Mechanistic studies of glutamine synthetase from Escherichia coli. An integrated mechanism for biosynthesis, transferase, ATPase reactions

Mechanistic studies of glutamine synthetase from Escherichia coli. An integrated mechanism for biosynthesis, transferase, ATPase reactions

BIOCHIMIE, I97,6, 58, 35-~9. Mechanistic studies of glutamine synthetase from Escherichia colt. An integrated mechanism for biosynthesis, transferase...

1MB Sizes 0 Downloads 54 Views

BIOCHIMIE, I97,6, 58, 35-~9.

Mechanistic studies of glutamine synthetase from Escherichia colt. An integrated mechanism for biosynthesis, transferase, ATPase reactions (*). S. G. RHEE (**), P. B.

CHOCK,a n d E. R. STADTMAN ~.

Laboratory of B i o c h e m i s t r y , Section on E n z y m e s , National Heart and L u n g Institute, National Institutes o[ Health, Bethesda, Maryland 20014. Summary. - - The m e c h a n i s m of biosynthetic, transferase, ATPase, and t r a n s p h o s p h o r v l a t i o n reactions catalyzed by u n a d e n y l y l a t c d g l u t a m i n e s y n t h e t a s e f r o m E. colt was studied. Activation eomplex(es) involved in the b i o s y n t h e t i c r e a c t i o n are produced in the presence of e i t h e r Mg2÷ or Mn2+ ; however, w i t h the Mn2+-enzyme i n h i b i t i o n by the produet, ADP, is so great t h a t the overall f o r w a r d b i o s y n t h e t i c r e a c t i o n c a n n o t be detected w i t h the kno'wn assay methods. Binding studies show t h a t s u b s t r a t e s (except for NH3 a n d NHeOH which are not reported here) can b i n d to the enzyme in a r a n d o m m a n n e r a n d t h a t b i n d i n g of the ATP-glutamate, ADP-P~ or ADP-arsenate pairs is strongly synergistic. I n h i b i t i o n a n d b i n d i n g studies show t h a t the same b i n d i n g site is utilized for g l u t a m a t e a n d g]utamine in b i o s y n t h e t i c a n d t r a n s f c r a s e reactions, respectively, a n d t h a t a c o m m o n nucleotide b i n d i n g site is used for all reactions studied. Studies of the reverse biosynthetic reaction and results of fluorescent t i t r a t i o n e x p e r i m e n t s suggest t h a t b o t h a r s e n a t e a n d o r t h o p h o s p h a t e b i n d at a site w h i c h overlaps the ~-phosphate site of nueleoside t r i p h o s p h a t e . In the reverse b i o s y n t h e t i c a n d t r a n s f e r a s e reactions, ATP serves as a s u b s t r a t e for the Mn2+-enzyme b u t not f o r the Mg2+-enzyme. The ATP supported t r a n s f e r a s e activity of Mn2+-enzyme is p r o b a b l y facilitated by the generation of ADP t h r o u g h ATP hydrolysis. W h e n AMP was the only nneleotide s u b s t r a t e added, it was converted to ATP w i t h c o n c o m i t a n t f o r m a t i o n of two e q u i v a l e n t s of glutamate, u n d e r the reverse b i o s y n t h e t i c r e a c t i o n conditions, a n d no ADP was detected. The r e v e r s i b i l i t y of 180 t r a n s f e r between o r t h o p h o s p h a t e a n d ~-acyl group of g l u t a m a t e was confirmed. ATPase activity of Mg2÷ a n d Mn2+ u n a d e n y l y l a t e d enzymes is a b o u t the same. Both enzyme f o r m s catalyze t r a n s p h o s p h o r y ] a t i o n reactions between various p u r i n e nueleoside triphosphates a n d nueleoside d i p h o s p h a t e s u n d e r b i o s y n t h e t i c reaction conditions. The data are consistent w i t h the h y p o t h e s i s t h a t a single active center is utilized for all reactions studied. Two stepwise m e c a n i s m s t h a t could explain the results are discussed.

M e 2+

INTRODUCTIOn. G l u t a m i n e synt, h e t a s e is a k e y e n z y m e i n n i t r o g e n m e t a b o l i s m [1]. T h e e n z y m e f r o m E. colt is kno~ccn t o c a t a l y z e r e a c t i o n s (1-5) i n w h i c h t h e a b b r e v i a t i o n Me 2+, Pi, N1 a n d No r e p r e s e n t d i v a lent metal ions, orthophosphate, nucleoside 1 and nucleosi~de 2, r e s p e c t i v e l y . (See r e c e n t r e v i e w s b y Sta, d t m a n an,d G i n s b u r g [2J a n d M,eister [3]). Me 2÷ L-Glutamate + ATP + NH a ~ L - ~ l u t a m i n e + AD,P + Pi

(1)

]~[e2+ L-Glutamine ÷ NH2OH < ADP, Pi o r A r s e n a t e , t - g l u t a m y l h y d r o x a m a t e -4- NH3

(2)

(*) This p a p e r is P a r t II of a series on m e c h a n i s t i c studies of t h i s enzyme. (**) Recipient of a N a t i o n a l H e a r t a n d Lung Institute Postdoctoral Fello~vship. O To w h o m all correspondence should be addressed.

L - G l u t a m a t e -b A T P ~ p y r r o l i d o n e c a r b o x y l a t e A- AD'P + Pi

(3)

.Me2+ L-~lutamine + H20 ~" ADP, A r s e n a t e L - g l u t a m a t e + N.H 3

(4)

Me2+, Pi o r A r s e n a t e N I T P + N2DP ..(_ ~Glutamate, Glntamine N2TP + NIDP

(5)

The enzymic activities which catalyze the various r e a c t i o n s a r e r e f e r r e d to as f o l l o w s : r e a c t i o n (1), b i o s y n t h e t i c a c t i v i t y ; r e a c t i o n (2), t r a n s f e r a s e ; r e a c t i o n (3), A T P a s e ; r e a c t i o n (4), a r s e n a t e dep e n d e n t g l u t a m i n a s e ; a n d r e a c t i o n (5), t r a n s p h o s phorylase. The physiological significance of react i o n s (2), (3), (4), a n d (5) h a s n o t b e e n d e t e r m i n e d . To date, there have been numerous studies and s p e c u l a t i o n s o n t h e m e c h a n i s m of r e a c t i o n (1) i n

36

S. G. R h e e , P. B. C h o c k a n d E. R. S t a d t m a n .

E. colt [4-7] and in a n i m a l s [;3, 8], on the m e c h a n i s m of r e a c t i o n (2) in E. colt E4, 9] and in anim a l s ~3, 10], on the m e c h a n i s m s of r e a c t i o n (3) in E. colt [11], a n d on the m e c h a n i s m of r e a c t i o n (4) in E. colt [2J an~d in peas [12]. A tentative m e c h a n i s t i c s c h e m e w h i c h in,cludes r e a c t i o n s (1) to (4) has been p r o p o s e d for glutamine s y n t h e t a s e from m a m m a l s [3, 8]. H o w e v e r , t h e r e is c o n t r o versy as to w h e t h e r such a m e c h a n i s m can e x p l a i n the data o b t a i n e d w i t h the E. colt enzyme [5, 6, 7, 13, 14]. In a d d i t i o n , it w a s u n c e r t a i n w h e t h e r the same c a t a l y t i c site is i n v o l v e d for all these r e a c t i o n s since Mn 2+ is k n o w n to s u p p o r t o n l y t r a n s f e r a s e a c t i v i t y w h i l e Mg 2+ s u p p o r t s b o t h b i o s y n t h e t i c a n d t r a n s f e r a s e activities of the una d e n y l y l a t e d enzyme.

In this p a p e r , w e r e p o r t results of f ~ r t h e r studies on r e a c t i o n s (1) to (5) as c a t a l y z e d b y u n a d e n y l y l a t e d a n d in some cases a d e n y l y l a t e d glutam i n e synthetase f r o m E. colt in the p r e s e n c e pC e i t h e r Mg e÷ or Mn2+. The e x p e r i m e n t a l d a t a suggest that the enzyme utilizes the same c a t a l y t i c site for r e a c t i o n s (1) to (5), a n d an i n t e g r a t e d m e c h a n i s m is p r o p o s e d to a c c o u n t for these r e a c tions. W i t h the p r o p o s e d m e c h a n i s m , one c a n recon.cfle most e x p e r i m e n t a l data in the literature. MATERI&LS AND M~THO~)S. (a) Materials : Both the u n a d e n y l y l a t e d a n d a d e n y l y l a t e d forms of glutamin.e s y n t h e t a s e w e r e isolated f r o m E. colt using the p r o c e d u r e develo p e d b y W o ~ l f o l k et al. [4~. U n a d e n y l y l a t e d enzyme (El%) (the s u b s c r i p t in,dicates the a v e r a g e n u m b e r o~f a d e n y l y l a t e d subunits p e r do,decamer) was isolated f r o m E. colt t h a t h a d been g r o w n in a m e d i u m c o n t a i n i n g 20 ram NH4C1 and 0.67 M glycerol. F o r the adeny']ylated e n z y m e (E~y), E. colt w a s g r o w n in a m e d i u m c o n t a i n i n g 35 raM gl~atamate an.d 0.6.7 M glycerol and, i m m e d i a t e l y p r i o r to harvesting, NH4C1 was a d d e d to 40 mM final c o n c e n t r a t i o n . U n d e r these c o n d i t i o n s , the enzyme is c o n v e r t e d v e r y r a p i d l y to the a d e n y l y l ated form [15J. The state ~f a d e n y l y l a t i o n of glut a m i n e synthetase p r e p a r a t i o n s was d e t e r m i n e d both by the s p e c t r o p h o t o m e t r i c m e t h o d a n d b y the ~-glutamyltrans,ferase assay [16]. The s p e c i f i c a c t i v i t y of the p u r i f i e d enzyme Yeas d e t e r m i n e d b y a m o d i f i e d p r o c e d u r e d e v e l o p e d b y G i n s b u r g et al [5~ a n d the results o b t a i n e d agree well w i t h p u b l i s h e d values for the p u r i f i e d enzyme. L - [ l ~ C ] g l u t a m i c a c i d (200 m'Ci/mmole), [~2.p] i n o r g a n i c phos~phate a n d 5 ' - a d e n y l y l i m i d o d i p h o s p h a t e (AMP-P-N-P) w e r e p u r c h a s e d from I n t e r n a t i o n a l Chemical Nuclear. [v-a2PJATP (2-1.0 C i / BIOCHIMIE, 1976, 58, n ° 1-2.

