Magneto–electro interaction of two offset indenters in frictionless contact with magnetoelectroelastic materials

Magneto–electro interaction of two offset indenters in frictionless contact with magnetoelectroelastic materials

Accepted Manuscript Magneto-electro interaction of two offset indenters in frictionless contact with magnetoelectroelastic materials Yue-Ting Zhou , ...

1MB Sizes 0 Downloads 24 Views

Accepted Manuscript

Magneto-electro interaction of two offset indenters in frictionless contact with magnetoelectroelastic materials Yue-Ting Zhou , Sheng-Jie Pang , Yong Hoon Jang PII: DOI: Reference:

S0307-904X(17)30479-1 10.1016/j.apm.2017.07.041 APM 11891

To appear in:

Applied Mathematical Modelling

Received date: Revised date: Accepted date:

12 April 2017 1 July 2017 20 July 2017

Please cite this article as: Yue-Ting Zhou , Sheng-Jie Pang , Yong Hoon Jang , Magneto-electro interaction of two offset indenters in frictionless contact with magnetoelectroelastic materials, Applied Mathematical Modelling (2017), doi: 10.1016/j.apm.2017.07.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights Interaction of two perfectly conducting indenters is examined.



Various intensity factors are defined to measure singular behavior at the edges.



Degradation from two perfectly conducting indenters to one indenter is done.



Interaction between two semi-cylindrical indenters is revealed.



Singularities at the edges can be suppressed because of multi-field coupling.

AC

CE

PT

ED

M

AN US

CR IP T



1

ACCEPTED MANUSCRIPT

Magneto-electro interaction of two offset indenters in frictionless contact with magnetoelectroelastic materials Yue-Ting Zhou a ,* , a

Sheng-Jie Pang a , Yong Hoon Jang b

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092,

b

CR IP T

P. R. China School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea

ED

M

AN US

ABSTRACT Within the theory of linear full-field magneto-electro-elasticity, magneto-electro interaction of two electrically-conducting and magnetically-conducting indenters acting over the surface of magnetoelectroelastic materials widely used in practical industries is examined. The operation theory, Fourier transform technique and integral equation technique are employed to address the two-dimensional, mixed boundary-value problem explicitly. The surface stresses, electric displacement and magnetic induction and their respective intensity factors are obtained in closed forms for two perfectly conducting semi-cylindrical indenters. Degradation from two perfectly conducting semi-cylindrical indenters to one single perfectly conducting cylindrical indenter is discussed. Numerical analyses are detailed to reveal the effects of the interaction between two semi-cylindrical indenters on contact behaviors subjected to multi-field loadings.

PT

Keywords: Magneto-electro interaction; Magnetoelectroelastic materials; Electrically-conducting and magnetically-conducting; Closed forms; Singularity; Multi-field coupling.

CE

Introduction

AC

The indentation technique involves the application of a well-defined indenter to

deform the testing materials and characterize their mechanical performances [1]. For example, since residual stresses exert pronounced influences on materials’ mechanical _________ *

Corresponding author at. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, P. R. China. E-mail addresses: [email protected] (Y.T. Zhou). 2

ACCEPTED MANUSCRIPT

behaviors including fatigue, fracture, wear and friction, one can use the instrumented indentation technique [2] to measure the residual stress field easily with comparison of other methods, such as the hole-drilling and layer-removing techniques, curvature measurement, ultrasonic methods, X-ray and neutron diffraction [3].

CR IP T

The indentation problems of magnetoelectroelastic materials (MEE) exhibiting a magneto-electric effect motivated a number of experimental fabrications and theoretical predictions for gaining a better understanding of the interaction of

AN US

microstructures and coupling effects [4]. Indenters with several specific geometries were concerned. Hou et al. [5] studied the elliptical Hertzian contact problem of magnetoelectroelastic materials based on the fundamental solutions [6]. Chen et al. [7]

M

established a general theory of the indentation for the flat, conical and spherical indenter acting on the surface of magnetoelectroelastic materials. Zhou and Lee [8]

ED

and Zhou and Kim [9] developed a basic theory of the sliding contact of

PT

magnetoelectroelastic materials subject to a rigid indenter with flat profile, parabolic profile, triangular profile or cylindrical profile illustrating that the indenter profile

CE

greatly affects the contact behavior. Recently, Li et al. [10] presented fundamental

AC

solutions for the contact problem of a magnetoelectroelastic half-space punched by a smooth and rigid half-infinite indenter. In the above-mentioned papers, the media were only subject to one indenter. Multiple indenters should be considered to reveal how the indenter spacing affects the contact behaviors. For example, two or more indenters (Fig. 1) are used to detect the fracture toughness of Solid-phase-sintered Silicon Carbide Ceramic (SSiC) by the Vickers and Knoop indentation method [11]. 3

ACCEPTED MANUSCRIPT

The Vickers indenters or Knoop indenters are loaded on the SSiC sample surfaces with different loads. Beyond the critical loads, surface cracks make the sample break. Thus, the surface damage mechanism under double indenters needs to be explored. On the other hand, the indenters occupy various profiles [12], and different profile has

CR IP T

different effect on the contact behavior. Addressing two collinear indenters acting on piezoelectric materials, one kind of single-phase magnetoelectroelastic materials, Wang et al. [13] found that the indenter tip fields were greatly affected by the relative

AN US

distance between two collinear indenters whose decrease leads to weakening of the quantities near the inner tips of the indenters. Due to multiple fields coupling, the quantities in magnetoelectroelastic materials must be disturbed by two indenters,

M

which makes the interaction effect between two indenters deserve to be studied. This article conducts an exact contact analysis of magnetoelectroelastic materials

ED

under two electrically-conducting and magnetically-conducting indenters. Singular

PT

integral equations with kernel like 1 (  2  x 2 ) because of the interaction of two indenters are obtained and solved analytically, which makes the solutions have a quite

CE

different form. The fields disturbed by the two perfectly conducting semi-cylindrical

AC

indenters are given explicitly. Figures are drawn to show that the quantities around the tips can be adjusted by selecting proper groups of the multi-field loadings due to the coupling properties.

Formulation of the Problem There are two electrically-conducting and magnetically-conducting indenters acting symmetrically about z-axis on the surface of magnetoelectroelastic materials 4

ACCEPTED MANUSCRIPT

(Fig. 2). Each of the two rigid indenters is pressed by an external loading P, an accumulated electric charge Q and an accumulated magnetic influx M. Basic Equations The constitutive equations are [14]

σ  cS  eE  hH ,

(1)

CR IP T

D  eT S   E  dH ,

(2)

B  hT S  dE   H ,

(3)

where the superscript T denotes the transposition, and σ , S , D , E , B and H

AN US

are, respectively, the vectors of the stress, strain, electric displacement, electric field, magnetic induction, and magnetic field, which are given as follows:

σ   xx  zz  xz 

T

 , S   u, x 

D   Dx

Dz  ,

E   , x

B   Bx

Bz  ,

H    , x

w, z

, z  , T

M

T

T

1  u, z  w, x   ,  2 

 , z  , T

(5) (6)

ED

T

(4)

where the comma stands for the differentiation with respect to the corresponding

PT

coordinate variables, u and w are the mechanical displacement components, and

 and  represent the electric potential and the magnetic potential.

