ ds ; > > R > s = ^jmn ðs0 Þ ds0 ; ^cTijmn ðsÞ ¼ 0 sin Xi ðs s0 Þb ; R s Mð1Þ > ^cin ðsÞ ¼ 0 sin Xi ðs s0 Þ/ðs0 Þ^ an ðs0 Þ ds0 ; > > > > Rs ; Mð2Þ ^cimn ðsÞ ¼ 0 sin Xi ðs s0 Þ^ am ðs0 Þ^ an ðs0 Þ ds0 and I2imn are given by the following equation and are calculated by numerical integration: Z 1 I 2imn ¼ J0 ðk nrÞJ0 ðk mrÞJ0 ðgirÞr dr:
ð58Þ
ð59Þ
0
From Eqs. (46), (48), (50), (56), (57), we have uT ðr; sÞ ¼ v3 ð1 mÞrT ð1; sÞ þ
1 P i¼1
M
u ðr; sÞ ¼
1 P
9 > cTi ðsÞJ1 ðgirÞ; > = > > ;
cM rÞ i ðsÞJ1 ðgi
i¼1
;
ð60Þ
where uT ðr; sÞ and uM ðr; sÞ are the radial displacements due to temperature change and due to Lorentz force, respectively, and satisfy the following relation: uðr; sÞ ¼ uT ðr; sÞ þ uM ðr; sÞ:
ð61Þ
Substituting Eq. (61) into Eq. (22), we can obtain the dynamic solutions of the stress components as follows: h i 9 1 P T T 12m J1 ðgirÞ > rr ðr; sÞ ¼ v3 ½T ð1; sÞ T ðr; sÞ þ ci ðsÞ gi J0 ðgirÞ 1m r ; > r > > > i¼1 > h i > = 1 P mgi 12m J1 ðgirÞ T T hh ðr; sÞ ¼ v3 ½T ð1; sÞ T ðr; sÞ þ ci ðsÞ 1m J0 ðgirÞ þ 1m r ; r ð62Þ > i¼1 > > > 1 > P > mgi > Tzz ðr; sÞ ¼ v3 ½2mT ð1; sÞ T ðr; sÞ þ cTi ðsÞ 1m J0 ðgirÞ; r ; i¼1
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
M r; sÞ ¼ r rr ð
1 P i¼1
M r; sÞ ¼ r hh ð M r; sÞ ¼ r zz ð
1 P i¼1 1 P i¼1
h cM rÞ 12m i ðsÞ gi J0 ðgi 1m cM i ðsÞ
h
mgi J ðg rÞ 1m 0 i
J1 ðgi rÞ r
þ 12m 1m
mgi cM rÞ; i ðsÞ 1m J0 ðgi
i 9 > ; > > > > > i > = J1 ðgi rÞ ; r > > > > > > > ;
5325
ð63Þ
Tii ði ¼ r; h; zÞ and r M where r ii are thermal stresses and magnetic stresses, respectively, and satisfy the following relations: Trr þ r M rr ¼ r r rr ;
hh ¼ r Thh þ r M r hh ;
hh ¼ r Tzz þ r M r zz :
ð64Þ
From Eqs. (62) and (63), the radial and circumferential components of the thermal stress and the magnetic stress at center ðr ¼ 0Þ are expressed as 9 1 P gi Trr ð0; sÞ ¼ r Thh ð0; sÞ ¼ v3 ½T ð1; sÞ T ð0; sÞ þ cTi ðsÞ 2ð1mÞ > r ;> = i¼1 ð65Þ 1 P > gi M M > ; M r ð0; sÞ ¼ r ð0; sÞ ¼ c ðsÞ : rr hh i 2ð1mÞ i¼1
3.3.2. Quasi-static solutions In this section, we derive the quasi-static solutions of the displacements and stresses. Disregarding the inertia term of the right-hand side in Eq. (23a) gives the equilibrium equation: d 1 dðr uÞ dT d 2 þ ðH z Þ : ð66Þ ¼ v3 dr r dr dr dr Solving Eq. (66) with the boundary condition (23b), we obtain the quasi-static solutions of the radial displacements due to temperature change and Lorentz force, respectively, which are given as follows: uT ðr; sÞ ¼ v3 ½F T ðr; sÞ þ ð1 2mÞF T ð1; sÞr; ð67Þ uM ðr; sÞ ¼ ½F M ðr; sÞ þ ð1 2mÞF M ð1; sÞr ð1 mÞ/2 ðsÞr; where F T ðr; sÞ ¼ 1r
R
F M ðr; sÞ ¼ 1r
R
rT ðr; sÞ dr; r½H z ðr; sÞ2 dr:
) ð68Þ