mmo'le) an.d I,-[14C]gl.utamine ( > 200 m g / m o l e ) w e r e o b t a i n e d f r o m New E n g l a n d N u c l e a r Corp. [ 1 8 0 ] i n o r g a n i c p h o s p h a t e ( d i s o d i u m salt; 9.4.4 p e r cent 180,) was p u r c h a s s e d f r o m Bio-Rad L a b o r a tories. ATP, ADP, AMP, L-glutamine, L-g]utamic act,d, GTP, GDP, IDP, UD:P, C,DP, a n d c~-methylD-manosi.de w e r e o b t a i n e d from Sigma Chemical Go. P o l y g r a m CJ~L 300 P E I ( P o l y e t h y l e n e i m i n e i m p r e g n a t e d ) c h r o m a t o g r a p h y sheets w e r e p u r c h a s e d from Brin.kman I n s t r u m e n t s , Inc. Snake venom p h o s p h o d i e s t e r a s e w a s o b t a i n e d f r o m W o r thingto.n Biochemica.1 C o r p o r a t i o n . Concanavalin-A c o v a l e n t l y b o u n d to s e p h a r o s e 4B was obtained from P h a r m a c i a F i n e C,hemicals AB. The c o m m e r c i a l p r e p a r a t i o n s o~f ATP and AMP-P-N-P (about 910~p e r cent p u r e ) w e r e p u r i f i e d b y c h r o m a t o g r a p h y on D~EAE~Sephadex A-25 p r i o r to use. E l u t i o n of the p u r e nucleotides was a c h i e v e d w i t h a KC1 g r a d i e n t from 50 mM to 200 mM in 20 mM Tris-HCl (pH 8.3). W h e n h i g h p u r i t y was r e q u i r e d , g l u t a m i n e a n d glutamate, w h e t h e r l a b e l e d or u n l a b e l e d , w e r e p u r i f i e d b y a d s o r p t i o n to a n d elution from Dowex-1 (.C.1) columns b y s'light modifi,catio~ns of the p r o c e d u r e of P r u s i n e r a n d Milner [17]. Completely u n a d e n y l y l a t e d glutamine synthetase, E y , w a s o b t a i n e d b y t r e a t m e n t of the EE5 enzyme w i t h snake v e n o m p h o s p h o d i e s t e r a s e . The rea.etion m i x t u r e , 0.2 ml, c o n t a i n i n g 30 mM T r i s (pH 8.0,), 18 m g o~ E ~ a n d 0.2 m g of v e n o m phosp h o d i e s t e r a s e , w h i c h h a d been h e a t e d at 37 ° for 3 h o u r s in 1.0 p e r cent acetic a c i d solution to i n a c t i v a t e c o n t a m i n a t i n g 5 ' - n u d e o t i d a s e E18], was i n c u b a t e d at 37 ° for 30 minutes. A p a r a l l e l e x p e r i m e n t s h o w e d that u n d e r simi~lar con, ditions, Eyy- was d e a d e n y l y l a t e d to EE~ w i t h o u t significant loss of a c t i v i t y ( < 10 p e r cent). To r e m o v e the venom p h o s p h o d i e s t e r a s e [19] the r e a c t i o n m i x t u r e was then p l a c e d on a c o n c a n a v a l i n - A S e p h a r o s e column (0.9 × 11 cm) vzhich h a d been first w a s h e d w i t h 0.1 M a - m e t h y l - D - m a n n o s i d e at p H 6.0 a n d then w i t h 0.2 M p o t a s s i u m acetate, p H 6.0. Elution of the l o a d e d column w i t h 0.2 M p o t a s s i u m acetate buffer at p H 6.0 r e m o v e d glut a m i n e s y n t h e t a s e (6 to 20 ml eluate fractions) and v e n o m p h o s p h o d i e s t e r a s e was i m m o b i l i z e d on the column. The eluted enzyme was di,alyzed first against 5,0 rrrM K-HEP.ES buffer (pH 7.0) containing 1 mM EpDTA and 0.1 M KC1, then against the same buffer from w h i c h EDTA was onfitted. Tke state of a d e n y l y l a t i o n of the r e s u l t i n g p r e p a r a t i o n w a s O as d e t e r m i n e d b y both ~,-glutamyltransferase and s p e c t r o p h o t o m e t r i c assay methods. (b) Methods : L-glutaruine, L-glutamate, and p y r r o l i d o n e c a r b o x y l a t e w e r e d e t e r m i n e d by a

Glutamine synthelase -- Mechanistic studies. m o d i f i e d p r o c e d u r e of P v u s i n e r a n d Mitner [17] a n d / o r the method p r e v i o u s l y described by K r i s h n a s ~ , a m y et al [8]. I n e x p e r i m e n t s w i t h [14C]glutamine the r e a c t i o n was q u e n c h e d by the a d d i t i o n of 1 ml of 3,0 mM u n l a b e l e d glutamine in 10 mM imadozole-H,C1 (pH 7.09 to a 50 to 100 ~xl reaction m i x t u r e s at 0 °. The diluted sample was i m m e d i a t e l y placed on a Do~ex-1 (C1) c o l u m n (0.5 × 5.5 cm) to separate the products, labeled glutamate and pyrroli,done carboxylate, from residual [~4C]glutamine. E l u t i o n of the c o l u m n with the 10 mM imidazole-HC1 (pH 7.0)-3.0 mM glutam i n e solution r e m o v e d the [~4C] glutamine quantitatively in the first 4 ml of e~uate w h i c h was collected i n two s c i n t i l l a t i o n vials. The [14C]glutamate that r e m a i n e d on the c o l u m n u n d e r these c o n d i t i o n s was eluted out q u a n t i t a t i v e l y with 4 ml of 0.1 M HC1 a n d collected in two s c i n t i l l a t i o n vials. Since p y r r o l i d o n e carboxylate also was eluted in the glutamate fractions, it was separated from glutamate by p a p e r c h r o m a t o g r a p h y in a solvent system of ethanol-acetic acid-water (4-1-1). The a m o u n t of [~4,C] i n each sample was determ i n e d by c o u n t i n g in a Beckman LS-250 l i q u i d s c i n t i l l a t i o n counter. Nucleotides and [32p]orthophosphate were separated by the method of Cashel et al [20] b y c h r o m a t o g r a p h y on PEI thin layer sheets developed i n phosphate buffer (pH 3.4). Tile concent r a t i o n of the buffer used (0.5 to 1.5 M) was v a r i e d d e p e n d i n g on whi.ch nucleotides were to be separated. The areas c o r r e s p o n d i n g to a u t h e n t i c nucleotide m a r k e r s were h~cated u s i n g a UV lamp and were cut out for counting. W h e n the experim e n t r e q u i r e d no authentic nucleotide to be coc h r o m a t o g r a p h e d w i t h the sample, radioautograp h y was used to locate the position of the labeled nucleotide on the thin layer sheet. [32p] orthophosphate p r o d u c e d from [v-szP] ATP d u r i n g the reaction was d e t e r m i n e d by a m o d i f i e d m e t h o d of Goldmark and L i n n [21] in w h i c h charcoal was used to remove the nucleotide. The enzym i c r e a c t i o n was stopped b y r a p i d a d d i t i o n to the sample solution (50-10,0 ~I) 1 ml of charcoal s u s p e n s i o n p r e p a r e d by m i x i n g 3.0 g of Norit charcoal, 15:0 ml of 1 M orthophosphate at pH 6.7, 150 ml of 1 M HE1, a n d 400 ml of water. After a few minutes, the s u s p e n s i o n was filtered t h r o u g h glass wool directly into a s c i n t i l l a t i o n vial. One ml of acidic phosphate solution (0.3,8 M) was used to w a s h the charcoal a n d the glass wool. The wash was collected i n a second s c i n t i l l a t i o n vial. I n controlled studies, 74 p e r cent o,f the [z2p]orthophosphate w.as recovered i n the first vial a n d 25 per cent i n the second vial.

BIOCHIMIE, 1976, 58, n ° 1-2.

37

The [lS0]glutamate o b t a i n e d from the reverse b i o s y n t h e t i c reaction was first tri-fluoroacetylated a n d then esterified w i t h d i a z o m e t h a n e to form a volatile derivative [22], w h i c h was analyzed with a LKB Type 9000 g a s - l i q u i d c h r o m a t o g r a p h y - m a s s spectrometer. F l u o r e s c e n c e m e a s u r e m e n t s were ma,de u s i n g a H i t a c h i - P e r k i n - E l m e r MPF-2A i n s t r u m e n t equipped with a Hewlett-Packard 7004B X-Y recorder. Constant t e m p e r a t u r e was m a i n t a i n e d u s i n g thermostated cell holders a n d c o n s t a n t t e m p e r a t u r e c i r c u l a t i n g baths. A Cary 17 s p e c t r o p h o t o m e t e r e q u i p p e d w i t h thermostated cells was used for a b s o r p t i o n spectra m e a s u r e m e n t s a n d for lhe bios y n t h e t i c coupled-enzyme assays. Special care was taken to remove trace a m o u n t s of a m i n o n i a in the enzyme [8]. Redistilled deionized w a t e r was used. The a m o u n t of NH a p r e s e n t in the system was negligible as i n d i c a t e d by the fact that on,ly a trace a m o u n t of [~4C]glutamine was formed w h e n enzyme was a d d e d to flaG]glutamate, ATP, a n d Mg2+. RESULTS.

Divalent Cation Effects. Mn 2+ supports the bios y n t h e t i c activity of a d e n y l y l a t e d but not una d e n y l y l a t e d glutamine s y n t h e t a s e ; h o w e v e r it can s u p p o r t the transferase activity of both adenylylated and u n a d e n y l y l a t e d enzyme forms [2325]. To investigate the possibility that separate catalytic sites are i n v o l v e d for reactions (1) a n d (2), the reverse b i o s y n t h e t i c r e a c t i o n was c a r r i e d out in the p r e s e n c e of eilher Mg2+ or Mn "2-+. Completely u n a d e n y l y l a t e d enzyme, E ~ , (see Methods) TABLE I.

R e v e r s e B i o s y n t h e t i c A c t i v i t y of the Unadenylylated E n z y m e in the P r e s e n c e of Mge+ or Mn ~+ at D i f f e r e n t ADP and P~ Concentrations (a). t ADP] mM

[mPi] mM

5.0 05 0.1 O. 02 0.005

5.0 0.5 0.1 O. 02 0.005 j

activity, (b) ~M/min

Mg~+ supported activity, (b) ~tM/miu

0.58 0.57 0.39 0.18 0.057

2.8 0.75 0.14 0.013 O. 0012

MIJ~+ supported

I

MB2+

/Mg~+ 0.21 0.76 28 14 48

(a) The reaction ~vas followed at 37 ° by the formation of [~t-32p]ATP. The reaction mixtures contained ADP, 32p I as indicated, 46 mM K-HEPES (pH 7.0), 92 mM KC1, 3 nM Eo (subunit concentration), 10 mM L-glutamine and 0.4 mM Mn2+ or 20 mM Mg2+. (b) The activity was an average of two experimental points obtained at 7 and 17 rain after the addition of enzyme.

S. G. R h e e , P. B. C h o c k a n d E. R. S t a d t m a n .

38

was used for these e x p e r i m e n t s to elilninate the possibi'lity that any o b s e r v e d activity could be due to the p r e s e n c e of t r a c e amounts of the aden y l y l a t e d subunit. The results s h o w that both Mg 2* a n d Mn 2÷ s u p p o r t e d activity is a f u n c t i o n o,f the c o n c e n t r a t i o n s of ADP and P] (table I). W h e n the c o n c e n t r a t i o n s of ~DIP and P~ are the same, the Mg2*-enzyme is m o r e active at h i g h AD,P and Pi c o n c e n t r a t i o n s , w h e r e a s the Mn2*-enzyme is m o r e active at l o w ADP and Pi c o n c e n t r a t i o n s . I n o r d e r to e x p l a i n the v a r i a t i o n in a.ctivity sho~vn in table I, f l u o r o m e t r i c titrations w e r e c a r r i e d out at pH 7.6, 25 °, in 5,0 mM K-HJEPES buffer and 0.1 M I~C1. The dissociation constants o b t a i n e d f o r Pi f r o m MgEy6-ADP-P i and Mn,EI.o-ADP-P ] are 5 mM and 0.0.8 raM, r e s p e c t i vely a n d the c o r r e s p o n d i n g dissociation constants for ADP in the p r e s e n c e of Pi av.e 25 ~tM a n d 20 nM, r e s p e c t i v e l y .

attributed to the fact that Mg2÷ and Mn 2+ stabilize different conformationa'l s,tates of the enzyme [26, 27J. It is significant, h o w e v e r , that w h e r e a s binding of the analog of ATP, 5 ' - a d e n y i y l i m i d o dip h o s p h a t e (AMP-P-N-P), to both MgEy6 and M n E ~ p r o d u c e s the same fluorescence e n h a n c e ments as are o b t a i n e d w i t h AT,P, no a d d i t i o n a l e n h a n c e m e n t of f l u o r e s c e n c e is o b t a i n e d w i t h the subsequ.ent a d d i t i o n of L-glutamate. This suggests that w i t h both Mn2+ arid Mg 2+ a c t i v a t e d e n z y m e forms, a c o m p l e x is p r o d u c e d b e t w e e n ATP and glutamate (possibly ~,-glutamyl-phosphate transition state i n t e r m e d i a t e ) nvhile such a c o m p l e x cannot be f o r m e d w i t h AM,P-P-N-P and glutamate.

t-

/

20! /

j

(

x

S i m i l a r changes in the i n t r i n s i c t r y p t o p h a n f l u o r e s c e n c e of u n a d e n y l y l a t e d e n z y m e are oh-

/'

L0 ~"

K, = 30 mM f

'

/ /

0 Glut

//

/

!V

//

02

(J

/

£"

,

~,;;,/

//

.,"

/

/ 2' / ,r , - ,

.

