Chapter
3 Methods fo r Determinin g Polymer-Polyme r Miscibilit y
3.1
CRITERIA FOR ESTABLISHING MISCIBILITY
Small-angl e neutro n scatterin g n i one-componen t amorphou s polymer s has establishe d tha t th e polyme r chai n n i th e bul k stat e s i essentiall y ran domly place d [1 , 2] . Thi s conclusio n support s th e vas t bod y of othe r evidenc e for rando m statistics . An exampl e fro m thi s evidenc e s i th e hig h dependenc e of viscosit y on molecula r weigh t abov e a critica l molecula r weight , implyin g the presenc e of highl y entangle d chains . The appropriat e pictur e fo r one component , amorphou s polymer ss i tha t of A rathe r tha n Β or C n i Fig . 3.1 . Polymer s dissolve d n i solvent s usuall y ar e "expanded " by th e interactio n of th e solven t wit h th e chai n segments . Expande d mean s simpl y tha t th e averag e end-to-en d distanc e s i increase d ove r tha t of th e bulk . A polyme r dissolve d n i a polyme r solven t migh t be expande d by favorabl e interactions , in whic h cas e a structur e represente d by Fig . 3.1 C woul d result . n I th e extreme , a polymer-polyme r adduc t suc h as DNA migh t form . The situa tio n n i Fig . 3.1 Β implie s some segregatio n on a segmenta l scale , bu t a rando m dispersin g of molecula r centers. Method s wit h hig h resolution , suc h as X-ra y scattering , small-angl e neutro n scattering , nmr relaxation , an d electro n microscopy , sugges t tha t many miscibl e system s fal l betwee n A an d Β or A an d C; i.e. , th e component s ar e no t as randoml y mixe d as th e molecule s in a single-componen t system . A s pointe d ou t by Yu [3] , th e homogeneit y of th e polymer-polyme r solu tion , becaus e of it s hig h viscosity , wil l depen d a grea t dea l on th e method s of preparatio n an d th e tim e an d temperatur e (energy ) o t whic h th e mixtur e is subjected . He fel t tha t concentratio n equilibriu m migh t be approachabl e 117
118
3. Methods for Determining Polymer-Polymer Miscibility
Random segments
Random centers Fig. 3.1. system.
Interacting segments
Variations in the placement of two different polymer molecules in a miscible
onl y as an asymptote . More recen t evidenc e show s that , wit h reasonabl e care , thermodynami c equilibriu m ca n be brackete d fairl y easily . By takin g advantag e of spinoda l decomposition , a one-phas e mixtur e ca n be trans forme d int o a two-phas e mixtur e regardles s of th e diffusiona l barriers . Returnin g o t th e one-phas e regio n involve s a longe r wai t [4 ] or gentl e mixin g in th e melt . Preparatio n of mixe d polyme r system s wit h th e ai d of solvent s can lea d o t spuriou s result s [5 , 6] . Shown schematicall y n i Fig . 3. 2 s i an extrem e case , demonstrate d by Robar d et al. [6] , fo r th e syste m PS-PVMECH 3C1. Remova l of solven t durin g th e preparatio n of polyme r mixture s shoul d be accompanie d by mixing , suc h as wit h a two-rol l mill ,o t ai d n i th e equilibratio n of th e polyme r phases , or by annealin g at a suitabl e tempera tur e [4] . It must be emphasize d tha t an y experiment s on polyme r mixture s per forme d at temperature s othe r tha n th e temperatur e of equilibratio n wil l be subjec t o t unknow n effect s du e o t th e slo w proces s of reequilibratio n at th e s
s
Normal Possible Fig. 3.2. Schematic representation of ternary phase behavior of a system containing two polymers and a solvent.
