Review
Metabolism Part
of the heart
in health
and
disease.
Ill*
Lionel W. Opie, M.D. London, Englllnd
X. Pathological
C
conditions
normal level of high energy phosphates.““’ Another possible result of mechanical distortion is the early occurrence of mitochondrial damage, which would explain decreased rates of oxidative phosphorylation and a shift from aerobic to anaerobic metabolism in terminal heart failure.66,117 It would, therefore, be of major importance to study further the biophysical damage occurring in the contractile mechanism a11 d in the mitochondria, and to correlate such changes with biochemical lesions. Thyvotoxic heurt disuse. The relation between thyrotoxicosis and heart failure is not simple. Some clinical studies suggest that thyrotoxicosis only causes heart failure when another co-existing cardiovascular disease is preseut, but the detailed studies of Sandier and Wilson5o1 argue for pure thyrotosic heart disease. They studied 462 thyrotosic patients of whom 150 had significant cardiac involvement. The existence of a thyrotoxic cardionlegaly was
ongestive heart failure. The inlportance
of the abnormalities described in the processes of oxidative phosphorylation, high energy compound metabolisn~, calciunl metabolism, contractile proteins, protein synthesis, and catecholamine metabolism has already been evaluated. It is apparent that there is no general agreement ou the ahnorinalities fouud, uor auy unifying h!yothesis to explain divergent reports. A basic finding that has not been fulls appreciated is the distortion and destruction of sarcomere structure by undue stretching in congestive failure.“38 Extreme degrees of stretch must lead to spatial distortion with poor interaction between actin and myosin at the cross-bridges. The consequences could well include decreased ATPase activit~.,“8YJAo decreased contractility of isolated myofibrils,a”’ dec.reased usage of high energy phosphates, a11t1 heart failure with a normal or nearl~rnni
the M.R.C. Metabolic i’ngland. ‘I lie f~,lloming abbreviations .\Tl’ = .\I)P = = .\hlI’ l’i = = (‘yrlic .ihIl’
Reactions
Research
l.nit,
lkpartment
<,I Hiocl~emistry.
have been used: ;rdenosine-5’.tripllospllate .\‘.\l)P and adenrlsine-5’.diphospllate N.\DPH? adenosine-5’-monophosphate ininganic phosphate cyclic adcn,,sine-3’..5’-m,lni 1;1;.\ j~lN~SphCi~~~ (‘I 1’ = crcatinv 1A~x~spl~lte
LJol.
;;,
No.
3,
pp.
353-410
iuarch,
1969
American
Imperial
College,
I.S~ndutl,
S.\c’.i,
= oxidized and reduced forms of nicotinamide-adenine dinucleotide phosphate (formerly TPN and TPNI12) = free fatty acids or unesterified fat\ acids or nonesterified fntt, acids (NlZ1c.A) = triglxeride fatt, acids = Rlurl~se-h-pllospllutl.
1’9fnV iaae
Heart
ui thj-
Journal
.IOI K\.~I..
3x3
384
Opie
shown in 13 patients with conspicuous left ventricular enlargement (proved radiologicallq and confirmed electrocardiographically) but occurring in the absence of atria1 fibrillation, congestive heart failure, or other coincidental heart disease. Such cardiomegaly did not respond to radioiodine treatment in contrast to the good response of those with atria1 fibrillation and congestive failure. Necropsl studies in 3 patients also showed that hypertrophy of one or both ventricles could result from thyrotoxic heart disease. Summers and Surteesjo2 also found generalized or left ventricular cardiomegalJ solely due to thyrotoxicosis. The existence of “pure” thyrotoxic heart disease, as suggested by Likoff and Levine,“03 seems established and this conclusion is supported by the occurrence of cardiomegalq in hyperthyroid experimental animals.37F However, age and coexisting heart disease frequently contribute to the picture in man. Interaction with catecholamines has been thought to explain some features of thyrotoxic heart disease. Brewster and his co-workers504 abolished tachycardin and hypertension in thyrotoxic dogs suhjetted to a high spinal anesthetic, and showed that hyperthyroidism sensitized the body to the effects of reflexly released or administered catecholamines. Norepinephrine most closely simulated the physiological effects of hyperthyroidism, However, there are other reports that the cardiac response to norepinephrine in the dog is not affected by variations in the thyroid status. 505 Furthermore, the velocity of shortening and the rate of tension development of isolated cat papillary muscle are much increased in muscles from hyperthyroid cats, independent of the level of norepinephrine stores.5”6 Another contradiction lies in the catecholamine level of the hyperthyroid animal heart; in the guinea pig the level is up, in the rat the level is down,507 while in the cat it is unchanged.506 In man, too, the position is confused. The tachycardia induced by large doses of triidothyronine can be abolished by the simultaneous administration of a catecholamine antagonist, guanethidine.508 On the
other hand, P-blockade I)>’ nethalide l)rt~duces no change in the cardiovascular of patients with spontaneous thyrotoxicosiPg; also, the hemodynanlic effects of cat+ cholamine infusions are no different itI euthyroid humans froul those render-cd hyperthyroid by triidoth~.ronine.510 Both thyroid and catecholamines mol)ilize FFA from adipose tissue, and increased FFA utilization by the hyperthyroid heart is associated with decreased glucose uptake and oxidation.268,511~512 These changes ;u-(* accompanied bl.increased ml.ocardial lcvcls of carnitine, acylcarnitines, and carnitiilc. acvltransferase.511 Such increased FF.4 ut iliza&on may contribute to the enhanc4 oxygen uptake of the thJ.rotoxic heart.‘e”J” Thyroid hormone may also act on osi(l;ltive phosphorylation. Thr-rotosic tissue+ have an increased concentration of mitochondria, in which the process of oxidative phosphorylation is less’ efficient.513-51Z This may be because th\rroxin can loosen 01 uncouple oxidative phosphorylation,:“” which would explain decreased ATP an(l CrP content of hearts from th>.rotoric rats and guinea pigs.“‘” The degree of this uncoupling is increased by calcium ions and decreased by deviations of the III~Knesium concentration from the optinlal.Z”“317 In man, there is only ver>. indirect evidence for uncoupling, consisting of l’i release across the th\-rotoxic he;trt.5’3 Other actions of thyroid hormones :11 :I molecular level include an effect on the structure and stabilit,of mitochondria (perhaps localized to the Initochondrial membrane), altered oxidation rates of hot h mitochondrial and extrainitochondrial SJ.Stents, and stimulation of RNA s~~nthesis.“‘” Some of these actions, including that OII oxidative phosphorylation, can onl! 1~ elicited by very high concentrations of thyroid hormones, probabl~~ greater tharl those found even in severe thyrotoxicosis. Tata51g suggests that physiological concentrations of thyroid hormones stimulate metabolism by a general increase in the cytoplasmic capacity to synthesize protein, which leads to increased activity of respiratory enzymes. Hence the I)hysiological action is anabolic. 111 toxic (-o11centrations, thyroid hormones cause u11coupling. In contrast to this view is tilts
.Iletabolism
tindillg of Hoch”15 that the dose of thyroxine required to alter mitochondrial respiratory control is 60 to 75 times less than the dose of triiodothyronine which influences protein synthesis in hypothyroid Irats. Yet another view relates the actions of t h?-roid hormones to increased enzyme iictivities. An enzyme of the glycerol-P c.ycle, mitochondrial glycerol-P oxidase, is increased in thyrotoxic heart tissue, which suggests an increased capacity for the gly-cerol-P cycle and therefore for glycolysis.28g~520 Because it has been supposed that there is a relatively minor role of the glycerol-P cycle in the heart (see cliscussion in Section VI), an increase of gll,cerol-P oxidase activitv is unlikely to he an important metabol;c factor in the genesis of thyrotoxic heart disease. \‘itamin deficiencies may contribute to thyrotoxic heart disease. Vitamins A, C, I), thiamine, nicotinamide, pyridoxine, pantothenic acid, and vitamin Blz are potentiallyor actually deficient in hyperth\roidism.“1~,j?1,5?2 Of these, thiamine deficjency is the best-documented, and the majorit)of patients with thyrotoxicosis may have thiamine deficiency as revealed t)>y decreased concentration of free thi;umine and diphosphothiamine in blood. The implication is that the heart disease of thiamine deficiency may complicate thg.rotoxic heart disease. In summar)-, it is convenient to think that thyroid hormone has both sympathomimetic and molecular actions on the heart. The sympathomimetic effect causes increased rate and force of contraction, and the latter may result from a direct effect on the contractile mechanism. However, the existence of a sympathomimetic effect does not necessarily mean that thyroid hormone and catecholamines have synergistic effects; rather, at present it appears that their effects are additive.“O” Molecular actions are both anabolic and catabolic. The anabolic effect stimulates protein synthesis, and this ma)- underlie thyrotoxic cardiomegalp. The occurrence of cardiomegal). would, however, probably depend on a complex interaction between the degree of thyrotoxicosis, the rate of secretion of other anabolic hormones such
of the heart in health
and disease
38.5
as growth hormone, and the load placed on the heart by the hyperdynamic circulation. The catabolic effect may cause uncoupled respiration which would be expected to contribute to heart failure. Myxedenaa heart disense. Although the occurrence of a true myxedema heart disease has been questioned,jz3 the coexistence of a serum lactate dehydrogenase pattern indicating myocardial damage, together with electrocardiographic and radiological abnormalities, is strong evidence for this entity.524 Substrate metabolism of the myxedematous myocardium has been the subject of only a few studies. In the hypothyroid dog, there is bradycardia, reduced coronary blood flow, and a decreased left ventricular oxygen consumption.512~525 In contrast, a patient with hypothyroidism and Hashimoto’s thyroiditis had normJ values for cardiac output, coronary blood flow, and myocardial oxygen consumption.jJ6 However, glucose uptake was enough to account for more than all the oxygen uptake, perhaps suggesting storage of glucose as glycogen. This would agree with the increase in cardiac glycogen found in thyroidectomized rats.*49 The contractile mechanism may be altered in myxedema. Decreased contractility has been found in the isolated hearts from hypothyroid rats,527 and in papillar) muscle from hypothyroid cats506 The contractile response to added catecholamines is also held to be diminished,527 and the level of catecholamine in the hypothyroid guinea pig heart is decreased.528 However, there are also several reports of normal catecholamine metabolism in the hypothyroid heart.529J30 Thus, at present, the metabolism of the hypothyroid heart has not been sufficiently well characterized to present a clear picture. If, however, it is accepted that thyroid hormone has a direct stimulatory effect on the contractile mechanism, then decreased contractility would be expected in hypothyroidism. .4cromegalic heart disease. The development of giant hearts over 1,000 grams in weight stresses the possible extent of cardiac enlargement in acromegaly.531s5JZ However, the average heart weight is 160 per cent above normal, compared with 151
*Calculated tPatients rl’dtient
irorn the
data
of Brink
and
associates
543; Bing
and
cr>-workers”‘;
and
.I‘al,le
I\‘.
fasting. postprandial.
per cent for liver aud kidney, suggesting that in the “average” case of acromegal\. the heart merely shares in the general Hypertension is more splanchonnegaly. 531,533 frequent than usual and is said to occur ill the majority of patients with cardiotnegaly. The hypotensiou noted in some acronlegalics ma>. indicate past ml-ocardial iufarction or an advanced, burnt out stage of the disease with h~poI’ituitarisnl.~~.’ Heart failure is favored b)r hypertension and the increased heart \vork following splanchnontegaly-. The evidence for the existence of acromegalic cc~rdiovc~sc~~Itrv disease is, therefore, good. Radiologically demonstrable electrocardiographic cardiomegnl\:\11d damage call, however, occur in the absence of h!.l’ertellsioll”““-;‘“7 suggestiug the existence of a specific acromegalic cardiopathy. To qualify for the diagnosis of acromegalic heart disease, other coincident causes of cardiomcgal>~ specifically need exclusion, as iii the 3 patients described by Bricaire and colle;~gues.“~~8 I lowever. such patients are rare, aud their myocardial metabolism is as )-et ullstudietl. Beriberi he(lrt diseflsc. Impaired p>.ruvate metabolisiii is iiot the sole cause of beriberi heart disease, l~ca~~se such inlpairmeut also occurs ill other situations such AS diabetes mellitus and fasting” which are not associated with clinical signs of heart failure. Furthermore, myocardial p?ruvate uptake is normal in dogs with expermlental thiamine deficient>.,““” while, in man, tlcpressed uptake is evident only in severe beriberi (Table 1’). Depressed citrate cycle activity, resulting from decreased c~oxoglutarate decarboxylation (another step re-
cluiring thianli~lc pyrophosphatc) would explain the decreased nlyocardial os>‘gell uptake of the beriberi heart (Table \r).z’l’J However, the extent of the depressioll of this decarbox\-latiou in acute experimental beriberi may not be sufficient to impair in)-ocardial functioll.z”n Other factors, indeficiencies, cluding associated vitanlin ina> also play a role.“‘” Catecholamines may accumulate in experinlclltal thiamine deficient>, aiicl ha\re cardiotosic effects.““,2’z Thus, the Iii)-owrdial necrosis iii esperimeiital thiaiiiine deficieiic>- could be cateYet another factor c-holailline-illducctl. contributing to beriberi failure, lnight IX leakage of cnz~~llles froiil the heart.:“” Depressecl c;lrl)oli~-tli-ate iiietat)olisiii iii Iwriberi Illa\. I)e caused liot ml>. b\: thiaInine-lack, Ijut I)\. enhanced l;FA oxidation (Table 17). A \iicious circle could be establishetl, \vhercb\ decreased carboh\-drate usage results iii iiicreased FE‘,4 usage, which iI1 turn further tlccreases carbohyclratc usag:e. If for ~1). reason FFL4 then becon~esunavailable to the heart, substrate tleficiellc!. could cause failure. For these t-KLso1ls, studies of lipid nletabolisul ill lwriberi hem-t diseasearc indicated. 11lcoholic kcclrt diwlse. Evidence has accumulated iii favor of n specific alcoholic distinct- froni beriberi ~ii).ocardiopatli).. or nutritional heart disease.s~Jim’~6 A consisteut a11t1n~arketl pathological change is ill traln?.ocardial trigl>.ceride accumulation. !“‘z~~A~‘~ Hccxuse the rate of utilization of ethatlol t,,. heart tissue is very 10w,~~*~~‘~ the triglyceride accumulation cannot result from changes in the intracellular NAD/NADH~ ratio as suggested for the
Iivcr. ‘1 direct toxic effect of alcohol on t-he conduction and contractile systems”“” could explain mechlunical deterioration of the heart exposed to ethanol, but does not ;m~ount for the ~~c.culllulatioil of triglycericle. Excess ii~yocardi~l triglyceritle ca11 result from (1) increased triglyceride synthesis from the uptake of circulating FFA4 or trigl\.ceritle fatt!, acid, especiall>. during osygeu lack Or utilization of alternate substrates; Or from (2) increased triglyccritle slmthesis fron1 non-lipid sources s~lch as glucose. I)uring a11 infusion of ;~lc~A~ol into the clog, at least part of the I~~\~ocartlial trigl>,ceritle acculnulation results froiil ;I greatI;. increased uptake of c:irculating triqlvcerltlc which occurs after 1 I :! to 3’ :! ho&sgO and it is consonant‘ with ,Ictival ioli of clearing-factor lipase tq ~tll;lllol.‘“’ The Other possibility, Of qxthesis Of ni~~ocai-dial triglJ.ceride from Ilou-li1)itl precursors. has 110t lxen inx~esti:cLtcd. Other pOssiMe Inechanislns Of damage to lhe heart tq. ethanol include leakage of (midative eiiqmes, iilitochc~utlrial damage,
on the cell n~emtxaue, ,lllowing the uptake Of fatt L. acids (derived from circulating l+-lTLA Or TCF:lj to proceed at ;L rate esceeding their oxidation, with subsequent accuili ulatiou Of triglyceride n-ithin the heart. A+41ternativel>-, activation Of clearing-factor lipase may he the stinlulus to increased ul)talie of TX iFA. K~trsi~iovkor hetrvi disc~c~sc. The clitlical features of hear-t disease iI1 this form of infaitile pmtein rnaluutrition Illnq~ be retaletl to a re~lwetl niuscle t)ulk as ;I cmSNlueiict of ])I-otc’iil tlrtic-iclrc\..:::’
qmes such AS nmlic deh\.drogenase anti aldolase are lost from the heart.“18 In idiopathic mural endotllSocarcliol,ath~,, as fouutl iu South AAfrica, substrate metabolism at rest has a nori~ial osidative pnttern, hut during exercise there is a tencfas evieiiq’ for anaerobic n~et;~l~olisiii denced tq au alteration iii the redox state.“’ 1ii obstructive c.~irclioril!,ol)~ith!., there is ,ltso a tendenq. to lac.t;ite prmluctioi~ ait1 anaerobic n~etaholisn~ 1)~. the heart, which inay revert to norm~t after propanalol treatn~ent.“” ‘I’hus, the comn1on theme to cartliopathies is ;I tendeury to au anaerol~ic type Of energ>~ nietal)Olisni especially. on exercise. This is, of (xmrse, ;I rather nonspecific fiiiding. Diabetes nzellitus. The nlultiple metabolic almormalities found in hearts from alloxmdiabetic rats include defects iii glucose uptake, gl>xolysis, glycogen Iliet;it)olisni, gl>mride synthesis mtt lxxakclown, ;mtl Ix-otein qmthesis (see previous sections). The question arises as to why a dialwtic In>~ocardiopxt hy has not been found ill humans. One possibilit>~ is that it has not heeu searched for. Allother pOssihilit\. is that allos~tll-diabetes is a u~otlel of a ver1. coniplicated h!. severe diabetic state, lnarked ketosis and elevatecl circulating FFA levels; such a state does not corrcspond to the situation in most patients with diabetes nlellitus. It seems probable that streptozOtoc.in-tli~~l)etes is a better ;inini;il model Of the tli;tl)etic state.“” ;1;T?Iocurdid jibvo.si.s. Nstuitionctl jAmi.< ha been producetl ii1 rats fed a maize diet which is siulilar to that taken by Africans in South A4fric;l in whom myOcardiopath> cw develop.““” :\ 11.ocardial fibrosis also occurs in guinea pigs fed on a plaiitnin diet which resembles that taken lq, Iyga~lwho develop ellcloliig.ocardial cl au Africans filx-osis.5zfi Roth tqytophan deficiency a~~tl excess circulating S-h~dro~~tr~ptnminc have been implicated . in.._ the genesis Of the n1~~ocardial fil,rosis:J~‘~‘~.I~‘~ IHowever, castiron evidence for these niechnnisrns is lacking at prcseilt.