Glut

,,z,

/

.

/

4O

/

°,

>-

)-

/ ' / / / /'ll

/

/

80

_z 60

/

30 610 ~ GLUTAMATEqmM) /

,

/

/ •

/-"

/~

/

/

./

/-~

.A

/

~ . ./ . - --

. -

ATP

LL

<,

- .- ,7

LU Q:

. - j " . - , :,y

0

MgE~

SUBSTRATE ADDITION

Fro. 1. - - Relative fluorescent intensity enhanced by A TP addition follolwed by glutamate addition for MgET.~ and MnET~. The reactions were carried out in 50 mM K-HEPES (pH 7.0) balffer containin,g 0.1 M KC1 at 25 ° . Saturated level of ATP and glutamate "were added. Excitation wavelength was 300 mM and emission was measured at 336 mM. rained by stepwise addi'fions of ATP and glutam a t e to M g E y 5 and M n E i . 0 ~figure 1.). This suggests that the same i n t e r m e d i a t e s are f o r m e d in the p r e s e n c e of both d i v a l e n t cations. The fact that g r e a t e r e n h a n c e m e n t of fluores.cence is obt a i n e d w i t h MnE1z~ than w i t h MgE1. o m a y be

BIOCHIMIE, 1976, 58, n ° 1-2.

200

I (M_~) Glutamme

AnE 1-~

o

100

Fic,. 2. - - Competitive inhibition exhibited by glutamate in the ~.,-glulamyl-transfer reaction at 37 °. The reaction mixtures contained the indicated concentration of glutamine, 50 mM K-HEPES (pH 7.6) 0.1 M KC1, 20 mM Mg9+, 1 mM ADP, 20 mM inorganic phosphate, 40 mM NH2OH, 18 nM E~.6 (suhunit concentration) and glutamate at O mM f~), 5 mM (D), 15 mM (O), 30 mM (A), 45 mM (m) and 60 mM (O) final concentrations.

COMPARISON OF REACTIONS.

BIOSYNTHETIC

AND

TRANSFERASE

(a) Glutamate and Glutamine Binding Site : M p H 7,6 w i t h MgEy6 , L-glutamate is a c o m p e t i t i v e i n h i b i t o r w i t h r e s p e c t to L-glutamine in the v-glutamyl t r a n s f e r reaction. F i g u r e 2 shows the corn-

G l u t a m i n e stjnthetase - - Mechanistic studies.

petitive p a t t e r n observed w h e n the L-glutamine c o n c e n t r a t i o n is varied from 4 to 80 mM at constant L-glutamate c o n c e n t r a t i o n s of 0, 5, 15, 3'0, 45 and 60 raM. The K m obtained for L-glutamine is 11 raM. F r o m the s e c o n d a r y 9lot of the slopes of the lines in figure 2 vs L-glutamate concentration, the K i for L-glutamate was estimated to be 30 mM. T i t r a t i o n of i n t r i n s i c t r y p t o p h a n fluorescence e n h a n c e m e n t associai.ed w i t h the b i n d i n g of L-glutamate to ELo MgATP, a complex req,uired for b i o s y n t h e t i c reaction, showed that the L-glutamate dissociation constants increase w i t h i n c r e a sing c o n c e n t r a t i o n of added L-glutamine (table II). With the assumption that L-glutamine a n d L-glutamate are m u t u a l l y exclusive w i t h respect to enzyme b i n d i n g , a dissociation c o n s t a n t for L-glula-

39

level of arsenate is 25 vM at pH 7.2, 25 ° [28]. There might be slight synergism in the b i n d i n g of ADP and arsenate. Figure 3 clearly demonstrates that AMP-P-N-P is a competitive i n h i b i t o r of ADP in the v-glutamyltransferase reaction with a K i value of 80 ,:xM. This value agrees well with a value of 70 ~M for the dissociation constant o b t a i n e d by

/ ×

S 03

//

/

14`

,,-~ /t,

K I = 0 08 m M

/" /

02

0.4

A M P P N P {mM)

,"

~."

[Glutamine] 0 mM

12 mM 24 raM

Kais~ 3

//-

0,4 1 V

/

/

...

/' /./ / i, A// // / // ." Q,/ / / /~ /" ~/ / / / J-

/

/' .-

/ //// / /

mM

6 raM 8.5 mM

(a) Data obtained from fluorescence titration 'with 1.3 i~xM E]~ (subunit concentration), 10 mM Mg2+, 0.9 mM ATP, 100 mM KC1, and 50 mM K-HEPES at 25 °.

m i n e is calculated to be 12 mM at pH 7.2. Fluorescence titration in the p r e s e n c e of a s a t u r a t i n g a m o u n t of ADP (0.9 raM), 20 mM Mg2+, 2.6 ~M E~U~ (subunit c o n c e n t r a t i o n ) , 50 mM K-HE.PES, and 0.1 M KC1, at pH 7.6, gives a disso,ciation c o n s t a n t of 24 mM for L-glutamate. This value is in relatively good agreement with the Ki for L-glutamate obtained from figure 2, and the dissociation constant, 20 raM, estimated by T i m m o n s et al C7] based on a scheme i n v o l v i n g r a n d o m a d d i t i o n of ATP a n d L-glutamate to the MgE-~u~ , (b) A T P and A D P B i n d i n g Site : T i m m o n s et al [7] showed that AMP-P-N-P h i n d s to the ATP site in the b i o s y n t h e t i c reaction. Therefore, to avoid c o m p l i c a t i o n s that w o u l d he caused by the presence of trace a m o u n t s o.f AD,P i n ATP p r e p a r a tions, purified AMP-P-N-P was substituted for ATP in the studies to d e t e r m i n e the i n h i b i t i o n p a t t e r n w i t h respect to A:DP d u r i n g the transferase reaction. Figure 3 shows the L i n e w e a v e r - B u r k ' s plot obtained for the transferase r e a c t i o n at pH 7.0 w h e n a constant a m o u n t of AMP-P-N-P is present. The K~ for ADP in the p r e s e n c e of a s a t u r a t i n g BIOCHIMIE, 1976, 58, n ° 1-2.

.,

//

0,6

/

, /

TABLE II. E q u i l i b r i u m Constants [or the Dissociation o f Glutamate [rom E F.o MgATP-Glu in the Presence and Absence of L-Glutamine at p H 7.2 (a).

/

0.2

0.5

10

1.5

20

2.5

(M"~ x 10-~

Fro. 3. - - - Competitive inhibition exhibited by AMPP-N-P in the v-glutamyl-transferase reaction. The reactions 'were carried out at 37 °, pH 7.0 in a mixture containing 40 mM K-HEPES, 80 mM KCI, 24 mM Mg2+, 24 mM arsenate, 40 mM NHoOH, 40 mM glutamine, 30.8 nM E ~ (subunit concentration) and AMP-P-N-P at 0 mM (A), 0.06 mM (H), 0.14 mM (O), 0.24 mM (A) and 0.4 mM (I) final concentrations.

direct fluorometric titration o,f MgE1. o w i t h AMPP~N-P at pH 7.0, 20 °. It is n o t e w o r t h y that the affinity of MgE1. o for AMP-P-N-P is a p p r o x i m a t e l y three times greater t h a n for ATP. (c) Orthophosphate and Arsenate Site : Figure 4 shows the rate of [14C] glutamate formation by the reverse b i o s y n t h e t i c r e a c t i o n w h e n [14C] glutamine, Pi or arsenate and AD,P or GDP are substrates. In parallel e x p e r i m e n l s w i t h [32p] orthophosphate as substrate, the a m o u n t of either [-/-a~P]ATP o r [y_32p]GTP formed was equivalent to the a m o u n t of glutamate formed, in a c c o r d a n c e w i t h the s t o i c h i o m e t r y expected by reversal of reaction (1). The c u r v i l i n e a r r e l a t i o n s h i p between glutamate f o r m a t i o n and time observed in the e x p e r i m e n t s w i t h Pt as substrate is p r o b a b l y due

S. G. R h e e , P. B. C h o c k a n d E. R. S t a d t m a n .

40

to p r o d u c t i n h i b i t i o n , since the e n z y m e has relatively h i g h affinity for n u c l e o s i d e t r i p h o s p h a t e s . No i n h i b i t i o n o c c u r s w i t h arsenate since the ADPOAs0~- = f o r m e d u n d e r g o e s r a p i d s p o n t a n e o u s hydrolysis.

i 1200 ~

,,,

"

~

800

400

!

0

20

40 -60 MINUTES

80

100

me.d (2,4 ~M) is about the sanre as the a m o u n t of AD'P (28 '~M) expe.cie,d f r o m ATP hydrolysi's in the p r e s e n c e of Mn 2+, a c c o r d i n g to the data of Tetas and Lo:wenstein [303. W i t h c o m m e r c i a l ATP as substrate anid s'aturating levels of arsenate, glutarain.e, and NH2OH, t r a n s f e r a s e activity was observed w i t h b o t h MgE1. o and MnEy. o. In the case of M g E ~ the activity i n c r e a s e s as a f u n c t i o n of ATP c o n c e n t r a t i o n until it r e a c h e s a plateau at about 5.0 p e r cent of the Vm~x o b s e r v e d for ADP. T h e c o n c e n t r a t i o n of ATP r e q u i r e d to r e a c h the plateau is 0.8 raM. H o w e v e r , w i t h f r e s h l y p u r i f i e d ATP and glutamine as substrates, only MnE~:~ and not MgEiT6 exhibits t r a n s f e r a s e activity. This activity is ATP c o n c e n t r a t i o n d e p e n d e n t until it r e a c h e s about 60 p e r cent obf the Vm,,x value obtained w i t h A DP as substrate. The c o n c e n t r a t i o n of &DP r e q u i r e d to r e a c h the plateau is 2 I~M.

(e) AMP is a Substrate in the Reverse Biosynthetic and Trans[erase Reactions. &MP is an inhi, b i t o r of the f o r w a r d biosynthetic r e a c t i o n [31~ an~d will r e p l a c e A~DP as a c a t a l y t i c sub strate in t h e t r a n s f e r a s e r e a c t i o n in the p r e s e n c e of Mn 2+ or Cd 2+ but not in the pre-

FIG. 4. Formation of glutamate by the reverse biosynthetic reaction. The reactions Were carried out at 37 °, pH 7.6, in a mixture containing 50 mM K-HEPES, 0.1 M KC1, 40 nM E ~ (subunit concentration), 50 mM Mg2+ and 8 mM ADP plus 10 mM P~ (O) or 8 mM GDP plus 10 mM P~ (E]) or 8 mM ADP plus 10 mM arsenate (A). The rate was followed by [14C] glutamate, formation. -

-

120

/

8O

(d) A T P does not S u p p o r t the Reverse and Transferase Reactions : W e l l n e r and Meister [29] r e p o r t e d that ~-glutamyl t r a n s f e r a s e activity of purified sheep b r a i n glutamine synthetase is activated by l o w c o n c e n t r a t i o n s of either ATP or AD,P. Our data s h o w that n e i t h e r the r e v e r s e bios y n t h e t i c nor the -~-glutamyt t r a n s f e r r e a c t i o n is catalyzed by the E. colt e n z y m e w h e n f r e s h l y purifield ATP and g l u t a m i n e are p r o v i d e d as substrates. If AT:P c o u l d s u p p o r t the r e v e r s e r e a c t i o n , a d e n o s i n e t e t r a p h o s p h a t e should be f o r m e d ; h o w e v e r , in the studies w i t h both Mg E ~ and MnEL6, a d e n o s i n e t e t r a p h o s p h a t e could not be detected in the r e a c t i o n m i x t u r e s i n i t i a l l y containing 5.0 mM glutamine, 2.4 m~M [32p] o r t h o p h o s phat.e and 5 mM A T P at p H 7.0. H o w e v e r , w i t h 9.4 ~M M n E ~ , 1.0 p e r cent of the a d d e d [32p]p~ w a s i n c o r p o r a t e d into ATP after i n c u b a t i o n of the r e a c t i o n m i x t u r e for 25 m i n at 37 ° . This [32p] ATP is undoubte~dly d e r i v e d fro.m trace a m o u n t s of ADP p r o d u c e d by slow hy~drolysis of ATP dur i n g the i n c u b a t i o n . The a m o u n t of [a2p]ATP for-