CE

In Eqs. (1)-(3), c , e , h ,  , d and  are the matrices of the elastic

AC

coefficients, electromechanical coupling coefficients, magnetomechanical coupling coefficients,

dielectric

permeability

coefficients,

magneto-electro

coupling

coefficients, and magnetic permeability coefficients, which take the following forms for linearly, transversely isotropic magnetoelectroelastic materials:

 c11 c13 c  c13 c33  0 0

0  0  , 2c44 

 0 e   0  2e15

e31  e33  , 0 

5

(7)

ACCEPTED MANUSCRIPT

 0 h   0  2h15

h31  h33  , 0 

    11 0

 11 0

0 d d   11 ,  0 d33 



0 ,  33 

(8)

0  . 33 

(9)

 xx, x   xz , z  0 ,

 xz , x   zz , z  0 ,

Dx, x  Dz , z  0 ,

CR IP T

The equilibrium equations free of any generalized body source are (10) (11)

Bx, x  Bz , z  0 .

(12)

AN US

Modeling of Contact Problem of Two Perfectly Conducting Indenters

It is noted that for the fracture problem, there is a gap between the upper and lower crack surfaces, and air may enter crack gap. Thus, the flux of an electric field through the crack gap is not always zero. Hao and Shen [15] proposed the

M

semi-permeable crack face condition to describe this situation with the impermeable and permeable cases as limiting cases. For the present contact problem, the indenter

ED

and magnetoelectroelastic materials well contact in the contact region. Thus, it is assumed that there is no air inside the contact region, and perfectly conducting

PT

boundary conditions are chosen.

The x>0 part of the system is considered since the stated problem is symmetric

CE

with respect to x = 0. Denote the contact area as 0  l1  x  l2 in x>0 part (Fig. 2). Since each indenter is electrically-conducting and magnetically-conducting, one

AC

has

 ( x,0)  1 ( x) ,

0  l1  x  l2 ,

(13)

 ( x,0)   1 ( x) ,

0  l1  x  l2 ,

(14)

with 1 ( x) and  1 ( x) denoting the electric potential and the magnetic potential inside the contact area 0  l1  x  l2 . The perfectly conducting property makes the normal components of the electric 6

ACCEPTED MANUSCRIPT

displacement and the magnetic influx non-zero inside the contact area, though which are free outside the contact area. The surface normal stress is also not zero inside the contact area while keeps free outside the contact area.

 p( x), 0  l1  x  l2 , 0  x  l1 , x  l2  0,

 zz ( x, 0)  

(15)

(16)

CR IP T

q( x), 0  l1  x  l2 Dz ( x, 0)   , 0  x  l1 , x  l2  0, m( x), 0  l1  x  l2 Bz ( x, 0)   , 0  x  l1 , x  l2  0,

(17)

where q( x) , m( x) , and p( x) are unknown functions. The accumulated electric

AN US

charge Q, the accumulated magnetic induction M and the total indentation force P can be found by integrating q( x) , m( x) , and p( x)



 l1



 l1

 l2

 l2

 l2

l2

q( x)dx   q( x)dx  Q , l1

l2

m( x)dx   m( x)dx  M , l1

l2

M

 l1

p( x)dx   p( x)dx  P . l1

(18) (19) (20)

ED



The surface shear stress keeps zero (21)

PT

 xz ( x,0)  0 .

CE

The indenter profile is described as

w( x,0)  w1 ( x) , 0  l1  x  l2 ,

AC

(22)

with w1 ( x) being a known function. The following regularity conditions should be satisfied at infinity: u( x, z), w( x, z ),  ( x, z ), ( x, z )  0 ,

x2  z 2   .

General Solutions Considering Eqs. (1)-(12), one may discover the general solutions as [16] 7

(23)

ACCEPTED MANUSCRIPT

u

and

T



T

k1

k2

k3

k4

( x, z ) ,

(24)

( x, z ) is an auxiliary function, which satisfies Eq. (26) as will be seen later, kn

 k , n  1, 2,3, 4

are the cofactors of the operator matrix Κ given in the

Appendix. In the following, 21 

2n

 n  1, 2,3, 4

6  11 x5z

6  12 x3z 3

  x 6

  x 4z 2

will be used, which take the form

6 13 xz 5

 n  1 ,

CR IP T

where

w   

(25)

where

kn



n1

6

n2

 k , n  1, 2,3, 4

  x 2z 4 6

n3

 z 6 6

n4

are given in the Appendix.

 n  2,3, 4  ,

AN US

2n

6

In Eq. (24), the following relationship holds for the function

det  Κ  ( x, z )  0 .

( x, z ) : (26)

Applying the Fourier cosine transform with respect to x to Eq. (26) arrives at

M

6 4 2 8 2  4  6             5 8  0 , 2 3 4 z 8 z 6 z 4 z 2

where  j ( j  1,

ED

1

,5) are given in the Appendix, and

 , z 

(27)

is defined as



, z   0  x, z  cos  x  dx .

PT

(28)

, z   e z , one can obtain the characteristic equation associated

CE

Considering with Eq. (27) as

AC

1 8   2 6   3 4  4 2  5  0 .

(29)

where  represents the root. According to the eigenvalue properties of Eq. (29) and using the Almansi's

theorem [17], one may express

 , z 

as follows:

8

ACCEPTED MANUSCRIPT

4   k k  , z , 1  2  3  4   k 1  4  2 k 3   , z    k  z  e3 z , 1  2  3  4  k k  k 3  k 1 2  1  2  3  4  0 ,  , z     2 k 1ek z  2 k zek z , k  1  4  k 2 1e1 z    k  z  e2 z , 1  2  3  4  0  k 2  4  k 1  k  z  e1 z , 1  2  3  4  0   k 1 



(30)

CR IP T



where k (k  1, 2,3, 4) are the unknown functions to be determined from the k

 , z 

depend on whether the eigenvalues are real or

AN US

boundary conditions, and

complex. For example, in the case of 1  2  3  4 , if there are K1 positive real roots expressed as m   m ( m  1,

, K1 ) and K 2 pairs of conjugate complex roots

m

 , z 

can be given as

, z   e  z

M

with positive real parts expressed as n  n   n  in ( n  1,

K1  2 n 1

, z   e z cos  n z  n

, z   e z sin  n z 

PT

K1  2 n

ED

m

m

n

, K2 ) with i 2  1 ,

( m  1,

, K1 ),

(31)

( n  1,

, K2 ),

(32)

( n  1,

, K2 ).

(33)

CE

Note that when 1  2  3  4 , one may obtain K1  0 and K 2  2 , or

AC

K1  1 and K 2  1 ,or K1  4 and K 2  0 since K1  2K2  4 is required. In the 1  2  3  4 case,

1

 , z 

and

2

 , z 

can be given in the

same way as shown in Eq. (31). Various field quantities can be given on the basis of consideration of the constitutive equations (1)-(3)

9

 , z 

with the

ACCEPTED MANUSCRIPT

Dx



(k ) u

Bx   T

(k ) w

 4

   0

k 1

6

k

sin  x   (34)



(k ) T bx

(xzk ) (dxk ) 

 w    xx  zz



2

( k )

Dz

Bz   T

2



d ,  4

   0

k 1

k

6

cos  x   (35)

(k ) ( k ) (xxk ) (zzk ) (dzk ) bz  d , T

where known functions l( k ) , z  ( k  1, are given as ( m  1,

, K1 ),

, 4 , l  u, w,  , , xx, zz, xz, dz, dx, bz, bx )

AN US

l( m) , z    l  m  e m z

CR IP T

 u  xz

(36)

l( K1 2n1) , z    l(C )  n , n  cos  n z    l( S )  n , n  sin  n z  en z

( n  1,

, K2 ),

(37)

l( K1 2 n ) , z    l( S )  n , n  cos  n z    l(C )  n , n  sin  n z  en z

, K2 ),

, K1 , l  u, w,  , , xx, zz, xz, dx, dz, bx, bz ),  l(C )  n , n  and

ED

where  l  m  ( m  1,

M

( n  1,

(38)

PT

 l( S )  n , n  ( n  1, , K2 , l  u, w,  , , xx, zz, xz, dx, dz, bx, bz ) are given in the Appendix (Results for distinctive eigenvalues case are presented in what follows since

CE

the commercially available MEE, which are transversely isotropic, generate

AC

distinctive eigenvalues).