Substituting Eq. (67) with the relation of Eq. (61) into Eq. (22), we obtain the quasi-static solutions of the stress components as follows: 9 1 Trr ðr; sÞ ¼ v3 12m r F T ðr; sÞ þ F T ð1; sÞ ; r > 1m = T 12m 1 hh ðr; sÞ ¼ v3 1m r F T ðr; sÞ þ F T ð1; sÞ T ðr; sÞ ; ð69Þ r > ; Tzz ðr; sÞ ¼ v3 12m r ½2mF ð1; sÞ T ð r ; sÞ; T 1m 1 9 M 12m rr ðr; sÞ ¼ 1m r F M ðr; sÞ þ F M ð1; sÞ þ H 2z ðr; sÞ /2 ðsÞ; > r = 2 12m 1 m 2 ð70Þ M ð r ; sÞ ¼ F ð r ; sÞ þ F ð1; sÞ þ H ð r ; sÞ / ðsÞ; r M M hh z 1m r 1m > ; 2 M 12m m 2 zz ðr; sÞ ¼ 1m 2mF M ð1; sÞ þ 1m H z ðr; sÞ 2m/ ðsÞ: r These quasi-static thermal stresses and magnetic stresses satisfy the relations of Eq. (64). By using L’Hospital’s rule and the relations of Eq. (68), the expressions of 1r F T ðr; sÞ and 1r F T ðr; sÞ at the center ðr ¼ 0Þ in Eqs. (69) and (70) are written as ) 1 F ðr; sÞr¼0 ¼ 12 T ð0; sÞ; r T ð71Þ 1 F M ðr; sÞ ¼ 1 H 2 ð0; sÞ: r
r¼0
2
z
5326
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
From Eqs. (69)–(71), the radial and circumferential components of the thermal stress and the magnetic stress at the center ðr ¼ 0Þ are expressed as 9 1 = Trr ð0; sÞ ¼ r Thh ð0; sÞ ¼ v3 12m r F ð1; sÞ T ð0; sÞ ; T 1m 2 h i ð72Þ 2 M M 12m 1 2 hh ð0; sÞ ¼ 1m F M ð1; sÞ 2ð12mÞ H z ð0; sÞ / ðsÞ: ; rr ð0; sÞ ¼ r r 4. Numerical results and discussion In this paper, an arbitrary function /(s) is assumed to be the smoothed ramp function with sine function: ( sin 2sp0 s ðs < s0 Þ; /ðsÞ ¼ ð73Þ 1 ðs P s0 Þ; T ð0Þ ^ cin ðsÞ, ^cTijmn ðsÞ, where s0 is a rise time in the nondimensional form. The functions of s: aˆn(s), ^bð0Þ n ðsÞ, bjmn ðsÞ, ^ Mð1Þ Mð2Þ ^cin ðsÞ, ^cimn ðsÞ in Eqs. (32), (43) and (58) are presented in Appendix A for this case. By use of the analytical results mentioned above, numerical calculations are carried out for aluminum, material properties of which are given by 9 l ¼ 4p 107 ½H=m; r ¼ 3:42 107 ½S=m; > > > C ¼ 2:7 103 ½J=kgK; q ¼ 0:9 103 ½kg=m3 ; j ¼ 92:6 106 ½m2 =s; = ð74Þ > m ¼ 0:33; E ¼ 70½GPa; a ¼ 24 106 ½1=K: > > ;
In addition, since the nondimensional variable v2 in Eq. (16) contains a radius b, the dimension of the radius of the solid cylinder should be set. We here set the dimension as b = 1.0 · 104[m], for reasons of the convergence of the solutions. A rise time s0 is given by s0 ¼ e
1 ; v2
ð75Þ
where e is a parameter, and 1/v2 means the nondimensional time which stress waves created at the surface take to arrive at the center of the cylinder. Firstly, numerical results for e = 0.5 are presented in Figs. 2–7. Fig. 2 shows the time evolution of eddy current J h . The eddy current rapidly shows the peak in front of s0 at the surface ðr ¼ 1:0Þ, then it decays with time. Fig. 3 shows the time evolutions of temperature changes T for h ¼ 0:0 and 1.0 until they attain steady state. It can be seen from Fig. 3 that temperature changes take long time to attain steady state as compared with the eddy current J h . This is because the value of v1 in Eq. (16), which is the ratio of the diffusion coefficient of
0
τ0 –r = 0.5 –r = 1.0
-1 -2
ε = 0.5
– Jθ
-3 -4 -5 -6 -7 -8 0
0.2
0.4
τ
0.6
0.8
Fig. 2. Time evolution of eddy current J h , for e = 0.5.
1
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5327
– T
1.2 1
–r = 0.0 –r = 1.0
0.8
= 0.5 – h = 0.0
0.6 0.4
– h = 1.0
0.2 0 0
100
200
300
400
500
600
700
800
τ Fig. 3. Time evolutions of temperature changes T , for h ¼ 0:0 and 1.0, e = 0.5.