BIOCHIMIE, 1976, 58, n ° 1-2.

rf

100

::L 6O 40 20

0

20

40

60 80 100 120 MINUTES Fro. 5. - - AMP supported reverse biosynthetic reaction. The reaction 'was carried out at 37 °, pH 7.0 in a mixture containing 46 mM K-HEPES, 92 mM KC1, 0.5 mM Mn2+, 10 mM glutamine, 5 mM AMP, 10 mM orthophosphate and 3 ~tM E ~ (subunit concentration). The rate was follo~ved by the formation of [14C]glutamate and [32P]ATP.

sence o.f Mg2+ ( S m y r n i o t i s and Stadtman, unpub l i s h e d data cited in [2]). In a d d i t i o n , W e d l e r and B o y e r [32] h a v e s h o w n that AMP, like GDP, completely inhibits the Pi ~ > " ATIP e x c h a n g e but

G l u t a m i n e s y n t h e t a s e - - M e c h a n i s t i c studies. depresses only slightly the glutamate ~)glut a m i n e e x c h a n g e , c a t a l y z e d b y M n E T ~ . To e x p l a i n these observations, they suggested that nucleotide d i s s o c i a t i o n f r o m t h e e n z y m e is b l o c k e d b y AMP. F i g u r e 5 s h o w s t h a t AMP also s u p p o r t s t h e r e v e r s e b i o s y n t h e t i c r e a c t i o n in t h e p r e s e n c e of MnEi76 an,d t h e l a b e l e d substrates, [14C] g l u t a m i n e o r tamp] o r t h o p h o s p h a t e . At a n y g i v e n t i m e , t h e a m o u n t of [B, :,-s'~P]ATP f o r m e d is e q u a l to a b o u t 40 p e r c e n t of t h e [14C] g l u t a m a t e p r o d u c e d (figure 5). T h e s m a l l d e v i a t i o n f r o m an e x p e c t e d s l o i c h i o m e t r y o,f 1 : 2 for t h e A T P : g l u t a m a t e r a t i o , is w i t h i n e x p e r i m e n t a l e r r o r s . [B-a2P]ADP w a s not d e t e c t e d a m o n g t h e r e a c t i o n p r o d u c t s . U n d e r t h e s a m e c o n d i t i o n s u s e d in s t u d i e s of the reverse biosynthetic reaction, except that 25 mM NH2OH w a s also p r e s e n t , t r a n s f e r a s e a c t i v i t y w a s o b s e r v e d w i t h MnE1z ~ b u t n o t w i t h MgEi-_6. H u n t et al [9], s h o w e d t h a t AMP a n d arsenate support the transfer reaction catalyzed by b o t h Mn ~ a n d Cd 2+ s u p p o r t e d e n z y m e s . H o w e v e r , w e foun,d t h a t i n t h e absen,ce of CA-, Cd~+-enzyme cannot catalyze the reverse biosynthetic reaction, whereas t h e Mn-~+-enzyme can. I n t e r e s t i n g l y , the i n i t i a l r a t e f o r the t r a n s f e r r e a c t i o n is a b o u t

41

60 t i m e s f a s t e r t h a n t h e r e v e r s e r e a c t i o n r a t e f o r the Mn2+-enzyme s y s t e m . T h e s i g n i f i c a n c e of these results w i l l be d i s c u s s e d later. It is notew o r t h y t h a t whe~:eas A M P c a n r e p l a c e A D P in the r e v e r s e b i o s y n t h e t i c r e a c t i o n (figure 5), A D P is u n a b l e to r e p l a c e A T P as a s u b s t r a t e in the forw a r d re,action ; n e i t h e r AM~P n o r Pi is p r o d u c e d in t h e p r e s e n c e of A D P , g l u t a m a t e a n d a m m o n i a . (f) Oxygen Trans[er and Relative Activity : O x y g e n - 1 8 l a b e l l e d g l u t a m a t e h a s b e e n u s e d to s h o w t h a t t h e o x y g e n of the v - c a r b o x y l g r o u p w a s t r a n s f e r r e d to o r t h o p h o s p h a t e in t h e c o u r s e of b i o s y n t h e t i c r e a c t i o n c a t a l y z e d by the p e a e n z y m e [33, 34]. It is b e l i e v e d t h a t a s i m i l a r o x y g e n ]

Mg++l ~/fMn++ I / / Mg+'l~

600 -

ET~

TABI~ III.

Relative Activity [or Reverse Biosynthetic and Transferase Reactions (a).

[ati;ncarboxylateL z -

Relative activity Group

Effectors present

pH

Reverse biosynthetic

Transterase

A(b)

ADP, Mg~+, Arsenate 7.6 A D P , Mg~+, Pi 7.6

3.6 8.1

100 50

B(e)

ADP, Pi, Mn "2+

8 32

100 92

0.4

23

A D P , Pi, Mg~+ C (d)

AMP, Pi, Mn ~+

7.0

(a) The relative activity at 37 ° is normalized with the assumption that 100 is (1) the activity of the transferase reaction with ADP, Mg2+, arsenate in the pH 7.6 system, and (2) the activity of the transferase reaction with ADP, P~, MnU÷ in the pH 7.0 system. (b) Reactions were carried out in a mixture containing 50 mM K-HEPES, 0.1 M KC1, 20 mM Gln, 2.8 mM (8 mM for reverse biosynthetic reaction) ADP, 20 mM Mg2+, 0.15 luM E y ~ (subnnit concentration), 10 mM arsenate, and additional 50 mM NH~OH for the transfer reactions. (c) Reactions 'were carried out in a mixture containing 40 mM IK-HEPES, 92 mM KC1, 10 mM Gln, 5 mM ADP, 10 mM P~, 0.1 t~M El. 0 (subunit concentration). [Me `'+] used is 0.5 mM for Mn2+ and 50 mM for Mg2+. For the transfer reaction 25 mM NH2OH was added. (d) The reactions were carried out with 46 mM K-HEPES, 92 mM KC1, 0.5 mM Mn2+, 10 mM Gln, 5 mM AMP, 10 mM P,, 3 i~zME ~ (subunit concentration) and additional 50 mM NH2OH for the transfer reaction.

BIOCHIMIE, 1976, 58, n ° 1-2.

J,F

0

!

iorma.o.

50

i00 MINUTES

150

Fro. 6. - - Rates of pyrrolidone carboxflate and orthophosphate formation. The reactions were carried

out at 37 °, pH 7.0, in a mixture containing 45 mM K-HEPES, 90 mM KC1, 4.3 mM ATP, 7.1 mM glutamate, 7.4 aM E Lo (subunit concentration) and either 20 mM Mg2+ or 3 mM Mn2 ÷. The rate of the reaction ~vas followed by the formation of 32Pi and [14C]pyrrolidone carboxylate.

e x c h a n g e is also c a t a l y z e d b y t h e E. colt glutam i n e s y n t h e t a s e . In s t u d i e s of t h e r e v e r s e b i o s y n t h e t i c r e a c t i o n , [asO] o r t h o p h o s p h a t e (94.4 p e r c e n t 1so) w a s i n c u b a t e d w i t h u n a d e n y l y l a t e d enz y m e , g l u t a m i n e , a n d A T P in t h e p r e s e n c e of Mg 2+ at 37 °, p H 7.6 f o r I h o u r . T h e glut,amate f o r m e d w a s s u b j e c t e d to m a s s s p e c t r a l a n a l y s i s as d e s c r i b e d u n d e r M e t h o d s . T h e r e s u l t s s h o w e d t h a t 1so f r o m Pi w a s t r a n s f e r r e d to t h e g l u t a m a t e . By anal o g y it is b e l i e v e d t h a t t h e a r s e n a t e o x y g e n is also t r a n s f e r r e d to glu~tamate w h e n a r s e n a t e , i n s t e a d of p h o s p h a t e , is u s e d as n u c l e o p h i l e . Some relative activities for the transferase and r e v e r s e b i o s y n t h e t i c r e a c t i o n s are t a b u l a t e d in table I I I to s h o w (1) r e l a t i v e e f f e c t i v e n e s s of arse-

42

S. G. R h e e , P. B. C h o c k a n d E . R . S t a d t m a n .

nate and Pi as substrate for the MgEi~ at pH 7.6, 37 ° ; (2) relative catalytic activities of MgE ~6 a n d Mn,Ekuo at pH 7.0, 37 ° ; a n d (3) the effectiveness o~f AMP as substrate i n the t r a n s f e r and reverse b i o s y n t h e t i c reactions. A T P a s e Reaction : The glutamine synthetases from sheep b r a i n [8] a n d from E. colt [11] catalyze rea.ction (3), i n w h i c h L-glutamate is converted to pyrroli, done carboxylate w i t h concomiten,t h y d r o l y s i s of ATP. The rate of this r e a c t i o n is about 100 times slower t h a n the b i o s y n t h e t i c reaction. I n the p r e s e n c e of a m m o n i a no pyrroli,done carboxyla.te can be ,detected. Quantitative analysis of this reaction has been c a r r i e d out w i t h both Mg2÷ a n d Mn 2+ s u p p o r t e d enzymes. The results (figure 6) show that both M g E y z aud MnE~6 catalyze the g l u t a m a t e - d e p e n d e n t ATPase r e a c t i o n almos,t equally well ; this is in contrast to the data of W e i s b r o d a n d Meister [11] w h i c h show that the ATPase activity of the Mn 2÷ s u p p o r t e d u n - d e n y l y l -

I n contrast to results w i t h u n a d e n y l y l a t e d enzyme, the data i n figure 7 show that Mn ~+ is m u c h more effective t h a n Mg -°+i n s u p p o r t i n g cat,alysis of r e a c t i o n (3) by the a d e n y l y l a t e d enzyme. I n fact, it is likely that fully a d e n y l y l a t e d enzyme is comp,letely inactive in the p r e s e n c e of Mg2÷, since the low activity observed w i t h MgE~-i- can, w i t h i n e x p e r i m e n t a l error, be a c c o u n t e d for b y the unad e n y l y l a t e d s u b u n i t s presents i n the enzyme used.

20 -

Mg

'T E

7

E

15 o

E

E.

/

Eii

400

/ /

-

10-

6.0

7.0

8.0

P~

200

-

-

~

i00

0

_

FIc,. 8. - - ATPase activity expressed as a fnnction of pH. Radioassays were carried out in 45 mM K-HEPES, 90 mM KC], 2 mM [~t-32P]ATP, 27 mM glutamate, 8 tLM E ~ (subunit concentration) and either 20 mM My2÷ or 3 mM Mn2+ at 37 °.