Singular Integral Equations for two Perfectly Conducting Indenters Considering boundary conditions Eqs. (22), (13) and (14) results in singular

integral equations as follows:



l2

l1

11 p(  )  12 q(  )  13m(  )  w1  x  d   , l1  x  l2 , 2 2  x 2 x x

10

(39)

ACCEPTED MANUSCRIPT



l2



l2

l1

l1

 21 p(  )   22 q(  )   23m(  )  1  x  , l1  x  l2 , d   2 2  x 2 x x

(40)

31 p(  )  32 q(  )  33m(  )   1  x  , l1  x  l2 , d   2 2  x 2 x x

(41)

  (wk ) ( , 0), m  1 C   m1   (1) k 1   ( k ) ( , 0), m  2 , det  CB   ( k ) k 1   ( , 0), m  3 (1k ) B

4

m2

  (wk ) ( , 0), m  1 (3 k ) C  B   (1) k 1   ( k ) ( , 0), m  2 , det  CB   ( k ) k 1   ( , 0), m  3

 m3

 (wk ) ( , 0), m  1 C    (1) k   ( k ) ( , 0), m  2 , det  CB   ( k ) k 1   ( , 0), m  3 (4 k ) B

4

(42)

(43)

(44)

M

, 4) are the complement minors of the matrix CB  Clk  ,

where CB(lk ) (l , k  1, (l, k  1,

AN US

4

CR IP T

where mn (m, n  1, 2,3) are given as

, 4) taking the following forms:

,0

(k  1,

C3k  (dzk ) ,0  , (45)

, 4) .

PT

C4 k  

(k ) bz

C2 k  (xzk ) ,0  ,

ED

C1k  (zzk ) ,0  ,

The singular integral equations, Eqs. (39) and (40), and Eqs. (18)-(20) can be

CE

normalized as 1

 j1 p (0) ( )   j 2 q (0) ( )   j 3m(0) ( )

1

 

AC



d   j ( ) , 1    1, (46)

j  1, 2,3 ,



1



1

1

1

p (0) ( )d 

2P , d0

(47)

q (0) ( )d 

2Q , d0

(48)

11

ACCEPTED MANUSCRIPT



1

1

m(0) ( )d 

2M , d0

(49)

where



p(  )

 2  l0 d0

1 ( ) 

 ,

q (0) ( ) 

,

q(  )

m(0) ( ) 

 l    l1   2 2

x 2  l0 ,  d0

1 w1 ( x) , x x



,

d0

2 ( ) 

2

1 1 ( x) , x x

m(  )



2

,

(50)

 l    l1   2 2

,

l0

3 ( ) 

2

1  1 ( x) . x x

Exact Contact Analysis

,

(51)

(52)

AN US

Two Perfectly Conducting Semi-Cylindrical Indenters

2

CR IP T

p (0) ( ) 

For two perfectly conducting semi-cylindrical indenters acting on the surface of MEE with a constant electric potential and a constant magnetic potential, one may

l1  x  l2 ,

(53)

(54)

PT

1 ( x)  0 ,

x2 , 2R

ED

w1 ( x)  w0 

M

obtain

 1 ( x)   0 ,

(55)

CE

where w0 ,  0 and  0 are constants, and R is the radius of the semi-cylindrical

AC

indenter.

Note that the first contact point ( x  l1 ) is not on the apex of the semi-cylindrical

shape of the indenter, and the maximum penetration depths vary with different values of l1 . Single semi-cylindrical indenter has been studied by Hwu and Fan [18] and Guler and Erdogan [19]. Two semi-cylindrical indenters also enable one to give analytical solutions. 12

ACCEPTED MANUSCRIPT

Considering Eqs. (39)-(41), (46), (53)-(55), one has

1 , R

(56)

2 ( )  3 ( )  0 .

(57)

1 ( ) 

Since

q( x)  q1 ( x)  q2 ( x)

m( x)  m1 ( x)  m2 ( x)

and

for the conducting

CR IP T

semi-cylindrical indenter, in which q1 ( x) and m1 ( x) are caused by the electric potential and the magnetic potential and q2 ( x) and m2 ( x) caused by the normal mechanical load P, one has q(0) ( )  q1(0) ( )  q2(0) ( ) ,

AN US

(58)

m(0) ( )  m1(0) ( )  m2(0) ( ) .

(59)

Thus, Eqs. (46)-(49) can be written as

1

1

m1(0) ( )d 



1



1

(62)

2  Q  QF  , d0

(63)

AC

1

q1(0) ( )d 

(60)

(61)

q1(0) ( ) d  0 , 1    1,  

CE

1

2M  MF  , d0

PT

in terms of m1(0) ( ) ,

M



1

m1(0) ( ) d  0 , 1    1,  

ED



1

in terms of q1(0) ( ) , and

   R , (0) (0) (0) 1  j1 p ( )   j 2 q2 ( )   j 3m2 ( )  d   0, 1    0,  

13

j 1 j  2 , 1    1, j 3

(64)

ACCEPTED MANUSCRIPT



1



1



1

1

1

1

p (0) ( )d 

2P , d0

q2(0) ( )( )d  m2(0) ( )d 

(65)

2QF , d0

(66)

2M F , d0

(67)

CR IP T

in terms of p (0) ( ) , q2(0) ( ) and m2(0) ( ) , and QF and M F denote the electric charge and the magnetic induction due to the total indentation force P . The exact solutions of integral equations (60)-(67) take the form

p (0) ( ) 

,

d0 1   2 2  Q  QF  d0 1   2

,

1 1  , P R 1  

q2(0) ( ) 

(68)

(69)

1 1  , Q R 1  

(70)

ED

1  , m2(0) ( )  M R 1   1

AN US

q1(0) ( ) 

2M  MF 

M

m1(0) ( ) 

det    mn 33 

,

 22 33   32  23

CE

P 

PT

where  P , Q and  M are given as

AC

Q 

M 

det    mn 33 

(71)

,

 2331   2133 det    mn 33   2132   22 31

.

Then, the contact stress, electric displacement and magnetic induction inside the contact region are given as follows:

x p ( x)  P R

 l2 

2

 x2

x 2   l1 

2

, l1  x  l2 , 14

(72)

ACCEPTED MANUSCRIPT

q ( x) 

m( x ) 

x Q R

 l2 

2

 x2

x   l1 

x M R

2

 l2 

2



2

 x2

x 2   l1 

2

2  Q  QF  x 2 2   l2   x 2   x 2   l1     



, l1  x  l2 ,

2M  MF  x 2 2   l2   x 2   x 2   l1  





, l1  x  l2 .