3.2. Glass Transition Temperature
119
tes t temperature . For example , th e presenc e of tw o 7^' s (o r tw o phase s by microscopy ) fo r a glass y sampl e quenche d o t roo m temperatur e fro m th e melt doe s not mean tha t th e component s wer e immiscibl e n i th e melt . Of course , th e revers e situatio n s i tru e as well . 3.2 GLASS TRANSITION TEMPERATURE
Polymers , as wit h many common liquids , exhibi t certai n characteristic s simila r o t a second-orde r transition , fi indee d on e exists , upo n sufficien t supercoolin g belo w thei r crystallin e meltin g point . The temperatur e an d pressur e derivative s of th e thermodynami c quantitie s of energy ,E, enthalpy , H, entropy , S, an d volume , V, exhibi t a discontinuit y at thi s transition , wherea s E, H, S, an d V, al l first-order derivative s of th e fre e energy , ar e continuou s quantitie s throug h thi s transition . The viscou s liqui d (o r flexible, rubber y materia l n i th e cas e of hig h molecula r weigh t polymers ) s i trans forme d int o a hard , glass y materia l upo n passin g throug h thi s transition . This glas s transitio n s i characteristi c of th e polysilicate s mor e commonl y referre d o t as glasses . However , polyphosphat e glasses , organi c liquids , an d organi c polymer s als o exhibi t th e feature s of thi s glas s transition . A glas s transitio n temperatur e ha s eve n bee n assigne d o t wate r (vi a extrapolatio n techniques ) wit h a valu e of 128° K [7] . Highl y crystallin e material s (e.g. , metals ) may indee d exhibi t glas s transition s bu t th e experimenta l difficult y of supercoolin g o t a glass y stat e prio r o t crystallizatio n limit s investigatio n of th e glass y state . Crystallizabl e polymers , however , do no t achiev e tota l crystallinity , eve n f i supercoolin g o t a trul y amorphou s stat e s i no t possible . The amorphou s structur e lef t betwee n th e crystallin e region s allow s deter minatio n of th e glas s transition . The natur e of th e glass y stat e of liquid s an d polymer s ha s bee n th e subjec t of many investigation s ;thus , variou s theorie s an d interpretation s hav e bee n forwarded . Due o t th e similarit y of th e glas s transitio n o t a second-orde r thermodynami c transition , experimenta l investigation s of th e secon d deriva tive s of th e fre e energy , G, fo r polymer s hav e bee n compare d o t thos e of tru e second-orde r transitions . Rehag e an d Borchar d [8 ] hav e contraste d glas s transitio n behavio r wit h tru e second-orde r thermodynami c transition s (e.g. , rotationa l transition s as wel l as th e liqui d heliu m transitio n at 2.2°K) . For second-orde r transitions , th e secon d derivative s of G (specifi c hea t at con constan t pressure , cp; isotherma l compressibility , k; an d th e coefficien t of therma l expansion , a) hav e lowe r value s abov e th e T% tha n below . Thi s s i in contras t o t th e behavio r observe d wit h th e glas s transition . The glas s transitio n temperatur e shift s o t highe r temperature s wit h increasin g coolin g rates , als o n i genera l contras t o t tru e second-orde r transitions . Thus ,t i was
120
3 . Methods for Determining Polymer-Polymer Miscibility
conclude d tha t th e glas s transitio n canno t be considere d o t be a tru e second orde r thermodynami c transition . Semiempirica l free-volum e treatment s of viscosit y relationship s fo r liquid s and polymer s hav e bee n propose d o t accoun t fo r th e rapi d chang e n i vis cosit y wit h temperatur e [9-11] . Fro m th e sam e basi c approach , Williams , Landel , an d Ferr y [12 ] propose d a universa l relationshi p - 17.44( Γ - Γβ)/[51. 6 + ( Γ- Tg)] (3.1 ) where aT represent s th e temperatur e variatio n of th e segmenta l frictio n co efficien t fo r mechanica l relaxations . Thi s empirica l relationshi p ha s bee n applie d successfull y o t describ e th e relaxatio n or viscosit y variatio n of polymer s n i th e temperatur e rang e of Tg < Τ < (Tg + 100°C) . Elegan t theoretica l treatment s of th e glas s transitio n temperatur e hav e been propose d by Gibb s an d DiMarzi o [13 ] an d Nos e [14 ] usin g lattic e models tha t allo w vacan t sites . The basi c differenc e betwee n thes e tw o approache ss i th e assumptio n of a tru e second-orde r transitio n fo r th e Gibbs DiMarzi o treatment , unlik e tha t of Nose's . In summary , th e glas s transitio n temperatur e ha s bee n viewe d as a second orde r transition , an isoviscou s state , an isoconfigurationa l state , an d an iso-free-volum e state . For a detaile d discussio n of th e natur e of th e glass y state , th e cite d reference s [15-17 ] wil l provid e an excellen t background . The most commonl y use d metho d fo r establishin g miscibilit y n i polymer polyme r blend s or partia l phas e mixin g n i suc h blend ss i throug h determina tio n of th e glas s transitio n (o r transitions ) n i th e blen d versu s thos e of th e unblende d constituents . A miscibl e polyme r blen d wil l exhibi t a singl e glas s transitio n betwee n th e 7^' s of th e component s wit h a sharpnes s of th e transi tio n simila r o t tha t of th e components . n I case s of borderlin e miscibility , broadenin g of th e transitio n wil l occur . Wit h case s of limite d miscibility , two separat e transition s betwee n thos e of th e constituent s may result , depictin g a