-

15

30

45

MINUTES

Fro. 7. - - Pyrrolidone carboxylate formation at pH 7.0 and 37 °. The reaction mixture contained 45 mM K HEPES, 90 mM KC1, 28 mM glutamate, 2 mM ATP, 9.4 ~,M E 1i-(subunit concentration) and either 20 mM My2+ or 3 mM Mn2+. The reactions ~vere followed by [14C]p~crrolidone earboxylate formation..

ated enzyme is only 15 to 3,6 per cent of the activity exhibited by the Mg2÷ s u p p o r t e d enzyme. Figure 6 shows also that pyrroli~done carboxylate f o r m a t i o n is a c c o m p a n i e d by the p r o d u c t i o n of I)i i n a c c o r d a n c e w i t h r e a c t i o n (3). The fact that somewhat more Pi is formed t h a n p y r r o l i d o n e carboxylate is p r o b a b l y the result of net h y d r o ]ysis o,f a small a m o u n t of glutamine derived fronl trace a m o u n t s of NH~ ÷ in the reagents u~ed, BIOCHIMIE~ 1976~ 58, ~1° ~-~,

F i g u r e 8 shows the p H depen, dence of the glutam a t e , d e p e n d e n t ATPase activity of E ~ in the presence of Mg2+ a n d Mn 2+, at 37 ° . The activity of MgE1u6 decreases from pH 6.0 to pH 6.8, a n d is almost c o n s t a n t from pH 6.8 to p,H 8.0, xvhereas M n E ~ activity increases gradually from pH 6.0 to 8.,0. This p H profile is quite different from that of the b i o s y n t h e t i c activity of M g E ~ w h i c h exhibits a maximu.m at pH 7..6 [5] a n d is different, also, from that of the t r a n s f e r activity w h i c h exhibits m a x i m a at pH 7.5 a n d at 7.3 for MnEzz6 and M g E ~ , respectively. T r a n s p h o s p h o r y l a t i o n : Data i n figures 4 and 9 show that in order of their reactivity, the p u r i n e nuedeoside diphosphates (&DP > GDP > IDP) can serve as p h o s p h o r y l group acceptors i n the reverse b i o s y n t h e t i c reaction. However, only negligible a m o u n t s of the c o r r e s p o n d i n g nucleoside triphosphates are p r o d u e e d with either UDP, CDP, 5'-deoxy-ADP or 5'-deoxy-GDP. In view of

Glulamine

synthetase

the r e l a t i v e l y n o n s p e c i f i c r e q u i r e m e n t for a pur i n e nucleoside d i p h o s p h a t e , it a p p e a r e d likely that c o u p l i n g of the f o r w a r d a n d r e v e r s e biosynthetic r e a c t i o n s could lead to t r a n s p h o s p h o r y l a tion b e t w e e n v a r i o u s n u c l e o s i d e t r i p h o s p h a t e s and diphosphates. This is veri,fied by the data in figure 10 s h o w i n g that w h e n [v-32p]ATP was incubated w i t h an equal a m o u n t of GD,P in the presence of glutamate, glutamine and either MgEv.~ (figure 10A) or M n E ~ .o (figure 10B), the c o n c e n t r a tion of ATP decreased, and a s t o i c h i o m e t r i c a m o u n t of [7-.~-°P]GTP was forme,d. F i g u r e IO'C s u m m a r i z e s results of a r e c i p r o c a l e x p e r i m e n t w i t h M g E ~ s h o w i n g that the ,t-phosphoryl group

-- Mechanistic

43

studies.

result of the b i o s y n t h e t i c r e a c t i o n . Of the t h r e e systems p r e s e n t e d in figure 10, t r a n s p h o s p h o r y l a tion fr(Hn ATP to GTP in the p r e s e n c e of Mg -~+ is t h e most effective t r a n s p h o r y l a i i o n system. T h e

\-~

A

40

_ / / ' ~

~

80

~

GTP

~

ATP ~ 4o GTP + ATP

1.0

g

ATP

r~ I---

z

80

~-~ ~---~

O.--

0.5

GTP

I

I

I

]

01 ~ ~ ~ - - - ~ 25

ITP + ATP =E

ATP 0.5

ITP I

0

20

40 MINUTES

I

60

I 8O

100

_

FIG. 9. - - Rate of nucleoside triphosphate (NTP) f o r m a t i o n at .37° in the presence of two d i f f e r e n t nucleoside diphosphates. The data were obtained bv radioassay of [~-32P]NTP. Reactions were carried ot{t in a mixture containing 40 mM K-HEPES (pH 7.6), 80 mM KC1, 20 mM Mg2+, 19 mM glutamine, 9.4 mM 32P1, 11 uM E ~ (subunit concentration) plus (A) 4.8 mM ADP and 4.5 mM GDP, (B) 4.8 mM ADP and 4.8 mM IDP.

of a d d e d [y-32P]GTP is t r a n s f e r r e d to ADP. In all of these e x p e r i m e n t s , 6.5 ~M of EL--A (subunit concen~tration) was used, w h i c h is about hal,f the conc e n t r a t i o n p r e s e n t in E. c o l t g r o w n u n d e r derep r e s s i o n conditions. At this h i g h enzyme c o n c e n t r a t i o n and in the p r e s e n c e of glutamine and glutamate, about 10 p e r cent of the initial nucleoside t r i p h o s p h a t e was d e c o m p o s e d to yield Pi as a BIOCHIM1E, 1976, 58, n ° 1-2.

Pi

FIo. 10. - - Rate of t r a n s p h o s p h o r y l a t i o n as measured by radioassag at 37 °. Reaction mixtures contained 42 mM K-HEPES (pH 7.0), 84 mM KC1, 9.1 mM glutamine, 3 mM glutamate, 6.5 :aM E ~ (subunit concentration) and (A) 20 mM Mg2+, 4.2 mM [,t-32pJATP, 4.2 mM GDP, (B) 3 mM Mn2+, 4.2 mM [~-32P]ATP, 4.2 mM GDP, (C) 20 mM Mg2+, 4 mM [~.-32P]GTP and 4.6 mM ADP.

1.0

a,. I-

z

50 75 MINUTES

r e l a t i v e l y slow t r a n s f e r o:f p h o s p h o r y l groups f r o m ATP to GDP c a t a l y z e d in the p r e s e n c e of Mn 2+ is r e a d i l y e x p l a i n e d by the fact that dissociation of ADP f r o m the i n t e r m e d i a t e M n E I ~ ADP c o m p l e x is v e r y slow.

DISCUSSION. Table I shows that both Mg~ and Mn 2+ s u p p o r ted u n a d e n y l y l a t e d enzymes are c a p a b l e of catal y z i n g the r e v e r s e b i o s y n t h e t i c reaction. The Mg 2÷e n z y m e is m o r e active at h i g h ADP an,d Pi c o n c e n trations ; whereas, the Mn2+-enzyme is m o r e active at l o w ADP and Pi c o n c e n t r a t i o n s . The specific a c t i v i t y of the Mg2+-enzyme is 5 times or m o r e g r e a t e r than the Mn-°+-euzyme. The difference in c o n c e n t r a t i o n d e p e n d e n c e reflects differences in b i n d i n g constants for ADP and Pi b e t w e e n the

44

S. G. Rhee, P. B. C h o c k a n d E. R. S t a d t m a n .

Mg2+ a n d Mn 2+ s u p p o r t e d enzyme. The a p p a r e n t dissociation constants for P~ o b t a i n e d at pH 7.6 a n d 25 ° from MgEy~- ADP-P i a n d MnE~z6 - ADP-P i are 5 mM a n d 0.0,8 raM, respectively, a n d the corr e s p o n d i n g dissociation constants for ADP i n the p r e s e n c e of Pi a r e 2,5 t~M a n d 2.0 riM, respectively. F u r t h e r m o r e , a d d i t i o n o.f ATP a n d L-glutamate p r o v o k e d a s i m i l a r type of fluorescence e n h a n c e m e n t for both MgZ+ a n d Mn 2+ enzymes (figure 1). Moreover, the e n h a n c e m e n t obtained i n the presence 0¢ both ATP a n d glutamate is greater than the sum o.f e n h a n c e m e n t s o b t a i n e d with each ind e p e n d e n t l y since in the absence of ATiP, L-glutamate did nol p r o v o k e an e n h a n c e m e n t of the protein fluorescence intensity. This sugge~sts that w h e n both substrates are b o u n d to the enzyme, they stabilize a u n i q u e c o n f o r m a t i o n a r i s i n g from either an in,terac,tion b e t w e e n the separate binding sites or from the b i n d i n g of an i n t e r m e d i a t e (possibly glutan~yl phosphate) p r o d u c e d by direct i n t e r a c t i o n b e t w e e n the two substrates on the enzyme. The latter possibility seems most likely since the e n h a n c e m e n t cff fluorescence p r o d u c e d by the bin,ding of A~P-P-N-P (an analog of ATP) is almost the same as that p r o d u c e d by ATI~ alone ; however, in contrast to results w i t h ATP, the fluorescence associated w i t h the b i n d i n g of AMP-P-N-P is not augmented by tlle s u b s e q u e n t a d d i t i o n of glutamate. Since M n E ~ a n d MgE~6 catalyze the reverse b i o s y n t h e t i c reaction a n d both enzyme forms react with ATP a n d gl.utamate "to form a n ATPglutamate complex, as judge,d by the observed fluorescence changes, it seems reasonable that both forms of enzyme coul,d catalyze the f o r w a r d b i o s y n t h e t i c reaction. Nevertheless, efforts to dem o n s t r a t e catalysis of the f o r w a r d reaction by u n a d e n y l y l a t e d enzyme i n the presen~ce of Mn2+ (i.e. b y MnE~z6) have failed. This failure is probably e x p l a i n e d b y the very high affinities of MnEy:6 for ADP (K a = 20' n:M) a n d Pi (Kd = 0.08 raM). These high affinities for ADP a n d Pi w o u l d present no special p r o b l e m i n the reverse biosynthetic r e a c t i o n btrt in the f o r w a r d r e a c t i o n they wou'ld cause such severe p r o d u c t i n h i b i t i o n that a significant r e a c t i o n ~vould not be detected by the c o n v e n t i o n a l methods. I n the s p e c t r o p h o t o m e t r i c assay metho,d [35] A~D'Pf o r m a t i o n is coupled w i t h the c o n v e r s i o n of phosph, o e n o l p y r u v a l e to lactate in the presence of p y r u v a t e kinase and lactate dehydrogenase. The K~ for A,DP i n the p y r u v a t e kinase system at pH 7.0, 25 ° i n the p r e s e n c e of Mn z+ is 0.2 mM [36, 37]. This is several orders of m a g n i t u d e greater t h a n the a p p a r e n t Ka o.f MnEy-.6 for AD,P (2.0 nM at pH 7..6). Moreover, i n the b i o s y n t h e t i c assay m e t h o d i n ~vhich P~ forma-

BIOCHIMIE, 1976, 58, n ° 1-2.

tion is m e a s u r e d [16] the lower limit of Pi measur e m e n i is 0.25 mM whi, ch is well above the K d of M n E ~ for Pi (0.08 mM at pH 7.6). In contrast MgEu.5 can catalyze the f o r w a r d reaction because this enzyme form has relatively low affinities for A~D,P and Pi a n d is, therefore, not subject to strong produ.ct i n h i b i t i o n . W i t h respect to substrate b i n d i n g , data o b t a i n e d from fluorescence ti,trations r e p o r t e d here, a n d in a pre.vious p a p e r [7] and the fact that a m m o n i a can b i n d to the enzyme p r i o r to ATP (Rhee, u n p u blished data 1975) indi.cate that substrates can b i n d to the enzyme in a ranldom m a n n e r . The high substrate specificity m a y be due i n part, if not entirely, to s y n e r g i s i i c effects asso, ciated with substrate b i n d i n g . This s y n e r g i s m is p a r t i c u l a r l y pronoun,ee,d in the case of L-glutamate a n d ATP binding [28] and ADP a n d Pi or arsenate b i n d i n g [9, 2,8]. Synergistic b i n d i n g r e q u i r e s either direct substrate-substrate i n t e r a c t i o n a n d / o r substrate i n d u c e d p r o t e i n c o n f o r m a t i o n a l change(s). Data o b t a i n e d from k i n e t i c studies on substrate b i n d i n g show b i n d i n g o,f ATP, ADP, glutamate, a n d Pi induces enzyme con~formational change(s) (Rhee, u n p u b l i s h e d data 1975). The hypothesis that the saine active c e n t e r is used for the catalysis of reactions (1) to (5) is supp o r t e d by the following c o n s i d e r a t i o n s : (1) Glutamine and glutamate b i n d to the same site on the enzyme. This follows from the data in figure 2 s h o w i n g that L-glutamate is a competitive i n h i b i t o r for the L-glutamine site o~ the transferase reaction in w h i c h the K i for L-glutamate is 3'0 mM at p H 7.6, 37 ° a n d the K m for L-glutamine is 11 raM, and also from the observation that under the b i o s y n t h e t i c or ATPase reaction conditions, L-glu~amine competes with L-glutamate a n d exhibits a dissociation c o n s t a n t of 12 mM at pH 7.2 (table II). Therefore the L-glutamine binding site for the tran.sferase reaction is likely the same site w h i c h b i n d s L-glutamate d u r i n g the bios y n t h e t i c or ATPase reaction. I n addition, the dissociation c o n s t a n t of 2,4 mM o b t a i n e d for the binding of L-glutamate w i t h MgEK6, w h e n saturated w i t h ADP at pH 7.6, 2,5 ° , is i n good agreement w i t h the K i value o b t a i n e d from figure 2 a n d the K d (20 raM) for glutamate estimated b y T i m m o n s et at. [7] based on a r a n d o m a d d i t i o n scheme of ATP a n d glutamate to the enzyme. The fact that these three cons,t,ants are i n relatively good agreement, suggests that the same glutamate b i n d i n g site is i n v o l v e d in the b i o s y n t h e t i c a n d ATPase reactions a n d in the i n h i b i t i o n of the transferase reaction. All o.f ,these observations i n d i c a t e that glutamate a n d glutamine b i n d to the same site.