1.2
τ0
1 –r = 1.0
– T
0.8
– h = 0.0 – h = 1.0 ε = 0.5
0.6 0.4 –r = 0.5 0.2
–r = 0.0 0 0
0.2
0.4
τ
0.6
0.8
1
Fig. 4. Time evolution of temperature change T for short time, for h ¼ 0:0 and 1.0, e = 0.5.
temperature field j to that of magnetic field 1/lr, is very small: v1 = j/(1/lr) ffi 3.98 · 103 for aluminum. In the case of h ¼ 1:0, temperature change converges zero, whereas in the case of h ¼ 0:0 namely the insulated case, it converges a value which is determined from Eq. (40) to be: Z 1 Z 1 ðr; s0 Þ ds0 dr: T ¼2 w ð76Þ 0
0
However as shown in Fig. 4, which shows the time evolutions of temperature changes for short time, there is no large difference between each case, and temperature changes arise from the surface ðr ¼ 1:0Þ rapidly but still more slowly than the eddy current in Fig. 2. Numerical results of the thermal stresses are therefore shown below only for the case of h ¼ 0:0. M Fig. 5 shows the dynamic and quasi-static behaviors of the radial and circumferential components r rr and M M hh and the axial component r zz of the magnetic stress. In Fig. 5, a new nondimensional time sE is introduced r for convenience. The nondimensional time sE is based on the longitudinal wave velocity CL, which is defined as sE ¼
s CL t: ¼ v2 b
ð77Þ
Note that the radial and circumferential stress components at the center ðr ¼ 0Þ are the same with each other as shown by Eqs. (65) and (72) It is known that magnitude of magnetic stresses should be lH 20 =2 (namely, 1 in nondimensional form with Eq. (15)) at the maximum (Moon and Chattopadhyay, 1974). The quasi-static solutions of magnetic stresses are less than 1, as shown in Fig. 5. However, it can be seen from Fig. 5 that magnitude of the dynamic magnetic stresses are larger than 1. This is because the stress wave created at
5328
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
M M M Fig. 5. Dynamic and quasi-static behaviors of the magnetic stresses r rr , r hh and r zz , for e = 0.5.
M Fig. 6. Radial variation of the radial magnetic stress r rr in the dynamic solution.
the surface due to Lorentz force propagates into the center and then it accumulates to the center as shown in M Fig. 6, which shows the radial variation of the radial magnetic stress r rr in the dynamic solution. This phenomenon is called the stress-focusing effect (e.g., Nelson, 1968; Nelson, 1969; Ho, 1976; Hata, 1994; Wang et al., 2002). If a rise time s0 equals to zero, then the ramp function become to be the step function, and the values of stresses at center will be infinite as mentioned by Ho (1976) and Hata (1994) for the thermal loading. However, a rise time will be physically nonzero. Fig. 7 shows the dynamic and quasi-static behaviors of
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5329
Trr , r Thh and r Tzz , for h ¼ 0:0, e = 0.5. Fig. 7. Dynamic and quasi-static behaviors of the thermal stresses r
Trr and r Thh and the axial component r Tzz of the thermal stress for the the radial and circumferential components r insulated case ð h ¼ 0Þ. It can be seen from Fig. 7 that although at the center ðr ¼ 0Þ the stress-focusing effects due to the rapid temperature rise in Fig. 4 are observed, the effects of thermal stresses are smaller than those of magnetic stresses in Fig. 5. Whereas at the surface ðr ¼ 1:0Þ there are no large differences between the dynamic Tzz , and the absolute values and quasi-static behaviors of both the circumferential stress rThh and the axial stress r T T hh and r zz at the surface are larger than those of the magnetic stresses r M M of the thermal stresses r hh and r zz at the surface in Fig. 5. Next, numerical results for e = 10.0 are presented in Figs. 8–10. Figs. 8–10 show the time evolutions of eddy M M M Trr , r Thh and r Tzz for h ¼ 0, respectively. current J h , the magnetic stresses r rr , r hh and r zz and the thermal stresses r It can be seen from Fig. 8 that the eddy current J h is small and varies slowly as compared with the case of τ0
0
– Jθ
-0.5
-1
–r = 0.5 –r = 1.0
ε = 10.0 -1.5 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
τ Fig. 8. Time evolution of eddy current J h , for e = 10.0.
1
5330
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
M M M Fig. 9. Dynamic and quasi-static behaviors of the magnetic stresses r rr , r hh and r zz , for e = 10.0.