(73)

(74)



CR IP T

From the first terms in the right hand side of Eqs. (72)-(74), it can be seen that the surface contact stress, the surface electric displacement and the surface magnetic induction are always singular at the inner edges of the semi-cylindrical indenter because of the physical nature that the inner edge is a sharp corner. Moreover, the surface electric displacement and the surface magnetic induction may also have

AN US

singularities at the outer edges of the semi-cylindrical indenter because of the external loadings as shown in the second terms in Eqs. (73) and (74), which can be suppressed by choosing appropriate combinations of the multi-field loadings. Later as seen in Eq. (75), the singular case of the surface in-plane stress is similar with that of the surface

M

electric displacement and the surface magnetic induction, and the outer-edge

multi-field loadings.

ED

singularities can also be suppressed by choosing appropriate combinations of the

Considering Eqs. (34), (35), (72)-(74) results in the surface stresses, surface

PT

electric displacements and surface magnetic inductions as follows: l1  x  l2 , x  l1 or x  l2

(75)

( P) (Q ) (M )    zz p( x)   zz q( x)   zz m( x), 0,  

l1  x  l2 , x  l1 or x  l2

(76)

CE

( P) (Q ) (M )    xx p( x)   xx q( x)   xx m( x),  xx  x, 0    0,  

AC

 zz  x, 0   

 ( P ) (Q ) ( M )  l1  x  l2  xz  xz  xz  x,  xz  x, 0     P R Q R  M R  ,  0, x  l1 or x  l2    ( P )  (Q ) ( M )  l1  x  l2  dx  dx  dx  x, Dx  x, 0     P R Q R  M R  ,  0, x  l1 or x  l2 

15

(77)

(78)

ACCEPTED MANUSCRIPT

( P) (Q ) (M )    dz p( x)   dz q( x)   dz m( x), Dz  x, 0    0,  

  ( P )  (Q )  ( M )   bx  bx  bx  x, Bx  x, 0     P R Q R  M R   0, 

l1  x  l2 , x  l1 or x  l2

l1  x  l2 x  l1 or

( P) (Q ) (M )  bz p( x)  bz q( x)  bz m( x),  Bz  x, 0    0,  

k 1

(1) k CB(4 k )   (jk )  , 0  , det  CB  k 1

4

(jQ )   (jk )  , 0  k 1

(81)

(1)k CB(3k ) , det  CB 

(82)

4

j  xx, zz, xz, dz, dx, bz, bx .

AN US

(jM )

(1) k CB(1k ) , det  CB 

x  l2

CR IP T

4

(80)

l1  x  l2 , x  l1 or x  l2

where

(jP )   (jk )  , 0 

,

(79)

Employing the properties about minors of the matrix CB  Clk  in Eq. (45)

(zzP )  1 ,

(zzQ )  0 ,

(xzP )  0 ,

(xzQ )  0 ,

(dzP )  0 ,

ED

arrives at

M

(83)

(xzM )  0 ,

(84)

(dzQ )  1,

(dzM )  0 ,

(85)

(Q ) bz 0,

(M ) bz 1.

(86)

PT

(P) bz  0,

(zzM )  0 ,

Then, one may find the required boundary conditions Eqs. (15)-(17) and (21)

CE

hold.

Substituting Eq. (70) into Eqs. (65)-(67), one can determine the width of the

AC

contact region with the singular end-points x  l1 known a priori, QF and M F as follows:

l2  QF 

4 P P R



  l1  , 2

(87)

P P , Q

(88)

16

ACCEPTED MANUSCRIPT

MF 

P P . M

(89)

One may define the following stress, electric displacement and magnetic induction intensity factors to measure the singular behavior at the ends of the semi-cylindrical indenters: K I  l1   lim 2 x l1 p( x) ,

(90)

CR IP T

x  l1

K D  l1   lim 2 x l1 q( x) ,

(91)

x  l1

K B  l1   lim 2 x l1 m( x) .

(92)

x  l1



P R 2 2  l1  l2    l1  



K D  l1  



Q R 

M R

 2  Q  QF 

 2M  M F 

(93)

l1

2   l2    l1   2



2 2  l1  l2    l1  



,

,

(94)



l1

2   l2    l1   2



ED

K B  l1  



M

K I  l1  

2 2  l1  l2    l1  

AN US

Considering Eqs. (68)-(70), one can rewrite Eqs. (90)-(92) as follows:

.

(95)



PT

Verification of The Exact Analysis

To validate the theoretical derivation for two semi-cylindrical indenters, one can

CE

set l1  0 . In such a special case, two semi-cylindrical indenters each with the accumulated electric charge Q, accumulated magnetic induction M and total

AC

indentation force P become a single cylindrical indenter with the contact region

 l2 , l2  ,

accumulated electric charge 2Q, accumulated magnetic induction 2M and

total indentation force 2P with considering Eqs. (18)-(20), i.e.



l2



l2

 l2

 l2

0

l2

 l2

0

q( x)dx   q( x)dx   q( x)dx  Q  Q  2Q , 0

l2

 l2

0

m( x)dx   m( x)dx   m( x)dx  M  M  2M ,

17

(96) (97)

ACCEPTED MANUSCRIPT



l2

 l2

0

l2

 l2

0

p( x)dx   p( x)dx   p( x)dx  P  P  2 P .

(98)

Setting l1  0 in Eqs. (72)-(74) and (87), one has 1 P R

 l2 

q ( x) 

1 Q R

 l2 

m( x) 

1

2

 l2 

M R

P P R

l2  2

2

 x2 ,

 x2 

2

2  Q  QF 

 l2 



 x2 

x

2

,

2

2M  MF 



 l2   x2 2

,

x   l2 , l2  ,

(99)

x   l2 , l2  ,

(100)

CR IP T

p( x) 

x   l2 , l2  ,

(102)

.

AN US



(101)

Eqs. (99)-(102) are identical to those given by Zhou and Lee [20] for a single cylindrical indenter with the contact region

 l2 , l2  , accumulated electric charge 2Q,

M

accumulated magnetic induction 2M and total indentation force 2P. Thus, the solutions for a single cylindrical indenter are recovered by those for two

ED

semi-cylindrical indenters.

PT

For a single cylindrical indenter, the full-field stresses, electric displacements and magnetic inductions of MEE can be given explicitly bedsides those on the surface

CE

given in Eqs. (75)-(81). Various stresses, electric displacements and magnetic

AC

induction of MEE take the form

 xx  zz  xz

Dz

   4

k 1

k

   k 1

Bz

Bx   T

( a ,k ) xx

 (zza ,k )

 (xza ,k )

 (dza ,k )

 (dxa ,k )

( a ,k ) bz

(b,k ) xx

 (zzb,k )

 (xzb,k )

 (dzb,k )

 (dxb,k )

(b, k ) bz

4

k

Dx

where 18

( a ,k ) bx   T

( b, k ) bx , T

(103)

ACCEPTED MANUSCRIPT

k 

(1)k 2  Q  QF  CB(3k )   M  M F  CB(4 k )  det  CB  

k 

,

(104)

(1)k l2  CB(1k ) CB(3k ) CB(4 k )     . R det  CB    P Q M 

(105)

In Eq. (103),  (ja ,k ) ( x, z ) and  (jb,k ) ( x, z ) ( l  xx, zz, xz, dx, dz, bx, bz ) are given as

 (rk , K1  2 n1) ( x, z ) 

1 (C )  r  n ,  n  1( k )  x, z,  n ,  n   2

 n , n    x, z, n , n  , k  a, b , (k ) 1

 (rk , K1  2 n ) ( x, z ) 

n  1,

1 (S )  r  n ,  n  1( k )  x, z,  n ,  n   2

, K1 , r  xx, zz, dz, bz , (106)

(107)