388
Up ie
valvular lesions is not clear. A prolonged serotonin infusion into the aorta of the dog produces fibrosis of the mitral, aortic, and tricuspid valves,55gwhich is a distribution not found in carcinoid heart disease. It is also difficult to relate the positive inotropic effect of 5-hydroxytryptamine56n to the cardiopathy. The similarity of the urinary loss of S-hydroxyindole acetic acid in cardiac and non-cardiac cases of carcinoid disease suggests that factors other than excess 5hydroxytryptamine may be involved.55* The diversion of tryptophan from protein and nicotinic acid synthesis raises the possibility of nutritional heart disease. That a combination of causes may be responsible for carcinoitl heart disease is suggested by the occurrence of endocardial and intimal fibrous proliferation in guinea pigs after a combination of hyperserotoninemia, tryptophan deficiency, and liver damage.561Hemodynamic factors may also contribute to the development of the fibrosis.562 Recent work has implicated the kinin peptides in the genesis of some of the clinical features of the carcinoid syndrome.j63 Kinins may play a part in carcinoid heart disease because the!, reduce peripheral vascular resistance and induce a high-output state.56’ Other metabolic causesof cardiac fibrosis include severe alcoholic heart disease,56j severe beriberi heart disease,5fi6and isoproterenol-induced myocardial necrosis.210 Myocardial infarction. L’irtuallv all studies 011 experimental myocardial -infarction have been carried out on the dog heart. Within 60 seconds of such infarction, myocardial cells fail to contract.567 As discussed in Section I, there is no obvious reason why the anoxic heart should stop beating so
soon.
In the minutes immediately following experimental coronary occlusion by microspheres in dogs, there is myocardial output instead of uptake of glucose, pyruvate and lactate.’ This is associated with an acute reduction in coronary flow to the infarcted area, and probably reflects the effect of anaerobiosis in stimulating gl!‘cogen breakdown and glycolysis. WithIn minutes, an experimentall~~ infarcted area shows ultrastructural changes in that the
myofibrils relax and particulate glycoge~t decreases.“@ Within 1 to 2 hours, there is an earl!, swelling of mitochondria and the sarcoplasmic reticulum, followed b!. increased lipid droplets at~tl autoIysis.z6!’ Lipid formation in anosic heart tissue 11la~~ be related to increased tissue lipid formation from exogenous FFA during anaerobiosis8”~8” or from increased lipogenesis associated with an increased XADH2/_VAD ratio.“jj The amount a11t1rate of loss of myocardial K+ is similar to the gain of Naf, suggesting the replacement of intrkicellular K+ b\’ Na+.57D The K+ loss is progressive and severe; 24 hours after coronary- occlusion in the dog, 0111~.LO per cent of the myocardial K+ remains,z”’ K+ is released into venous blood and the ensuing high K+ may be associated \z.it h cctopic rl~ythn@1~580 especially- in the first hour after the infarct.“7” The infarcted area is almost immetliately depleted of CrP and within 15 minutes ATP virtually disappears.“73This ma). be in part related to altered oxidative phosphoqrlation in mitochonclria from infarcted areas; such mitochondria have decreased consumption of inorganic phosphorous, with depressed P/O ratios, butin the one study the oxl.gen uptake was increasedzi2 whereas in the other’” there was decreased oxpgen uptake alcl loss of abilitlr to increase oxygen uptake after ADP addition. The duration of anoxia required to produce irreversible damage appears to be in excessof 15 mirlutes573,574 and probabl!. about 30 to 60 minutes.“@ Over 60 millutes’ of oxygen-deprivation is required to depress Caf+ uptake by the sarcoplasmic reticulum.“‘” Catecholarnines are lost from the infarcted tissue, with 75 per cent disappearing within 24 hours.570There is, however, no direct evidence that catecholamines from this source cause the delayed ventricular tachycardias that may follow coronary ligation,570J71 nor is there indication for the routine use of p-blockade in the therapy of acute nlyocardial irlfarction.“‘j Within 4 hours of experimental infarction, there is a fall in protein synthesis as measured by l*C-glycine incorporation.2i”
Metabolism
Within 3 to 4 days there are supranormsl rates of resynthesis, occurring first in the nucleoli, then in mitochondria, and lastly in microsomes. Incorporation into the contractile protein subcellular fraction remains subnormal, for at least 10 days,576 and the myocardial myosin content takes al)out one month to return to normal.577 The incorporation of 14C-glycine into protein of infarcted tissue is increased b) treatment with insulin, growth hormone, anabolic steroids, and ascorbic acid; these qents stimulate fibroblastic proliferation.5gj [t is assumed, hut not proved, that studies ou dog heart infarction are relevant to the situation in human myocardial infarction. l‘kerapy of‘ myocardial infurction. If a ijotassium chloride-glucose-insulin (I’( ;I) solution is infused into dogs before and during the development of an experimental infarction, then mitochondria from the infarcted area maintain normal oxidative phosphorylation. I4 Similar treatment ma! improve the mortality rate of patients after m\rocardial infarction.“78~“7g The mode of .tction of the I’GI regime is not clear. In (logs with experimental infarction, the intracoronary administration of procaine amide or I’(;1 helps to prevent both K+ loss and ventricular arrhythmias.580 Similarly, it is suggested that the PGI solution may reduce the incidence of atrioventricular block in human myocardial infarction, by prevention of loss of intrncellular K+.57g Restoration of the m~‘ocardial K+ content may act either b>r
Table
Initial Oxygen Formation l’coz
1’1. Effect of fiH and and final uptake,
pII ~l/G~n.
wet wt.
I‘ris
bldfer
oj the heart in henith
and diseaw
389
maintenance of normal cardiac action potential,581 or by restoration of the normal rates of oxidative phosphorylation.” It may be noted that Ii+ is required for optimal rates of respiration of isolated brain and liver mitochondria.582*5Y3 Acidosis and myocardiczl infarction. The acidosis associated with myocardial infarction may contribute to the high mortalitv , rates.584 Because a high pH is associated with increased phosphofructokinase activity55 and accelerated glycolysis in the isolated rat heart,51-52Ait appears to be theoretically desirable to induce alkalosis to nchieve the maximal glycolytic rate to aid the survival of the anaerobic and infarcted tissues.“*” Although the induction of alkalosis I-)). Tris (THAiJI) accelerates glycolysis in rat heart slices, it also depresses oxldative metabolism at pH 7.7 to 8.0 (Table VI). This does not contradict the finding of Delcher and Shippj? that a Tris buffer at pH 7.8 did not depress the oxidative metabolism of the isolated rat heart, because in their study the final pH of the buffer was only 7.5. If these results are at all applicable to the human heart, then correction of acidosis to normality or to mild alkalosis. rather than induction of severe alkalosis (pH exceeding 7.7)) woulrl be the aim during the use of Tris. Conclusions
The topics that have been discussed include substrate utilization by the heart,
on glucose
metabolism
of rat heart slices 7.7
8.0
6.8 (8) 736 =t 45
7 1 (5) 790 * 95
7.4 (12) 662 * 56
520 *
13*0,1 3.2 * 0.2 0.2 * 0.01
1.6 * 0.2 4.9 * 0.8 0.2 * 0.06
1.2 * 0.1 6.2 * 0.4 0.3 f 0.04
0.9 + 0.1 6.8 f 0.3 0.5 * 0.04
(8)
(8)
56
452 *
71
01:
lactate pyruvate Lactate/pyruvate ratio:
2.1 f
3
20 f
3
19 *
2
15 *
1
0.7 * 0.1 8 0 f 0.9 0.5 * 0.01 16=‘= 1
Glucose-U-T, 10 mM. Buffer contained ‘I‘&, 25 mM.; ions (mEq./L.): X\‘a+, 140; K+, 5.1; Ca+‘, 5.5; Mg’-+, 2.6; Cl-, 148; SO,--, 2.6. “CO*, lactate and pyruvate formation expressed as p moles glucose equivalent per gram wet wt./60 min. Unpublished data of Muller and Opie.
nlitocholldrial metabolisnl, protein s).tithesis, calciun~ :ind the c-ontrxtile nlechmiism, and the role of c~~~techolalnincs. The metabolic cha~qqs fou11t1 ilI various cardiopathies and iI1 nl~mxrdial infarctiolr are also reviewed. The importance of carbohydrate (glucose and lactate) as fuel for m~~ocardial energy metabolism has recently been overlooked because studies in human and animal hearts selected conditions undd\favoring lipid utilization. The control (;f gl)xol!Gs is much better understood thml that of FF,I oxidation. Iii pxticular, the points ;It which l-I;A oxitlatioll inhibit gl!-col\-sis arc well-tleiiued md this has give11 rise to the collccpt that FFrl oxidation nornlall~~ restricts glvcol>-sis, while the rate of 1;FL4 oxidation -is in turn controlled b!- the ;~vailabilitq. of fatt!. acid to the heart mtl herlce l)>- the circulating FFA concelltration; the latter is ~IIO\YI~ to be influenced b>. the rate of lipolysis in adipose tissue. This sequence Inakes the heart a11 organ devoid of intrinsic control of its substrate metabolisn~. However, the rate of FFA osidatioii iii;r~. be controlled within the heart b\r the carnitine qstem ancl 1))~ the avnilabilit~~ of alternative substrates. ‘IY;FA niid ketone bodies are riot important fuels for the hunIan heart, except perhaps in pathological conditions. As yet, little is li~ion~ii about protein nietabolisii~ and the factors involved in the ml-ocardiJ response to ;III increasetl work load. The control of ;m~illoxid uptake mld protein qmthrsis 1)~. insulin cud growth hormone 111a!‘ lx directl,. relev;lnt to the underst;trlding of cardisc hypertrophy-. ATP pla)x a prime role in the control of myocardial metabolisnl, as emphasizctl by the importance of .ATl’ in the con tractile process and in maintaining ion gradients across cell and nlitochondrial membranes. ,i\TP makes a major contribution to the control of glycolysis b>- inhibiting phosphofructokinase. By )-ielding AMP and c>.cIic-.L\i\,I 1’ during arioxia aiifl c~itechol;~iIiiiir stiiIliIl;itioII, A’I‘I’ iIltlii.ec.tl\7 ;l(.ti\‘;tttTZ ~JllO~~JlIOfl~ll~~tOliill~lS~ ;lll(l [JllOS~~lIor-\~l;~s~. ;i’i‘l’ ~~I-ol~;~l~l!~ ;rlso regul:~tcs tlIc> ;i(.ti\‘it> of the citrate c,\.c.le, ;iii(l helrc,e the rate of oxidation of ;Jl Iii),ocardial sulk-
;j,,
!,li’
I,‘,,,,
‘I
‘a(/
strates. ‘Thus, \\-hen :j’I‘l’ is ~~tili~:c~l, .I’ dui-iilg the imposition of ;I \vork 10~~41 (iis the heart, there x-e c~olllpelmttor! IIICY-II,Iliisiiis for erihaiic~ecl ,gl!.cml! sis ;i11(1 sril~stratc 0sid;itioll. i’i
SeUJlld
Ill~\jOl~
I~Cg:Lil;LtOI~
Of
iII~~~~~~~Ll~(li~ll
Illetabolism is the calciullr ioIl, Lvhich I\I,I\ Ixlrticilxite in collti-actioii either b\- forillilig ;I c.hel;itiilg link between ac;ili ;irr(l Ill~Yxdll, or I)!, overcoiiiiiig the .~l’I‘f’-irrhil)i(ioii of ;ictoili\.osiiI coiltrx~tion. F,I(,tot-s ~overiiiiig the flux of c~:Jciuili ioll xross 1he cell mid riiitoc~hof~tlrial l11el11lniiles ;~iid iti ;iiitl out of the sarcol)lminic~ reticulunl ;ire therefore tlirectll. relev;~lrt 10 the control of c;lr(li;l(. c.olltr;tc‘tilitJ A
thirtl
Iiiajor
riietalmlislli is ilnportaiit c.ontr;lctilit).. on
regulator
of
iII~~ocx-tli~~l
is c-atecholmiiiiie ,Ictivit!., which in the regul;ltioll of cartli;\c The effect of c~itccholaillinc5
gl!.cwgeii
lm~ilitlo~~~i
arid
gl>x-olpi5
is
m-e11 stu
IlIItler-st~alIcling llouww,
of progress
congestive has been
hear-t mxle
toward the understmldirlg of endocrirltl :~ntl nutritioml c;lrtliopathies at ;L molec~ular level. The nlet;tboIic chmges in ischernic, heart disease are cluite \vcll defined, bt1 t it is Ilot known xvhich f;lc-tort; restrain ;InaerotJic gl\.col!-sis froill illaxitnal r;ltes \vliich uxild p-haps c.ontril~u tt to tllc kmerg?’
‘l‘lierc
sripply
of
the
an&c
heart.
;irguments for the iisr of tlic I’otassiulii-SlIIcose-irlsulin solutioli in ni\~ocarclial infarction, Ixit full clinical evaluation is still incomplete. It is IloteworthJ. that IIKLI~~~ of the receipt atlvances
m-e sevcml
have
beeii
tlleorctical
nixle
lo!, stud\~ing
the
hexts of experinlental ;minlaIs &isol~~te~l hearts or subcellul~~r preparations. It w~ultl Ix ideal to h:tve methods of obtail1in.q IIUII~;UI tissue iii-t’ Ihiis f.~iiII ;l~J[J;lwlll tabolisIIi iii
for silIIilar st utlics, ft.\\ Iliajor 51m.ies ltJ(* I);tltcI-IIb of tIt7ii.t ;ui(l tlisv;ksc.
but t heI-e cliff~i-csIIcY*s Ilc~,ii.t IlIt’Ii III:I\ , I~c’\\ ;14l-
thercforc, IK ;liitic~ilmted I ti;it vances will (-oi11c t)>. furthc.l;ilJlJli~.:Ltiorl
: ,,,,‘,a!,. 7; ‘, :,,llJi, , .:
15. I .Ippreciate the support and encouragement of f’rofesmr FL. B. Chain. F.R.S., and the financial ;wkt;mce d the British Ileart Foundation and the \\‘cil~nne ‘frust. The following criticized the manw wripr : Dr. Iloward E. Rlorgan, Dr. Joseph C. Shipp, I jr. Eric Niewsholme, l)r. \\‘ieland Gcvers, Professor \. J. Brink. and ;\lr. K. R. IA. 1Ianbford. Sections were c.ritirized by Dr. I>. S. Robinson and Dr. Carl rt. I lonig. 1 k. Steven illayer, Professor A. \\‘ollcnberger, and l’rofe+or $1‘. Lochner provided manw \crlpts of papers 111 the press. The help of thebe collwgues has been invaluable.
REFERENCES 1. 2. 3
4.
5. 0.
7.
8.
0
IO.
i 1.
12.
1.i.
11.
Bing, Ii. J.: The metabolism of the heart, Harvey I>ect. 50:27, 19.51. Bing, R. J.: Cardiac metabolism, Physiol. Rev. 45:171, 1965. Stewart, J. T., McKinse)-, J. J., and Dal]forth, \V. II.: XIetabolism of the normal and failing heart, =\dvances Int. Med. 11:273, 1962. Evalq J. li., Editor: Structure and function of heart mu~le, Circulation Res. 15:(Suppl. III, 196-k. Cruickshank. E. \\-. I I.: Cardiac metabolism, I’hy-iol. Rev. J6:597, 1936. IGol. 86:1, 1936. Cruickshank, E. ii::. H., nlld Kosterlitz, II. L\‘.: lTtiliLation of fat by nglycaemic mammalian heart, J. Physiol. 99:208, 1941. I.orhner, \V., and Hirche, H.: Kohlenhvtlrat itoffwechsel bei Herzekankungen, 1,, Bnrtelheimer, H. Heyde, \%‘., and Thorn, \\.., editors: I)-Glucose und verwandte \‘erbindungen ill Yedizin und Biologie, Stu~tgnrt, 1966, Ferdinand Enke \‘erlag, p. 812. Cnlva, I<., Alujica, :\., 13ibteni, A.. atld Sodif’allares, 1).: Oxidative phosphorylation ill cardiac infarct. Effect of glucose-KCI-
16.
17.
18.
19.
20.
21.
22.
23.
21.
25.
26.
27.
insulin solutioll, :211t. J. I’ll! hiol. 209:<<71, 196.5. RandIe, P. J., alld Alorgan, Ii. E.: Regulation of glucose uptake by muscle, \‘itamiu~ and hormones 20:199, 1962. Morgan, 1-i. E., Neell., J. Ii., Brineaus, J. I’., and Park, C. Ii.: Regulntion of glucose tr;l~l~port, in Chance, R., Estabrook, R. \h’., and \Villiamson. I. I~.. editors: Control of energ\ metabolism, .’ Kew York, 1965, :\cnden;i;: Prehs, Inc., p. 347. 1lorgnn, H. E.. RandIe, I’. J., and Regen, 1). M.: Regulation of glucose uptake bq muscle. 3. The effect-i of insulin, anosia, salicylate alld 2 :4-dinitrophenol on menand intracellular pho+ brane tranbport phorylation of gltlcose ill the isolated rat heart, Biochem. J. T3:573, 1959. 1:Ioorgan, H. E., Henderson, M. J., Regen, I). hl.. and Park, C. R.: Reaulntion of glucose uptake ill muscle. I. Th’e effects of msulin and anoxin on glucose transport and phobphorylation in the iwlated, perfused heart of Ilormal rats, J. Riol. Chem. 236:253, 1961. Park, C. Ii., Rein\vein, I).. Henderhon, >I. J., Cadenas, E., and Norgan, II. E.: The action of insulin on the transport of glucose through the cell melubralw, Am. J. Med. 26:67-1. 1959. Fisher, 1~. I~., and Zachariah, I’.: The mechanism of the uptake of sugars by the rat heart and the action of insulin on this mechanism, J. I’h:,hiol. J58:73, 1961. Zachariah, l’.: Contractility and sugar permeability in the perfuhed rat heart, J. I’hysiol. 158:59, 1961. nlansford, K. 12. I..: Influence of antiinsulin serum 011 glucose metabolism. I I. In the perfuhed heart, Diabetes 16:175, 1967. \Villiamsoll, J. Ii.: Etfec-ts of insulin and diet on metaboliw~ of I. (+)-lactate and glt~rose by perfused rat hc;lrt, Riochem. J. 83:.377, 1962. Neely, J. K., Liebermeister. II., and RIorgarl, I-I. I:.: Effect of pressure development 011 membrane transport of glucose in isolated rat heart, A\m. J. Physiol. 212:815, 1967. Alot-gan, II. E., Cadets, E., Regen, I?. XI., and Park, C. K.: Regulation of glucose uptake in mubcle. II. Rate-limiting steps and eflects of insulin alld anosia in heart muscle from diabetic rats, J. Riol. Chem. 236:262, 1961. Randle, I’. J., iYe\vsholme, E. A., and GarI.md, I’. B.: fcle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes a11d starvation on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles:, Biochem. J. 93:652, 1964. Newsholme, El. A., and Randle, 1’. J.: Regulation of glucose uptake by muscle. 5. Effects of anoxia insulin, adrenaline, and prolonged starving on concentrations of hexwe phosphates in isolated rat diaphragm .rnd
392
28.