Trr , r Thh and r Tzz , for h ¼ 0:0, e = 10.0. Fig. 10. Dynamic and quasi-static behaviors of the thermal stresses r
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5331
e = 0.5 in Fig. 2. Therefore, the maximum absolute values of both the magnetic stresses in Fig. 9 and the thermal stresses in Fig. 10 are smaller than those for the case of e = 0.5 in Fig. 5 or Fig. 7, and there are almost no differences in magnitude between the dynamic and quasi-static solutions as shown in Figs. 9 and 10. Therefore, we conclude that if a rise time s0 of the ramp function is small (for example e = 0.5), the dynamic analysis is needed. 5. Conclusion In the present study, dynamic and quasi-static behaviors of magneto-thermo-elastic stresses induced by a transient magnetic field, which is defined by arbitrary function of time, in a conducting solid circular cylinder have been investigated. Exact solutions of electromagnetic field, temperature change, stresses and deformations have been obtained in the forms including the arbitrary function. The stresses have been determined to be sums of thermal stress and magnetic stress. Carrying out numerical calculations for the case that the arbitrary function of time is given by the smoothed ramp function with sine function, we have examined the dynamic and quasi-static behaviors of the thermal stresses and the magnetic stresses. Appendix A. The functions of nondimensional time s Mð1Þ Mð2Þ T ð0Þ The function of nondimensional time s: aˆn(s), ^ bjmn ðsÞ, ^cTijmn ðsÞ, ^cin ðsÞ, ^cimn ðsÞ and ^bnð0Þ ðsÞ, ^cin ðsÞ in Eqs. (32), (42) and (58) are given as follows: For s < s0, 9 2 > ^ an ðsÞ ¼ wn ðx sin xs þ k 2n cos xs k 2n ekn s Þ; > > > > ðsÞ ðcÞ ð1Þ w w 2 2 2 2 2 2 2 2 m n > ^ > bjmn ðsÞ ¼ 2 fðk m þ k n Þxhj ðsÞ þ ðk m k n x Þhj ðsÞ þ ðk m k n þ x Þhj ðsÞ > > > > ðkÞ ðckÞ ðckÞ ðskÞ ðskÞ 2 2 2 2 > þ2k m k n ½hjmn ðsÞ fhjm ðsÞ þ hjn ðsÞg 2x½k m hjm ðsÞ þ k n hjn ðsÞg; > > > > > ðsÞ ðcÞ ð1Þ wm wn 2 2 2 2 2 2 T 2 2 = ^cijmn ðsÞ ¼ 2 fðk m þ k n Þxd ij ðsÞ þ ðk m k n x Þd ij ðsÞ þ ðk m k n þ x Þd ij ðsÞ ðA:1Þ ðkÞ ðckÞ ðckÞ ðskÞ ðskÞ > þ2k 2m k 2n ½d ijmn ðsÞ 2fd ijm ðsÞ þ d ijn ðsÞg 2x½k 2m d ijm ðsÞ þ k 2n d ijn ðsÞg; > > > > > Mð1Þ ðsÞ ðcÞ ð1Þ ðskÞ > > ^cin ðsÞ ¼ w2n ½k 2i fi ðsÞ xfi ðsÞ þ xfi ðsÞ 2k 2i fin ðsÞ; > > > > Mð2Þ ðsÞ ðcÞ ð1Þ wm wn 2 2 2 2 2 2 2 2 > > ^cimn ðsÞ ¼ 2 fðk m þ k n Þxfi ðsÞ þ ðk m k n x Þfi ðsÞ þ ðk m k n þ x Þfi ðsÞ > > > ; ðckÞ ðckÞ 2 2 ðkÞ 2 ðskÞ 2 ðskÞ þ2k m k n ½fimn ðsÞ 2ffim ðsÞ þ fin ðsÞg 2x½k m fim ðsÞ þ k n fin ðsÞg; 9 n o w2n k 4n x2 4 2 ð0Þ 2 k 2n s 2k 2n s > ^ = bn ðsÞ ¼ 2 sin 2xs þ ðk n þ x Þs k n ½cos 2xs 4e cos xs þ e þ 2 ; 2x n o ðA:2Þ 2 4 T ð0Þ ðtÞ ðcÞ ðckÞ ðkÞ ð1Þ x2 ðsÞ ; ^cin ðsÞ ¼ w2n kn2x fi ðsÞ þ ðk 4n þ x2 Þfi ðsÞ k 2n ½fi ðsÞ 4fin ðsÞ þ finn ðsÞ þ 2fi ðsÞ ; >