componen t 1-ric h phas e an d a componen t 2-ric h phase .I n case s where stron g specifi c interaction s occur , th e T% may go throug h a maximu m as a functio n of concentration . The basi c limitatio n of th e utilit y of glas s transitio n determination s n i ascertainin g polymer-polyme r miscibilit y exist s wit h blend s compose d of component s whic h hav e equa l or simila r ( < 20° C difference ) 7^'s , whereb y resolutio n by th e technique so t be discusse d of tw o 7^' ss i no t possible . In th e analysi s of polymer-polyme r miscibilit y vi a th e utilizatio n of macroscopi c technique s o t observ e th e glas s transition , certai n question s have bee n pose d fo r whic h unambiguou s answer s do not presentl y exist . The basi c questio n revolve s aroun d th e leve l of molecula r mixin g require d to yiel d singl e glas s transitio n temperature s fo r miscibl e polyme r mixtures . The leve l of molecula r mixin g o t yiel d a singl e T%n i polyme r mixture ss i no t loga T=
3.2. Glass Transition Temperature
121
clearl y define d presently , an d experimenta l investigation s recentl y reporte d and cite d n i othe r section s of thi s treatis e hav e bee n directe d towar d thi s specifi c question . The questio n rephrase d s i what siz e of a "domain " or "phase " of com positio n differen t tha n tha t of th e bul k mixtur e s i require d o t yiel d distinc t macroscopi c propert y characteristic s (i.e. , I n some blends , microscopi c evidenc e of phas e structur e ha s bee n observe d wher e single -Tg behavio r was determined . This , of course , pose d th e questio n of domai n siz e require d for uniqu e Tg behavio r of th e individua l domains . Recen t studie s of th e physica l structur e of th e amorphou s stat e may provid e a clu e o t thi s anomal y [18, 19] . Wit h amorphou s homopolymers , electro n microscop y ha s show n tha t domain s of loca l orde r may exis tn i th e amorphou s stat e [20] . Small angl e neutro n scatterin g experiment s demonstrat e tha t loca l orde r doe s no t exis tn i th e amorphou s stat e [1 , 2] ; th e polymeri c chain s ar e n i a rando m conformation . Whil e much of th e effor ts i presentl y directe d towar d resolvin g the difference s foun d by thes e tw o experimenta l technique s fo r unblende d homopolymers , th e result s wil l hav e direc t bearin g on resolvin g th e questio n of th e leve l of molecula r mixin g n i polyme r blend s a s derive d fro m macro scopi c glas s transitio n determinations . A s th e glas s transitio n valu e s i inheren t n i th e propert y characteristic s (e.g. , viscosity , crystallizatio n kinetics , thermomechanica l properties ) of a material , th e existenc e of a singl e an d sharp , singl e an d broad , shifted , or individua l transitio n fo r a blen d reveal s th e macroscopi c propert y charac teristic s of th e blend . Thus , whil e ther e may exis t debat e concernin g th e leve l of molecula r mixing , th e glas s transitio n behavio r of th e blen d wil l remai n an extremel y importan t characteristic . For th e present , thes e feature s of th e Tg behavio r wil l be assume d o t asses s qualitativel y th e leve l of misci bility . Hopefully , when th e abov e question s on th e effec t of domai n siz e an d leve l of molecula r mixin g on transitio n behavio r ar e answered , a quantitativ e assessmen t of th e leve l of miscibilit y wil l be possible . An interestin g revie w 4 h he ha of th e abov e questio n ha s bee n presente d by Kapla n [21] ,n i whic s assigne d a valu e of 15 0 Β as th e domai n siz e require d o t contai n a'universal' ' segmenta l lengt h associate d wit h th e glas s transition . Furthe r investigation s are necessar y o t determin e f i indee d thi s valu e s i "universal. " 3.2.1
Mechanical Methods
Mechanica l method s fo r determinatio n of th e transitiona l behavio r of polymer s an d polyme r blend s hav e bee n cite d mor e frequentl y tha n th e othe r technique so t be discussed . The elasti c an d viscoelasti c propertie s of polymer s derive d by subjectin g polymer s o t small-amplitud e cycli c deformatio n ca n yiel d importan t informatio n concernin g transition s occurrin g on th e molec -
122
3. Methods for Determining Polymer-Polymer Miscibility
ula r scale . Dat a obtaine d ove r a broa d temperatur e rang e ca n be use d o t ascertai n th e molecula r respons e of a polyme rn i blend s wit h othe r polymers . In a highl y phase-separate d polyme r blend , th e transitiona l behavio r of th e individua l component s wil l be unchanged . Likewise ,n i a miscibl e blend , a singl e an d uniqu e transitio n correspondin g o t th e glas s transitio n wil l appear . Dynamic mechanica l testin g ca n be accomplishe d usin g variou s experimenta l arrangements .I n thi s discussion , bot h fre e an d force d vibrationa l technique s wil l be covered . Free-vibratio n dynami c mechanica l testin g device s includ e the torsio n pendulum , freel y vibratin g reed , an d th e torsiona l brai d analyzer . Force d vibratio n technique s emplo y th e viscoelastomete r or a force d vibrat ing reed . The torsio n pendulu m consist s of an inertia l sourc e (dis k or rod ) connecte d to a polyme r specime n (e.g. , a rectangl e wit h lengt h ρ widt h > thickness ) which s i firmly fixed at th e othe r end . The inertia l sourc e s i angularl y dis place d an d released , allowin g th e specime n o t vibrat e freely . The resultan t damped sinusoida l wave s i the n determine d usin g a suitabl e recordin g devic e such as a rotar y variabl e differentia l transformer , linea r variabl e differentia l transformer , or a mirro r system . The dampe d sinusoida l wave ca n be use d o t calculat e th e shea r modulus , G\ th e los s modulus , G", an d mechanica l loss , tan (5 , define d a s GIG'. Tan δ ca n als o be calculate d mor e directl y as tan δ = n I (Α/Β)/Νπ