29.
30.
31
.z2.
.z3.
.1-k.
35.
36.
37.
38.
39.
40.
41.
Opic
perfused isolated heart, Biochem. J. 80:655, 1961. Crane, R. K., and Sols, A.: Animal tissue hexokinases, Methods in Enzymology 1:277, 1955. England, P. J., and Randle, I’. J.: Effecters of rat-heart hexokinases and the control of rates of glucose phosphorylation in the perfused rat heart, Biochem.. J. 105:907, 1967. Reeen. D. %I.. Davis. W. W.. Morgan. H. E.. and Park, C.’ Ii.: The regulation“of hexoki: nase and phosphofructokinase activity in heart muscle. Effects of alloxan diabetes, growth hormone, cortisol, and anoxia, J. Biol. Chem. 239:43, 1964. Karpatkin, S., Helmreich, E., and Cori, C. F.: Regulation of glycolysis in muscle. II. Effect of stimulation and epinephrine in isolated frog sartorius muscle, J. Biol. Chem. 239:3139, 1964. Newsholme, E. A., and Kandle, P. J.: Regulation of glucose uptake by muscle. 7. Effects of fatty acids, ketone bodies and pvruvate and of alloxan diabetes, starvation, hypophysectomy and adrenalectomy, on the concentrations of hexose phosphates, nucleotides and inorganic phosphate in the perfused rat heart, Biochem. J. 93:641, 1961. &and, I’., Narahara, H. T., and Cori, C. I? : Studies of tissue permeability. VJII. The effect of anaerobiosis on glucose uptake in frog sartorius muscle, J. Biol. Chem. 237: 3037, 1962. Danforth, WT. H., Helmreich, E., and Cori, C. F.: The effect of contraction and of epinephrine on the phosphorylase activity of frog sartorius muscle, Proc. Nat. ilcad. SC. 48:1191, 1962. Kreisberg, K. A., and Williamson, J. Ii.: Metabolic effects of ouabain in the perfused rat heart, Am. J. Physiol. 207:347, 1964. Kreisberg, Ii. A., and R’illiamson, J. R.: illetabolic effects of glucagon in the perfused rat heart, Am. J. Physiol. 207:721, 1964. Mayer, S. E., LIayfield, A. C., and Haas, J. A.: Heart muscle hexokinase: subcellular distribution and inhibition by glucose-hphosphate, Molec. Pharmacol. 2:393, 1966. Williamson, J. R.: Glycolytic control mechanisms. I. Inhibition of glycolysis by acetate and pyruvate in the isolated perfused rat heart, J. Biol. Chem. 240:2308, 1965. Opie, L. H., Shipp, J. C., Evans, J. R., and Leboeuf, B.: Metabolism of glucose-1:-C” in perfused rat heart, Am. J. Physiol. 203: 839, 1962. Bing, R. J., Siegel, A., Vitale, A., Balboni, F., Sparks, E., Taeschler, M., Klapper, M., and Edwards, S.: Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart, Am. J. Med. 15:284, 195.3. Goodale, W. T., and Hackel, D. B.: Myocardial carbohydrate metabolism in normal
42.
43.
44.
45.
dogs, with effects of hyperglycemia and starvation, Circulation Res. 1:509, 1953. Goodale, W. T., Olson, Ii. E., and Hackel, I). B.: The effects of fasting and diabetes mellitus on myocardial metabolism in man, Am. J. Med. 27:212, 1959. Shipp, J. C., Opie, I.. H., and Challoner, D.: Fatty acid and glucose metabolism in the perfused heart, Nature 189:1018, 1961. \\:illiamson, J. R., and Krebs, H. .A.: Acetoacetate as fuel of respiration in the perfused rat heart, Biochem. J. 80:540, 1961. Danforth, \I:. H., McKinsey, J. J.. and Stewart, J. T.: Transport and phosphorylation of glucose by the dog heart, J. I’hysiol. 162:367,
46.
47.
48.
49.
50.
51.
52.
52A.
53.
54.
55.
56.
57.
1962.
Mayer, S. E.: Action of epinephrine on glucose uptake and glucose-6-phosphate in the dog heart in situ, Biochem. Pharmacol. 12:193, 1963. Newsholme, E. A., and Randle, P. J.: Regulation of glucose uptake by muscle. 6. Fructose 1,6-diphosphatase activity of rat heart and rat diaphragm, Biochem. J. 83:387, 196’. Opie, 1~. H., and Newsholme, E. A.: The .rrtivities of fructose 1,6 diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle, Biochem. J. 103:391, 1967. ATamour, T. E.: Studies on heart phosphofructokinase: purification, inhibition, and activation, J. Biol. Chem. 238:2285, 1963. Passonneau, J. Y., and Lowry, : P-fructokinase and the control of citric acid cycle, Biochem. Biophys. Res. Commun. 13:372, 1963. Opie, I,. H.: Effect of extracellular pH on function and metabolism of isolated perfused rat heart, Am. J. Physiol. 209:1075, 1965. Delcher, H. K., and Shipp, J. C.: Effect of pH, pC0~ and bicarbonate on metabolism of glucose by perfused rat heart, Biochim. Biophys. Acta 121:250, 1966. Scheuer, J., and Berry, M. N.: Effect of alkalosis on glycolysis in the isolated rat heart, Am. J. Physiol. 213:1143, 1967. Pogson, C. I., and Randle, P. J.: The control of rat-heart phosphofructokinase by citrate and other regulators, Biochem. J. 100:683, 1966. Danforth, W. H.: Activation of glycolytic pathways in muscle, in Chance, B., Estabrook, Ii., and Williamson, J. R., editors: Control of energy metabolism, New York, 1965. Academic Press, Inc., p. 287. Iii, M.: A role of phosphofructokinase in pH-dependent regulation of glycolysis, Biochim. Biophys. Acta 124:310,1966. Bticher, T., and Russman, W.: Equilibrium and nonequilibrium in the glycolysis system, Angew. Chem. Int. Ed. 3:426, 1964. Williamson, J. R.: Metabolic control in the perfused rat heart, in Chance, B., Esta-
5x
S9.
61).
01.
02.
03.
0-l.
0.5.
06.
67.
08.
09.
i0.
il.
i.!.
brook, I<. \1.., and \Villi;unsw, J. I(., editors: Control of energy metabolism, Sew York, 1965, Academic Press, Inc., p. 333. Ito, Y.: Studies on the myocardial metaboliyrn of diabetes mellitus and the effects of insulin, glucocorticoid and epinephrine on the metabolism of the heart, Jnp. Circ. J. 26:15, 1962. Shipp, J. C., Delcher, H. K., and Crevasse, I.. E.: Glucose metabolism by the hexose monophosphate pathway in the perfused rat heart, Biochim. Biophys. Xcta 86:399, 1964. Crevasse, 1~. E., Shipp, J. C., and Delcher, H. K.: Glucose metabolism by the hexose monophosphate pathnay in heart-muscle homogenates. Biochim. Biophys. Xcta 86: 402. 1964. (;lock, G. I?., and RIcLcn~l, I’.: Levels of cnz);mes of the direct oxidative pathway of carbohydrate metabolism in mammalian tissues and tumours, Biochem. J. 56:171, 1954. Glock, G. E., and McLean, I’.: Levels of oxidized and reduced diphosphopyridine nurleotide and triphosphopyridine nucleotide in animal tissues, Biochem. J. 61:388, 195.5. Jolley, R. L., Cheddelin, V. H., and Newburgh, 1~. W.: Glucose catabolism in fetal .Ind adult heart, J. Biol. Chem. 233:1289, 1958. Cotiey, 1~. G., Cheldelin, V. I-I., and Newburgh, Ii. IV.: (;lr~cosc utilization by chick embryo heart homogenates, J. Gen. Fhysiol. 48:105, 1964. Gudbjarnahon, S., Cwvan, C., and Bing, Ii. J.: Increase in hexosemonophosphatc shunt activity during tissue repair, Life SC. 6:1093, 1967. Nagano, M., and Hochrein, H.: Stiirungen im Myokard bei Belastung und Ins&izienze des Herzens, Klin. K’chnschr. 41:792, 1963. (;arland, P. B.: Some kinetic properties of pig-heart oxoglutarate dehydrogenase that provide a basis for metabol& control of the enzyme activity and also a stoicheiometric assay for coenzyme A in tiisrle extracts, Biochem. J, 92:1Oc, 1964. Scriba, P., and Holzcr, H.: Gewinnung van a-hydroxyzthyl-2-thiaminpyrophosphat mit I’yruvatoxydase aus Schweineherzrnuskel, Biochem. Ztschr. 334:473, 1961. Garland, P. B., and Rnndlc, I’. J.: Contrul of pyruvate dehydrogenase in the perfused rat heart by the intracellular concentration of ace@I coenqme A, Biochem. J. 91:6c, 1964. Evans, J. Ii., Opie, I,. II., and Renold, A. E.: Pyruvate metabolism in the perfused rat heart, Am. J. Physiol. 205:971, 1963. Wilson, A. C., Cahn, 1~. D., and Kaplan, N. 0.: Functions of the tw-o forms of lactic dehydrogenase in the breast muscle of birds, Nature 197:331, 1963. Kaplan, I\J. O., and Goodfriend, T. I..: Role
73
74.
75.
76.
77. 78.
79.
80.
81.
82
83. 84.
85.
86.
87.
of the two t).pcs of lactic dehydrogenases, Advances Enzym. ltegulat. 2:203, 1964. Vessell, E. S., and Pool, P. E.: Lactate and pyruvate in exercised, ischemic caniw muscle: relationship of tissue substrate level to lactate dehydrogenasc, Proc. Nat. Acad. SC. 56:756, 1966. Huckabee, iI\:. E. : Relationships of pyruvatc and lactate during anaerobic metabolism. I. Effects of infusion of pyruvnte or glucosc~ and of hyperventilation, J. Clin. Invest. 37:24-L, 1958. Hucknbee, \V. E.: Relationship of pyruvatc rind lactate during anaerobic metabolism 1:. Coronary adequacy, L-\m. J. Phi-siol. 200:1169, 1961. Gudbjarnason, S., and Bing, Ii. J.: The redox-potential of the lactate-pyruvate systern in blood as an indicator of the functional state of cellular oxidation, Biochim. Biophys. Acta 60:158, 1962. Olson, Ii. I:.: “Excer;s lactate” and anaerobiosis, .\nn. Int. Med. 59:960, 1963. Scheuer, J. : Myocnrdial metabolism in cardiac hl-poxi+ Am. J. Cardiol. 19:385, 1967. Glaviano, 1.. I-.: Ljistribution and gradient of lactate bet\veen blood and heart muscle, Proc. Sot. Exper. Biol. & Med. 118:115.5, 1965. Garland, I’. B., Newsholme, E. A., and Rnndle, P. J.: Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation on pyruvate metabolism and 011 lactate/p)-ruvate and L-glycerol 3-phosphnte/dih>:droxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscles, Biochem. J. 93:665, 1964. Regan, ‘1‘. J., Moschos, C. B., I,ehan, I’. H., Oldewurtel, H. A., and Hellems, H. K.: Lipid and cuboh>-drate metabolism of myocardium during the biphasic inotropic response to epinephrine, Circulation lies. 19:307, 1966. Keul, J.. Krnuss, H., Overbeck, IV., Doll, E., and Fleer, IT.: i’ber den Stoffwechsel dex schlagenden, Seine Druck und Volumenarbeit leistenden menschlichen IIerzens. I, Klin. \l:chnschr. 42:890, 1964. Evans, J. Ii.: Cellular transport of long chain fatty acids. Canad. J. Biochem. 42:955, 1964. Scheuer, J., and Brnchfeld, N.: RIyocnrdial uptake and fractional distribution of palmitate-1-C” by the ischemic dog heart, hletab&m 15:945, 1966. Opie, L. fI., Evans, J. I~., and Shipp, J. C.: Effect of fasting on glucose and palmitnte metabolism by perfused rat heart, Am. J. I’hysiol. 205:1203, 1963. lingar, I., Gilbert, N., Siegel, :I., BInill, J. M., and Bing, R. J.: Studies on myocardial metabolism. IV. bIyocardial metabolisnl iI1 diabetes, Am. J. hIed. 18:385, 1955. Keel, J., Doll, I?., Steim, 11.. IIoml)llrgrr.
394
88.
89.
90.
91.
92. 93.
94.
95.
96.
97.
98.
99.
100.
101.
(Ipit,
H., Kern, H., and Reindell, II.: iiber dell Stoffwechsel des menschlichen I Ierzens. I. Die Substratversorgung des gesunden mew schlichen Herzens in Ruhe, wzhrend und nach kiirperlicher Arbeit, f’fliigers &\rch. Physiol. 282:1, 1965. I.undsgaard-Hansen, P.: Regional differences of the lactate/pyruvate response to progressive arterial hypoxemia, Pfliigers Arch. Physiol. 292:60, 1966. Bretschneider, H. J., Frank, A., Kanzow, E., and Bernard, I’.: Ilber den kritischen K’ert und die physiologische Abhkngigkeit der Sauerstoff-Sattigutlg des veniisen Coronarblutes, Pfliigers Arch. 264:399, 1957. Regan, ‘I‘. J., Koroxenidis, G., Moschos, C. B., Oldewurtel, H. A., Lehan, P. H., and Hellems, H. K.: The acute metabolic and hemodynamic responses of the left ventricle to ethanol, J. Clin. Invest. 45:270, 1966. Brink, A. J., and Lewis, C. RI.: Coronaq blood flow, energetic+ and myocardial metabolism in idiopathic mural endomyocardiopathy (14 patients), X&I. Hearty J. 73:339, 1967. Gorlin, Ii. : Pathophysiology of cardiac pain, Circulation 32:138, 1965. Herman, M. I’., Elliott, \i’. C., and Gorlin, R.: An electrocardiographic, anatomic and metabolic study of zonal myocardial ischemia in coronary heart disease, Circulation 35:834, 1967. Scheuer, J., and Bmchfeld, N.: Coronaq insufficiency: relation between hemodynamic, electrical and biochemical parnmeters, Circulation Res. 18:178, 1966. Brink, A. J., Lewis, C. RI., and van Heerden, P. D. R.: Coronary blood Ilow and myocardinl energy metaboliwl in obstructjve cardiomyopathy, Am. J. Cardiol. 19:54S, 1967. Lochner, \V., Mercker, I I., and Nasser, \f’.: i’ber den anarroben Energiegewinn dcs \Varmbliiterherzens in situ unter Cyanidvergiftung. Arch. Esper. I’ath. l’harmakol. 236:365, 1959. Danforth, If’. H., Saegle, S., and Bing, 1~. J.: Effect of isrhemiu and reosygenation 011 glycolytic reactions and adenosinetriphosphate in heart muscle, Circulation lies. 8:965, 1960. Cornblath, M., Randle, I’. J., Pnrmeggialli, A., and Morgan, H. E.: Regulation of glycogenolysis in muscle. Effects of glucagon and nnoxia on lactate production, glycogen content, and phosphorylase activity in the isolated perfused rat heart, J. Biol. Chem. 238:1592, 1963. YIiiller, E. I(.: iiber die aerobe und anaerobe Stoffwechselkapazitiit des isolierten \\Tarmbliiterherzens, PAtigers Arch. Physiol. 276: 42, 1962. Ballinger, \\‘. f:., and Vollenweider, H.: Anaerobic metabolism of heart, Circulation Kes. 11:681, 1962. Winbury, M. M.: Influence of glucose on rolltrartile activit>of papillar\ muscle dur-
102.
103.
104.
1OS.
106.
107.
108.
109.
1 10.
1 Il.
112.
113.
114.
1 14.A
115.
116.