where wn ¼ ðsÞ
k 4n
x ; þ x2
x¼
1 2 2 2 1 pj Þ þð2xÞ
hj ðsÞ ¼ ðv ðcÞ
hj ðsÞ ¼ ðv
1
2 2 2 1 pj Þ þð2xÞ
p ; 2s0
ðA:3Þ 2
ðv1 p2j sin 2xs 2x cos 2xs þ 2xev1 pj s Þ; 2
ð2x sin 2xs þ v1 p2j cos 2xs v1 p2j ev1 pj s Þ; 2
ð1Þ
hj ðsÞ ¼ v 1p2 ð1 ev1 pj s Þ;
ðkÞ
hjmn ðsÞ ¼ v
1 2 2 2 1 p j ðk m þk n Þ
2
2
2
½eðkm þkn Þs ev1 pj s ;
9 > > > > > > > > > > > > =
> > > > ðskÞ 2 1 2 > hjn ðsÞ ¼ x2 þðk2 v p2 Þ2 f½ðv1 pj k n Þ sin xs x cos xse þ xe g; > > > 1 j n > > > 2s 2 ðckÞ v p 2 2 1 2 k n s 2 1 j ; ðv1 pj k n Þe g; > hjn ðsÞ ¼ 2 2 2 2 f½x sin xs þ ðv1 p j k n Þ cos xse 1 j
k 2n s
x þðk n v1 pj Þ
v1 p2j s
ðA:4Þ
5332
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335 ðsÞ
ðsÞ
1
d ij ðsÞ ¼ ðv
2 2 2 1 pj Þ þð2xÞ
ðcÞ
1
d ij ðsÞ ¼ ðv
2 2 2 1 pj Þ þð2xÞ
ð1Þ
ðcÞ
ðpÞ
½v1 p2j fi ðsÞ 2xfi ðsÞ þ 2xfij ðsÞ; ðsÞ
ðcÞ
ðpÞ
ðpÞ
d ijmn ðsÞ ¼ v
½2xfi ðsÞ þ v1 p2j fi ðsÞ v1 p2j fij ðsÞ;
ð1Þ
ðkÞ
d ij ðsÞ ¼ v 1p2 ½fi ðsÞ fij ðsÞ;
ðkÞ
1 2 2 2 1 p j ðk m þk n Þ
ðpÞ
½fimn ðsÞ fij ðsÞ;
9 > > > > > > > > > > > > > > =
ðA:5Þ
> > > > > ðskÞ ðskÞ ðckÞ ðpÞ 2 1 2 > d ijn ðsÞ ¼ x2 þðk2 v p2 Þ2 ½ðv1 pj k n Þfin ðsÞ xfin ðsÞ þ xfij ðsÞ; > > 1 j n > > > > > ðckÞ ðskÞ ðckÞ ðpÞ 2 2 > 1 2 2 ; d ijn ðsÞ ¼ 2 2 ½xf ðsÞ þ ðv p k Þf ðsÞ ðv p k Þf ðsÞ; 2 2 1 j 1 j in n in n ij 1 j
x þðk n v1 pj Þ
ðsÞ
9 > > > > > > > > > > > > > > > > > =
ðcÞ
Xi 1 fi ðsÞ ¼ X2 ð2xÞ ðsÞ ¼ X2 ð2xÞ 2 ðXi sin2xs 2x sinXi sÞ; fi 2 ðcos2xs cos Xi sÞ; i
i
ð1Þ
fi ðsÞ ¼ X1i ð1 cosXi sÞ; ðkÞ
2
2
fimn ðsÞ ¼ X2 þðk12 þk2 Þ2 ½ðk 2m þ k 2n ÞsinXi s Xi cos Xi s þ Xi eðk m þkn Þs ; i
m
n
> > > > > > > > 2 ðckÞ > fin ðsÞ ¼ x4 þ2x2 ðk4 X1 2 Þþðk4 þX2 Þ2 fXi ekn s ½2k 2n xsinxs þ ðk 4n þ X2i x2 Þcosxs þ k 2n ðk 4n þ X2i þ x2 ÞsinXi s Xi ðk 4n þ X2i x2 ÞcosXi sg; > > > n n i i > > > > 2 > ðpÞ ðtÞ v1 pj s 1 2 1 ; f ðsÞ ¼ 2 2 4 ðv p sinXi s Xi cosXi s þ Xi e Þ; f ðsÞ ¼ 2 ðXi s sinXi sÞ: ðskÞ
2
fin ðsÞ ¼ x4 þ2x2 ðk4 X1 2 Þþðk4 þX2 Þ2 fXi ekn s ½ðk 4n þ X2i x2 Þsinxs þ 2k 2n xcos xs þ xðk 4n X2i þ x2 ÞsinXi s 2k 2n xXi cos Xi sg; n
ij
Xi þv1 pj
n
i
i
1 j
i
Xi
ðA:6Þ
For s P s0, 2
2
^ an ðsÞ
¼
wn ½xekn ðss0 Þ k 2n xekn s ;
^ bjmn ðsÞ
¼
wm wn 2
ðs; 2Þ
fðk 2m þ k 2n Þxhj ðk; 2Þ
ðc; 2Þ
ðsÞ þ ðk 2m k 2n x2 Þhj ðck; 2Þ
þ2k 2m k 2n ½hjmn ðsÞ fhjm ðk2Þ þ2½x2 qjmn ðsÞ
^cTijmn ðsÞ
¼
wm wn 2
ðk3Þ xk 2m qjmn ðsÞ ðs; 2Þ
½ðk 2m þ k 2n Þxd ij ðk; 2Þ
ðck; 2Þ
ðsÞ þ hjn
ðsk; 2Þ
ðsÞg 2x½k 2m hjm
ðk3Þ xk 2n qjnm ðsÞ
þ
ðc; 2Þ
ðsÞ þ ðk 2m k 2n x2 Þd ij ðck; 2Þ
ð1; 2Þ
ðsÞ þ ðk 2m k 2n þ x2 Þhj
ðsÞ
ðsk; 2Þ
ðsÞ þ k 2n hjn
ðsÞ
ðk1Þ k 2m k 2n qjmn ðsÞg; ð1; 2Þ
ðsÞ þ ðk 2m k 2n þ x2 Þd ij
ðck; 3Þ
ðsÞ
ðsk; 2Þ
ðsk; 2Þ
þ2k 2m k 2n fd ijmn ðsÞ 2½d ijm ðsÞ þ d ijm ðsÞg 2x½k 2m d ijm ðsÞ þ k 2n d ijn ðsÞ