(3.2a )
where A an d Β ar e th e magnitude s of individua l cycle s (A > B) an dΝ s i th e number of cycle s betwee n A an d B. The shea r modulus , G' ,s i calculate d fro m 2 2 G' = An If jk (3.2b ) where k s i a geometrica l shap e facto r determine d fro m sampl e dimensions , /i s th e inertia l force , an d /si th e frequenc y of th e sinusoida l wave (cycles/sec) . Generalize d dat a (ta n δ, G', G") fo r polymer-polyme r blend s versu s tem peratur e ar e illustrate d n i Fig . 3. 3 fo r behavio r expecte d of two-phas e blends . In Fig . 3.4 , th e generalize d dat a expecte d of miscible , one-phas e blend s ar e depicted . Actua l experimenta l dat a fo r th e miscibl e polyme r blen d poly(viny l chloride)-(ethylene/ethy l acrylate/carbo n monoxide ) terpolyme r ar e illus trate d n i Fig . 3.5 , whic h clearl y show s an intermediat e glas s transitio n tem peratur e fo r th e blend . The torsiona l brai d analyze r [22] , a variatio n of th e torsio n pendulum , has th e advantag e of bein g capabl e of handlin g ver y brittl e material s a s wel l as ver y fluid materials . A fiberglass brai d or othe r suitabl e suppor t s i im pregnate d wit h th e materia l o t be tested . One en d s i firmly fixed whil e th e othe r en d s i attache d o t an inertia l system . Absolut e value s of th e shea r modulus , G' , an d th e los s modulus , G", canno t be determine d usin g thi s
123
3.2. Glass Transition Temperature
A
θ
1 log tan 6
log G
Β
Fig. 3.3. Generalized behavior of the dynamic mechanical properties of a two-phase blend. , mixture. , pure components ;
log tan h
log G
Fig. 3.4. Generalized behavior of the dynamic mechanical properties of a miscible blend. , mixture. , pure components ;
2 technique . However , th e mechanica l los s an d a relativ e modulu s (cycles/sec) can be use d o t ascertai n transition s occurrin g n i th e experimenta l specimens . The vibratin g ree d arrangemen t [23 ] ca n be use d o t measur e polyme r transition s vi a determinatio n of th e tensil e modulu s an d mechanica l los s in eithe r fre e or force d vibration . The experimenta l apparatu s fo r force d vibratio n consist s of a polyme r stri p rigidl y fixed at on e en d an d force d o t vibrat e transversel y vi a an electromagneti c vibrato r drive n by a variabl e frequenc y source . At th e resonanc e frequency , a maximu m n i th e deflectio n of th e fre e en d s i observed . The tensil e modulus i calculate d fro m [23 ] 2 2,E, s Ε=
3S.24dL*fr/D
(3.3 )
where d = density , L = lengt h of polyme r strip , D = thickness , an d fr =
124
3. Methods for Determining Polymer-Polymer Miscibility
-180
-140
-100
-60
-20
20
60
100
T(°C) Fig. 3.5. Mechanical loss and shear modulus versus temperature data for : ethylene/ethylacrylate/carbon monoxide (E/EA/CO) (71.8/10.5/17.7) terpolymer, ; 50/50 blend of terpolymer with poly(vinyl chloride), ; and p o l y v i n y l chloride), · · · · . [ F r o m L . M. Robeson and J. E. McGrath, Polym. Eng. Sci. 17, 300 (1977).]
resonanc e frequenc y (cycles/sec) . The mechanica ss i give n by 3 l los tan δ = Ε'ΙΕ' = F/A0 where
21 F =
[ — 5.478
+
2(7.502 +
6.15M )
(3.4) /
2
]/1.689M
2 (3.5)
and M s i th e rati o of amplitud e of th e fre e en d o t th e clampe d end s of th e plasti c strip .A0 = 1 . 8 7 5 . Dynamic mechanica l testin g of material s subjecte d o t a cycli c tensil e strai n (force d vibration )s i anothe r metho d commonl y employe d o t measur e polymeri c transitions . The instrument , commonl y referre d o t as a viscoelasto meter [ 2 4 , 2 5 ] , operate s on th e principl e tha t an applie d sinusoida l tensil e
125
3.2. Glass Transition Temperature
strai n applie d o t th e specime n generate s a sinusoida l stres s wit h a phas e angl e <5 . The horizonta l specime n s i attache d at on e en d o t a drive r uni t pro vidin g oscillator y motio n whil e th e othe r en d s i connecte d o t a loa d trans ducer . Output s of th e stres s an d strai n transducer s ar e converte d o t provid e direc t ta n 5 < readings . The absolut e valu e of th e comple x tensil e modulu s E* (Ε* = E' + iE") s i give n by \E*\=FI/AIA
(3.6 )
where F = tensil e force , A = cross-sectiona l area , /= lengt h of specimen , and Δ/ = amplitud e of elongation . The n Ε an d E" ca n be calculate d wit h the followin g relationships . Ε = Ε* co sδ
(3.7 )
Ε" = E ta nδ
(3.8 )
A n exampl e of th e us e of viscoelastomete r dat a o t determin e polymer polyme r miscibilit y s i give n n i Fig . 3. 6 fo r th e blen d of poly(vinyliden e fluoride) an d poly(methy l methacrylate ) [26] . 40% PVF 2 60% PMMA E*
T(°C) Fig. 3.6. Dynamic mechanical properties at 110 Hz for an annealed poly(vinylidene fluoride)-poly(methyl methacrylate) (40/60) blend using a Rheovibron Viscoelastometer. [Reprinted with permission from D . R. Paul and J. O. Altamirano, Adv. Chem. Ser. 142, 371 (1975). Copyright by the American Chemical Society.]