, K2 , r  xx, zz, dz, bz ,

AN US



(S ) r

k  a, b , m  1,

CR IP T

(rk ,m) ( x, z )   r  m  1( k ) ( x, z,  m ) ,

 r(C )  n , n  1( k )  x, z,  n , n  , k  a, b , n  1, , K2 , r  xx, zz, dz, bz , t( k ,m) ( x, z )   t  m  (2k ) ( x, z,  m ) , t( k , K1  2 n1) ( x, z ) 

1 (C )  t  n ,  n   (2k )  x, z,  n ,  n   2

M

 n , n    x, z, n , n  , k  a, b , (k ) 2

t( k , K1  2 n ) ( x, z ) 

, K1 , t  xz, dx, bx ,

n  1,

, K2 , t  xz, dx, bx ,

1 (S )  t  n ,  n  (2k )  x, z,  n ,  n   2

ED



(S ) t

k  a, b , m  1,

 t(C )  n , n   (2k )  x, z,  n , n  , k  a, b , n  1, , K2 , t  xz, dx, bx ,

(109)

(110)

(111)

, K1 ,

, K2 ) are given as

CE

n  1,

PT

where i( k )  x, z,  n , n  and i( k )  x, z,  n , n  ( k  a, b , i  1, 2 , m  1,

(108)

AC

1( k )  x, z,  n , n   1( k )  x1 (n ), z, n   1( k )  x2 (n ), z, n  , 1( k )  x, z,  n , n   (2k )  x1 (n ), z, n   (2k )  x2 (n ), z, n  , k  a, b , n  1,

(112)

, K2 ,

(2k )  x, z,  n , n   (2k )  x1 (n ), z, n   (2k )  x2 (n ), z, n  , (2k )  x, z,  n , n   1( k )  x1 (n ), z, n   1( k )  x2 (n ), z, n  , k  a, b , n  1,

, K2 , 19

(113)

ACCEPTED MANUSCRIPT

where

2  x, Re( )    x 2 2

 ( x, z ,  )  (a) 2

2  x, Re( )    1  x, Re( )  2

sgn( x) x 2  1  x, Re( )  

2

,

(114)

2

,

(115)

2

2  x, Re( )    1  x, Re( )  2

2  x, Re( )    x 2  Re( ) z  ( x, z ,  )  , l2 2

(b ) 1

 ( x, z ,  )  (b ) 2

x  sgn( x) x 2  1  x, Re( )  

2

l2

,

where sgn() is the sign function, and

x2    Im   z  x .

M

x1    Im   z  x ,

AN US

1 ( s  l2 ) 2  (tz )2  ( s  l2 ) 2  (tz ) 2  ,   2 1 2  s, t    ( s  l2 )2  (tz )2  ( s  l2 ) 2  (tz ) 2  ,  2

1  s, t  

CR IP T

1( a ) ( x, z, ) 

(116)

(117)

(118) (119)

(120)

ED

One can prove that the surface stresses, surface electric displacements and

PT

surface magnetic inductions for l1  0 given in Eqs. (75)-(82) are equal to those given in Eq. (103) when z=0.

CE

Numerical Results

AC

Table 1 gives the piezoelectric and piezomagnetic constants used in numerical

computation with all absent material coefficients being zero. The values given in Table 1 are obtained by applying the simple mixture rule [21] with the assumption that the volume fraction for PZT-5A in PZT-5A–CoFe2O4 composites [21, 22] is 0.7.

20

ACCEPTED MANUSCRIPT 9

2

2

Table 1 Material properties of MEE ( cmn in 10 N m , emn in C m , hmn in N

 mn in 109 C 2  Nm2  , mn in 106 NS 2 C 2 ) c11

c13

c33

c44

155.2407

86.6946

141.6492

28.36

e31

e33

e15

h31

h33

h15

5.0463 11

10.5826

8.6324

174.09

209.91 33

165

10.734

10.5279

11 177

47.1

CR IP T

 33

 Am  ,

As mentioned before, one can determine the width of the contact region, l2  l1 , from Eq. (87) considering that the singular end-points x  l1 are known a priori. In

AN US

practical analysis, the location at which the maximum penetration depth arrives seems to be the singular end point for some kinds indenters, such as semi-cylindrical indenter and wedge-shaped indenter. Eq. (87) shows that the contact width l2  l1 is a

M

monotonically increasing function of the external loading P. Thus, the contact region

ED

becomes narrower with the external loading P decreasing, and vanishes with P=0 as shown in Fig. 3. The interaction between two semi-cylindrical indenters also

PT

contributes to the contact width. As the value of l1 become smaller, the contact

CE

region becomes wider. For a flat indenter with a constant penetration depth, the interaction effect can be ignored when the two indenters became far away from each

AC

other. For the present two semi-cylindrical indenters with profile given in Eq. (53), the maximum penetration depth varies with the values of l1 changing. Thus, the interaction effect has a contribution to the contact behavior even when the two indenters become far away. Figure 4 shows how the interaction between two semi-cylindrical indenters

21

ACCEPTED MANUSCRIPT

affects the surface normal stress  zz ( x,0) . At the outer edges x  l2 , the surface normal stress remains free, while has singularities, stress concentrations, at the inner edges x  l1 for two separated semi-cylindrical indenters. With the value of l1 becoming smaller, the strength of the stress singularity is relieved, and the stress

CR IP T

singularity vanishes when l1  0 . Figure 5 reveals the influence of the interaction between two semi-cylindrical indenters on the surface electric displacement Dz ( x,0) , the surface magnetic

AN US

induction Bz ( x, 0) and the surface in-plane stress  xx ( x, 0) . Different from the surface normal stress, these quantities may have singularities not only at the inner edges x  l1 but also at the outer edges x  l2 . The strength of these singularities weakens as two semi-cylindrical indenters stay near. The singularity strength at the

M

outer edges x  l2 is stronger than that around the inner edges x  l1 . It is the

ED

multi-field coupling possessed by MEE that causes the singularities at the outer edges

x  l2 . More specifically, the singularity for the surface electric displacement is

PT

generated by the additional electric charge Q  QF as seen from Eq. (73) or Eq. (78),

CE

by the additional magnetic induction M  M F for the surface magnetic induction as

AC

seen from Eq. (74) or Eq. (79), and by both the electric charge and the additional magnetic induction for the surface in-plane stress as seen from Eq. (75). The singularities of the surface normal and in-plane stresses, the surface electric

displacement and the surface magnetic induction as seen from Figs. 4 and 5 can cause crack initiation on the surface of the substrate, which may cause materials to damage more quickly. So engineers must minimize these concentrations. 22

ACCEPTED MANUSCRIPT

By setting Q=QF and/or M =M F in Eqs. (73)-(75) and calculating the electric charge and the magnetic induction due to the total indentation force P , i.e. QF and

M F , from Eqs. (88) and (89), the singularities at the outer edges x  l2 for the surface electric displacement, the surface magnetic induction and the surface in-plane

CR IP T

stress can be suppressed because of the multi-field coupling as shown in Fig. 6. These quantities only have singularities at the inner edges x  l1 , and are free at the outer edges x  l2 . As the combinations of the multi-field loadings escalate, the singularity

Conclusions Indentation

problem

of

AN US

strength at the inner edges x  l1 intensifies.

magnetoelectroelastic

materials

under

two

M

electrically-conducting and magnetically-conducting indenters is investigated. For two perfectly conducting semi-cylindrical indenters, the closed-form solutions for the

ED

stresses, electric displacement and magnetic induction on the surface are obtained,

PT

and the stress, electric displacement and magnetic induction intensity factors are defined. Numerical results are calculated to show the influences of the interaction of

CE

two semi-cylindrical indenters on the contact behaviors under different multi-field

AC

loadings. The obtained results reveal that the inner and outer edges are the most likely crack initiation locations because of the singularities for the surface electric displacement, the surface magnetic induction and the surface in-plane stress, which may explain why surface damage occurs for magnetoelectroelastic materials. The singularities at the outer edges can be suppressed by choosing appropriate combinations of the multi-field loadings due to the multi-field coupling to alleviate 23

ACCEPTED MANUSCRIPT

the surface damage. The

present

article

studies

the

contact

problem

of

homogeneous

magnetoelectroelastic materials. Wang and Kuna did excellent work with deriving the analytical solutions of the static screw dislocation [23] and time-harmonic dynamic

CR IP T

Green's functions [24] of the functionally graded magnetoelectroelastic solids, and finding that the inhomogeneity has quite different influences from the homogeneous magnetoelectroelastic materials. The effect of inhomogeneity of magnetoelectroelastic

be further revealed in the future work.

