Measurement of hypersonic velocities and turbulence by direct spectral analysis of doppler shifted laser light

Measurement of hypersonic velocities and turbulence by direct spectral analysis of doppler shifted laser light

Volume 32A, number 2 BY PHYSICS LETTERS MEASUREMENT OF DIRECT SPECTRAL 15 June 1970 HYPERSONIC VELOCITIES ANALYSIS OF DOPPLER AND TURBULENCE SHI...

114KB Sizes 0 Downloads 41 Views

Volume 32A, number 2

BY

PHYSICS LETTERS

MEASUREMENT OF DIRECT SPECTRAL

15 June 1970

HYPERSONIC VELOCITIES ANALYSIS OF DOPPLER

AND TURBULENCE SHIFTED LASER LIGHT

D. A. JACKSON and D. M. PAUL

Physics Laboratory, University of Kent, Canterbury, Kent, U.K. Received 10 April 1970

A non-contact anemometer based on a single frequency argon laser and spherical Fabry-Perot has been used to measure hypersonic velocities and turbulence widths in large scale wind tunnels. The sysis capable of measuring directional velocities from 1 to 106 m/sec.

Velocity i n v e s t i g a t i o n s at s u p e r s o n i c speed a r e at p r e s e n t p e r f o r m e d using e i t h e r pitot tubes which a r e l i m i t e d to m e a n v e l o c i t y m e a s u r e m e n t , or d e l i c a t e hot w i r e p r o b e s which give both m e a n v e l o c i t y and v e l o c i t y fluctuations. The i n s e r t i o n of such p r o b e s i n e v i t a b l y m o d i f i e s the flow p a t t e r n . We r e p o r t h e r e p r e l i m i n a r y m e a s u r e m e n t s using a n o n - c o n t a c t l a s e r v e l o c i t y p r o b e capable of m e a s u r i n g v e l o c i t i e s f r o m 1 to 2 × 106 m / s e c , in which the v e l o c i t y s p e c t r u m i s m e a s u r e d by d i r e c t s p e c t r a l a n a l y s i s of the f r e q u e n c y shift of light s c a t t e r e d f r o m a i r b o r n e particles. Th e output b e a m light f r o m a s i n g l e f r e q u e n c y a r g o n l a s e r [1, 2] was f o c u s s e d into the r e g i o n to be i n v e s t i g a t e d . A r e f e r e n c e b e a m which s e r v e d as a z e r o v e l o c i t y m a r k e r ( d e r i v e d f r o m the i n cident signal beam) was f o c u s s e d at the s c a t t e r ing v o l u m e , the an g le b e t w e e n the b e a m s d e f i n ing the s c a t t e r i n g angle. Light s c a t t e r e d f r o m p a r t i c l e s in the f o ca l r e g i o n was c o l l e c t e d by a s e c o n d l e n s and f o c u s s e d into a confocal p i e z o e l e c t r i c a l l y scanned F a b r y - P e r o t [3], the a x i s of the F a b r y - P e r o t coinciding with the r e f e r e n c e b e a m (fig. 1). The C . F . P . was s c a n n e d using the sawtooth r a m p of an o s c i l l o s c o p e and the t r a n s m i t t e d light was d e t e c t e d by a p h o t o m u l t i p l i e r the output of which d r o v e the v e r t i c a l a x i s of the o s c i l l o s c o p e . T h e s p at i al r e s o l u t i o n 1 m m by 80 bt was d e fined by the a c c e p t a n c e angle of the a n a l y z i n g o p t i c s and the s i z e of the d i f f r a c t i o n l i m i t e d c y l i n d e r p r o d u c e d by f o c u s s i n g the incident b e a m . The f r e e s p e c t r a l r a n g e of the F a b r y P e r o t was 2 GHz with a r e s o l u t i o n of 7.5 MHz. Ini t i al e x p e r i m e n t s have been c a r r i e d out at the 20 c m 2 × 23 c m 2 wind tunnel at the Royal A i r c r a f t E s t a b l i s h m e n t , Bedford. T h e tunnel