126
3 . Methods for Determining Polymer-Polymer Miscibility
Anothe r metho d of mechanicall y determinin g th e glas s transitio n of poly mers s i by simultaneousl y measurin g th e modulu s an d resilience . Thi s metho d involve s th e measuremen t of th e stress-strai n curv e whil e elongatin g th e specime n o t 1 % (o r lower ) strai n an d the n reversin g th e directio n of strai n back o t 0% strai n at th e sam e testin g rat e (e.g. , 0. 1 in./mi n pe r inc h of tes t specime n length) . The strai n require d o t reac h zer o stres s on th e retur n curv e is the n divide d by th e strai n reache d befor e reversa l (i.e. , 1%) o t yiel d a valu e time s 10 0 terme d percen t resilience . Generalize d dat a illustrate d n i Fig . 3. 7 provid e th e basi s fo r definin g percen t resilienc e: 2 percen t resilienc e = (AB/OA) χ 10 (3.9 ) The modulu s ca n be determine d fro m th e slop e of th e stress-strai n curve . The modulu s an d percen t resilienc e dat a plotte d agains t temperatur e ca n be use d o t determin e one-phas e versu s two-phas e behavior , as illustrate d by th e generalize d curve s depicte d n i Figs . 3. 8 an d 3.9 . The modulus-temperatur e dat a obtaine d vi a thi s techniqu e ar e as accurat e , as thos e obtaine d by th e previousl y describe d mechanica l method s ;however
Stress
A Β Strain Fig. 3.7.
Generalized stress-strain data utilized for resilience determination.
\ \
log Ε
50/50 A/B
ο c •J "t o rr
T '9A
gB
•gA
•QB
Fig. 3.8. Generalized modulus and resilience versus temperature data for a two-phase polymer blend.
127
3.2. Glass Transition Temperature
resilienc es i no ta s sensitiv e a s mechanica l loss . Nevertheless , thi s typ e of dat a has bee n use d by severa l investigator s o t characteriz e polyme r blend s [27 , 28], as illustrate d n i Fig . 3.1 0 fo r blend s of tetramethy l bispheno l A poly carbonat e an d polystyrene , whic h wer e foun d o t exhibi t a hig h leve l of miscibilit y [28] . 50/50 A/B
log Ε
te
Τ 9(Α Β)
+
\
9(Α+Β) SB
Fig. 3.9. Generalized modulus and resilience versus temperature data for a single-phase polymer blend.
10 T E T R A M E T H Y L B I S P H E N OL A P O L Y C A R B O N A T E
Ε (psi)
ιο- μ
10
100
150
300
T(°C) Fig. 3.10. Modulus-temperature data for a 50/50 blend of polystyrene with tetramethyl bisphenol A polycarbonate (mixtures prepared at temperatures indicated). [From M. T. Shaw, J. Appl. Polym. Sci. 18, 449 (1974).]