Glutamine synthetase -- Mechanistic studies.

(2) ATP and ADP b i n d to the same site. F i g u r e 3 shows that AM,P-P-N-P, an ATP analog w h i c h provokes the same p r o l e i n fluorescence e n h a n c e m e n t as does ATP E7], is a competitive i n h i b i t o r for ADP in the MgEi76 catalyzod transferase reaction. The K i (pH 7.0, 37 ° ) calculated from the data in figure 3 (80 ~M) is in good agreement with a value of 70 ~M for the disso.ciation constan~ o b t a i n e d from direct AM~P-P-N-P titration at pH 7.0, 25 °. These results suggest that there is a c o m m o n binding site for ADP, ATP a n d AMP-P-N-P. (3) Ovthophosphate a n d arsenate b i n d at the same sRe. Arsenate is an allernative substrate of P~ in the reverse b i o s y n t h e t i c reaction (,figure 4). W i t h P~ as su,bstra~e, p r o d u c t i n h i b i t i o n is observed since the e n z y m e has relatively high affinity for nucleoside triphosphate. However, no i n h i b i tion is observed w i t h arsenate since the p r e s u m e d product, P~DP-OAsO 3 undergoes r a p i d s p o n t a n e o u s hydrolysis. This leads to an essentially irreversible r e a c t i o n in w h i c h glu~amine is c o n v e r t e d to glutamate and NH~ +. This capacity of arsenate to f u n c t i o n in a catalytic fashion i n the reverse biosynthetic reaction was noted by L e v i n t o w and Meister [12] i n s.tudi,es on the glutamine synthetase from peas, a n d these investigators referred to the reaction as the arsenolysis o'f glulamine. P~ also will substitute for arsenate i n the 7-glutamyl t r a n s f e r reaction (Huang .an,d P u r i c h , u n p u b l i s h e d data 19,73). The fact that P~ a n d arsenate are interchangeable substrates in bo.th the reverse b i o s y n thetic a n d the t r a n s f e r reactions is con,sistent w i t h the view that the sa~me P~ b i n d i n g site is utilized for both reactions. (4) The ~,-phosphate of nueleoside t r i p h o s p h a t e bind,s to the Pi site. A'PP ~¢as reported to substitute for AI)P i n the t r a n s f e r reaction catalyzed by the sheep b r a i n enzyme [20] ; however, this is not true for either the Mg2+ or the Mn -0+ activated enzyme from E. colt. I n addition, ATP also fails to s u p p o r t the reverse b i o s y n t h e t i c r e a c t i o n since a d e n o s i n e tetraphosphate (the expected product of the reverse b i o s y n t h e t i c reaction) is not formed. However, a small a m o u n t of [a2P]Pi (24 wM) was f o u n d incorvporated into ATP when Mn~Ei~ was i n c u b a t e d w i t h r e a c t i o n m i x t u r e s cont a i n i n g freshly p u r i f i e d (ADP-free) ATP p r e p a r a tions. This a m o u n t of [~2P]ATP formed was just about equal to the a m o u n t oi A ~ P (2,8 r~M) expected to be formed by slow n o n e n z y m i c h y d r o l y s i s of ATP in the p r e s e n c e o,f Mn ~+ [30]. The observation that MnE 1.o catalyzes i n c o r p o r a t i o n of [32p] Pi into ATP whereas MgEy5 does not is e x p l a i n e d b y the fact that Mn 2+ is a better catalyst for ATP h y d r o l y s i s (31 ~M per 25 min) than is Mge+ (7 !~M

B[OCHIM1E, 1 9 7 6 ,

58, n ° 1 - 2 .

45

per 25 min) [30], a n d by the fact that i n the presence of Pi or arsenate the M n E i : 5 has a higher affinity for ADP (K D = 20 n[M) t h a n does M g E ~ (K n = 25 ~xM). Thus the a m o u n t of AD,P formed by n o n e n z y m i c h y d r o l y s i s of ATP is sufficient to s u p p o r t a significant r e a c t i o n w i t h M n E ~ but not with MgEv.o. The d e p e n d e n c e of A T P - s u p p o r t e d transferase activity on the f o r m a t i o n ot ADP by ATP h y d r o l y s i s is s u p p o r t e d further by the observation th,at although AMP-P-N-P p r o b a b l y b i n d s to the ATP site, as judge,d by the extent of fluorescence e n h a n c e m e n t , it c a n n o t serve as a substrate in the transferase r e a c t i o n catalyzed by eilher M g E ~ or MnEvA. The i n a b i l i t y of ATP to s u p p o r t either the reverse reaction or the transferase r e a c t i o n is con,sistent w i t h a plausible r e a c t i o n m e c h a n i s m in w h i c h the Pi a n d the v-phosphoryl group o,f ATP compete with one a n o t h e r for b i n d i n g at the same site on the enzyme i n the b i o s y n t h e t i c and transferase (or reverse biosynthetic) reactions, respectively. Such competition is also i n d i c a t e d by fluorescence t i t r a t i o n studies s h o w i n g that Pi i n h i b i t s the b i n d i n g of ATP to MnEv.~ a n d by k i n e t i c studies s h o w i n g that ATP i n h i b i t i o n of the transferase reaction catalyzed by MgEvA is competitive w i t h respect to the substrate arsenate (Park, u n p u b l i s h e d da~a 19:74). (5) AMP b i n d s to the ADP site d u r i n g the catalysis of the reverse b i o s y n t h e t i c a n d t r a n s f e r reactions. Figure 5 shows that AMP supports the reverse b i o s y n t h e t i c reaction i n the p r e s e n c e of MnEy-.c, The A T P : g l u t a m a t e ratio is, w i t h i n exper i m e n t a l error, 1:2. The fact that no [32p]ADP was detected a m o n g the reaction p r o d u c t s suggests that the ADP pro,duced i n the first reaction of glutamine w i t h AMP is p h o s p h o r y t a t e d to ATP in the second reaction w i t h glutamine, before it can dissociate from the enzyme. This implies that release of ADP from the MnEy.0.0 is a slow process. Res.ults of stopped-flow fast reaction k i n e t i c studies (Rhee, u n p u b l i s h e d data, 1975) show that this is the case. Moreover, the affinity of MnEy5 for ADP is about 2.5 X 103 times greater than AMP, as judged by the K m values derived from steadystate kinetic studies of v-glutamyl transferase reaction (Smyrniotis a n d St~dtman, u n p u b l i s h e d date 1973). A dissociation constant (0.125 raM) d e t e r m i n e d by direct b i n d i n g m e a s u r e m e n t s rL38] is a,bout 10 times lower t h a n the observed K i or Km and is not significantly different for MnEyo, MgEyo or relaxed enzyme. The a p p a r e n t d i s c r e p a n c y b e t w e e n k i n e t i c a n d direct b i n d i n g m e a s u r e m e n t s is likely due to the fact that the b i n d i n g m e a s u r e m e n t s were made in the absence

46

S. G. Rhee, P. B. Chock and E. R. S t a d t m a n .

of o t h e r substrates. O~ther studies indi,cate that i n t e r a c t i o n s b e t w e e n b o u d s u b s t r a t e s a n d / o r betw e e n s u b s t r a t e b i n d i n g sites does affect the bind i n g affini,ties for different suhstra.tes [7, 28]. In a d d i t i o n , Hunt et aI. [9] s h o w e d that AMP and a r s e n a t e 'support the t r a n s f e r r e a c t i o n c a t a l y z e d b y M,nEys. The fact that AMP can r e p l a c e ADP in the r e v e r s e b i o s y n t h e t i c a n d trans~fer r e a c t i o n s suggests t h a t AMP p r o b a b l y b i n d s to the ADP site. F i g u r e 6 s h o w s that b o t h M g E ~ .o and MnEx. o catalyze the glutamate dependen,t ATPase re,action, almost equally well, a n d the pyrroli,done carb o x y l a t e f o r m a t i o n is ac.co~mpani~d by the p r o d u c tion of n e a r l y s t o i c h i o m e t r i c a m o u n t of P~, in a c c o r d a n c e w i t h r e a c t i o n (3). This is in c o n t r a s t to the d a t a of W e i s b r o d and Meister [11] s h o w i n g that Mn 2÷ s u p p o r t e d u n a d e n y l y l a t e d enzyme exhibited only 15 to 3;6 p e r cent of the Mg2+ s u p p o r t e d glutamate d e p e n d e n t ATPase activity. The fact that both Mg-~÷ and Mn e+ s u p p o r t the ATPase activity is consistent w i t h the d,ata w h i c h s h o w both d i v a l e n t metal ions s u p p o r t the f o r m a t i o n of an a c t i v a t i o n i n t e r m e d i a t e be~veen ATI~ a n d glutamate as j.udged b y the fluorescent s p e c t r a l changes a n d b y the stu, dies of r e v e r s e b i o s y n t h e t i c react i o n in the p r e s e n c e o,f Mg 2+ a n d Mn 2÷. It is believed that the activ.ation i n t e r m e d i a t e is likely to be :-gluta~nyl p h o s p h a t e w h i c h is a s s u m e d to be the p r e c u r s o r o,f p y r r o l i d o n e c a r b o x y ] a t e formation. The rates o b s e r v e d (~igure 6) at p H 7.0 s h o w that Mg2+-enzyme is slightly m o r e active t h a n Mn 2+enzynae. The r e l a t i v e a c t i v i t y b e t w e e n Mg2+- and Mn2÷-enzyme is p H d e p e n d e n t (figure 8) ; a n d the p H p r o f i l e in F i g u r e 8 is different f r o m those e x h i b i t e d by the c o r r e s p o n d i n g r e a c t i o n s catatyzed b y the sheep b r a i n e n z y m e in the p r e s e n c e o,f ~Mg2+ [8]. This suggests that the rate l i m i t i n g step is d e p e n d e n t on the c o n f o r m a t i o n a l state of the enzyme. The rate l i m i t i n g step p r o b a b l y is the c y c l i z a t i o n p r o c e s s t a k i n g p l a c e on the enzyme or the release o.f v-glutamyl p h o s p h a t e from t.he enzyme [3]. This rate shoul,d be so slow such that the release c~f AI)P from the MnE
BIOCHIMIE, 1976, 58, n ° 1-2.