RGON LASER

. . . . . .

e

U

--~

FABRY . ~ / _ _ . , \ PEROT,/~'~'~VAR, A B L E APERTURE

MULTIPLI

Fig. 1. Optical arrangement showing the system used to match the reference beam and the signal beam into the analysing optics. The symmetric scattering geometry shown selects only the velocity component U, with frequency shift Au = (2 U/A) sin i was o p e r a t e d at h i g h e r than n o r m a l humidity so that i c e p a r t i c l e s , f o r m e d d u r i n g expansion in the t h r o a t , act ed a s s c a t t e r i n g c e n t r e s . Th e v e l o c i t y along the c e n t r e of the wind tunnel has been m e a s u r e d at s e v e r a l Mach n u m b e r s (dictated by the l i n e r s a v a i l a b l e ) and is corn77

Volume 32A, n u m b e r 2 u¢b

PHYSICS

LETTERS

15 June 1970

600

E

o/

o/

~A

~450
0

300

u,J n

,~ 150

/i

150 PITOT TUBE

Fig. 3. The upper t r a c e shows the zero velocity r e f e r ence m a r k e r . The lower t r a c e is the s c a t t e r e d light s p e c t r u m with a Doppler shift in frequency, D.S. of 700 MHz c o r r e s p o n d i n g to a speed of 456 m / s e c . L

300 450 metre/see

Fig. 2. o - C o m p a r i s o n ot a i r speed m e a s u r e d directly by the F a b r y - P e r o t and indirectly by the Pitot tube f r o m a knowledge of the tunnel operating conditions. [ ] - C o m p a r i s o n of the tangential velocity of a high speed rotating disc with the F a b r y - P e r o t m e a s urement. pared with the pitot tube measurements taken at t h e s a m e t i m e (fig. 2). T h e low v e l o c i t y c a l i bration point was obtained from light back scattered from a high speed disc. A t y p i c a l s p e c t r u m i s s h o w n in fig. 3, t h e x axis defines an absolute velocity scale requiring no calibration under operating conditions as is the case with the pitot tube or hot wireprobes. T h e a c c u r a c y of t h e m e a s u r e m e n t s i s b e t t e r t h a n 0.5%. It i s c l e a r f r o m fig. 3 t h a t t h e r e i s l i t t l e t u r b u l e n c e a l o n g t h e c e n t r e l i n e of t h e p a r t i c u l a r wind tunnel investigated. E x p e r i m e n t s i n b o u n d a r y l a y e r s (to b e p u b l i s h e d ) i n d i c a t e t h a t t h e c h a r a c t e r of t h e d o p p l e r

78

s h i f t e d p e a k c h a n g e s in r e g i o n s of t u r b u l e n c e . Similar turbulent broadening has been observed in t h e e f f l u x of a j e t e n g i n e [4]. T h e o b s e r v e d f r e q u e n c y s h i f t s a r e s e e n to b e - 3 0 0 MHz o r g r e a t e r , w h i c h i s b e y o n d t h e l i m i t of c o n v e n t i o n a l l a s e r h e t e r o d y n e t e c h n i q u e s . T h e Fabry-Perot has the further advantage that the actual velocity direction is unambiguously measured and also the system is not limited by the s h o t n o i s e of t h e l o c a l o s c i l l a t o r a s in t h e heterodyne technique. The authors gladly acknowledge the valuable a s s i s t a n c e of t h e s t a f f of R. A. E . , B e d f o r d , a n d of h e l p f u l d i s c u s s i o n s w i t h P. B o u r k e of A . E . R . E

References [1] M. H e r c h e r , Appl. Optics 8 (1969) 1103. [2] D. A. Jackson and D. M. Paul, J. Sci. Inst. 2 (1969) 1077. [3] M. H e r c h e r , Appl. Optics 7 (1968) 951. [4] R. N. J a m e s , W. R. Babcock and H. R. Siefert, A . I . A . A . J . 6 (1968) 160.