128 3.2.2
3. Methods for Determining Polymer-Polymer Miscibility
Dielectric Methods
The electrica l propertie s of polymer s ar e analogou s o t mechanica l proper tie sn i tha t th e dielectri c constant , ε' ,s i simila r o t compliance , th e dielectri c los s factor , ε" ,s i simila r o t mechanica l loss , an d th e dielectri c strengt h s i analogou s o t tensil e strength . The dielectri c los s facto r an d th e dissipatio n factor , ta n δ (ε"/ε'), ar e of primar y interes t n i thi s discussio n as the y ar e commonly use d o t ascertai n polymeri c transition s suc h as th e glas s transition . The experimenta l advantag e of obtainin g transitio n dat a fro m electrica l measurement s ove r dynami c mechanica l testin g s in i th e eas e of changin g frequency . The majo r disadvantag e s i th e difficult y n i determinin g th e transi tion s of nonpola r polymers . Generall y nonpola r polymer s wil l requir e sligh t modification , suc h as oxidation , o t provid e sufficien t polarit y o t resolv e adequatel y secondar y los s transition s as wel l a s glas s transition s n i blends . For pola r polymers , fi on e represent s th e dipol e by a singl e relaxatio n time , τ , the n th e constituent s of th e comple x dielectri c constant , ε* , ar e define d as (3.10 ) 22 ε' = ε ^ + (ε (3.11 ) 0 - e J 0/ +2 ω 2τ ) (3.12 ) ε" = (ε 0 - ε0)ωτ/( 0 1 + ωτ ) where ε0 an d ε ^ ar e th e limit s of ε ' at zer o frequenc y an d infinit e frequency , respectively . The los s facto r goe s throug h a maximu m when ωτ = 1. The dielectri c constan t increase s a s molecula r motio n n i a polyme r in creases ; thus , larg e secondar y relaxation s an d th e glas s transitio n wil l yiel d increasin g values . The generalize d behavio r fo r th e dielectri c constan t an d the dielectri c los s facto r yield s th e schematic s fo r miscibl e or phase-separate d polyme r blend s illustrate d n i Fig . 3.11 . An experimenta l exampl e of th e dielectri c metho d fo r establishin g th e miscibilit y of polyme r blend s s i illustrate d n i Fig . 3.1 2 fo r poly(2,6-dimethyl-l,4-phenylen e oxide)-poly styren e blend s [29] . A techniqu e n i whic h th e chang e of dielectri c los s s i measure d unde r a definit e temperatur e progra m s i terme d th e thermodielectri c los s measure ment. Thi s recen t techniqu e ha s bee n use d fo r estimatin g th e leve l of poly mer-polyme r miscibilit y [30] . As th e dielectri c los s of a sampl e s i dissipate d in th e for m of heat , a differentia l therma l analyze r ha s bee n utilize d o t measur e ε " n i thi s approach . Thi s ne w techniqu e s i claime d o t be mor e sensitiv e fo r measurin g th e degre e of miscibilit y tha n othe r methods . A brie f outlin e of th e theor y an d dat a analysi s wil l be presented . ιε
129
3.2. Glass Transition Temperature 50/50
T(or frequency) Fig. 3.11. Generalized dielectric loss factor, ε", and dielectric constant, ε', versus tempera ture (or frequency) data for single-phase and two-phase polymer blends.
-180
-100
-20
60
220
300
TTC) Fig. 3.12. Dielectric loss of a 50/50 blend of polystyrene and poly(2,6-dimethyl-l,4-phenylene oxide) as functions of temperature and frequency. [Reprinted with permission from W. J. MacKnight, J. Stoelting, and F. E. Karasz, Adv. Chem. Ser. 99, 26 (1971). Copyright by the American Chemical Society.]
130
3. Methods for Determining Polymer-Polymer Miscibility
The apparatu s consist s of an arrangemen t o t measur e th e dielectri c los s of a sampl e n i on e chambe r of a differentia l therma l analyzer . A referenc e sampl es i use d suc h tha t th e dielectri c los ss i determine d fro m th e temperatur e differenc e betwee n th e referenc e an d th e sampl e n i th e electri c field. The di electri c los ss i determine d fro m 2 s" = 4Q/E0f (3.13 ) where Q s i th e hea t generate d pe r uni t volum e pe r second ,fis th e cycli c fre quency , an d E0 s i th e electri c field intensity . The temperatur e difference , AT, betwee n th e sampl e n i th e electri c field an d th e referenc e positio n s i assume d proportiona l o t Q. Therefore , 2 e" = AAT/fV0 (3.14 ) where A s i a constan t dependen t on densit y an d th e specifi c hea t of th e sampl e and V0 s i th e applie d voltage . To simplify , a quantit y ε" * s i define d o t relat e Δ Γo t Ah (heigh t fro m baselin e n i th e DTA data) , yieldin g 2 ε"* = BAh/fV0 (3.15 ) In Fig . 3.13 , ε" * versu s temperatur e s i show n fo r th e miscibl e blen d of poly(viny l nitrate ) an d an ethylene/viny l acetat e copolyme r [30] . Fro m th e same data , contou r surface s of th e dielectri c los s ca n be obtained . I n th e contou r surfaces , th e dielectri c loss , ε"* ,s i take n perpendicula ro t th e surfac e and l o g s / iplotte d agains t l/T. For miscibl e mixtures , a serie s of peak s occur s throug h whic h a singl e lin e ca n be constructed . For immiscibl e blend s for whic h th e constituent s hav e differen t 7g's , tw o serie s of peak s ar e ob -
Fig. 3.13. Temperature dispersion of ε"* at various frequencies for a miscible mixture of p o l y v i n y l nitrate with ethylene/vinyl acetate copolymer (86 wt% vinyl acetate) (30/70 wt ratio). [From S. Akiyama, Y. Komatsu, and R. Kaneko, Polym. J. 7, 172 (1975).]