> > > > > > þ > > > > > ðc; 2Þ ð1; 2Þ ðk2Þ wn 2 ðs; 2Þ 2 ðsk; 2Þ 2 ðk1Þ > > ½k f ðsÞ xf ðsÞ þ xf ðsÞ 2k f ðsÞ þ w ½xg ðsÞ k g ðsÞ; > i i in n n i n in n in 2 > > > > ðs; 2Þ ðc; 2Þ ð1; 2Þ wm wn 2 2 2 2 2 2 > 2 2 > fðk þ k Þxf ðsÞ þ ðk k x Þf ðsÞ þ ðk k þ x Þf ðsÞ > i i i m n m n m n 2 > > > > ðck; 2Þ ðck; 2Þ 2 2 ðk; 2Þ 2 ðsk; 2Þ 2 ðsk; 2Þ > > þ2k m k n ½fimn ðsÞ 2ffim ðsÞ þ fin ðsÞg 2x½k m fim ðsÞ þ k n fin ðsÞ > > > > ; ðk4Þ ðk5Þ ðk5Þ ðk3Þ 2 2 2 2 þ2½x2 gimn ðsÞ xk m gimn ðsÞ xk n ginm ðsÞ þ k m k n gimn ðsÞg; ðk2Þ þ2½x2 sijmn ðsÞ
Mð1Þ
^cin ðsÞ ¼ Mð2Þ
^cimn ðsÞ ¼
n 2
¼
wn 2
^cin ðsÞ ¼
w2n 2
^ bnð0Þ ðsÞ T ð0Þ
9 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > =
n
ðk3Þ xk 2m sijmn ðsÞ
ðk3Þ xk 2n sijnm ðsÞ
2
2
½ðk 4n þ x2 Þs0 k 2n þ xk2 2xekn s0 n
k 4n x2 ðs; 2Þ fi ðsÞ 2x
ðt; 2Þ
þ ðk 4n þ x2 Þfi
ðk1Þ k 2m k 2n sijmn ðsÞ;
h
x2 k 2n
2
2
2
e2kn ðss0 Þ 2xe2kn sþkn s0
ðsÞ
io 2 þ k 2n e2kn s ;
ðA:7Þ 9 > > > > > > > > > =
> ðc; 2Þ ðck; 2Þ ðk; 2Þ ð1; 2Þ > > k 2n ½fi ðsÞ 4fin ðsÞ þ finn ðsÞ þ 2fi ðsÞ > > > h io h i > > ð1Þ ðk5Þ 4 2 2 ðk3Þ 2 x2 k 2n s0 x2 ðk4Þ ; þ ðk n þ x Þs0 k n þ k2 2xe gi ðsÞ k2 ginn ðsÞ 2xginn ðsÞ þ k n ginn ðsÞ ; > n
n
ðA:8Þ
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5333
where
2
ðsÞ
¼
2x ðv1 p2j Þ2 þð2xÞ2
ðc; 2Þ
ðsÞ
¼
ðv
ðsÞ
¼
1 v1 p2j
hjmn ðsÞ
¼
2 2 2 1 ½eðkm þkn Þs0 ev1 pj ðss0 Þ v1 p2j ðk 2m þk 2n Þ
hj
ð1; 2Þ
hj
ðk; 2Þ
ðsk; 2Þ
ðsÞ
ðck; 2Þ
ðsÞ ¼
hjn hjn
ðk1Þ
ðk2Þ
qjmn ðsÞ ðk3Þ
qjmn ðsÞ
¼
v1 p2j
2
2
2
1 v1 p2j ðk 2m þk 2n Þ
2
ev1 pj ðss0 Þ ;
¼
2 2 2 1 ½eðkm þkn Þsþkn s0 v1 p2j ðk 2m þk 2n Þ
ekm s0 ev1 pj ðss0 Þ ;
ðs; 2Þ
1
ð1; 2Þ
ðsÞ
¼
1 v1 p2j
d ijmn ðsÞ
¼
ðsk; 2Þ
¼
ðck; 2Þ
ðsÞ ¼
ðv1 p2j Þ2 þð2xÞ2
ð1; 2Þ
½fi
fv1 p2j fi
ðs; 2Þ
f2xfi
ðc; 2Þ
ðsÞ fij ðsÞ gij ðsÞg;
ðc; 2Þ
ðsÞ fij ðsÞ gij ðsÞg;
ðsÞ 2x½fi
ðsÞ þ v1 p2j ½fi
ðpÞ
ðpÞ
ðp2Þ
9 > > > > > > > > > > > > > > > > > > > =
> > > > > > > > > 2 ðsk; 2Þ ðck; 2Þ ðpÞ 2 > 1 2 k n s0 ðp2Þ > fðv p k Þ½f ðsÞ þ e g ðsÞ x½f ðsÞ f ðsÞg; 2 2 > 2 1 in ij in ij n j x2 þðk n v1 pj Þ > > > > > > ðsk; 2Þ ðck; 2Þ ðpÞ 2 1 k 2n s0 ðp2Þ 2 > ; fx½f ðsÞ þ e g ðsÞ þ ðv p k Þ½f ðsÞ f ðsÞg; 1 j in ij in ij n x2 þðk 2 v p2 Þ2 ðk; 2Þ
1
v1 p2j ðk 2m þk 2n Þ
n
ðpÞ
2
2
ðp2Þ
ðA:11Þ
½fimn ðsÞ fij ðsÞ þ eðkm þkn Þs0 gij ðsÞ;
1 j
eðkm þkn Þs0 gij ðsÞ;
ðk2Þ
¼
ðk4Þ 1 ½g ðsÞ v1 p2j ðk 2m þk 2n Þ ijmn
gij ðsÞ;
¼
ðk5Þ 1 ½g ðsÞ v1 p2j ðk 2m þk 2n Þ ijmn
ekm s0 gij ðsÞ;
ðk3Þ
ðp2Þ
ðp2Þ
ðk3Þ 1 ½g ðsÞ v1 p2j ðk 2m þk 2n Þ ijmn
sijmn ðsÞ
ðpÞ
ðsÞ fij ðsÞ þ gij ðsÞ;
¼
sijmn ðsÞ
ðA:10Þ
> > > > > > ;
2
2
ðk1Þ
sijmn ðsÞ
9 > > > > > > =
2
2
2 2 1 ½eðkm þkn Þðss0 Þ v1 p2j ðk 2m þk 2n Þ
1 ðv1 p2j Þ2 þð2xÞ2
d ijn
2
¼
¼
d ijn ðsÞ
2
½eðkm þkn Þs eðkm þkn Þs0 ev1 pj ðss0 Þ ;
ðsÞ
ðk; 2Þ
ðA:9Þ
2
ev1 pj s ;
1 j