117.
illg ,md after anoxia, Am. J. I’h\xiol. 187: 13.5, 1956. Winbury, nl. M.: Experimental approaches to the development of antianginal drugs, Advances Pharmacol. 3:1, 1954. Yang, I\‘. C.: Anaerobic functional activit) of isolated rabbit atria, ;\m. J. Physiol. 205:781, 1963. LVollenberger, A., and Krause, I<. G.: :\ctivation of ol-glucan phosphorylase and related metabolic changes in dog myocardiunl arrest of blood flow, Biochirn. following Bioph1.s. Acta 67:337, 1963. Shank, C. E., Koven, B. J., Majima, I I., ;md Boxer, G. E. : Enzyme patterns in hw man tissues. II. Gl~xolytic enzyme pattcrnh in nonmalignant hIltnan tihsues, Cancer lies. 24:722, 1964. I’ogson, C. I., and RandIe, I’. J.: Effects of alloxan-diabetes, starvation and hypophysectomy on total phosphofructokinase activity in rat heart, Nature 212:1053, 1966. Neill, \I’. A., Krasnow, N., Levine, H. J.. and Gorlin, Ii. : hlyocardial anaerobic metaboli~m in intact dogs, .\m. J. Physiol. 204:127, 1963. Clark, A. J., Gaddie, Ii., and Stewart, C. I’.: ‘l‘he anaerobic activity of the isolated frog’s heart, J. Physiol. 75:321, 1932. I )chann, R. I.., and Field, J.: l\‘Iechallism oi cardiac damage in anoaia, Am. J. Physiol. 197:‘449, 1959. Crowell, J. I\:., and Kaufmann, B. S.: Changes in tissue pH after circulator!, ;lrreqt, Am. J. Physiol. 200:743, 1961. Trivedi, B., and Danforth, II’. H.: Efiect oi pH OII the kinetics of frog muscle phosphnfructokinasc, J. Riol. Chem. 241:4110, 1966. Harborink. J. J., and Hardman, H. F.: The clfect of pH on gl!.cogenolysis in turtle heart, Biochem. I’harmacol. 15:1885, 1966. Kirk, E. .S., and H onig, C. E. : Nonuniform dihtribution of blood tlow and gradients oi oxygen tension with the heart, hm. J. I’h>-siol. 207:661, 1964. Ixullissen, R. I,. A., Piatllek-l~eunissell, I>. =\., Nakamura, 1’. Ii., and Griggs, D. M., Jr.: Regional distribution of the heart during reduced coronary tlow (Abhtract), Circulation (SuppI. III) 34:115, 1966. f’., Meyer, C., and I,u17dsgaard-Hallee11, liiedwyl, H.: ‘Transmural gradients of gl>-colytic enqme activities in left ventricular myocnrdium, PRiigera .\rch. Physiol. 297:89, 1967. Xleerwll, I;. Z.: Compensator>~ hl-periunct ion and insufficiency of the heart, Circularion Res. 10:250, 1962. I.ochner, A., Opic, I.. H., and Brink, Y\. J.: Ijefective &dative phosphorylation in hereditary myocardiopathy in the Syrian hamster, Cardiovas. Res. In press. Gudbjarnason, S., de Schryver, C., IHunn, G., and Bing, R. J.: Changes in myocardial enzyme pattern in human heart diwaw. J. I.nb. & Clin. Med. 64:796, 1964.
118.
119.
120.
121.
122.
123.
12-k.
125.
126. 127.
128
1.3-r.
I .A5
Blain, J. >I., Schafer, H., Siegel, A. I,., and Ring, K. J.: Studies on myocardial metabolism. \‘I. Myocardial metabolism in congestive heart failure, Am. J. Med. 20:820, 1956. Lorber, \‘.: Energy metabolism of the completely isolated mammalian heart in failure, Circulation lies. 1:298, 195.3. Rowe, G. t;., .;\fonso, S., Castillo, C. A., Lowe, \\‘. C., and Crumpton, C. IV.: The systemic and coronary hemodynamic effects of intravenous administration of 50% glucase, Am. J. M. SC. 244:186, 1962. Neotune. E. .\I.. II-.. Foreman. D. Ii.. and lZe&h, J.’ J., Jr.; A requirement for glucose by excised working rat diaphragm, Am. J. I’hysiol. 199:10-18, 1960. Gimeno, A. I.., Gimeno, M. F., Savino, E. A., and Bedners, A. S.: Etiects of glucose, pyrtrvate, lactate and starvation on contractilit> of isolated rat atria, Pror. Sot. Exper. Rio]. 81 Med. 123:875, 1966. Nakamura, K., Saunders, I’. I~., \Vebb, J. I,., I,anson, H. C., and Thienes, C. H. I’.: Metabolism of the heart in relation to drug action. IV. Effects of various substrates upon the isolated perfused rat heart, Am. J. Physiol. 158:269, 1949. lirebs, H. A., and W’oodford, M.: Fructose 1,6-diphosphatase in striated muscle, Biothem. J. 94:136, 1965. Jedeikin, L. A. : Cardiac glycogen metabolism in vivo in fed and fasted rats (:lbstract). Biorhem. J. 99:6P, 1966. Evans, G.: The glycogen coiltent of the rat heart, J. Physiol. 82:468, 1931. lackey, 1~. LI:., Bunde, C. A., and Harris, 1~. C.: The relationship of cardiac glycogen deposition to blood ketone levels in experimental ketosia, Am. J. Physiol. 145:470, 1916. \\:illebrand~, h. F.: Over het verbruik va~i zuurstof en substraten door de zoogdierhartspier, Academic Thesis, I’niversity of Amsterdam. 1966. Russell, J. A., and Bloom, iiT. I..: Hormonal control of glycogen in the heart and other tissues in rats, Endocrinology 58:83, 1956. l.ukens, I;. I>. iV.: Influence of insulin 011 protein metabolism and cardiac glycogen in Houssay animals, Am. J. Physiol. 192:485, 1958. Rowmall, li. H. : Cardiac glycogen in hy-pophysectomized rats subjected to fatty acid feeding, Am. J. Physiol. 197:1017, 1959. Blount, I). H.: Influence of restricted food intake on cardiac glycogen mobility, Proc. Sot. Exper. Biol. & Y/led. 122:148, 1966. Leloir, L. F.. Olavarria, J. RI., Goldenberg, S. I-I., and Carminatti, H.: Biosynthesis of glycogen from uridine diphosphate glucose, Arch. Biochem. Biophys. 81:508, 1959. Meyer, I). K., and Purdy, ~1. I’. : Cardiac glycogeil of rats during and following acute anoxia, .\m. J. I’hysiol. 2UO:860, 1961. Sgivik, O., Qj\c, I., aild Rosell-I’erez, %I.: ‘lhc cffcrl of ;iiloxia, L,1-di~ritrophct~~~i .inrl
136.
137.
138.
139.
140.
l-10.4.
111.
142.
l-1.1.
144.
l-15.
146.
l-17
2-deoxyglucose on muscle glycogen synthetase, Biochim. Biophys. Acta 124:26, 1966. &and, P., and Narahara, H. T.: Regulation of glycolysis in muscle. III. Influence of insulin, epinephrine and contraction on phosphofructokinase activity in frog skeletal muscle, J. Biol. Chem. 239:3146, 1964. Kraupp, O., Adler-Kastner, L., Niessner, H., and Plank, B.: The effects of starvation and of acute and chronic alloxnn diabetes on myocardial substrate levels and on liver glycogen in the rat in vivo, Europ. J. Biothem. 2:197, 1967. Williams, D. J., and Mayer, S. F.: Hormonal effects on glycogen metabolism in the rat heart in situ, Molec. Pharmacol. 2:454, 1966. Danforth, W. H.: Glycogen synthetase activity in skeletal muscle. Interconversion of two forms and control of glycogen synthesis, J. Biol. Chem. 240:588, 1967. Beloff-Chain, A., Betto, I’., Catanzaro, I~., Chain, E. B., Longinotti, L., Masi, I., and Pocchiari. F.: The metabolism of glucose l-phosphate and glucose 6-phosphate and their influence on the metabolism of glucose in rat-diaphragm muscle, B&hem. J. 91:620, 1964. Hers, H. G.: cr-Glucosidase deficiency in generalized glycogen-storage disease (I’ompe’s disease), Biochem. J. 86:11, 1963. Jedeikin, I,. A.: Regional distributioii of glycogen and phosphorylase in the ventricles of the heart, Circulation lies. 14:202, 196-l. Dhalla, N. S., Haugaard, N., and Hess, M. E.: Cardiac phosphorylase in different species and after reserpine administration, Proc. Sot. Exper. Biol. & Med. 119:1147. 1965. Krebs, E. G., Gonzalez, C., l’osner, J. B., Lore, D. S., Bratvoid, G. E., aiid Fisher, E. I-I.: Interconversion reactions of muscle phosphorylases b and a, in, \f’helan, W’. J., and Cameron, III. P.. editors: Control of glycogen metabolism, London, 1964, I. & A. Churchill, Ltd., p. 200. Kobison. G. -A.. Butcher. R. IV.. C>ve. I.. Morgan,’ H. E., and Sutherland, E: \I<: ‘The effect of epinephrine on adenosine 3’,5’-phosphate levels iii the isolated perfused rat heart, Molec. Pharmacol. 1:168, 1965. Sutherland, E. \I!., @ye, I., and Butcher, 1~. \V.: The action of epinephrine and the role of the adenyl cyclase system in hormone action, Recent Progr. Hormone Res. 21:623. 1965. Xlurad, F., Chi, Y. M., Kall, T. \V., and Sutherland, E. W.: Adenl-1 cyclase III. The effect of catecholamines and choline esters on the formation of adenosine 3’5’-phosphate by lrrcparations from cardiac muscle and liver, J.‘Biol. Chem. 237:123.3, 1962. Butcher. Ii. IV.. and Sutherland, IS. \\..: Xdenosine 3’,5’-phosphate in biological materials. I. l’iiritic;iti~ni alit1 propertie-: of
l-48.
110.
1.50.
151.
152.
153. 1.54.
155.
156.
157.
1.58.
159.
160.
161.
c!.clic .i’,S’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate ill humall Ilrine, J. Biol. Chem. 237:1244, 1962. \Vollenberger, .A. : Endogenous catecholamine mohiliLntioll and the shift to anaerobic metabolism in the acutely ischaemic myocardium, itr Symposium on the coronaq circulation and energetic? of the myocardium, illilall, 1966, Basel, New Vork, 1967, S. Knrger, p. 200. Hornbrook, K. I’., Quilm, 1’. V., Stegel, J. H., and Brodl,, T. M.: Thyroid hormone regulation of cardiac gl~cogen metabolism, Biochem. Pharmacol. 14:925, 1965. Drummond, (;. I., and Dunca~~, I..: ‘l‘he action of calcium ion on cardiac phosphorylase b kinase, J. Biol. Chem. 241:3097, 1966. Morgan. H. E., and I’armeggiani, A. : Regulation of glycogenol!xis in n&sclc, in IVhelan, I$::. ”I.. and Cameron. iLf. J’.. editors: Control of gll-cogen metabolism, I,ondon, 1964, J. Sr ;\. Churchill, Ltd., p. 254. 1\Iorgan, H. I<., and I’armegginni, =\.: Jiegulation of gl>.cogenolyii-: in muscle. III. Control of nluscle glycogen phosphorylase activity, J. Biol. Chem. 239:2110, 1964. Newsholme, E. A.: Regulation of enzyme activity, Sci. Progr. 53:237, 196.5. @ye, I.: The role of phosphorylase a and b for the control of glycogcnolysis in the isolated working rat heart, Acta physiol. scandinav. 70:229, 1067. Williamson, J. I:.: Kinetic studies of epinephrine effects in the perfused rat hexrt, I’harmncol. Rev. 18:205, 1966. Bloom, \V. I,., n11d Ru>sell, J. :I.: Efiects of epinephrille and Ilorcpinephrine on carbohydrate metaboliw~ ill the mt, Am. J. F’hy+ iol. 183:X6, 1955. Mayer, S. E., ~Villiams, 1~. J., and Smith, J. iX’I.: :\drenergic mechanisms in cardiac glycogen metabolism, =\nn. New ‘I’ork Acad. % 139:686, 1967. lluiiirx. Fr.. and IAarner. T.: On the etfcct of ndenosine 3’,5 qclophosphatc on the kinase of 1Tl)I’(G:wl ,It-glucan a-4.glucosyl trusferase, Biochem. Biophys. Res. Comm,,n. 23:X9, 1966. Ribcilima, J., \\‘elldt, V. E., Ramo~, H., Gudbjartlason, S., Bruce, T. .L\., and Bing, R. J,: The effects of norepinephrine on the hemodvnamica and mvocardial metabolism of norr~i;ll human subjects, .qnr. I~EART J. 67:672, 196-l. Blouut, I). H., and hIeyer, I). K.: Effects of cardiac work on glycogen fractions of the heart, Am. J. Physiol. 197:1013, 1959. Shelley, \V. B., Code, C. F., and Visscher, W. H.: The influence of thyroid, dinitror~henol and s\vimmillcr on the clvcogen and phosphocrcatine level of the rat heart ill relation to cardiac hypertroph~~, :\m. J. Phyhiol. 138:652, 19-M. lie&es, R. B.: Control of glycogell utilization and glucose uptake ill the anaerobic tllrtlc heart, Am. J. l’hysiul. 205:23, 1963. ,_,
161.
165.
166.
167.
168.
169.
170.
171.
172
173.
I
CI
162.
163.
-~
Y
174.
175.
176.
177.
178.
179.
Ifazelwood, I<. I.., and I:llrick, \2:. c‘.: Glycogen mobilization and nork in the r;tt heart, .\m. J. Physiol. 200:999, 1961. Olso~l, I<. E., and Hoeschen, R. J.: Endogellou> lipid utilization by the isolated perfused rat heart, Biochem. J. 103:796, 1967. I)entoll. I<. AI., and RandIe, P. J.: Concentmtion of gl>.cerides and phospholipids it1 l-;lt hcnrt and gastrocnemius muscles. Effects of allosnn-diabetes and perfusion, Biochem. J. 104:116, 1967. Seely, J. Ii., Bowman, 1~. II., and Morgan. H. I:.: Conservation of gl>.cogen in the perfused rat heart developing intraventricrll;lr pressure, ,u Symposium of 4th meeting of Federation of I*:oropeall Biochemical Societies, Oslo, 1967, IJrliverGfetsforlnget, vol. 5. Jedeikill, I,. :I., and Br~ckle!~. N. IXI.: (iI\ cogerl collwntratio~i in working :rtld now \vorkini: ventricles of inolnted dq hearts, Circrllntioll Iiol. 205:766, 1963 \~‘illebr;mds, A. I;.: I-tilizntioll of individual Ilon-estcrified f;ttt\. acids by the isolated pwfllwd rat heart, Biochim. I%ioph!;s. Act:1 84:607, 196-1. Carlsten, rZ., Hallgren, B., Jagenburg, I:.. Sv;ull)crrg, .\., and Werkti, I..: Myocxdial nrteriovenous differences of individual free fattv acids in healthy human individuals, Me&bolis;ln 12:1063, 1963. (Gordwl, R. S., Jr., and Cherkes, A.: I’Iw~teritied fatty acid in human blood plasn~, J. Clitl. Invest. 35:206, 1956. (;oodm;l~~, D. S.: The interaction of humall er>.throcq-tcs with sodium palmitate, J. Clill. Invest. 37:1729, 1958. (;oodlllan, D. S.: ‘L‘he interaction of hulnall serum :~lbumin \vith long-chain fatty acid anions, J. Am. Chem. Sot. 80:3892, 1958. ITritz, I. B., a11t1 Kaplall, I<.: The general iite c,f carnitine action on palmitate metabolisw b!- heart IIIUX-le, in Peeters, I-1.. editor: I’~n~Li~l~s of the biological fluids.
1x0.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
19.3.
194.
19.5.
Amsterdam, 1960, Elsevier Publishing Co., p. 252. Opie, I,. H., and Walfish, P. G.: Plasma free fatty acid concentrations in obesity, New England J. Med. 268:757,1963. Hales, C. N., and Randle, P. J.: Effects of low-carbohydrate diet and diabetes mellitus on plasma concentrations of glucose, nonesterifjed fatty acid, and insulin during oral glucose-tolerance tests, Lancet I:f90, 1963. Kothlin, M. E., and Bing, 1~. J.: Extraction and release of individual free fatty acids by the heart and fat depots, J. Clin. Invest. 40:1380, 1961. Harris, P., Chlouverakis, C., Gloster, J., and Jones, J. H.: Arteriovenous differences in the composition of plasma free fatty acids in various regions of the body, Clin. SC. 22:113, 1962. Willebrands, A. F.: hlyocardial extraction of individual non-esterified fatty acids, esterified fatty acids and aceto-acetate in the fasting human, Clin. Chim. Acta 10:435, 1964. Stein, O., and Stein, Y.: Metabolism of fatty acids in the isolated perfused rat heart, Biochim. Biophys. Acta70:517, 1963. Enser, M. B., Kunz. F., Borensztajn, J., Opie, L. H., and Robinson, D. S.: Metabolism of triglyceride fatty acids by perfused rat heart, Biochem. J. 104:306, 1967. Rinetti, RI., \:isioli, O., Colombi, L., and Barbaresi, F.: Myocardial lipids after intense muscular work, Cardiologia 45:269, 1954. Challoner, D. R., and Steinberg, D.: The effect of free fatty acid on the oxygen consumotion of the oerfused rat heart, Am. I. I’hy&ol. 210:280,‘1966. Shipp, J. C., Thomas, J. hl., and Crevasse, I~.: Oxidation of carbon-14-labeled endogenous lipids by isolated perfused rat heart, Science 143:351, 1964. Olson, R. E.: Etfects of pyruvate and acetoacetate on the metabolism of fatty acids by the perfused rat heart, Nature 195:.597, 1962. Mansford, K. R. I*., and Opie, L. H.: Effects of heart work on glucose uptake and glycolvsis in hearts from normal and diabetic rats, Biochem. T. 105:28P. 1967 (Abst.). Marquis, N. R., and Fritz,‘ I. B.‘: Enzymological determination of free carnitine concentrations in rat tissues, J. Lipid Res. 5:184, 19.54. Fritz, I. B., and Yue, K. T. N.: Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine, J. Lipid Res. 4:279, 1963. Friedberg, S. J., and Bressler, R.: The formation and isolation of long-chain acyl carnitines in mitochondria, Biochim. Biophys. Acta98:335,1965. Kornberg, A., and Pricer, W. E., jr.: Enzymatic synthesis of the coenzyme A deriva-
196.
197.
198.
199.
200.
201.
202.
203.
204.
20.5.
206.
207.
208.
209.