Acknowledgments

AN US

materials on contact behaviors especially on the dynamic contact behaviors needs to

This work was supported by the National Natural Science Foundation of China

M

(11472193, 11572227 and 11261042), and the Fundamental Research Funds for the Central Universities (1330219162).

ED

Appendix

1. Expressions of the operator matrix Κ related to Eq. (24)

AC

CE

PT

 2 2 2 2 2   e31  e15   h31  h15  c11  2 x  c44  2 z  c13  c44  xz xz xz   2 2 2 2 2 2 2   c  c c  c e  e h  h   44 2 33 2 15 2 33 2 15 2 33 2  13 44 xz x z x z x z  Κ . 2 2 2 2 2 2 2     e31  e15  xz e15  2 x  e33  2 z 11  2 x   33  2 z d11  2 x  d33  2 z    2 2 2 2 2 2 2   h h    31 15  xz h15  2 x  h33  2 z d11  2 x  d33  2 z  11  2 x  33  2 z 

2. Expressions of

kn

 k , n  1, 2,3, 4

(A.1)

appearing in Eq. (25)

11

  c13  c44   d112  1111    h15  h31  e15d11  h1511    e15  e31  h15d11  e15 11  ,

12

  c13  c44  2d11d33  1133   3311    h15  h31  e15d33  e33d11  h15 33 h3311  

 e15  e31  h15d33  h33d11  e15 33  e33 11  , 24

(A.2)

ACCEPTED MANUSCRIPT

13

  c13  c44   d332   33 33    h15  h31  e33d33  h33 33    e15  e31  h33d33  e33 33  .

21

 c111111  c11d112 ,

22

 c111133  c11 33 11  c441111  2d11  e15  e31  h15  h31   11  h15  h31   2

11  e15  e31    2c11d11d33  c44 d112  , 2

 c11 33 33  c441133  c44 33 11  2d33  e15  e31  h15  h31    33  h15  h31  

(A.3)

23

33  e15  e31    c11d332  2c44 d11d33  , 2

CR IP T

2

 c44 33 33  c44 d332 .

31

 e15c1111  h15c11d11 ,

32

  c11e15 33  c11e3311  c44e15 11   h15  h15  h31  e15  e31   d11  h15  h31  c13  c44  

AN US

24

e15  h15  h31   11  c13  c44  e15  e31    c11h15d33  c11h33d11  c44h15d11  , 2

33

  c11e3333  c44e15 33  c44e3311   h33  h15  h31  e15  e31   d33  h15  h31  c13  c44  

(A.4)

2

M

e33  h15  h31   33  c13  c44  e15  e31    c11h33d33  c44h33d11  c44h15d33  ,

 c44e3333  c44h33d33 .

41

 c11h1511  c11e15d11 ,

42

  c11h15 33  c11h3311  c44h1511    c11e15d33  c11e33d11  c44e15d11   h15  e15  e31  

PT

ED

34

2

  c11h33 33  c44h15 33  c44h3311    c11e33d33  c44e15d33  c44e33d11   h33  e15  e31  

(A.5)

2

AC

43

CE

11  c13  c44  h15  h31   e15  h15  h31  e15  e31   d11  c13  c44  e15  e31  ,

 33  c13  c44  h15  h31   e33  h15  h31  e15  e31   d33  c13  c44  e15  e31  ,

44

 c44 h33 33  c44e33d33 .

3. Expressions of  j ( j  1,

,5) appearing in Eq. (27)

1  c44c33 3333  2c44e33h33d33  c44e332 33  c44c33d 233  c44h332  33 ,

(A.6)

 2  c11c33 3333  2c11e33h33d33  c44c331133  c44c33 3311

(A.7)

25

ACCEPTED MANUSCRIPT

2c44c33d11d33  2c44e15e33 33  2c44e33h15d33 2c44e15h33d33  2c44e33h33d11  2c44 h15h33 33 2c1344e33e3115 33  2c1344e33h3115d33 2c1344 h33e3115d33  2c1344 h33h3115 33

2 2 2 c44 d332  e3115 h332  c11e33 33  c11c33d332  c11h332  33 2 2 c44  33 33  c44e332 11  c44 h332 11  c1344  33 33

AN US

2 2 e3115 c33 33  h3115 c33 33 ,

CR IP T

2 2 2 2e3115c33h3115d33  2e3115h33h3115e33  c1344 d332  h3115 e33

2 2  3  c11c44 d332  c11e332 11  c11h332 11  c44 1133  c44  33 11

2 2 2c44 d11d33  c44c33d112  c44e152 33  c44h152  33  c1344 1133 2 2 2 2 c1344  33 11  2c1344 d11d33  e3115 c44 33  e3115 c33 11

M

2 2 2 2 2e3115 h15h33  h3115 c44 33  h3115 c3311  2h3115 e15e33

ED

2c1344e15e3115 33  2c1344e15h3115 d33

2c1344e33e3115 11  2c1344e33h3115d11  2c1344h15e3115d33

PT

2c1344 h15h3115 33  2c1344 h33e3115 d11 (A.8)

CE

2c1344 h33h311511  2e3115c44 h3115 d33

AC

2e3115c33h3115 d11  2e3115 h15h3115e33 2e3115h33h3115e15  c11c44 33 33  c11c331133

c11c33 33 11  2c11c33d11d33  2c11e15e33 33 2c11e15h33d33  2c11e33h33d11  2c11e33h15d33

2c11h15h33 33  c44c331111  2c44e15e33 11 2c44e15h15d33  2c44e15h33d11  2c44e33h15d11 26

ACCEPTED MANUSCRIPT

2c44 h15h3311 ,

 4  c11c33d112  c11e152 33  c11h152  33  c44e152 11  c44 h152 11 2 2 2 2 c44 1111  c1344 1111  e3115 c44 11  h3115 c4411

c11c441133  c11c44 33 11  2c11c44d11d33

2c11e33h15d11  2c11e15h33d11  2c11h15h3311 2c44e15h15d11  2c1344e15e3115 11  2c1344e15h3115d11

AN US

2c1344 h15e3115d11  2c1344 h15h311511

CR IP T

c11c331111  2c11e15e33 11  2c11e15h15d33 (A.9)

2 2 2e3115c44 h3115d11  2e3115h15h3115e15  h3115 e152  e3115 h152

2 2 c1344 d112  c44 d112 ,

 5  c11  c441111  2e15h15d11  e152 11  c44 d112  h152 11  ,

M

where

ED

c1344  c13  c44 ,

(A.10)

(A.11) (A.12)

h3155  h31  h15 .