131
3.2. Glass Transition Temperature
served . Thi s s i illustrate d n i Figs . 3.1 4 an d 3.15 , respectivel y showin g th e miscibl e blen d of polyviny l nitrate)-poly(viny l acetate ) an d th e immiscibl e blen d of polyviny l acetate)-(ethylene/viny l acetate ) copolymer . Thi s graphica l techniqu e yield s a ne w metho d fo r determinatio n of polyme r miscibilit y by evaluatio n of th e characteristi c appearanc e of th e contou r surfaces .
2.5
2.7
2.9
3.1
I000/T(°K"') Fig. 3.14. Contour map of ε"* for the miscible mixture of poly(vinyl nitrate) with poly(vinyl acetate) (30/70). The dashed lines represent crests corresponding to phase transitions. [From S. Akiyama, Y. Komatsu, and R. Kaneko, Polym. J. 7, 172 (1975).]
1000/T(°K) Fig. 3.15. Contour map of ε"* for the immiscible mixture p o l y v i n y l acetate) and ethylene/ vinyl acetate copolymer (86 wt% vinyl acetate) (40/60). [From S. Akiyama, Y. Komatsu, and R. Kaneko, Polym. J. 7, 172 (1975).]
132
3 . Methods for Determining Polymer-Polymer Miscibility
Review s of dielectri c characterizatio n of polymer s ca n be foun d n i th e cite d reference s [31 , 32] . 3.2.3
Dilatometric Methods
Polyme r glas s transition s hav e many characteristic s simila r o t a second orde r thermodynami c transition . Wit h respec t o t volum e change , a discon tinuit y s i observe d n i th e rat e of volum e chang e wit h temperatur e n i th e regio n of th e glas s transition . Dilatometri c method s o t determin e polymeri c glas s transition s wer e on e of th e most common technique s befor e mechanica l method s becam e popular . Dilatometri c technique s an d experimenta l apparatu s hav e bee n adequatel y discusse d elsewher e [33 , 34 ] an d wil l no t be reproduce d here . In a blen d of tw o distinctl y differen t polymers , two-phas e behavio r ca n be determine d by tw o discontinuitie s n i th e derivativ e curv e dV/dT corre spondin g o t th e 7^' s of th e respectiv e phases . Experimenta l dat a exhibitin g one-phas e behavio r fo r a polyme r blen d ar e show n n i Fig . 3.16 , illustratin g the blen d of syndiotacti c poly(methy l methacrylate ) (Tg = 120°C ) an d iso tacti c poly(methy l methacryate ) (Tg = 45°C ) [35] . Not e tha t th e majo r chang e in slop e fo r th e volume-temperatur e dat a occur s at th e Tg (94°C ) of th e blend , wel l betwee n th e componen t 7^s . Dilatometri c technique s ar e les s sensitiv e tha n th e dynami c mechanica l method s previousl y discussed , an d the presenc e of crystallinit y hinder s resolution .
T(°C) Fig. 3.16. Volume-temperature plot of a mixture of 79.4% (by wt) syndiotactic poly(methyl methacrylate with 20.6% (by wt) isotactic poly(methyl methacrylate). [From S. Krause and N. Roman, / . Polym. Sci., Part A 3, 1631 (1965).]
133
3.2. Glass Transition Temperature
3.2.4
Calorimetric Methods
The utilizatio n of calorimetri c method s o t determin e th e glas s transitio n of polymer s an d thei r respectiv e blend s parallel s tha t of dilatometri c method s discusse d n i th e previou s section . The specifi c hea t of polymer s exhibit s a chang e when passin g throug h th e glas s transition , generatin g a maximu m in th e valu e of dCp/dTas generalize d n i Fig . 3.17 . With th e introductio n of sensitiv e calorimeter s withi n th e las t decade , th e calorimetri c techniqu e ha s rapidl y gaine d prominence . The most common instrumen ts i th e differentia l scannin g calorimete r (DSC) . The DSC measure s the amoun t of hea t require d o t increas e th e sampl e temperatur e by a valu e AT ove r tha t require d o t hea t a referenc e materia l by th e sam e AT Throug h sophisticate d instrumentation , controlle d rate s of heatin g or coolin g ar e possibl e wit h hig h accurac y of hea t inpu t (o r output ) o t smal l specimen s (5-5 0 mg) . More detaile d descriptio n of th e utilit y an d desig n parameter s of differentia l scannin g calorimeter s ca n be foun d elsewher e [36 , 37] . This techniqu e ha s successfull y demonstrate d polymer-polyme r miscibil , nitril e rubber-PV C [39] , poly(viny l it y fo r th e system s PPO-polystyren e [38] methyl ether)-polystyren e [40] , poly(vinyliden e fluoride)-poly(methyl meth acrylate ) [41] , an d PVC-(ethylene/viny l acetate/sulfu r dioxide ) terpolyme r [42] . Differentia l scannin g calorimetr y ha s bee n particularl y usefu ln i study ing th e miscibilit y of th e classi c system : nitril e rubber-PVC . Usin g DSC, Zabrzewsk i [39 ] observe d miscibilit y wit h PVC n i al l composition s at level s of 23 o t 45 % acrylonitril e n i th e nitril e rubber ,n i excellen t agreemen t wit h dynami c mechanica l data . Land i [43 ] investigate d simila r blend s an d ob serve d single-phas e behavio r wit h a 34 % acrylonitrile-conten t nitril e rubbe r blende d wit h PVC. He note d tha t th e DSC result s coul d be more clearl y illustrate d by plottin g th e secan t slop e of th e specifi c hea t versu s temperature ,
Τ Fig. 3.17. Generalized behavior of specific heat versus temperature of polymers in the range of the glass transition temperature. Solid line = quenched; dashed line = annealed.