ðc; 2Þ
d ij
2
> > > > > > > > > 2s 2 ðss Þ 2 > v p v p 2 1 2 k n s0 0 1 j 1 j > ½xe þ ðv p k Þe e ; > 2 2 2 1 2 n j > x þðk n v1 pj Þ > > > > > 2 2 2 2 v1 pj s > 1 k n s0 v1 pj ðss0 Þ 2 ; ½xe e ðv p k Þe ; 2 1 j n x2 þðk 2 v p2 Þ
¼
d ij
2
½ev1 pj s þ ev1 pj ðss0 Þ ;
½ev1 pj ðss0 Þ ev1 pj s ;
ðsÞ
d ij
½ev1 pj s þ ev1 pj ðss0 Þ ;
2 2 2 1 pj Þ þð2xÞ
n
qjmn ðsÞ
ðs; 2Þ
¼
9 > > > > > > > > > > > > > > > > > > > =
2
ðs; 2Þ
hj
2
2
ðp2Þ
ðp2Þ
2
ðp2Þ
9 > > > > > = > > > > > ;
ðA:12Þ
5334
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335 ðs; 2Þ
2x ðsÞ ¼ X2 ð2xÞ 2 ½sin Xi s sin Xi ðs s0 Þ;
ðc; 2Þ
Xi ðsÞ ¼ X2 ð2xÞ 2 ½ sin Xi s0 sin Xi s ð1 þ cos Xi s0 Þcos Xi s;
fi
9 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > =
i
fi
i
ð1; 2Þ
ðsÞ ¼ X1i ½sin Xi s0 sin Xi s ð1 cos Xi s0 Þ cos Xi s; ðk; 2Þ fimn ðsÞ ¼ X2 þðk12 þk2 Þ2 ðk 2m þ k 2n Þ sinXi s Xi cos Xi s fi
i
e ðsk; 2Þ
fin
m
n
o ½ðk 2m þ k 2n Þ sinXi ðs s0 Þ Xi cos Xi ðs s0 Þ ;
ðk 2m þk 2n Þs0
ðsÞ ¼ x4 þ2x2 ðk4 X1 2 Þþðk4 þX2 Þ2 ½sinXi sfxðk 4n X2i þ x2 Þ n
i
n
i
2
þekn s0 ½Xi ðk 4n þ X2i x2 Þ sin Xi s0 k 2n ðk 4n þ X2i þ x2 Þ cos Xi s0 g n o > 2 > > þ cos Xi s 2xk 2n Xi þ ekn s0 ½Xi ðk 4n þ X2i x2 Þcos Xi s0 þ k 2n ðk 4n þ X2i þ x2 Þsin Xi s0 ; > > > > n o > > ðck; 2Þ 2 4 2 2 4 2 1 2 k 2n s0 2 > 2k n Xi sin Xi s0 ðk n Xi þ x Þcos Xi s0 > fin ðsÞ ¼ x4 þ2x2 ðk4 X2 Þþðk4 þX2 Þ2 ½sin Xi s k n ðk n þ Xi þ x Þ xe > > n n i i > > n o > > 2 4 2 2 4 2 > > cos Xi s Xi ðk n þ Xi x2 Þ þ xekn s0 2k n Xi cos Xi s0 þ ðk n Xi þ x2 Þsin Xi s0 ; > > > n > > ðp; 2Þ > > fij ðsÞ ¼ X2 þv1 2 p4 v1 p2j sin Xi s Xi cos Xi s > > i 1 j > > o > > 2 v1 pj s0 > 2 > e ½v1 pj sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ ; > > > > > ðt; 2Þ > ; fi ðsÞ ¼ 12 ½Xi s0 cos Xi ðs s0 Þ þ sin Xi ðs s0 Þ sin Xi s Xi
ðk1Þ
1 gin ðsÞ ¼ X2 þk 4 fe i
k 2n s0
n
½k 2n sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ þ Xi e
ðk2Þ
k 2n s
g;
k 2n ðss0 Þ
2 1 gin ðsÞ ¼ X2 þk ; 4 ½k n sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ þ Xi e n i n o 2 2 2 2 ðk3Þ gimn ðsÞ ¼ X2 þðk12 þk2 Þ2 eðkm þkn Þs0 ½ðk 2m þ k 2n Þ sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ þ Xi eðkm þkn Þs i
m
n
ðk4Þ
2
2
gimn ðsÞ ¼ X2 þðk12 þk2 Þ2 ½ðk 2m þ k 2n Þ sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ þ Xi eðkm þkn Þðss0 Þ ; m n i n 2 o 2 2 2 ðk5Þ 1 gimn ðsÞ ¼ X2 þðk2 þk2 Þ2 ekm s0 ½ðk 2m þ k 2n Þ sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ þ Xi eðkm þkn Þsþkn s0 ; i
m
n
2
ðp2Þ
gij ðsÞ ¼ X2 þv1 2 p4 ½v1 p2j sin Xi ðs s0 Þ Xi cos Xi ðs s0 Þ þ Xi ev1 pj ðss0 Þ ; i
ð1Þ
j
gi ðsÞ ¼ X1i ½1 cos Xi ðs s0 Þ:
ðA:13Þ 9 > > > > > > > > > > > > > > > > > > =
> > > > > > > > > > > > > > > > > > ; ðA:14Þ