210.
tives of long-chain fatty acids, J. Biol. Chem. 204:329,1953. Fritz, I. B.: Carnitine and its role in fatty acid metabolism, Advances Lipid Res. 1~286, 1963. Bremer, J.: Carnitine in intermediary metabolism. The biosynthesis of palmitylcarnitine by cell subfractions, J. Biol. Chem. 238:2774, 1963. Fritz, I. B., and Marquis, N. K.: The rule of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes, Ptoc. Nat. Acad. SC. 54:1226, 1965. Shepherd, D., Yates, 1). El;., and Garland, P. B.: The rate-limiting step in the oxidation of palmitate or palmitylCoA by rat-liver mitochondria, Biochem. J. 98:3c, 1966. Bode, C., and Klingenberg, M.: Carnitine and fatty acid oxidation in- mitochondria of various organs, Biochim. Bioohss. . _ Acta 84:93,1964Y Vahouny, G. V., Katzen, Ii., and Entenman, C.: I\Iyocardial metabolism. II. Role of nutritional state and glucose oxidation by isolated perfused hearts, Biochim. Biophys. Acta 137:181, 1967. Bremer, J. : Carnitine in intermediary metabolism. Reversible acetylation of carnitine by mitochondria, j. Rioi. Chem. 237:2228, 1962. Bremer, J.: Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria, J. Hi~~l. Chem. 237:3628, 1962. \\‘ittels, B., and Bressler, Ii.: Biochertric,rl lesion of diphtheria toxin in the heart, 1. Clin. Invest: 43:630, 1964. Bressler. R.. and Wittels. B.: The effect of diphtheiia toxin on carnitine metabolism in the heart, Biochim. Biophys. Acta JO4:39, 1965. Orth, D. N., and Morgan, If. I~:.: The effect of insulin, alloxan diabetes, and anosi,t on the ultrastructure of the rat heart, J. Cell. Biol. 15:509, 1962. Denton, R. M., and Randle, P. J.: l\Ieasurement of hoa of carbon atoms from glucose and glycogen glucose to glyceride glycerol and glycerol in rat heart and epididymal adipose tissue. Effects of insulin, adrenaline and alloxan-diabetes, Biochem. J. 104:&23, 1967. Garland, I’. B., and Randle, P. J.: Regulation of glucose uptake by muscle. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy, and of fatty arids, ketone bodies and pyruvate on the glycerol output and concentrations of free fatty acids, long-chain fatty acyl Co,4, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles, Biothem. I. 93:678, 1964. \Virsen, C.: Studies in lipid mobilization, Acta physiol. scandinav. 65:Suppl. 1.52, 1965. Ferrans, V. J., Hibbs, R. G., Black, \% C.,
211.
212.
213.
2132‘4.
214.
and IVeilbaecher, D. G.: Isoproterenolinduced myocardial necrosis. A histochemical and electron microscopic study, AM. HEAKT J. 68:71, 1964. Ferrans, V. J., Hibbs, R. G., IVeilbaecher, II. G., Black, \5:. C., Li:alsh, J. J., and Burch, G. E.: Alcoholic cardiomyopathy, itw. HIZAKT J. 69:748, 1965. Harris, P., Fletcher, R. F., Gloster, J., and Gotsman, M.: The metabolism of glycerol and free fatty acids during exercise in patients with rheumatic heart disease, Clin. SC. 28~343, 1965. Kreisberg, Ii. X.: Elect of diabetes and starvation on myocardial triglyceride and free fatty acid utilization, Am. J. Physiol. 210:379, 1966. Robinson, J., and Newsholme, E. .A.: Glycerol kinase activities in rat heart and adipose tissue. Biochem. J. 104:2c, 1967. Scheuer, J., and Olson, R. E.: Metabolism of exogenous triglyceride by the isolated perfused rat heart, Am. T. Phvsiol. 212:301. I
226.
227.
228. 229.
230.
.
231. 215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
Delcher, H. K., Fried, M., and Shipp, J. C.: &letabofism of liooorotein lioid in the isolated perfused rat’hiart, Bio&m. et biophys. acta 106:10, 1965. Hall, I-. M.: Preferential oxidation of acetoacetate by the perfused heart, Biochem. Biophys. lies. Commun. 6:177, 1961. Bing, R. J., Siegel, A., Irngar, I., and Gilbert, M.: Metabolism of the human heart. II. Studies on fat, ketone and aminoacid metabolism, Am, J. Med. 16504, 19.54. Bassenge, E., -11.endt, \‘. E., Schollmeyer, I’., Bliimchen. G., Gudbiarnason. S.. and Bing, R. J.: Effect of ketone bodies on cardiac metabolism, .%m. J. Physiol. 208:162, 1965. JZudolph, \5.., Maas, I)., Richter, J., Hasinger, F., Hofmann, H., and Dohrn, P.: iTher die Bedeutung van Acetoacetate und B-hvdroxvbut\-rat im Stoffwechsel des menslichen Iierze& Iilin. \\.chnschr. 43:445, 1965. Green, I). E., Dewan, J. G., and Leloir, I,. 1;. : The P-hydroxvbut)-ric dehydrogenase of animal tissues, giochem. J. 31:934, 1937. Stern, J. R., Coon, i\l. J., and de1 Campillo, .I.: Enzymes of fatty acid metabolism. III. Breakdo&] and synthesis of @-keto fatty acids, J. Biol. Chem. 221:1, 1956. Lehninger, A. I-., Sudduth, H. C., and Wise, J. B. : D-a-hvdroxybutyric dehydrogenase of mitochondiia, J. Biol. Chem. 235:2450, 1960. Krebs, H. A., and Eggleston, I,. V.: Metabolism of acetoacetate in animal tissues. 2, Biochem. J. 42:294, 1948. Kulka, Ii. (;., Krebs, H. A., and Eggleston, 1.. V.: ‘I‘hc retllwtioll cd acetoacetate to @-hydrux~ bulyr:~te ill aninl,il tis-ues, Bitrthem. J. 78:YS, 1061. \\‘illi;rmson, I). II., 1.11nd, I’., ;uitl lircbs, 11. A.: ‘I‘hc redox it;ltc of nicotinnmideadenine dinuclwtide in the r$oplasm and
232.
23.1.
234.
234A.
23.5. 236.
237.
238.
2.10.
240.
mitochondria of rat liver, Hiocheul. J 103: 514,1967. Borst, P.: Hydrogen transport and trawport metabolites, in Funktionelle und Morphologische Organisation der Zelle. Kenferenz der Gelleschaft Deutscher Naturforsher und .i;rzte, 1962, Berlin, 1963, Springer Verlag, p. 137. Williamson, D. H., Mellanby, J., and Krebs. H. A.: Enzymic determination of D(-)-ahydroxybutyiic acid and acetoacetic acid in blood, Biochem. T. 82:90. 1962. Krebs, H. A.: ?‘he biochemical lesion in ketosis, Arch. Int. Med. 10751, 1961. Stein, Y., and Stein, 0.: Lyptake of serum P3?-lysolecithin by the isolated perfused rat heart, Life Sci. 3:883, 1964. Robinson, D. S.: The physiological significance of the plasma triglycerides in fat transport, in Dawson, R. M. C. and Rhodes, D. N., editors: Metabolism and physiological significance of lipids, I.ondon, 1964, Wile!. SC sons, p. 275. Havel, R. J., Felts, J. x/I., and Van Duyne, C. M.: Formation and fate of endogenous trielvcerides in blood olasma of rabbits. .s. Aitn 125:106, i966, Goto. Y.. Haserrawa. T.. Tnkitsuka. I-I.. Mor[ K., Katayama, T., Yoshidn, K., Nagano, S., LVakamura, H., IIori, S., and &to, M.: Experimental study on the lipid metabolism in the heart muscle, Jap. Circ. J. 28~301, 1961. Goto,. Y.: The fatty metabolism in heart muscle. Iao. Circ. I. 26:121. 1962. Gousioi: ii., Felts; J. M., &d Havel, 1~. J.: The metabolism of serum triglycerides and free fatty acids by the m)~ocardium, Metabolism 12:75, 1963. Bragdon, J. H., and Gordon, Ii. S., Jr.: Tissue distribution of labelled chvlomicrons and unesterified fatty acids in She rat, J. Clin. Invest. 37:574, 1958. Ontko, J. ;\., and Randle, P. J.: Inhibition of glucose utilization by perfusion with rhylomwrons ill rat heart, Biorhem. J. 104:4.zr. 1967. hi orris, B., ,III~ Siniph~,lt-;Zl~lrRati, M. \L’.: I
Km& A.,
2-11.
241:\
242.
24.3.
244.
24.5.
246.
247.
2-48.
249.
2.50.
251.
252.
253.
254.
25 5
256.
td chqlorlricrln~ gl\-cWide as sldied by C"p;ilm~itic acid labelled chyloglycerol-Cl< microns, ,4rt:t SW. Med. Upsal. 64:185, 1959. Olivecronn, ‘1‘. : Metabolism of chylomicrons Labelled with Crl-glycerol Hs-palmitic acid in the rat, J. lipid Kes. 3:439, 1962. French, I. E.: The hehaviour of chvlomicrons in the &culation. Observationswith the electron microscope, in Frazer, A. C., editor: Biochemical problems of lipids, Amsterdam, 1963, Elsevier Publishing Company, Biochim. Biophys. acta Library, vol. I, p. 296. Robinson, I). S., and French, J. E.: Heparin, the clearing factor lipase and fat transport, Pharmacol. Rev. 12:24L, 1960. Robinson, D. 5.: The clearing factor lipase and its action in the transport of fatty acids between the blood and the tisscie, Xdvances I.ipid lies:. 1:133, 1963. Kern, 1:. I),: Clearing factor, a hepurinactivated lipoprotein lipase. I. Isolation rind characterization of the enz!me from 11orm~11 rat heart, J. Biol. Chem. 215:1, 19.55. Schatz, J. I)., Ommsby, J. \I’., and \l’illiam~, 1~. 1-l.: Lipoprotein lipase activity in human heart, r\m. J. Physiol. 205:401, 1963. .s\lousi, A. A., and Mallov, S.: Efiects of hyperthyroidism, epinephrine, and diet on heart lipoprotein lipase activity, :\m. .I, Physiol. 206~603, 1965. Xlallov, S., and Alousi, AA. .A.: Effect of altered cardiac metabolism and work on lipoprotein lipase activitv ill heart, *Am. J. I;hyIsiol. 212:i158, 1967. Kessler. I. I.: Effect of diabetes and insulin on the activity of myocardial and adipose tissue lipoprotein lipase of rats, J. Clin. Invest. 42:362, 1963. Hollenberger, C. H.: The effect of fasting on the lipoprotein lipase activity of rat heart and diaphragm, J. Clin. Invest. 39:12X!, 1960. Robinson, 1). S., and Jennings, $1. A. : Release of clearing factor lipase by the perfused rat heart,-J. Lipid. Res. 6:222, 1965. Ckowe. 1. C.. and Ivne. P. T.: X studv of the l&se activity in ‘the developing chick heart, J. Exper. ZooI. 141:291, 19.59. Nikkila, E. A., Torsti, I’., and Pentilla, 0.: The effect of exercise on lipoprotein lipase activity of rat heart, adipose tissue and skeletal muscle, Metabolism 12:863, 1963. Kreisberg, R. A.: Effect of epinephrine on mvocardial triglvceride and free fatty acid u t-ilizatiorl , am. J. Physiol. 210:385,1966. Rlnllov. S.. and Cerrn. F. : Effect of ethanol iiitosiration and catecholamines on cardiac lipoprotein lipase activity in rats, j. Pharmncol. & Exper. Therap. J56:426, 1967. Fisher, Ii. I~., and Nillinmson, J. I(.: The effects of insulin, adrenaline and nutrients on the oxygen uptake of the perfused rat heart, J. Physiol. 158:102, 1961. \2?llebrands, .A. F., and van der Veen, K. J.: InHuence of substrate on oxygen constrmption of isolated perfused rat heart, Am. J. I’h?-siol. 212:1529, 1967.
257.
258.
259.
260.
261.
262.
263. 264.
265.
266.
267.
268.
269.
270.
271.
272.
Xell\-, J. R., L.ieber-nteister, H., and hIorgan, H. I?.: Effect of pressure developmeilt on oxygen consumption by isolated rat heart, ;I&: J. Physi61.m212:80~, 1967. van der Veen. Ii. 1.. and \Villebrnnds, h. F.: Effect of frequent); and Ca++ concentration 011 oxygen consumption of the isolated r:rt heart, Am. J. Yhysiol. 212:1536, 1967. RandIe, I’. J., Hales, C. N., Garland, I’. B., and Newsholme, E. ;I.: The glucose fatt).acid cycle. Its role in insulin sensitivity aiid the metabolic disturbances of diabetes mellitus. Lancet 1:785. 1963. Ll;illiamson, J. I~.: Metabolic etfects of epinephrine in the isolated perfused rat heart, J. Biol. Chem. 239:2721, 1964. \‘;+houny,, C. V., Katzen, R., and Entennnm, C.: Glucose uptake b,. isolated perfused hearts from fed and fasted rats, I’roc. SW Exper. Biol. 8: aled. 121:923. 1966. Op;e, I<. H.: Fatty acids ‘and the heart. (Letter), Lancet 2:.Z66, 1963. Shipp, J. C. : I nterrelntion betweeil carbohl,drate and fatt>- acid metabolihm of isolated perfused rat heart, Metabolism 13:8.52. 1961.. S.: Hemmung der Hirche, H., and Koike, :iufnahme rind des Abbaues der Glucose irn Ilerzmuskel nnrkotisierter Hunde durch die freien Fettsauren, Pfliigerb i2rch. l’hysiol. 280:158, 196-L. Hirche, H. J., and Langohr, H. Il.: Henmung des ;\lilchsYureaufuarlle in Her/muskel narkotisierter Hunde durch hohe arterielle Konzentration der freien Fetthiiuren, Pfltipers ;\rch. Phvsiol. 293:208, lY67. .. Ilnvis, E. J., and Qunstel, J. H.: The effects of short-chain fattv acids and starvation or! the metabolism of glucose and lactate by the perfused guinea pig heart, Cnnnd. J. Bitrthem. 42:1605, 1964. Olson, R. E.: Abnormalities on myocardial metabolism, in Evans, 1. I~., editor: Strticture and function of heart muscle, Circnlation lies. (SuppI. 11) 15:345, 1964. Blanchaer, M. C.: Respiration of mitochondria of red and white skeletal muscle, Am. T. Phvsiol. 206:lOlS. 1964. ‘ette: D., Luh, 1$rl, and B&her, Th.: i\ constant-proportion group in the enzyme activity pattern of the Embden-Meyerhof chain, Biochem. Biophys. Res. Commun. 1:419, 1962. Uubowitz, V., and Pearse, i\. G. E.: lieciprocal relationship of phosphorylase and oxidative enzymes in skeletal muscle, Nature 185:701, 1960. George, J, C., and Jyoti, D.: Histological features of the breast and leg muscles of bird and bat and their physiological evolutionary signiticance, J. Anim. Morphol. Physiol. 2:31, 1955.
2i.i.
274.
27s
276.
277.
278.
279.
280. 281. 282.
283.
284.
285.
286.
287.
287i\
288.
George, J. C., and Scaria, K. S.: Histochemical demonstration of lipase activity in the pectoraIis major muscle of the pigeon, Nature 181:783, 1958. George, J. C., and Naik, R. 111.: Relative distribution and chemical nature of the fuel store of the two types of fibres in the pectoralis major muscle of the pigeons, Nature 181:709,1958. Bilinski, E.: Utilization of lipids by fish. 1. Fatty acid oxidation by tissue slices from dark and white muscle rainbow trout (Salma Cairdnerii), Canad. J. Biochem. 41:107, 1963. Dehaan, R. L.: Differentiation of the atrioventricular conducting system of the heart, Circulation 24:458, 1961. R’ittels, IL., and Bressler, R.: Lipid metabolism in the newborn heart, J. Clin. Invest. 44:1639, 1965. Opie, L. H.: Coronary Row rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart, J. Physioi. 180:529, 1965. Arnold, G., Kosche, F., Miessner, El., Neitzert, A., and Lochner, Mr.: The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart, Pflfigers Arch. Physiol. 299:339, 1968. Morgan, H. E.: Personal communication. Shipp, J. C., and Crass, M. F., ITI.: Personal communication. Harris, P., Jones, J. H., Bateman, M., Chlouverakis, C., and Gloster, J.: Metabolism of the myocardium at rest and during exercise in patients with rheumatic heart disease, Clin. SC. 26:145, 1964. Gregg, D. E.: The coronary circulation in the unanaesthetized dog, in Coronal)circulation and energetics of the myocardium, Basel/New York, 1967, S. Larger, p. 53. Shipp, J. C., Matos, 0. E., Knizley, H., and Crevasse, L. E.: CO* formed from endogenous and exogenous substrates in perfused rat heart, Am. J. Physiol. 207:1231, 1964. Williamson, J. R.: Effects of insulin and starvation on the metabolism of acetate and pyruvate by the perfused rat heart, B&hem. J. 93:97, 1964. Olson, Ii. E., and Piatnek, D. A.: Conservation of energy in cardiac muscle, Ann. New York Acad. SC. 72:466, 1959. Gordon, R. S., Jr.: Unesterified fatty acid in human blood plasma. II. The transport function of unesterilied fatty acid, J. Clin. Invest. 36:810, 1957. Michal, G., Naegle, S., Danforth, W. H., Ballard, F. B., and Bing, R. J.: Metabolic changes in heart muscle during anoxia, Am. J. Physiol. 197:1147, 1959. Biicher, Th., and Klingenberg, M.: Wege der Wasserstoff in der Iebendigen organisation, Angewand Chem. 70:552, 1958.
289.
290.
291.
292.
293.
294.
295.
297.
298.
299
300.
301.
302.
303.