(A.13)

PT

e3155  e31  e15 ,

CE

4. Expressions of  l  m 

, K1 , l  u, w,  , , xx, zz, xz, dx, dz, bx, bz )

( m  1,

appearing in Eq. (36)

AC

 u  m    m 

11



 w  m   

21



22

   m   

31



32

   m   

41



42

 m2 

12

 m2 

23

 m2 

33

 m2 

43

 m4  ,

(A.14)

13

 m4 

24

 m6 ,

(A.15)

 m4 

34

 m6 ,

(A.16)

 m4 

44

 m6 ,

(A.17)

 xx  m   c11 u  m   c13 m w  m   e31 m   m   h31 m  m  , 27

(A.18)

ACCEPTED MANUSCRIPT

 zz  m   c13 u  m   c33 m w  m   e33 m   m   h33 m  m  ,

(A.19)

 xz  m   c44 m u  m    w  m   e15   m   h15  m  ,

(A.20)

 dx  m   e15 m u  m    w  m   11   m   d11  m  ,

(A.21) (A.22)

 bx  m   h15 m u  m    w  m   d11   m   11  m  ,

(A.23)

 bz  m   h31 u  m   h33 m w  m   d33 m   m   33 m  m  .

(A.24)

5. Expressions

 l(C )  n , n 

of

and

 l( S )  n , n 

, K2 , l  u, w,  , , xx, zz, xz, dx, dz, bx, bz ), which are values of functions

AN US

( n  1,

CR IP T

 dz  m   e31 u  m   e33 m w  m    33 m   m   d33 m  m  ,

 l(C )  ,   and  l( S )  ,   at the point,  n ,  n  appearing in Eqs. (37) and (38)

 u( S )  ,     

24

21



12



11



12

3

22







6

 w( S )  ,    2 

 3 2  

13



2

13

5

2

2

2

31

22



23



4

2

2

32



23



2

2

2

2

4

2 33



24 4

4

 10 2  2  5 4  ,

(A.25)

 10 2  2   4  ,

(A.26)

4

 6 2  2   4  

 15   15    4

PT

CE

 (C )  ,    

2

ED

 w(C )  ,    

11

M

 u(C )  ,     

6

(A.27)

,

3

4

 10 2  2  3 4  ,

 6 2  2   4   (A.29)

6 4 2 2 4 6 34   15   15     ,

AC

 ( S )  ,    2 

(C )  ,     44

41

32





( S )  ,    2 

6

2

42



33



2

2

2

2

43



34 4

42

2

43

2



2

2

4

2

3

4

 10 2  2  3 4  ,

(A.30)

 6 2  2   4  

 15   15    4

(A.28)

44

6

(A.31)

,

3

4

 10 2  2  3 4  ,

(A.32)

 xx(C )  ,    c11 u(C )  ,    c13  w(C )  ,     w( S )  ,      e31  (C )  ,      ( S )  ,      h31 (C )  ,    ( S )  ,     , 28

(A.33)

ACCEPTED MANUSCRIPT

 xx( S )  ,    c11 u( S )  ,    c13  w(C )  ,      w( S )  ,     e31  (C )  ,      ( S )  ,     h31 (C )  ,      ( S )  ,    ,

(A.34)

 zz(C )  ,    c13 u(C )  ,    c33  w(C )  ,     w( S )  ,     

 ,       ,      h33   ,      ,     ,

e33  

(C )

(S )

(C )

(A.35)

(S )

e33  

(C )

CR IP T

 zz( S )  ,    c13 u( S )  ,    c33  w(C )  ,      w( S )  ,    

 ,        ,     h33   ,       ,    , (S )

(C )

(A.36)

(S )

 xz(C )  ,    c44  u(C )  ,     u( S )  ,      w(C )  ,   

(A.37)

e15 (C )  ,    h15(C )  ,   ,

e15 

(S )

 ,    h15  ,   , (S )

AN US

 xz( S )  ,    c44  u(C )  ,      u( S )  ,     w( S )  ,   

(A.38)

 dx(C )  ,    e15  u(C )  ,      u( S )  ,      w(C )  ,   

(A.39)

M

11 (C )  ,    d11(C )  ,   ,

11 

(S )

ED

 dx( S )  ,    e15  u(C )  ,      u( S )  ,     w( S )  ,    (A.40)

 ,    d11  ,   , (S )

PT

 dz(C )  ,    e31 u(C )  ,    e33  w(C )  ,     w( S )  ,     

 33  

 ,       ,      d33   ,      ,     , (S )

(C )

(A.41)

(S )

CE

(C )

AC

 dz( S )  ,    e31 u( S )  ,    e33  w(C )  ,      w( S )  ,    

 33  (C )  ,      ( S )  ,     d33 (C )  ,      ( S )  ,    ,

(A.42)

 bx(C )  ,    h15  u(C )  ,     u( S )  ,      w(C )  ,    d11 

(C )

(A.43)

 ,    11  ,   , (C )

 bx( S )  ,    h15  u(C )  ,      u( S )  ,     w( S )  ,    (A.44)

d11 ( S )  ,    11( S )  ,   , 29

ACCEPTED MANUSCRIPT

 bz(C )  ,    h31 u(C )  ,    h33  w(C )  ,     w( S )  ,      d33  (C )  ,      ( S )  ,      33 (C )  ,    ( S )  ,     ,

(A.45)

 bz( S )  ,    h31 u( S )  ,    h33  w(C )  ,      w( S )  ,     d33  

(C )

 ,        ,     33   ,       ,    . (S )

(C )

(A.46)

(S )

CR IP T

References

AN US

[1] M. Ahearne, Y. Yang, K.Y. Then, K.K. Liu, An indentation technique to characterize the mechanical and viscoelastic properties of human and porcine corneas, Ann. Biomed. Eng. 35 (2007) 1608-1616. [2] M. Morales, E. Xuriguera, M. Martinez, J.A. Padilla, J. Molera, N. Ferrer, M. Segarra, F. Espiell, Mechanical characterization of copper-copper wires joined by friction welding using instrumented indentation technique, J. Mater. Eng. Perform. 23 (2014) 3941-3948. [3] L. Xiao, D.Y. Ye, C.Y. Chen, A further study on representative models for calculating the residual stress based on the instrumented indentation technique, Comp. Mater.als Sci., 82 (2014) 476-482. [4] F. Dinzart, H. Sabar, Magneto-electro-elastic coated inclusion problem and its

48 (2011) 2393-2401.

M

application to magnetic-piezoelectric composite materials, Int. J. Solids Struct.

ED

[5] P.F. Hou, Y.T.L. Andrew, H.J. Ding, The elliptical Herzian contact of transversely isotropic magnetoelectroelastic bodies, Int. J. Solids Struct. 40

PT

(2003) 2833-2850.

[6] H.J. Ding, A.M. Jiang, Fundamental solutions for transversely isotropic

CE

magneto-electro-elastic media and boundary integral formulation, Sci. China Ser. E, 46 (2003) 607-619.

AC

[7] W.Q. Chen, E. Pan, H.M. Wang, Ch. Zhang, Theory of indentation on multiferroic composite materials, J. Mech. Phys. Solids 58 (2010) 1524-1551.