References Chian, C., Moon, F.C., 1981. Magnetically induced cylindrical stress waves in a thermoelastic conductor. International Journal of Solids and Structures 17, 1021–1035. Eringen, A.C., Maugin, G.A., 1990. Electrodynamics of Continua, Vol. I, Foundations and Solid Media. Springer-Verlag, New York. Ezzat, M., Youssef, H., 2005. Generalized magneto-thermoelasticity in a perfectly conducting medium. International Journal of Solids and Structures 42, 6319–6334. Hata, T., 1994. Reconsideration of the stress-focusing effect in a uniformly heated solid cylinder. Journal of Applied Mechanics, Transactions of the ASME 61, 676–680. Ho, C.H., 1976. Stress-focusing effect in a uniformly heated solid cylindrical rod. Journal of Applied Mechanics, Transactions of the ASME 43, 464–468. Kaliski, S., Michalec, J., 1963. The resonance amplification of a magnetoelastic wave radiated from a cylindrical cavity. Proceedings of Vibration Problems 4, 7–15. Kaliski, S., Nowacki, W., 1962. Combined elastic and electromagnetic waves produced by thermal shock. Bulletin Academy of Polonaise Des Sciences-Series Des Sciences and Technology 10, 159–168. Moon, F.C., Chattopadhyay, S., 1974. Magnetically induced stress waves in a conducting solid - theory and experiment. Journal of Applied Mechanics, Transactions of the ASME 41, 641–647.
M. Higuchi et al. / International Journal of Solids and Structures 44 (2007) 5316–5335
5335
Nelson, C.W., 1968. Transient axially symmetric excitation of a circular elastic rod in plane strain. Journal of Applied Mechanics, Transactions of the ASME 35, 306–312. Nelson, C.W., 1969. The ramp unloading case of transient axially symmetric excitation of a circular elastic rod in plane strain. Journal of the Franklin Institute 287, 125–142. Pantelyat, M.G., Fe´liachi, M., 2002. Magneto-thermo-elastic-plastic simulation of inductive heating of metals. EPJ Applied Physics 17, 29–33. Paria, G., 1967. Magneto-elastisity and magneto-thermo-elasticity. Advances in Applied Mechanics 10, 73–112. Wang, X., Lu, G., Guillow, S.R., 2002. Magnetothermodynamic stress and perturbation of magnetic field vector in a solid cylinder. Journal of Thermal Stresses 25, 909–926. Wang, X., Dai, H.L., 2004. Magnetothermodynamic stress and perturbation of magnetic field vector in .an orthotropic thermoelastic cylinder. International Journal of Engineering Science 42, 539–556. Wang, X., Dong, K., 2006. Magnetothermodynamic stress and perturbation of magnetic field vector in a non-homogeneous thermoelastic cylinder. European Journal of Mechanics A/Solids 25, 98–109. Wauer, J., 1996. Free and forced magneto-thermo-elastic vibrations in a conducting plate layer. Journal of Thermal Stresses 19, 671–691.