L,ee, ‘II., and Lardy, II. A.: Influence loi thyroid hormones on I.-a-glycerophosphate dehydrogenase and other dehydrogenases in various organs of the rat, .1. . Biol. Chem. 240:1427, 1965. Pette, D.: Plan und Muster in ZellulZLrerr Stoffwechsel, Naturwissenschaften 22:597. 1965. Kraus, A.: Das Kompensationsphtinomen der Glycerin-l-phosphate-oxydase von Pette und Bticher in Skelet und Herzmuskeln verschiedener Tierklassen. (Ratte und Tallbe), Pfliigers Arch. Phvsiol. 297:19, 1967. Deshpande, P. D., Hickman, D. L)., and van Korff. R. W.: Mornholoev of isolated rabbit heart mitochondria and the oxidation of extramitochondrial reduced diphosphopyridine nucleotide, J. Biophys. Biochem. Cvtol. 11:77,1961. Griffith, T. J., and Blanchaer, M. C.: Kinetics of NADH oxidation by pigeon-heart mitochondria, Canad. J. Biochem. 45:881, 1967. Illrich, F.: Active transport of potassium by heart mitochondria, Am. J. Physiol. 198:847,1960. Brierley, G. P.: Ion accumulation in heart mitochondria, in Chance, B., Estabrook, H. W., and Williamson, J. Ii., editors: Enerev-linked functions of mitochondria, New York, 1963, Academic Press, Inc., p. 237. Brierley, G., Murer, E., Bachmann, E., and Green, D. E.: Studies on ion transport. IJ. The accumulation of inorganic phosphate and magnesium ions by heart mitochondria. I. Biol. Chem. 238:3482. 1963. iehninger, A. L., Carafoli, E., and Rossi, C. S.: Energy-linked ion movements in mitochondrial systems, Advances Enzym. 29:260, 1967. Lard\, H. A., Conneliy, J. L., and Johnson, I>.: .&tibiotics as tools for metabolic studies. II. Inhibition of phosphoryl transfer in mitochondria by oligomycin and aurovertin, Biochemistry 3:1961, 1964. Rasmussen, H., and Ogata, E.: Cation flux across the mitochondrial membrane as a possible pacemaker of tissue metabolism, in Chance, B., Estabrook, R. W., and ~Villiamson, J. R., editors: Control of energy metabolism, New York, 1965, Academic Press, Inc., p. 209. Bowman, R. H.: Effects of diabetes, fatty acids and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart, J. Biol. Chem. 241:3041, 1966. Vl’ieland, O., and Weiss, L. : Inhibition of citrate-synthase by palmitylcoenzyme :Z, Biochenl. Biophys. Res. Commun. 13:26, 1963. Kosicki, G. W., and Lee, L. P. K.: Effect of divalent metal ions on nucleotide inhibition of pig heart citrate synthase, J. Biol. Chem. 242:3571, 1966. Fritz, I. B.: Relief of palmityl CoA inhihi-
304.
305.
305A
306.
307.
308.
309.
310.
311.
312.
,313.
314.
315.
tion of citrate synthase by long-chain acylcarnitine derivatives, Biochem. Biophys. Res. Commun. 22:744, 1966. Wieland, O., \fTeiss, L., and Eger-Neufeldt, I.: Hemmung der enzymatischen Citronensauresynthese durch langkettige AcylThioester des Coenzvme A. Biochem. Ztschr. 339:501, 1964. ’ Srere, P. A.: The citrate cleavage enzyme. I. Distribution and purification, J. Biol. Chem. 234:2544,1959. England, P. J., Denton, R. nl., and Randle, P. J.: The influence of magnesium ions and other bivalent metal ions on the aconitase equilibrium and its bearing on the binding of magnesium ions by citrate in rat heart, Biochem. J. 105:32c, 1967. Sanwal, B. D., Zink, M. W., and Stachow, C. S.: Control of DPN-specific isocitric dehydrogenase activity by precursor activation and end product inhibition, Biochem. Biophys. Res. Commun. 12:510, 1963. Chen, R. F., and Plaut, G. W. E.: Activation and inhibition of DPN-linked isocitrate dehydrogenase of heart by certain nucleotides, Biochemistry 2:1023, 1963. Goebell, H., and Klingenberg, M.: DPNspezifische Isocitrat-Dehydrogenase des Mitochondrien. I. Kinetische Eigenschaffen, Vorkommen und Funktion der DPN-spezifischen Isocitrat-Dehydrogenase, Biochem. Ztschr. 340:441, 1964. Klingenberg, RI., Goebell, H., and Wenske, G.: DPX-specific isocitrate dehydrogenase of mitochondria. II. pH-dependence and kinetics of mechanism of action. Biochem. Ztschr. 431:199, 1965. Plaut, G. W. E., and Plaut, K. A.: Oxidative metabolism of heart mitochondria, J. Biol. Chem. 199&X1, 1952. Bowman, R. H.: Fatty acid induced alterations in citric acid cycle intermediates, in Chance, B.. Estabrook. R. W.. and Williamson, J. K., editors: Control of energy metabolism, New York, 1965, Academic Press, Inc., p. 357. Schollmeyer, I’., and Klingenberg, M. : Oxaloaretate and adenosinetriphosphate levels during inhibition and activation of succinate oxidation, Biochem. Biophys. Res. Commun. 4:43, 1961. Davies, D. D., and Kun, E.: Isolation and properties of malic dehydrogenase from ox!;;;’ mitochondria, Biochem. J. 66:307, Heldt, H. W., Jacobs, H., and Klingenberg, M.: Endogenous ADP of mitochondria, an early phosphate acceptor of oxidative phosphorylation as disclosed by kinetic studies with Cl4 labelled ADP and ATP and with atractyloside, B&hem. Biophys. Res. Commun. 18:174, 1965. Klingenberg, M., and Pfaff, E.: Structural and functional compartmentation in mitochondria, in Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C., editors: Regu-
316.
316A 317.
318.
319.
320.
321.
322.
323.
324. 325.
326.
327.
328.
329.
330.
lation of metabolic processes in mitocholldria, Amsterdam, 1966, Elsevier Publishing Company, p. 86. Challoner, D. R., and Steinberg, I).: Metabolic effect of epinephrine on the oxygen consumption of the perfused rat heart, Nature 205:602. 1965. Challoner, D. 12.: Respiration in myocardium, Nature 217:78, 1968. Furchgott, Ii. I;., and Lee, K. S. : High energ! phosphates and the force of contraction of cardiac muscle, Circulation 24:416, 1961. Feinstein, M. B.: Effects of experimental congestive heart failure, ouabain and asphyxia on the high energy phosphate content and creatine content of the guinea pig heart, Circulation Res. 10:333, 1962. Fleckenstein, A.: Die Bedeutung der energiereichen Phosphosphate fiir Kontrakt&t und Ton& d& Myokards, Verb. Deutsch. Ges. Inn. Med. 70:81. 1964. Fox, A. C., and Reed, G. F.:’ Exchanges of nucleotide phosphates in normal and failing canine hearts, Am. J. Physiol. 210:1383, 1966. Pool, P. E., Spann, J. F., Jr., Buccino, li. A., Sonnenblick, E. H., and Braunwald, E.: Myocardial high energy phosphate stores in cardiac hypertrophy and heart failure, Circulation Res. 21:365, 1967. Watanabe, S., and Packer, L.: Oxidative phosphorylation of cardiac mitochondria in contraction of glycerol-treated fibers of psoas muscle, J. Bioi. Chem. 236:1201, 1961. Harary, I., and Slater, E. C.: Studies in vitro on single beating heart cells. VIII. The effect of oligomycin, dinitrophenol, and ouabain on the beating heart, Biochim. Biophvs. Acta 99:227. 1965. Ch&ner, D. R.: Hypermetabolic states, Lancet 2:681,1966. Cain, D. F., and Davies, 1~. E.: Breakdown of triphosphate during a single contraction of working muscle, Biochem. Biophvs. _ _ Res. Commun.8:361, 1962. Infante. A. A.. and Davies. R. E.: Adenosine triphosphate breakdown during a single isotonic twitch of frog sartorius muscle, Biochem. Biophys. lies. Commun. 9:410, 1962. Mommaerts, W. F. H. M., and Wallner, A.: The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle, J. Physiol. 193:343, 1967. Whittam, R.: The interdependence of metabolism and active transport, in Hoffman, T. F., editor: Cellular functions of membrane transport, Englewood Cliffs, N. J., 1964, Prentice-IIall, Inc., p. 139. Chance, B., and Williams, G. R.: The respiratory chain and oxidative phosphorylation, Advances Enzym. 17:65, 19.56. . Lardv. H. A., and Wellman. H.: Oxidative phos&orylations: role of inorganic phosphate and acceptor systems in control of
331.
332.
333.
334.
335.
.1.36.
.3.z7.
338.
339.
3-10.
341.
312.
3‘I3.
343
metabolic rates, J. Biol. Chem. 195:215, 1952. Plechaty, M., Gertler, M. X,1., and Guthrie, R. G.: Intramitochondrial uptake of SP in adenine nucleotides in congestive heart failure, Biochim. Biophys. Acta 127:524, 1967. Janke, J., Marmier, I’., and Fleckenstein, A.: Die Bestimmung der absoluten I:msetzungsraten van ATP, Kreatinphosphat und Orthophosphat in der ruhenden Skeletmuskulatur mit Hilfe 1’011 HgO’* als Tracer, PAtigers Arch. Physiol. 282:119, 1965. Ochoa, S.: Efficiency of aerobic phosphorylation in cell-free heart extracts, J. Biol. Chem 151:493,1943. Haugaard, N., Inesi, G., and Haugaard, E. S.: Glucose oxidation and high energy phosphate production in heart homogenates, Circulation Res. 11:381, 1962. Szekeres, I,., and Schein, M.: Cell metabolism of the overloaded mammalian heart in situ, Cardiologica 34:18, 1959. Schwartz, A., and Lee, K. S.: Study of heart mitochondria and glycolytic metabolism in experimentally induced cardiac failure, Circulation Res. 10:321, 1962. -Argus, M. F., Arcos, J. C.. Sardesai. V. M., and Overby-. J. I,.: Oxidative rates and phosphorylation in sarcosomes from esperimelltall?--indllced failing rat heart, I’ror. Ser. Exper. Biol. & hIed. 117:380, 1964. Fox, A. C., \Vikler, N. S., and Reed, G. E.: High energy phosphate compounds in the myocardium during experimental congestive heart failure. Purine and pyrimidine nucleotides, creatine, and creatine phosphate in normal and failing hearts, J. Clin. Invest. 44:202, 196.5. Gertler, M. M., Murakami, K., and Guthrie, 1~. G.: Oxidative phosphorylation in normal and failure liver, kidney and heart mitochondria, Proc. Sot. Exper. Biol. 8( Ved. 121:657,1966. Procitn, L., Schwartz, A., and Lee, K. S.: Oxidative ohosohorvlation in the failing dog heart-lung preparation, Circulation Re;: 16:391, 1965. Wollenberger, .A., and Schulze, W.: ;Llitochondrial nlteratir)na in the myocardium of dogs with aortic stenosis, J. Biophys. Biothem. Cytol. 10:285, 1961. Wollenberger, A., Kleitke, B.. and Raabe, G.: Some metabolic characteristics of mitochondria from chemically overloaded hypertrophied hearts, Exp. Moler. Path. 2:251, 1963. \Vollenberger, A. : The energy metabolism of the failing heart and the metabolic action of cardiac glycosides, Pharm. Rev. 1:311, 1949. Furchott, Ii. I;., and de Gubareff, T.: The high energy phosphate content of cardiar muscle under various experimental conditions which alter contractile strength, J. Pharmacol. & Exper. Therap. 124:203, 1958.
345.
Ml.
317.
348
319.
350.
351.
356.
,157.
358
Buckley, N. M., and Tsuboi, Ii. Ii.: Cardiac. nucleotides and derivatives in acute and chronic ventricular failure of the dog heart. Circulation Res. 9:618, 1961. Chidsey, C. ;\., \\.einbach, E. C., 1’001. I’. IX., and Morrow, .A. G.: Biochemical studies of energ!. production in the failing human heart, 1. Clin. Invest. 45:40, 1966. Sobel, B. E., Spann, J. F., Jr., Pool, P. E., Sonnenblick. E. H.. and Braunwald. E.: Normal oxidative phosphorylation in mitochondria from the failing heart, Circulatiorl Res. 21:355, 1967. Opie, 1,. H., Lochner, .\., Brink, A. J., Homburger, F., and Nixon, C. W.: Oxidativc phosphorylation in hereditary my,ocardiopathy in the Syrian hamster, Lancet 2:121, 196-1. Sundermeyer, J. I;., (;udbjarnason, S., \Yendt, 1’. E., den Bakker, P. B., and Burg, 1:. J.: Myocardial metabolism in progressive muscular dvstrophx., Circulation 24:1351, 1961. - Eppenberger, ;\I., Nixon, C. IV., Baker, 1. It.. and Hornburger. F‘.: Serum phosphocreatine kinnse in hereditary muscular dystrophv and cardiac necrosis of Syriarr golden hamsters, I’ror. Sot. Exper. Biol. Ktiled. 117:165, 1964. Hornburger, F., Baker, J. K., NixoIl, C. IV., \Vilgram, G., and Harrop, J.: The earlyhistopathological lesion of muscular dystrophy in the Syrian golden hamster, J. Path. oi Bact. 89:133, 1965. Hamburger, I;., Baker, J. K., and Nixon, C. \\‘.: iVl\-onathic Syrian hamsters as di+ . . ease models of muscular dystrophy and congestive heart failure, Fed. Proc. 25:476. 1966 (abstr.). Christ, E. J., and Hiilsmann, if’. C.: S~IIthesis of long-chaiu fatty acids by. mitochondrial ens>-mes, Biochim. Biophys. :\rt;r 60:72, 1962. Hiilsmann, \V. C.: On the synthesis of tllalon)~l-cc~n~~Illc I,\ in rabbit-heart s;rrcomeres, Biochim. Biophy.s. -Acta 125:397. 1966. \\.hereat, .-I. I:., Hull, 1:. E., Orishimo, XI. \\‘., nrrd Rabinowitz, J. I~.: The role of su(‘cinnte in the regulation of fatty. acid s~‘Ithesis b\. heart mitochondrin, J. Biol. Chent. 242:X)1:3, 1967. .A. F.: The effect Hull, I’. I:., and LVhereat, of rotenone on the regulation of fatty acid acid metabolism in mitochondria, in ‘l‘ager. J. M., Papa, S., Quagliariello, E., and Slater, E. C., editors: Regulation of metabolic processes in mitochondria. -Amsterdam, 1966, Elsevier Publishing Company, p. 460. Christ. E. I. V. 1.: Fatty acid synthesis in rrritochondria. Elongati& of short-chain fatty acids and formation of saturated longchain fatty acids, Biochim. et biophys. act;! 152:50, 1968.
35Y.
MO.
361.
364.
365.
366.
367.
368.
369.
,370.
371.
372.
373.
374.
375.
Lynen, I;., Henning, IT., Bublitz, A., Siirbo, B., and KrGpIin-Rueff, L.: Der Chemische Mechanismus der Acetessigssurebildung in Biochem. Ztschr. 330:269, der Leber, 1958. Baachawat, B. K., Robinson, W. G., and Coon, M. J.: The enzymatic cleavage of p-hydroxy-@methylgIutaryl coenzyme A to acetoacetate and acetyl coenzyme A, J. Biol. Chem. 216:727, 1955. Stern, J. R., Coon, M. J., and de1 Campillo, A.: Enzymes of fatty acid metabolism. III. Breakdown and synthesis of @-keto fatty acids, J. Biol. Chem. 221:1, 1956. Matsubara, H.: Studies ou myocardial protein metabolism, Jap. Circ. J. 26:27, 1962. Schreiber, S. S., Oratz, M., and Rothschild, M. A.: Protein synthesis in the overloaded mammalian heart, Am. J. Physiol. 211:31&, 1966. Scharff, R., and 1iTool, I. G.: Accumulation of amino acids in muscle of perfused rat heart. Effect of insulin, Biochem. J. 97:257, 1965. Doell, R. G., and Felts, J. M.: Metabolism of glutamic acid in the perfused rabbit heart, Am. 1. Phvsiol. 197:138. 1959. Hicks, R. hf., and Kerly, M.: Transaminase activity in the perfused rat heart, J. Physio!. 150:621, 1960. Earl, D. C. N., and Korner, A.: The isolation and properties of cardiac ribosomes and polysomes, B&hem. J. 94:721, 1965. Earl, D. C. N., and Korner, A.: Effect of rat hypophysectomy and growth hormone treatment on cardiac polysomes ribonucleic acid, Arch. Biochem. Biophys. 115:445, 1966. Rampersad, 0. R., Zak, Ii., Rabinowitz, M., 1~~001. I. G.. and DeSalle. I,.: Isolation aud characterization of ribonucleoprotein particles from heart muscle, Biochim. Biophys. Acta 108:95, 1965. Posner, B. I., and Fanburg, B. I,.: Studies on components of RNA in cardiac muscle with emphasis on the rapidly Iabelled 4 to 18 S fraction, Circulation Res. 19:805, 1967. Roodyn, 1~. B.: Factors affecting the incorporation of amino acids into protein bl isolated mitochondria, in Tager, J.-M., Pap;, S., Quagliariello, E., and Slater, E. C., editors: Regulation of metabolic processes in mitochondria, Amsterdam, 1966, Elsevier Publishing Cornpan\.. D. 383. Manchest&, K. .L., -a&l \\‘ool, 1. G.: Insulin and incorporation of amino acids into protein of muscle. 2. Accumulation and incorporation studies with the perfused rat heart, Biochem. J. 89:202, 1963. Scharff, R., and Wool, I. G.: Accumulation of amino acids in muscle of the oerfused rat heart. Effect of insulin in the ‘presence of puromycin, Biochem. J. 9i:272, 1965. Wool, I. I~., Rampersad, 0. I~., and Moyer, .%. N.: Elfect of iusuliu and diabetes on protein synthesis by ribosomes from heart muscle, Am. I. Med. 40:716. 1966. \Vagle, S. R:: The influence of growth hor-
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
1uo11c, cortisol, a11d insulill ou the incorporation of amino-acid into protein, Arch. Biothem. 102:373, 1963. Beznak, M.: The influence of anterior pituitary hormones in controlling size, work and strength of the heart, J. Physiol. 150:251, 1960. De Grandprb, 12.. and Raab, W.: Iliterrelated hormonal factors in cardiac h>,pertrophy. Experiments in nonhypertellsive hypophysectomized rats, Circulation Res. 1:345, 1953. Meerson, F. Z., Kalebina, N. S., and Malov, G. A.: Effect of actinomycin D on the development of the compensator)* h vperfunction of the ml-ocardium, kidlIe!and liver, Actn Biol. head. Sri. Hunr. I. 15:375. 1965: Gudbjarnason, S., Telerman, $I., aud Ring, R. J.: Protein metabolism in cardiac hypertrophy and failure, Am. J. Physiol. 206:39-&, 1964. Hanking, B. M., and Roberts, S.: Stimulation of protein synthesis in vitro by elevated levels of amino acids, Biochim. Biophys. iicta 104:427, 1965. Moroz, I,. I<.: Protein synthetic activities of heart microsomes and ribosomes during left ventricular hypertrophy in rabbits, Circulatiou Res. 21:4i9, 1987.. Miiller. E.. and Pearse. A. G. E.: Lornlization of monoamine oxidase in mammalian and reptilian heart, Brit. Heart J. 27:116, 1965. Carbonell, I-. Al.: Esterases of the conductive system of the heart, J. Histochetn. Cytochem. 4:87, 1956. Ringer, S.: A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart, J. Physiol. 4:29, 1883. Schildberg, F. W., and Fleckenstein, A.: Die bedeutung der extracellul~ren Calciumkonzentration fiir die Spaltung von energiereichen Phosphat in ruhenden und tgtigem Myokardgewebe, Pfliigers Arch. Physiol. 283:137,196.5. Seifen, E., Flacke, \I:., and Alper, 11. II.: Effects of calcium on isolated mammalian heart, Am. J. Physiol. 207:716, 1964. Niedergerke, Ii.: &lovements of Ca in beating ventricles of the frog heart, J. Physiol. 167:551, 1963. Hajdu, S., and Leonard, E.: Binding of cardioglobulin-C-Cad5 to cardiac muscle-and release bv cardiorlobulin A. Xm. I1. Phvsiol. , 209:1, 19&s. \l‘eber, A., and Herz, Ii.: ‘l‘he binding of calcium to actomyosin systems in relation to their biological activity, J. Biol. Chem. 238:599, 1963. Seidel, J. C., and Gergely, J.: Contraction of glycerinated muscle fibers and the role of calcium, Biochem. Biophys. Iles. Commun. 13:343, 1963. Seidel, J. C., and Gergely, J.: Studies on myofibrillar adenosine triphosphatase with calcium-free ndenosine triphosphate. 1. The
404
392.