[8] Y.T. Zhou, K.Y. Lee, Theory of sliding contact for multiferroic materials indented by a rigid punch, Int. J. Mech. Sci. 66 (2013) 156-167. [9] Y.T. Zhou, T.W. Kim, An exact analysis of sliding frictional contact of a rigid punch over the surface of magneto-electro-elastic materials, Acta Mech. 225 (2014) 625-645. 30

ACCEPTED MANUSCRIPT

[10] X.Y. Li, R.F. Zheng, W.Q. Chen, Fundamental solutions to contact problems of a magneto-electro-elastic half-space indented by a semi-infinite punch, Int. J. Solids Struct. 51 (2014) 164-178. [11] X. Yang, X.J. Liu, Z. Huang, Surface cracks of solid-phase-sintered silicon carbide ceramics and their influences on material strength, J. Inorganic Mater. 29 (2014) 438-442. [12] M. He, F.G. Li, J. Cai, B. Chen, An indentation technique for estimating the

CR IP T

energy density as fracture toughness with Berkovich indenter for ductile bulk materials, Theor. Appl. Fract. Mech. 56 (2011) 104-111.

[13] B.L. Wang, J.C. Han, S.Y. Du, H.Y. Zhang, Y.G. Sun, Electromechanical behaviour of a finite piezoelectric layer under a flat punch. Int. J. Solids Struct.

AN US

45 (2008) 6384-6398.

[14] B.L. Wang, Fracture and effective properties of finite magnetoelectroelastic media, J. Intel. Mat. Syst. Str. 23 (2012) 1699-1712.

[15] T.H. Hao, Z.Y. Shen, A new electric boundary condition of electric fracture

M

mechanics and its applications, Eng. Fract. Mech. 47 (1994) 793-802. [16] Q. Guan, S.R. He, Two-dimensional analysis of piezoelectric/piezomagnetic and

ED

elastic media, Compos. Struct. 69 (2005) 229-237. [17] H.J. Ding, B. Chen, J. Liang, On the general solutions for coupled equation for

PT

piezoelectric media, Int. J. Solids Struct. 33 (1996) 2283-2298. [18] C. Hwu, C.W Fan, Sliding punches with or without friction along the surface of

CE

an anisotropic elastic half-plane, Q. J. Mech. Appl. Math. 51 (1998) 159-177. [19] M.A. Guler, F. Erdogan, The frictional sliding contact problems of rigid

AC

parabolic and cylindrical stamps on graded coatings, Int. J. Mech. Sci. 49 (2007) 161-182.

[20] Y.T. Zhou, K.Y. Lee, Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch. Part I: Closed-form solutions, Int. J. Solids Struct. 49 (2012) 3853-3865. [21] Z.F. Song, G.C. Sih, Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, J. Theor. Appl. Frac. Mech. 39 (2003) 189-207. 31

ACCEPTED MANUSCRIPT

[22] S.S. Vel, R.C. Batra, Three-dimensional analytical solution for hybrid multilayered piezoelectric plates, J. Appl. Mech.-T. ASME 67 (2000) 558-567.

AC

CE

PT

ED

M

AN US

CR IP T

[23] Y.Z. Wang, M. Kuna, Screw dislocation in functionally graded magnetoelectroelastic solid, Philos. Mag. Lett. 94 (2014) 72-79. [24] Y.Z. Wang, M. Kuna, Time-harmonic dynamic Green's functions for two-dimensional functionally graded magnetoelectroelastic materials, J. Appl. Phys. 115 (2014) 043518.

32

ACCEPTED MANUSCRIPT

CR IP T

Figures

AC

CE

PT

ED

M

AN US

Fig. 1. Two indenters acting on Solid-phase-sintered Silicon Carbide Ceramic (SSiC) [11].

33

CR IP T

ACCEPTED MANUSCRIPT

AC

CE

PT

ED

M

AN US

Fig. 2. Schematic figure of magnetoelectroelastic materials under two symmetrical, perfectly conducting indenters – two semi-cylindrical indenters as example.

34

ACCEPTED MANUSCRIPT

0.4 0.3 0.2 l1 increasing

0.1

CR IP T

Width of contact region (cm)

0.5

[0.3 0.6 0.9 1.2 1.5 1.8 2.1]*10

0.0 0.00

0.25

0.50 7

P (10 N/m)

0.75

-3

1.00

AC

CE

PT

ED

M

AN US

Fig. 3. Contact width vs. external loading P with R  0.09m .

35

ACCEPTED MANUSCRIPT

0

-6 -9

CR IP T

zz(x,0)(GPa)

-3

l1=0

-12 -15 -0.3

0.0 x(cm)

-3

l1=1.2*10

-3

l1=1.5*10

-3

0.3

AN US

-18 -0.6

l1=0.9*10

0.6

Fig. 4. Effect of the interaction between two semi-cylindrical indenters on the surface normal stress  zz ( x,0) with P  107 N m and R  0.09m in which the

AC

CE

PT

ED

M

unit of distance l1 is m.

36

ACCEPTED MANUSCRIPT

2

Dz(x,0)(10 C/m )

0.0

3

-0.3

-0.6

-0.9 -0.6

-0.3

l1=0.9*10

-3

l1=1.2*10

-3

l1=1.5*10

-3

0.0 x(cm)

0.3

Bz(x,0)(10 N/(Am))

0

4

b) l1=0

M

-6

-9 -0.6

-0.3

2

ED

PT

xx(x,0)(10 GPa)

-3

l1=1.2*10

-3

l1=1.5*10

-3

0.3

0.6

0.3

0.6

c) l1=0

2.0

CE

l1=0.9*10

0.0 x(cm)

2.5

AC

0.6

AN US

-3

CR IP T

a) l1=0

1.5

l1=0.9*10

-3

l1=1.2*10

-3

l1=1.5*10

-3

1.0 0.5 0.0 -0.6

-0.3

0.0 x(cm)

Fig. 5. Influence of the interaction between two semi-cylindrical indenters with P  107 N m and R  0.09m on: a) the surface electric displacement Dz ( x,0) when Q  0.5 C m , b) the surface magnetic induction Bz ( x, 0) when M  60 N A , and c) the surface in-plane stress  xx ( x, 0) when Q  0.5 C m and M  60 N A in which the unit of distance l1 is m. 37

ACCEPTED MANUSCRIPT

Dz (x,0)(C/m )

0

-2

-3 -1.5 -1.0 -0.5

a) 7 -2 P=0.510 , Q=0.077 10 7 -2 P=210 , Q=0.30810 7 -2 P=610 , Q=0.924 10 7 -2 P=810 , Q=1.232 10

0.0 0.5 x (cm)

Bz (x,0)(10 N/(Am))

0.0

1.0

1.5

AN US

4

-0.5

CR IP T

2

-1

-1.0

M

-1.5

ED

-2.0 -1.5 -1.0 -0.5

b) 7 P=0.510 , Q=5.4342 7 P=210 , Q=21.7369 7 P=610 , Q=65.2107 7 P=810 , Q=86.9476

0.0 0.5 x (cm)

1.0

1.5

1.2

AC

CE

xx (x,0)(10GPa)

PT

c) 7 -2 P=0.510 , Q=0.077 10 , M=5.4342 7 -2 P=210 , Q=0.30810 , M=21.7369 7 -2 P=610 , Q=0.924 10 , M=65.2107 7 -2 P=810 , Q=1.232 10 , M=86.9476

0.9 0.6 0.3

0.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 x (cm)

Fig. 6. Effect of the combinations of multi-field loadings when R  0.09m and l1  103 m on: a) the surface electric displacement Dz ( x,0) , b) the surface magnetic induction Bz ( x, 0) , and c) the surface in-plane stress  xx ( x, 0) in which the units of P, Q and M are N m , 0.5C m and N A . 38