tic reaction, in w h i c h case GTP is the p r o d u c t . This p r o v i d e s a di,fferent i n t e r p r e t a t i o n of e a r l i e r studies b y W e d l e r an, d B o y e r [32], sho'wing that @DP supresses Pi ~ " ATP exchange, ~vithout affecting.the glutamate ~ glutamine exchange. To e x p l a i n this result, t h e y p r o p o s e d a <> nmdel, b a s e d on the a s s u m p t i o n tha,t GDP i n t e r f e r e s s e l e c t i v e l y w i t h the d i s s o c i a t i o n of ATP from the enzyme. H o w e v e r , since GDP can r e p l a c e AD,P in the r e v e r s e r e a c t i o n (figure 4), the ~failure to observe Pi ~ ATP e x c h a n g e in the p r e s e n c e of GDP could be due to d i r e c t comp e t i t i o n o,f GDP w i t h ADP as a p h o s p h a t e a c c e p tot. This i n t e r p r e t a t i o n is s u p p o r t e d b y the data in figure 10, s h o w i n g that the enzyme catalyzes t r a n s f e r of the v - p h o s p h o r y t group of ATP to GD,P. The results suggest that, w h e r e a s GDP w i l l s u p p r e s s the P~ ~ - - ~ - ATP exchange, it w o u l d not supp,ress the e x c h a n g e of Pi into total nucleoside t r i p h o s p h a t e s , i.e. the P~ :< ~ ATP + GTP exchange. I n a d d i t i o n to GDP, IDP can serve as p h o s p h o ryl group a c c e p t o r in the r e v e r s e b i o s y n t h e t i c rea, ction as s h o w n in figure 9. The fact that the enzyme exhibits r e l a t i v e l y n o n s p e c i f i c r e q u i r e m e n t s for p u r i n e n u c l e o t i d e suggests that c o u p l i n g of the f o r w a r d a n d r e v e r s e b i o s y n t h e t i c r e a c t i o n s s h o u l d lead to t r a n s p h o s p h o r y l . a t i o n b e t w e e n w a r i o u s n u c l e o s i d e t r i p h o s p h a t e s and d i p h o s p h a t e s as d e s c r i b e d in r e a c t i o n (5). F i g u r e 10 s ho~vs so,me d a t a on t r a n , s p h o s p h o r y l a t i o n reactions. Of the r e a c t i o n s presente,d, the MgEy~ is the most effective and MnE1. o is the least effective catalyst for the t r a n s p h o s p h o r y l a t i o n f r o m ATP to GDP. The slow rate e x h i b i t e d for MnEy~ is r e a d i l y e x p l a i n e d b y the fact that d i s s o c i a t i o n of A ~ P from MnE~z~-ADP-P i c o m p l e x is a v e r y slow process. This is consistent w i t h the p r o p o s e d m e c h a n i s m w h i c h is si,mply the c o u p l i n g of the f o r w a r d and r e v e r s e b i o s y n t h e t i c r e a c t i o n . F u r t h e r m o r e , .the orde,r o¢ relative r e a c t i v i t y is exhib i t e d by the nu, cleoside d i p h o s p h a t e s a,s p h o s p h o ryl group a c c e p t o r s in the r e v e r s e b i o s y n t h e t i c and t r a n , s p h o s p h o r y l a t i o n reactions. Even t h o u g h the o b s e r v e d t r a n s p h o s p h o r y l a t i o n r a t e is relatively slow, it can be i m p o r t a n t p h y s i o l o g i c a l l y since glutamine s y n t h e t a s e c o n c e n t r a t i o n in the n i t r o g e n s u p p r e s s e d cell is v e r y high (,~ 14 .aM). Based on the overall dat,a, w h i c h also i n d i c a t e that the same active site is b e i n g utilize,d by the e n z y m e in t,he c a t a l y s i s of r.e.action (1) to (5), a s t e p w i s e m e c h a n i s t i c s c h e m e ~s p r e s e n t e d h e r e (figure 1,1) to accoun,t for all r e a c t i o n s s t u d i e d . In a d d i t i o n , an a c t i v a t i o n e n e r g y d i a g r a m , designed to e x p l a i n the relative rate of b i o s y n t h e t i c

Glntamine synthetase -- Mechanistic studies.

a n d t r a n s f e r a s e r e a c t i o n s (table HI) b a s e d on the p r o p o s e d m e c h a n i s m s is given in figure 12. This scheme, to a large exten,t, agrees w e l l w i t h that p r o p o s e d b y Meister a n d his c o - w o r k e r s for the m a m m a l i a n glutamine s y n t h e t a s e [3]. In the p r o p o s e d scheme, there are two p o s s i b l e m e c h a n i s m s ,

47

action b e t w e e n an oxygen atom f r o m P~ w i t h the 8-carbon of glutamine to i n i t i a t e the r e v e r s e biosyntheEtic r e a c t i o n , followed b y a m o r e e n e r g e t i c step in w h i c h oxygen is t r a n s f e r r e d f r o m Pi to glutamine and ATP is f o r m e d from P~ a n d ADP. This is s u b s t a n t i a t e d by the o b s e r v e d t r a n s f e r of

Glut + ATP

0 N

Pyrrohdone Carboxylate

0

0

O

!_AO.l

"

--0 • R 0

+ PI + ADP

NH3

R

~GIuNOH i Pi+ ADP~

0

0

L,'"-0

--ADP? 0

LH2N--!'''O--i'''AD ~l

FIG. 1 L Proposed mechanistic scheme for biosynthetic, transferase, ATPase, and transphosphorglation reactions. The parenthesis indicates

enzyme bound.

Gin + PI + ADP

w h i c h are consistent w i t h all da~a available. One i n v o l v i n g the f o r m a t i o n of v-glu,tamyl p h o s p h a t e (or arsenate) as a r e q u i r e d i n t e r m e d i a t e in the b i o s y n t h e t i c r e a c t i o n an,d the other i n v o l v i n g p a r tial b o n d b r e k i n g a n d f o r m i n g t r a n s i t i o n state i n t e r m e d i a t e s . Both m e c h a n i s m s r e q u i r e the i n t e r -

>(.9 n,LU Z UJ Z 0

S

s

< > t-0 <

Products

REACTION COORDINATE

FiG. 12. - - Relative activation energy profile ~ i t h respect to activation complexes indicated in figure 11. BIOCHIMIE, 1976, 58, n ° 1-2.

180 ,from Pi to form 180-glutamate. The f o r m a t i o n of enzyme b o u n d a c t i v a t i o n c o m p l e x I (figure 11) is also s u p p o r t e d b y o x y g e n t r a n s f e r e x p e r i m e n t s s h o w i n g that the 180 from 7 - c a r b o x y l group of glutamate is t r a n s f e r r e d to Pi [33, ?,4]. Mechanism one involves the f o r m a t i o n of enzyme b o u n d 7-glutamyl p h o s p h a t e (V) (or arsenate) from a c t i v a t i o n co;mplex I, or from activation c o m p l e x H, w i t h the a s s u m p t i o n t h a t II cannot r e a c t w i t h NH 3 to f o r m glutamine, ADP a n d Pv y-Glutamyl p h o s p h a t e (V) w i l l react r e a d i l y w i t h NH 3 or NH20H to f o r m g l u t a m i n e o r 7-glutamyl hydroxamate respectively, or decompose to pyrroli,done carboxyla~e an,d Pi in the a b s e n c e of NH 3 or NH2OH. In the r e v e r s e b i o s y n t h e t i c a n d t r a n s f e r reactions, this m e c h a n i s m calls for a d i r e c t i n t e r a c t i o n b e t w e e n glutamine a n d Pi (or arsenate) to form 7-glutamyl p h o s p h a l e (or arsenate) w i t h o u t the requiremen.t of d i r e c t ADP-P i i n t e r a c t i o n . H o w e v e r , the b i n d i n g e n e r g y of ADP is utilized for i n d u c i n g (or stabilizing) the p r o t e i n c o n f o r m a t i o n n e e d e d to p r o v i d e the r e q u i r e d tert i a r y s t r u c t u r e and some of the free e n e r g y for the v-glutamyl p h o s p h a t e (arsenate) f o r m a t i o n [39, 40]. If d i r e c t ADP-Pi i n t e r a c t i o n is r e q u i r e d for the r e v e r s e b i o s y n t h e t i c r e a c t i o n , then enzyme

48

S. G. Rhee, P. B. Chock and E. R. S t a d t m a n .

b o u n d aativation complex III should be formed first, followed by I I - ~ - ' V -- ~ I. The f o r w a r d biosynthetic r e a c t i o n will then proceed 'from I-->-V-~-II->-III. This p a t h w a y requires the AD,P-Pi b o n d to be b r o k e n , formed a n d broken, a n d suggests that NH 3 will not react w i t h II such that V is the o n l y rea~ctive i n t e r m e d i a t e . Mechanism two involves no f o r m a t i o n of "¢-glutamyl phosphate w h e n NH 3 a n d NH20H are present. NH 3 reacts w i t h a c t i v a t i o n colrrplex II w h i c h is a relatively unstable complex c o m p a r e d to v-glutamyl phosphate. W h e n .NHa a n d NH2OH are absent, this u n s t a b l e complex II will p r o c e e d to form 7-glutamyl phosphate, w h i c h will f u r t h e r decompose slowly to p y r r o R d o n e carboxylate a n d Pv W i t h this m e c h a n i s m , b i o s y n t h e t i c r e a c t i o n

~

will p r o c e e d from glutamate, ATP ~ _ I H ->" III ~ glutamine, ADP, a n d Pi ; while the transfer reaction p a t h w a y is g l u i ' a m i n e - > I I I - ~ - I I - ~ - I V - > - 7 - g l u t a m y l h y d r o x a m a t e . Direct interaction of &DP-P i is r e q u i r e d for both reverse bios y n t h e t i c and t r a n s f e r re.actions. Such an interaction is consistent wi~.h the fact that A,D,P a n d P~ are b o u n d to the ATP site. The fa.ct that t r a n s f e r r e a c t i o n is faster t h a n the reverse b i o s y n i h e t i c reacAion ; a n d arsenate is a more effective substrate t h a n Pi for the transferase reaction, whereas the opposite is true for the reverse b i o s y n t h e t i c reac~tion (table l i D , suggems that only a relatively low degree of interaction b e t w e e n arsenate or Pi with glutamine is r e q u i r e d to activate the a~nide c a r b o n for nucleop h i l i c attack by NrH20,H. This indicates that a relatively low actival[on energy is r e q u i r e d for the formation of an activation complex for the t r a n s f e r reaction, e.g. from p r o d u c t s to ¥ or to II (figure 12). Therelfore, the rate l i m i t i n g step for the t r a n s f e r rea.ction w o u l d be the i n t e r a c t i o n betw e e n the 8-carbon o,f glutamine a n d the oxygen of either Pi or arsenate. Since arsenMe is a better nucleophi'le t h a n Pi [41], the r e a c t i o n goes better w i t h arsenate t h a n w i l h Pi. However, i n the reverse biosynbhetic eeaction, the pa*hway wJ~ll i n c l u d e the f o r m a t i o n of the activation complex of the t r a n s f e r reaction, followed b y a more energetic process lo form I (V to I or II to I i n figure 12), i n w h i c h b o n d s b e t w e e n oxygen of Pi a n d 8-carbon of glutamine, a n d b e t w e e n Pi a n d AD'P are largely formed. Sin,ce ATP, d e r i v e d from Pi a n d ADP, is m o r e stable t h a n the c o r r e s p o n d i n g arsenate derivative, (AI)P-arsenate) Pi should be a better substrate t h a n arsenate for the reverse b i o s y n t h e t i c reaction. It is believed that the m e c h a n i s m s p r e s e n t e d in figure 11 will hold for E. colt enzyme w h e n diva-

BIOCHIMIE, 1976, 58, n ° 1-2.

lent metal ion other than Mg2+ or Mn2÷ is used as activator. Bu,t, o n e expects to observe differences i n relative ac~ivi~ty a n d pH profile, w h e n p r o t e i n c o n f o r m a t i o n a l states are different due to stabilization by di,fferent metal ions. Table HI, group B, shows that at pH 7.0, w i t h ADP a n d Pi as substrafes, MnEv.~ is more effeotive than M g E : ~ in catalyzing the t r a n s f e r reaction. This is c o n s i s t e n t w i t h observations of H u n t et al. [9]. Hoavever, i n catalyzing the reverse b i o s y n t h e t i c reaction, M g E ~ .o is more aeAive tha,n MnEI7~. These differences are believed to he caused by the fact Mg2+ a n d Mn2+ stabilize different c o n f o r m a t i o n a ] states of the en.zyme [26, 27]. W h e n AMP is a substrate, MnET.0 system exhibits relatively good transferase activity (23 per cent of ADP system) a n d poor reverse b i o s y n t h e tic activity. The ratio b e t w e e n transferase activity a n d reverse b i o s y n t h e t i c activity is 6,0 f o r the AMP system a n d 12 for the ADP system (table HI). By assuming the a d e n o s i n e moiety b i n d s at the same site, the observed ratios can be explained by m e c h a n i s m s one a n d two, since the distances b e t w e e n AMP or ADP and Pi or arsenate, a n d the 8-carbon of glutamine are c r u c i a l for the reverse b i o s y n t h e t i c r e a c t i o n a n d less so for the t r a n s f e r reaction. I n s u m m a r y , we have s h o w n that glutamate a n d glutamine b i n d to the same site, ADP a n d ATP share one b i n d i n g s i t e ; a n d in p r i n c i p l e both Mg2+ and Mn 2÷ can s u p p o r t the f o r m a t i o n of activation complex w h e n u n ~ d e n y l y l a t e d enzyme, ATP, and glutamate are present. This implies thai the same ac~tive center is utilized for the catalysis of biosynthetic, transferase, ATPase, t r a n s p h o s phoryl.ation a n d arsenate d e p e n d e n t glutaminase reactions by the u n a d e n y l y l a t e d glutamine synthetase f r o m E. colt. A m e c h a n i s t i c scheme w h i c h is designed to e x p l a i n the data observed a n d those p r e s e n t in the literature is proposed, Of the two m e c h a n i s m s discussed here, both are sequential in n a t u r e w i t h respect to lhe f o r m a t i o n of activation co,mplexes, even lhough substrates b i n d to the enzyme i n a ran,dora m a n n e r . One requires the f o r m a t i o n of 7-glutamyl phosphate as rea'ctive i n t e r m e d i a t e , the other involves activated t r a n s i tion i n t e r m e d i a t e s a n d 7-glutamyl p h o s p h a t e is formed only i n the absen,ce of N,Hz or N H20H.