39.4.
304.
395.
396.
397.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
( )p ie
rllc(,t of elh!,lellcdialllil1etelI-;tacct;r~c, calcilln1. tnqllcsium, and adenosine triphosphate, J. Biol. Chem. 238:3648, 1963. \\el)er, :\., Herz, It., and lieiss, I.: The regulstioJ1 of In)-ofibriilar activity by calcium, Proc. IZo!.. Sot. series B. 160:489, 1964. I.evy, H. M., a11d 1:).an, l3. RI.: Evidence that- calcium activates the contraction of actonlyosin by overcomilq substmte inhihilion, Sature 205:703, 1965. \\:it1cgrad, S., and Shanes, .4. nl.: Calcium 011s and contractility in guinea pig atria, J, Gen. I’hl-sio. 45:371, 1962. l.anger, G. A.. nl1d Brad:-, :‘i. J.: Calcium ~1~s in the m;tn1m;lliall ventricular nt\-ocardillm, J. (tell. I’hysiol. 46:703, 196.1. Bosler. E. : Alechallism of relasatiol1 of extracted 111uscle tillers, Am. J. I’hysiol. 167:276.1951. Hasselbach, \\‘.: :\?‘I’-driven active trailsport of rnlciul11 in the membranes of the sarroplasmio retirulllln, PI-oc. Roy. ser. series R. 160:501, 1964. Carstcn, M. J. : The cardiac calcium pump, Proc. Sat. .\c;rtl. Sr. 52:1456, 1964. I>eonard, I<., a11d Ilajdu, S.: Cardioglobulin. Clinical c-orrelation>. Circulation Res. 9:891, 1961. Nieu\vendijk, 1’. S.: De invloed van calcillm op de mechanische activiteit van het geisoleerde rattehart, Academic Thesis, tTrliveraity uf Amsterdam, 1966. Luttgau, l-1. C., and Niedergerke, II.: The antagonism between Cn and Na ion on the frog’\ heart, J. I’hysiol. 143:486, 19.58. Gilbert, I). I,., and Fenn, \\I. 0.: Calcium equilibrirlnt iIt muhcle, J. (Gen. Physiol. 40:39.1, 1057. X:1)-ler, \\ f i.: C;llcium exchange in cardiac muscle: ‘1 ba-;ic mechanism of drug action, AM. HEAI
411.
41 1.Z.
411 II.
412
413.
414.
415. 416. 417.
418.
419.
420.
421.
422.
423.
relaxation of c-ardi,tc mu~lr. J. RioI. CheI11. 239:2298, 1904. I~lecken~teill, :\., IXring. Il. J., ,tncl I phosphates, it1 Slmposium on the coronar!rirculation and energetic> of the rn!~ocardium, Milan, 1966, I%el/.Yew York, 1967, S. l
I
myosin from the dog, J. Biol. Chem. 239: 1447, 1964. Gerrelev, J., and Finkel, R. M.: Studies 011 car&c nl~oiibrillar adenosine triphosphatase. I. Biol. Chem. 236:1158. 1961. Kn<,“C. ?I., and Green, \V. A.: Physicorhemitxl and enzymatic studies on cardiac niyosin A, Circulation Kes. (Suppl. 1 I) 15:38, 196-l. Luchi, I<. J.: Studie5 on canine cardiac myosin .l’l‘l’ase activity, J. Clin. Invest. 44:1072, 1965 (abstr.). Szent-G\-iirg)-, .A. : Chemistr>of muscular contraction, New York, 1947, Academic I’rcis, Inc. ‘I‘ae+chler, AI., and Bins, 1~. J.: Some properties of contractile proteins a5 studied on extracted heart mu>,cle preparation, Circulation Kes. 1:129, 1953. ljavirs, R. E.: Bioenergetics of muscular ~on(r;lctitllls, i)i Chnllce, B., Estnbrook, IC. \\:., and \Villiamson, J, I<., editors: Control of energ) metabolism, New York, 1965, L4caden]ic l’resq. Inc., p. 383. I )avie-;, I<. E.: A molecular theory of mnsclc c.ontr,tc-tion: calcium-dependel~t contractions with hydrogen-bond formation plus ATPdependent extellsitrns of part of the myosina&n cross-bridges, N,tture 199:1068, 1963. Ebashi. 5.. Iwakura. II.. Kakaiima. H.. iXinkamura,’ Ii., and Ooi, Y.: New &udtural proteins from dog heart and chicken gizzard, fjiochem. Ztwhr. 345:201, 1966. 1\Itthlrad, A., and Heg,r! i, G.: ‘The role of Ca?+ in the adenosine triphosphatase activity of myotibrils, Hiochim. Riophys. 4cta 105:341, 196.5. Levy, H. IV., alld Fleischer, 31.: Studies on the superprecipitation of actomyosin suspensions as measured by the change in turbidity. I. IXects of adenosine triphosphate concentration ;illd temperature. Biochim. Biophl-s. Acta lOO:?il, 1965. K&o, Ii., and Bing, R. J.: Contractility of actomysin bands prepared from normal and failing human hearts, J. Clin. Invest. 37:465, 1958. Olson, I,. I<., Ellenbogw, E., and iyengar, Ii.: Cardiac myosin and congestive heart failure in the dog, Circulation 24:171, 1961. Davis, J. O., Trapasso, iXI., and Yankopoulos, N. A.: Studies of actomysin from cardiac muscle of dogs with experimental coneestive heart fnilllre, Circulation Res. 7:957, 1959. Conway, G. F., and Roberts, J. L.: Comparison of molecular weight of myosin from normal and failing dog hearts, .“lm. J. I’hysiol. 208:243, 1965. Sonnenblick, E. H., Spotnitz, I-1. M., and Spiro, D.: Role of the sarcomere in ventricular function and the mechanism of heart failure, Circulation lies. (Suppl. II) 15:70, 1964. Chandler, B. RI., Sonnenblick, E. I<., Spann, J, F., Jr., and Pool, P. E.: Association of depressed myofibrillar adenosine triphos-
440.
441.
phatax and reduced culttr,rc.tilit~. ilk r,sIxI-imental heart fnilrlre, Circulation Rcs. 21 :il 7, 1967. Alpert, N. I:., and Gordon, hl. S.: M\ ofibrillar adcllosine triphosphat‘w xctiiit) in congestive heart failure, .2m. J. I’hysiol. 202:940, 1962. hIommaerts, II:. 1;. I-I. AI., rlnd I,anger, G. 11.: Fundamental concepts of cardiac tiyII;~IICS and cnergetics, \rln. Rev. ~1~1. 14:261,
442.
443. 444.
1963.
Chidsev, C. .A., Kaiser, G. .I., and Brauw \vald, c.: 13iosynthesis of nurepinephrinc in iwlated canine heart, Science 139:828, 1963. \\~urtman, 1~. J.: Catecholamines, ITew England J. Med. 273:637, 69.1, and 746, 1965. Spector, S., Sjoerdsmn, rl., Zaltzrnan-Nir-rnbercr. I’., Levitt, KI., and ITdenfriend. S.: Korepinephrine synthesis from tyro~in&T in isolated perfused guine;l pig heart, Scicnw 139:1299, 1963. Kopiil, I. J., and Gordon, I<. I<.: Origill of norepinephriw it1 the heart, Nature 199: 1289. 1963. Nagatsu, ‘I‘., Levitt, M., and Udenfricnd, S.: ‘Ix-roxine h\-drosvlase: Initial ster) in norepincphrine biosynthesis, J. Isiol. Chem. 239:2910, 1964. Levitt, M., Spector, S., Sjuerdsma, A., and T:ndenfriend, S. : Elucidation of the ratelimiting step in norepinephrine biosynthesis in the perfused gui&pig hrart, .i. Charm~~col. & Esaer. ‘I‘herau. 148:l. 1965. Spector, S., -Sjoerds&, ,I., alld ITdrnfriend, S.: J3lockade of endogenous norcpinephrine synthesih by alpha-methyl tyiosine, inhibitor of tyrosine hvdroxvlase. 1. Pharmacol. &z I&per. Therap.’ 147’&, 396.5. lTdenfriend, S.: Biosynthehis and relenhe of ratecholnmincs, ill von Euler, 1.. S., Resell, S.. and Irvn;is, IJ., editors: Mechanistlls of release of biogenic nnliucs, Oxford, 1966, f’ergamoii I’ress, I IIC., I>. 103. Strombhd, 13. C. Ii.: Wfectb of iilstiliii on adrenaline atld norndrcnaline content (If home rat tishues, t’roc. Sot. Erper. Bic,l. 8i Med. 108:.M, 1961. :\xelrod, J.: Formation, metabolism, uI)take and release of noradrcnaline and adrcll,llille, i~l \‘arlc\-, II., and Gowcnlork, ~1. H., editorb: The cl/nical chemistr\ of monoanlines. :\msterdam, 190.1, Else&r I’ubli>hing Cumpn,,y, p. 5. ,-\-\nden, N. E., ~Iaynt~~o~~, T., and \T’aldeck. R. : Correlation between noradrenaline up take and ndrenergic nerve function after reserpine treatmeltt, Life Sci. 3:19, 1964. L)ellgler, IT. J., Spiegel, II. E., and ‘l‘itub, E. 0.: I’ptake of tritium-lahelled nlrrepinephrine in brain and other tissues of cat in viva, Science 133:1072, 1961. Iverseo, I,. I,.: The uptake of noradrenaline 1)~ the isolated perfused rat heart, Brit. J. I’harnracol. 2J :523, 1963. Iveraen, I,. L.: The uptake of adrenaline by the rat isolated heart, Brit. J. Pharmacol. 24:387, 1965. c..
44.5.
446.
I
447.
448.
449.
450.
451.
452.
45.1.
454.
4.55.
456. 4.57.
458.
‘459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472. 473.
l\‘olfe, D. E., aud Potter, 1.. ‘I‘.: Localizatioll of norepinephrine in the atrial myocardium, hat. Rec. 145:301, 1963. Potter, L. T., and Axelrod, J. : Subcellular localization of catecholamines ill tissues of the rat, J. Pharmncol. & Exper. Therap. 142:291, 1963. Braunwald, fi:.. Chidsey, C. A., Harrison, U. C., Gaffney, ‘1‘. E., and Kahler, R. C.: Studies on the function of the adrenergic nerve elIding in the heart, Circulation 28:958, 196.1. Kopin, I. J.: Storage and metabolism of catecholamines: role of monoamine oxidase, Pharmacol. Rev. 16:179, 1964. Bhagat, B., and Gilliam, J., Jr.: Factors influencing the depletion of cardiac norepinephrine by t)-ramine, J. Pharmarol. & Exper. Therap. 153:191, 1966. Gutmm, Y., and U’eil-Malherbe, H.: Kinetics of cntecholamine release by tyramine in rat heart, spleen, and uterus, Life Sci. 5:1293, 1966. Black, J. \V., and Stephenson, J. S.: Pharmacology of a new adrenergic beta-receptorblocking compound (Nethalide), Lanret 2:311, 1962. Dornhorst. AA. C.. and Robinson. B. F.: Clinical piarmacoiogy of a beta-adrenergic blocking agent (Nethalide), Lancet 2:314, 1962. Gillis, C. N., Schlleider, F. H., Van Ordern, IA. S., and Giarman, N. J.: Biochemical and microfluorometric studies of norepinephrine redistribution accompany+ sympathetic nerve stimulation, J. Pharmnrol. Sr Exper. Therap. 151:46, 1966. Crout, J. R., Crevelling, C. Ii., and ITdenfriend, S.: Norepinephrine metabolism in rat brain and heart, J. Phnrmacol. Fr Exper. Therap. 132:269, 1961. Chidsev. C. A.. Harrison. I). C., and Braunwald, E.: Release of norepinephrine from the heart by vasoactive amines, Pror. Sot. Exper. Biol. & Med. 109:488, 1962. Muscoll, E.: Release of caterholamines from the heart, ill von Euler, 1’. S., Resell, S., and I.ivn%, B., editors: Mechanisms of release of biogenic nmines, Oxford, 1966, Pergamon Press, Inc., p. 247. Monroe, R. G.. IA Farge, ii.. J., Hammond, Ii. I’., and RIorgan, C. L.: ,Norepinephrine release and left ventricular pressure in the isolated heart, Cirrulation Rei. 19:774, 1966. Wollenherger, A., and Shahab, L.: Anoxiainduced release of noradrenaline from the ibolated perfused heart, Nature 207:88, 196.5. Braunwnld, E., Harrison, D. C., and Chidsey, C. A. : The heart as an endocrine organ, Am. J. Med. 36:1, 1964. Levine. IZ. 4.. and Vogel. I. A.: Cardiovascular ani metibolic effects of adenosine 3’, 5’-monophosphate in vivo, Nature 207:987, 1965. Honig, C. I<.: I’erbonal communication. Honig, C. ii.: Intiuence of catecholamines
474.
4;s.
476.
477.
47X.
470.
480.
481.
.
482.
483.
484.
48.5.
486.
487.
cited their ;tnalogs “11 .\‘l‘l’-illdncwl co~ltr.~c‘tioll of cardiac myofibril~ and myosilt 13. in ‘l‘;m, Ii., Iiavaler. F-., ;md liobertb, J. editors: Factors inlluencing ml-ocardial tolltractility, Ne\v York, 1967, Academic I’rw-, Inc., p. 373. Ilonig, C. I~.: Depression of myobin If I)>caterholamine analogs: mechanism .r~ld iit viva significance, Xm. J. Ph!,si(A. 214:.?57. 1968. Klocke, F. J., Kaiser, G. A., Ross, ]., Jr.. and Braunwald, E.: Mechanism of increase of nlyocardial ox)-gen uptake produced b>. rnterholamines, .qm. J. Ph) siol. 209:Yl.i. 1965. \\.elch, G. H., Jr., Braunwald, E., Case, Ii. 13., ;Lnd Sarnoff, 5. J.: The effect of mephentermint sulphate on myocardial oxygen COIIsumption, m~~ocardial efiiciency, and peripheral va-;cular resistance. .qm. J. 1lcrl. 24:871. 19.56. Sonnenblick, I<. II., Ross, J., Jr., Covrll, J. \V., Kaiser, G. r\., and Braunwald, K.: \‘elocitJ. of contraction as n determinant of myocardial oxygen consumption, Am. J. I’hyhiol. 209:919, 1965. Jellinek, M., Kaye, M. P., Nigh, C. A., and Cooper, ‘I‘. : Alterations in chemical composition of canine heart after sympathetic deIlervation, .-2rn. J. Physiol. 206:971, 1964. (&land, 1’. B., and ltandle, P. J,: ,q rapid enzymatic asha)- for glycerol, Nature 196: 987. 1962. Rizack, 11. :\.: Activation of an epinephrine3ellsitive lipolytic activity from adipose tissrle by ndenosine 3’, S’-phosphate, J. 13iol. Chcm. 239:392, 1964. Gold, hr., Attar, H. J., Spitzer, J. J,, and Scott, J. C.: Effect of Ilorepinephrine 011 mgocardial free fatty- acid uptake and osidation, I’roc. Sot. Exper. Biol. & Med. 118: 876, 196.5. Gousios, A., Felts, J. bl., and Havel, I:. I.: Effect5 of ratecholamines, glucose, insuiill and change5 of flow on the metaboli>m of iree fatty arid% by the myocardium, %letabolism 14:826, 1965. Kegarr, ‘I‘. J., .\loschot;, C. B., Oldewurtel, H. A., \X’eisse, .1., and Asokan, 5. K.: DomiIIance of lipid metabolism in the myocardium under 1he- influence of I-norepinephrine, J. Lab. & Clin. Med. 70:221, 1967. Hnugaard, N., and Hess; RI. E.: Actions of autonomic drugs on phosphorylase activit! and functions, Pharm. Rev. 17:27, 196.5. Hess, iX1. E., and Haugaard, N.: The effect of epinephrine and &inophylline on the phosphorylase activity of perfused contracting muscle, J. Pharmacol. 8r Exper. Therap. 122:169, lR.58. Mayer, S. E., and Moran, N. C.: Relation between pharmacologic augmentation of cardiac contractile force and the activation of myocardial glycogen phosphorylase, J. Pharmacol. & Exper. Therap. 129:271, 1960. Kukovetz, \j:. K., Hess, M. F:., Shnnfeld,
488.
-LSY.
400.
491.
492.
393.
494.
495.
496.
4’);.
498. 499.
SW).
sol.
502.
J., and Haugaard, N.: ‘The action of qmpathomimetic amines on isometric contraction and phoqhorylase activity of the isolated rat heart. J. Pharmacol. & Exner. Thernp. 127:122, lcS9. Haugaard, N.: Role of the phosphorylase enzymes in cardiac contraction: a proposed theorv for the rhythmical production of energ;~ in the heart,. Nature 1$3:1072, 196.1. Belford. I.. and Feiitleih. M. C.: Phoxuhorvlase activity of heart ntuhcle under &u&s conditions affecting force of contraction, J, Pharmacol. 8r Exper. Therap. 127:257, 19.59. Hammermeiater, K. E., Yunis, X. A., and Krebs, E. G.: Studies on phosphorylase activation in the heart, J. Biol. Chem. 240: 986,1965. XIa)-er, 5. E., Cottell. hl. de I.., and Moran, &I. C.: Dissociation of the augmentation of cardiac rnntrartile force from the activation of myocardial phosphor+se by cntecholamines, J. E’harmncol. & Esper. Therap. 139:275,1963. I)r~lmmond, (;. I., \‘aladares, I<. J. E., and Duncan, L.: Effect of epinephrine on contractile tension and phosphorylase activatiou in rat and dog hearts, Proc. Sot. Esper. Biol. & &led. 117:307, 1964. \Villiamson, J. I<., ;ind Jamiehon, l).: I>i+ sociation of the inotropic from the glucogenolytic effect of epinephrine in the isolated rat heart, Xature 206:.?61, 1965. @ye, I.: The action ol adrenaline in cardiac muscle. DissociatiolI between phosphorylase ‘activation and inotropic response, Acta physiol. scandinav. 65:2.51, 1965. Chidsey, C. A., Braunwald, E:., Morrow, A. G., and Mason, D. T.: 1lvorardial norepinephrine concentration Neu in man, Enzland I. Med. 269:653. 1963. ChTdsey,“C. .A., Kaiser. 6. A., Sonnenblick, E. H., Spann, J .A.. and Braunwald, I?.: Cardiac norrpinephrine \tores: in experimental heart failure in the dog, J. Clin. Invest 43:2386, 1964. Chidsey, C. .%., Sollllcllhlick, E. H., nlorrow, A. G., and Bmunwnld, E.: Norepinephrine 3tores and contractile force of papillar) muscle from the failing human heart, Circulation 33:-L3, 1966. Miyahara, )I.: Catecholamine metabolism in heart muscle, Jap. Circ. 1. 26:1, 1962. Fischer, J. E., H&t, \\:. Dy, and Kopin, I. I.: NoreoineDhrinc metabolism in hvoertrophied raAt hearts, Nature 207:951, iG65 (kffney, 7‘. E., and Braunwald, E.: Importance of the adrcnergic nervous system in the support of circulatory function in patients with conge>tive heart failure, Am. J. 3led. 34:320, 1963. Sandier, G., and \Vilson, G. M.: The nature and prognosis of heart disease in thyrotoxico&: review of 1.50 patients treated with Iis1, Quart. J. Med. 28:347, 1959. Summers, V. K., and Surtees, S. J.: Thyro-
50.3.
501.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
toxicosis and heart diseahe, Acta med. SWIIdinav. 169:661, 1961. I.&off, Ci-. B., and Levine, S. A.: Thyrotoxicrisis as sole cause of heart failure, Am. J. .kI. SC. 206:1X, 194.3. Brewster, W. R., Jr., Isaacs, J. E’., Osgood, f’. F., and King, T. L.: The hemodynamic and metabolic interrelntionships in the activity of epinephrine, norepinephrine and the thyroid hormones, Circulation 13:1, 1956. Uargolius, H. S., and Gaffney, T. E.: The effects of injected norepinephrine and sympnthetic nerve stimulation in hJ,pothyroid and hyperthyroid dogs, J. Pharmarol. Rr I&per. Therap. 149:329, 1965. Buccino, li. r\., Spann, J. F., Jr., Pool, P. E., Sonnenblick. E. H . and Braunwald. I?.: Influence of the th>,roid state on thk intrinsic contractile properties and energy stores of the m!.ocardium, J. Clin. Invest. 46:1669,1967. Goodkind, hf. ‘f.: The ilt(luence of thyroid hormone 011 nlyocardial metabolism oi norepinephrine in the guinea pig, J. Pharmacol. & Exper. Therap. 154:531, 1966. Gaffney, T. EC., Braunwald, E., and Kahler, 12. L.: Effects of guanethidine on tri-iodothyronine-induced hyperthyroidism in man, New England J. bled. 265:16, 1961. \\;ilson, IT. I~., Theilen, E. O., and Fletcher, I;. iiT.: Pharmacod\-n;lmic effects ni betaadrenergic receptor blockade in patients with hyperthyroid&t, J. Clin. [rivest. 43:1697, 1964. Aoki, 1’. S., \+?lson, \\‘. Ii., Theilen, E. O., Lukensme),er, W. \\r., and I,eaverton, I’. E.: The effects of triidothyronine on hemodynamic responses to epinephrine and norepinephrine in man, J, Pharmacol. & Esper. Therap. 157:62, 1967. Bressler, I~., and \\‘:ittels, B.: The effect of thyroxine on lipid and carbohydrate metabolism in the heart, 1. Clin. Invest. 45:1326. 1966. Cold, M., Scott, J. C., and Spitzer, J. J.: kIyocardia1 metabolisnl of free fattv acids ill -control, hyperthyroid and hvpothvroid dogs, Am. J. Piysiol -213:239, 196?.* Ernster. I,.. Ikkos, D.. and Luft. I<.: Enz\-mic activities of human skeletal muscle mitochondria: a tool in clinical metabolic research, Nature 184:1851, 1959. E-ioch, F. I..: Thyrotoxicosis as a disease mitochondria, New England J. Med. 266:446 and 498, 1962. Koch, I;. L.: Mitochondria as a tart forge physiologic doses of thvroxine, I’roc. 5th Int. Thyroid Canf , -‘I&tract 116, 1965. ‘I’itale. T. I., Nakamura. R/I.. and Helrsted. D. MI:-OGidative phosphor)-iation, J.“Biol’. Chem. 228:573,19.57, Rachev, R. R.: Mechanism of hormonal action on oxidative phosphorylation in heart mitochondria, Fed. Proc. Translation Suppl. 25:T874,1966. iiendt, V. E., Stock, T. B., Hayden, K. O.,
oi
519.
520.
521.
522.
523. 52-l.
525.
526.
527.
528.
529.
530.
531.
532.
533.
Bruce, ‘I‘. A., (;udbjarnason, S., and Bing, J2. I.: The hemodvnamics and cardiac metabolism ill cardiomyopathies, ht. Clin. North America 46:1445, 1962. ‘rata, J. ii.: Biological action of thyroid hormones at the cellular and molecular levels, jn I.itwnck, G., and Kritchevsby, I)., editors: Actions of hormones on molecular prorcsses, New York, 1964, \I’iley & Sons, IIlC., p. 58. Kaderrbach, B.: Eriect of thyroid hormones on mrtochondrinl enzymes, in Tager, J. nl., Papa, S., Quagliariello, I~., and Slater, E. C., editors: Regulation of metabolic processes in mitochondria, Amsterdam, 1966, Elsevicr Publishing Company, p. 508. &Xliams. Ii. 1 I.. Eeana. E.. Robirrson. I’.. Asper, S. I’.. arid Dutoit, C.: Alterations in biologic oaidntiori in thyrotosicoxis. 1. Thiamirie rnetabolisnr, Arch. Int. .2Ied. 72:353, 194.i. U’ohl, M. G., I,ev>., If. .A., Szutka, .A., and Maldia, cl.: I’>.ridosine deficiency in hyperthyroidism, I’roc SW. Exper. Rio]. & hIed. 105:523, 1960. McBricu, D. J _, aud Hindle, \\-.: hIysoedema and heart failure, T.ancet 1:1066, 1963. Aber, C. I’., Noble, R. I~., ‘l‘hompson, (G. S., and Jones, I<. n-.: Serum lactic dehydrogenase i>oerrzlnlcs in “myxoedema heart disease,” Brit.Ifcart J. 28:663, 1966. Scott. 1. C.. Blorrr-das. T. :I.. and Croll. M. G. y The’ effect of experimental hype: thyroidism cm1 cororiar! blood ilo\v and hemodyuaunic factors, .\rir. J. Cnrdiol. 5:690, 1961. Den Rnkker, I’. B., Sundermeyer, J. F., il’endt, V. E., Salhane?., A’I., Gudbjnrnason, S., and Bing, R. J.: nIyocnrdial metabolism in a patient with Hashimoto’s thyroiditis and hypoth~roidisnt, .\m. J. ,\led. 32:822. 1961. Meijler, I’. I..: Corrtr-actility of isolated hearts from myxoedemntous rats, IsraeI Med. .J. 22:395, 1963. Coodkind, 112. J., Fram, I). H., and JZoberts, M.: Effect of thvroid hormone ori m\-ocardial cntecholnm~ne content of the guinea pig, AAm. J. Physiol. 201:1049, 1961. \Vurtman, R. J., Kopin, I. J., and .Axelrod, J. : ‘l‘h~roid function and cardiac disposition of catecholamirrcs, Endocrinology 73:63, 1963. Benforado, J. Al., and Wiggins, I.. I,.: Contractility, heart rate and response to norepinephrinc of isolated rat myocardium following lr3r-induced hvpothvroidism, I. Pharmacol. & &per. - ‘Iher&. 14,7:7b, 196.5. Courville, C. O., and Mason, V. IZ.: The heart in acromegaly, :1rch. Int. Med. 61 :704, 1938. Hejtmnncik. &I. I~., Bradfield, 7‘. Y., Jr., and Herrman, Cr. I~.: Acromegaly and the heart: a clinical and pathological study, Ann. Int. Med. 34:1445, 1951. Gordon, D. A.. Hill, F. M., and Ezrin, C.:
534.
535.
536.
537.
Y
5-H). 541.
542.
54.3.
.544.
545.
546.
.Acrornegaly: a review Iof 100 cases, Carratl. >I. A. J. 87:1106, 1962. Davidoff, I.. Al. : Studies in acromegal\,. III. The ananrnesis and syrnptomatology in 100 casc5, Errdocrinolog\. 10:453, 1929. Baker, I~., arid hlcCullagh, 1~. I’.: Hypertension in acromrgaly, :1m. J. AI. SC. 287: 449,1959. Hamv,i, G. J., Skillmatr, ‘1‘. C., and l‘ufts, .J. C., Jr.: i\cromegaly, Am. J. Med. 29:690, lY60. Palagi, I~., Sonnino, S., and Nontervino, C.: L’appnratu cxdrocucolatorio nell’acromegalia (studio srr 29 casi), Policlinico (Prat) 70:365, 1963. Bricaire, ll., Chiche, I’., :Icnr, J., and Balendent, I‘.: hlanifestations cardiovasculaires de l’acromegalie, l’resse. 1Ied. 70:521, 1962. Hackel, I). B., Goodale, \\‘. ‘I‘., and Kleinerman, J.: Effects of thiamin deficiency ori m!~ocardinl metabolism in infant dogs, =\\I. HIZ..!I
517
518.
549.
550.
551.
.I
5 5 .!
5 ,i .i
5.54.
555.
SSh.
557.
558.
SSY.
.Sbl).
,561.
562.
Sh.$.
564.
Sh5.
366.
567.
568.
somatic effects of ethanol and sucrose on the left ventricle, J. Clin. Invest. 43:1289, 1964 (nhstr.). Ganz, V.: The acute effect of alcohol on the circulatiorl and the oxygen metabolism of the heart, A%qh~. I~EAKT J, 66:494, 1963. Slvanepoel, A., Smythe, P. M., and Campbell, J. i\. I-1.: The heart in kwashiorkor, AM. HEAW J. 67:1, 1964. Rlansford. I~. Ii. I>.. nud Ooie. L. II.: Comparison oi metal&c ahno&dities in dinhrtes mellitlls induced by streptozotocin or by alloxan, l.ancet 1:670, 1968. Iceid, J. V. O., and Berjak, I’.: Dietary production of nlyoc~irdinl fibrosis in the rat, ,\I. HEART J. 71:7&O, 1966. hlcKinney, B., and Cranford, %I. -4.: FiIn-osis in Kuinea pig heart prodrlced h\. I&ntain diet, La~~cel 2:880, 1965. Crawford, ;21. A.: Endomyocardinl fibrosih :\lld carc1noldosl~: a common denominator, AM. HIYAI., and Mason, D. T.: Release of a kinin peptide in the cnrcinoid syndrome, Lancet 1:514, 1962. Gersmeyer, E. F., and Spitzharth, H.: iiber Kreislaufwirkungen van -synthetisrhen Bratl~~kinin beim Menschen und beim w;rchen liund, Kiin. \Vchnschr. 39:1227, 1961. Tohin, J. R., Drihcoll, J. F., Lim, hl. ‘I‘., Sutton, G. C., Szanto, 1’. B., and Gunnar, li. LI : l’rimary myoc;u-dial disease and ,llcoholism: the clinical manifestation and (‘nurse nf the disease in a selected population of patients observed for three or- more !‘enr5;, Circulation 35:754, 1967. Renchimol, A. B., and Schlesinger, I’.: Ueri-heri heart disease, :\\I. HIXKT J. 46:245, 1Y5.1. Sa\-en, J J ., Sheldon, L2‘. l;., l’eirce, (;., and I<;o, I’. T.: I’olagraphic oxygen, epicardial electrocardiogram and muscle contractions in experimental acute regional &hernia of left ventricle, Circulation Res. 6:779, 1958. Jennings, R. B., Baum, J. H., and Herdson,
569.
570.
571.
572.
573.
571.
575. 576.
577.
578.
579.
580.
581.
582.
58.5.
58-i.
I?. B.: Fine structural changes in myocardial ischemic injury, Arch. Path. 79:135, 1965. Brvant. R. E.. Thomas. W. A.. and O’Neal. R.‘M.i An ~eiectron n;icroscobic study oi myocardial &hernia in the rat, Circulation Res. 6:699, 1958. Russell, R. A., Crafoord, J., and Harris, A. S.: Changes in myocardial composition after coronary artery ligation, .\m. J. Physiol. 200:995,1961. Harris, A. S., Bisteni, A., Itussell, K. A., Brigham, J. C., and Fireston, J. I?.: Excitatory factors in ventricular tachycardia resulting from myocardial i5chemia, Science 119:200,1954. Lamprecht, \I;.: The effect of acute and chronic ischemia on myocardial contractility, in James, T. N., and Keyes, J, W., editors: The etiology of myocardiai infarction, Boston, 1963, Little, Brown & Company, p. 393. Kattenbach, J. i’., alld Jennings, I<. B.: Metabolism of ischemic cardiac muscle, Circulation Res. 8:207, 1960. Jennings, 1~. B., Sommers, H., Smyth, C;., Flack, H., alld I.inn, H.: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog, Arch. Path. 70:68, 1960. Lnncet, Editorial: Propranolol and myocardial infarction, Lancet 2:950, 1966. Gudbjarnason, S., DeSchryver, C., and Chiha. C.: I’rotein metabolism in the heart following myocardial infarction, J. I.ab. & Clin. Med. 62:880, 1963. Fetisova, T. I’., and Zabolotnyak, I. I’.: Changes in heart muscle and liver proteins in experimental myocardial infarction, Fed. l’roc. Translatioll Suppl. 24:T860, 1965. Mittra, B.: Potassium, glucose and insulin in the treatment of ml-ocardial infarction, Lancet 2:607. 1965. Mittra, B.: Potassium, glucose and insulin in treatment of heart block after m).ocardial infarction, Lancet 2:1438, 1966. Regan, T. J.. Hnrman, M. A., Lehan, I’. I I., Burke, M’. M., and Oldewurtel, H. A.: \:entricular arrthythmias and Ii+ transfer during myocxrdial &hernia and intervention with promise amide, insulin or glucose solution, J. Clin. Illvest. 46:1657, 1967. MacI,eod, D. I’., and Daniel, E. I<.: Influence of glucose on the transmembrane action potential of anoxic papillary muscle, J. Gen. I’hysiol. 48:887, 1965. Gall, A. I<., LVagner, M. C., and Gozan
58.5.
586.
587.
588.
589.
studies in myocardial infarction and cardiogenie shock, Lancet 2:825, 1964. Hall, I. H.: Effectiveness of THAM in preventing cellular damage resulting from oxygen lack, Proc. Sot. Exper. Biol. & Asled. 122:1240, 1966. Reynolds, R. C., and Haugaard, N.: The effect of variations of pH upon the activation of phosphorylase by epinephrine in perfused contracting heart, liver slices and skeletal muscle, J. Pharmacol. & Esper. Therap. 156:417, 1967. Ihw, J. C., and Berne, 12. hr.: Effect of sympathectomy on cardiac I ‘DPG-glycogen transferase activity in the cat, Am. J. Physioi. 213:1480, 1967. Yamamoto, 1sI., Masanobu, and Drunlmend, G. I. : Monoglyceride-hydrolyzing activity of rat myocardium, Am. J. Physiol. 213:1.165. 1967. Schreiber, S. S., Oratz, XI., and Rothschild, M. .A.: Effect of acute overload on protein synthesis in cardiac muscle microsomes, Am. J. Physiol. 213:1552, 1967.
590.
5’91.
$92.
.503.
594.
595.
l\iollenberger, A., and Krause, I.:-(;.: 11~~1.1 bolic control characteristics of the acu1~~1! ischemic myocardium, Ant. J, Cardiol. I I, press. Reeves, Ii. B.: Enzyme activities ~tl nl;t\ima1 rates of glycolysis in anaerobic m\, cardium, .Am. J. Physiol. 210:73, 1966. Gercken, G., and Schlette. LT.: Metnbulite status of the heart in acute insufficiencv diw to I-Auoro-2,4-dinitrobenzelle. F:sper&nr i.t 24:17, 1968. Katz, ~1. .\,‘I.: -1bsence of direct .ictiotiOI norepinephrine 011 cardiac ml-osin m1d cardiac actomyosin, :Zm. j. Physiol. 212:.?9, 1967. I,uchi. I:. J., and Kritcher, E. 11.: Drug effects on cardiac m!.osirl adenosine triphosphatasc activity, J. I’harmacol. & Expcr. ‘l‘herap. 158:540, 1967. (;udbjarnason, S., Fenton, J. C., Wolf, I’. I-., and Bing, R. J.: Stimulation of reparative processes following experimental myocardi;d infarcti[ln, Arch. IlIt. hIed. 118:33, 1966.