Aeknawledgment. We thank Dr. D. L. Luterman for determining s o m e of the binding constants presented. R~su~r~.

m~canismes des diverses activit~s (biosynth~tique, transf~rante, ATPasique et transphosphorylante) Les

Glutamine synthelase -- Mechanistic studies. c a t a l y s ~ e s p a r la g l u t a m i n e s y n t h ~ t a s e n o n a d 6 n y l ~ e de E. colt o u t ~16 6tudi6s. L e s c o m p l e x e s d ' a e t i v a t i o n i m p l i q u ~ s darts la r 6 a c t i o n b i o s y n t h 6 t i q u e se p r o d u i s e n t s o i t e n p r 6 s e n c e de Mg ÷+ o u de M n ÷÷ ; t o u t e f o i s , avec l ' e n z y m e - M n ÷+ l ' i n h i b i t i o n p a r le p r o d u i t (ADP) e s t si g r a n d e q u e la r ~ a c t i o n b i o s y n t h 6 t i q u e g l o b a l e ne p e u t p a s 6tre d6tect6e. Des 6 t n d e s de l i a i s o n s m o n t r e n t q u e les s u b s t r a t s ( s a u l NH~ et NH._,OH n o n ~ t u d i ~ s ici) p e u v e n t se l i e r h l ' e n z y m e a u h a s a r d et q u e la l i a i s o n de l ' A T P - g l u t a m a t e , A D P - P i et de l ' A D P - a r s ( ~ n i a t e e s t f o r t e m e n t s y n e r g i q u e . Le m ~ i n e site de f i x a t i o n est n t i l i s 6 p o u r le g l u t a m a t e et la g l u t a m i n e d a n s les rt~actions b i o s y n t h 6 t i q u e et t r a n s f ~ r a s e , et u n site de l i a i s o n c o m m u n p o u r les n u c l ~ o t i d e s e s t u t i l i s 6 p o u r t o u l e s les r 6 a c t i o n s 6tudi~es. Des 6 t u d e s de l a r ~ a c t i o n b i o s y n t h 6 t i q u e r 6 v e r s e et lcs r S s u l t a t s d ' e x p 6 r i e n c e s f l u o r i m 6 t r i q u e s s u g g 6 r e n t q u e l ' a r s 6 n i a t e et l ' o r t h o p h o s p h a t e se l i e n t h u n site c h c v a u c h a n t le s i t e y - p h o s p h a t e d e s n u c l ~ o t i d e s trYp h o s p h a t e s . D a n s les r 6 a e t i o n s b i o s y n t h t ~ t i q u e s r 6 v e r s e et de t r a n s f 6 r a s e , I ' A T P e s t u n s u b s t r a t p o u r l ' e n z y m e M n ++ m a t s p a s p o u r l ' e n z y m e - M g +÷. L ' a c t i v i t 6 t r a n s f 6 r a s e de l ' e n z y m e - M n ÷÷ e s t p r o b a b l e m e n t f a e i l i i 6 e p a r la f o r m a t i o n d ' A D P e o n s 6 c u t i v e h l ' h y d r o l y s e de I ' A T P . Q u a n d I'AMP est le s e u l n u e l 6 o t i d e a j o u t 6 , il e s t c o n v e r t i e n A T P avee f o r m a t i o n e o n e o m i t a n t e de d e u x 5 q u i v a l e n t s de g l u t a m a t e , d a n s les c o n d i t i o n s de ]a r ~ a e t i o n r~verse, et o n n e d~teete p a s d ' A D P . O n c o n f i r m e la r 6 v e r s i b i l i t 6 d u t r a n s f e r t d'~80, e n t r e l ' o r t h o p h o s p h a t e et le g r o u p e 7 - a c y l e d u g l u t a m a t e . L ' a c t i v i t ~ A T P a s e d e s e n z y m e s n o n a d ~ n y l 6 s e s t h p e u p r 6 s ]a m ~ m e a v e c Mg ++ et M n ÷÷. D a n s les d e u x cas, d e s r 6 a c t i o n s de t r a n s p h o s p h o r y l a t i o n entre divers purine n u c l S o s i d e t r i p h o s p h a t e s et n u c l 6 o s i d e d i p h o s p h a t e s s o n t c a t a l y s 6 e s d a n s les c o n d i t i o n s de la r 6 a e t i o n b i o s y n t h ~ t i q u e . L e s r 6 s u l t a t s s o n t e n a c c o r d avec l'hypoth6se selon laquelle un seul centre actif est u t i l i s 6 p o u r r o u t e s l e s r 6 a c t i o n s 6tudi~es. D e u x mt~canismes s~quentiels expliquant les r ~ s u l t a t s s o n t discut~s. REFERENCES. 1. S t a d t m a n , E. R. (1973) i n <>, S. P r u s i n e r a n d E. R. S t a d t m a n , Eds., N e w York, N.Y., A c a d e m i c P r e s s , p. 1-6. 2. S t a d t m a n , E. R. ~ G i n s b u r g , A. (1974) i n ¢ The E n z y m e s >>, 3rd. ed., Vol. 10, P. D. Boyer, Ed., Ne'w York, N.Y., A c a d e m i c P r e s s , p. 755-807. 3. M e i s t e r , A. (1974) i n <> 3rd ed., Vol. 10, P. D. B o y e r , Ed., N e w York, N.Y., A c a d e m i c P r e s s , p. 699-754. 4. W e o l f o l k , C. A., S h a p i r o , B. M. a S t a d t m a n , E. R. (1966) Arch. Biochem. Biophys., 116, 177-192. 5. G i n s b u r g , A., Yeh, J., H e n n i g , S. B. ~ D e n t o n , M. D. (1970) Biochemistry, 9, 633-648. 6. W e d l e r , F. C. a B o y e r , P. D. (1972) J. Biol. Chem.. 247, 984-992. 7. T i m m o n s , R. B., R h e e , S. G., L u t e r m a n , D. L. Chock, P. B. (1974) Biochemistry, 13, 4479-4485. 8. K r i s h n a s w a m y , P. R., P a m i l j a n s , V. ~ Meister, A. (1962) J. Biol. Chem., 237, 2932-2940.

BIOCHIM1E, 1976, 58, n ° 1-2.

49

9. H u n t , J. B., S m y r n i o t i s , P. Z., G i n s b u r g , A. & S t a d t m a n , E. R. (1975) Arch. Biochem. B i o p h y s , 166, 102-124. 10. L e v i n t o w , L., Meister, A., H o g e b o o m , G. H. ,¢ Kuff, E. L. (1955) J. Am. Chem. Soc., 77, 530..t5308. 11. ~Veisbrod, R. ~ Meister, A. (1973) J. Biol. Chem., 248, 3997-4002. 12. L e v i n t o w , L. t~ Meister, A. (1954) J. Biol. Chem., 209, 265-280. 13. W e d l e r , F. C. (19'74) J. Biol. Chem., 249, 5080-5087. 14. V i l l a f r a n c a , J. J. ,~ W e d l e r , F. C. (1974) Biochemistry, 13, 3286-3291. 15. Mecke, D. & Holzer, H. (1966) Biochem. Biophys. Acta, 122, 341-351. 16. S h a p i r o , B. M. ~ S t a d t m a n , E. R. (1970) Methods Enzymol., 17A, 910-922. 17. P r u s i n e r , S. ,¢ Milner, L. (1970) Anal. Biochem., 37, 429-438. 18. S u l k o w s k i , E. ~ L a s k o w s k i , Sr., M. (1971) Biochem. Biophys. Acta, 240, 443-447. 19. S u l k o w s k i , E. ,¢ L a s k o w s k i , Sr., M. (1974) Biochem. Biophys. Res. Comm., 57, 463-468. 20. C a s h e l , M., L a z z a r i n i , R. A. ~ K a l b a c h e r , B. (1969) J. Chromatoq., 40, 103-109. 21. G o l d m a r k , P. J. & L i n n , S. (1972) J. Biol. Chem., 247. 1849-1860. 22. C r u i c k s h a n k , P. A. ~ S h e e h a n , J. C. (1964) Anal. Chem., 36, 1191-1197. 23. S h a p i r o , B. M., K i n g d o n , H. S. ~ S t a d t m a n , E. R. (1967) Proc. Nat. Acad. Sci. U.S., 58, 642-649. 24. W u l f f , K., Mecke, D. ~ Holzer, H. (1967) Biochem. Biophys. Res. Comm., 28, 740-745. -95. G i n s b u r g , A. ~ S t a d t m a n , E. R. (1973) i n <( T h e E n z y m e s of G l u t a m i n e Metabolism>>, S. P r u sine~ & E. R. S t a d t m a n , Eds., N e w York, N.Y., A c a d e m i c P r e s s , p. 9-43. 26. Segal, A. • S t a d t m a n , E. R. (1972) Arch. Biochem. Biopht:s., 152, 367-377. 27. Chock, P. B., H u a n g , C. Y., T i m m o n s , R. B. S t a d t m a n , E. R. (1973) Proc. Nat. Acad. Sci. U.S., 70, 3134-3138. 28. T i m m o n s , R. B., H u a n g , C. Y., S t a d t m a n , E. R. Chock, P. B. (1974) i n <>, E. H. F i s h e r , E. G. K r e b s . H. N e u r a t h ~ E. R. S t a d t m a n , Eds., B e r l i n . H e i d e l b e r g , N e w Y o r k , S n r i n g e r - V e r l a g , po. 209-220. 29. VCellner, V. P. & Meister, A. (1966) Biochemistry, 5, 872-879. 30. T e t a s , M. & L o w e n s t e i n , J. M. (1963) Biochem., 2, 350-357. 31. V¢oolfolk, C. A. ~ S t a d t m a n , E. R. (1967) Arch. Biochem. Biophys., 118, 736-755. 32. W e d l e r , F. C. ~ Boyer, P. D. (1972) J. Biol. Chem., 247, 993-1000. 33. K o w a l s k y , A., W y t t e n b a c h , C., L a n g e r , L. ,~ K o s h l a n d , D. E., Jr. (1956) J. Biol. Chem., 219, 719-725. 34. B o y e r , P. D., K o c o p e , O. J. ~ L u c h s i n g e r , W . W . (1956) J. Am. Chem. Soc., 78, 356-357. 35. K i n g d o n , H. S., H m b b a r d , J. S. ~ S t a d t m a n , E. R. (1968) Biochemistry, 7, 2136-2142. 36. P l o w m a n , K. M. & K r a l l , A. R. (1965) Biochemistry, 4, 2809-2814. 37. B y r a v e , F. L. (1966) Biochem. J., 101, 488-494. 38. G i n s b u r g , A. (1969) Biochemistry, 8, 1726-1740. 39. W e b e r , G. (1974) Ann. N. Y. Acad. Sci., 227, 486-496. 40. T a n i ~ u c h i , K. ~ P o s t , R. L. (1975) J. Biol. Chem., 250, 3010-3018. 41. J e n c k s , W . P. ~ C a r r i u l o , J. (1960) J. A m . Chem. Soc., 82, 1778-1786.

4