134
3. Methods for Determining Polymer-Polymer Miscibility
-A
0%
PVC
11%
PVC
3 00
LU >
4 6 % PVC
-80
-60
-40 -20
0
20
40
60
80
T(°C) Fig. 3.18. Effect of poly(vinyl chloride) on the single glass transition of nitrile rubber (34% acrylonitrile). Data obtained on a differential scanning calorimeter (DSC). [From V. R. Landi, Appl. Polym. Symp. 25, 223 (1974).]
as show n n i Fig . 3.18 . By usin g thi s dat a reductio n technique , he clearl y demonstrate d tha t variation s n i acrylonitril e conten t as wel la s mixin g tech nique s coul d be mor e clearl y define d tha n by direc t observatio n of th e basi c DS C thermogram . 3.2.5
Thermo-Optical Analysis
A techniqu e terme d thermo-optica l analysi s (TOA) ha s bee n employe d by Shult z et al. [44-47 ] o t investigat e th e miscibilit y of polyme r blends . Thi s techniqu e involve s scribin g scratche s ont o a polyme r or blen d surfac e wit h a stee l stylus . A polarizin g microscop e equippe d wit h a ho t stag e capabl e of temperatur e programmin g s i employed . Ligh t transmitte d throug h th e film place d betwee n crosse d polarize r an d analyze rs i converte d int o voltag e an d plotte d agains t temperature . The scratche d surfac e s i birιfringen t an d thu s ligh t s i onl y transmitte d throug h th e scratches . As th e polyme r (o r con stituent s of th e blend ) pas s throug h th e glas s transitio n temperature , th e orientatio n produce d by scratchin g th e filmdisappear s an d th e reductio n n i birefringenc e lead s o t a decreas e n i transmitte d light . Result s fo r a miscibl e blen d (styrene-/?-chlorostyrene ) copolymer-poly (2,6-dimethyl-l,4-phenylen e oxide ) show n n i Fig . 3.1 9 ar e compare d wit h
135
3.2. Glass Transition Temperature
T(°C) Fig. 3.19. Thermo-optical analysis curves for blends of poly(2,6-dimethyl-l,4-phenylene xoide) (PPO) and styrene-p-chlorostyrene copolymer (0.453 mole fraction styrene). Numbers on the plot represent the weight fraction of PPO in each blend. [Reprinted with permission from A. R. Shultz and Β. M. Brach, Macromolecules 7, 902 (1974). Copyright by the American Chemical Society.]
an immiscibl e blen d of poly (/7-chlorostyrene)-poly(2,6-dimethyl-l,4-phe ene oxide ) show n n i Fig . 3.20 . Singl e transitio n temperature s monotonicall y increasin g wit h th e conten t of th e highe r Tg componen t ar e characteristi c of the miscibl e blen d (Fig . 3.19) , wherea s tw o transition s correspondin g o t th e blen d constituent s ar e observe d fo r th e immiscibl e blen d (Fig . 3.20) . The conclusion s [46 ] reache d usin g thermo-optica l analysi s o t characteriz e mis cibilit y n i polyme r blend s wer e n i excellen t agreemen t wit h mor e common technique s (e.g. , dynami c mechanica l an d calorimetry) . 3.2.6
Radioluminescence Spectroscopy
A uniqu e metho d o t measur e th e glas s transitio n of polyme r blends , terme d radioluminescenc e spectroscopy , ha s bee n successfull y utilize d by Zlatkevic h
136
3. Methods for Determining Polymer-Polymer Miscibility
T(°C) Fig. 3.20. Thermo-optical analysis curves for blends of poly(2,6-dimethyl-l,4-phenylene oxide) (PPO) and poly(/?-chlorostyrene). Numbers on the plot represent the weight fraction of PPO in each blend. [Reprinted with permission from A. R. Shultz and Β. M. Beach, Macro molecules 7, 902 (1974). Copyright by the American Chemical Society.]
and Nikolski i [48 ] an d Bτhm et al. [49] . Irradiatio n (electro n or y ray ) of th e polyme r or blen d n i th e glass y stat e result s n i trappe d secondar y electron s which ar e rapidl y released , yieldin g luminescence , onc e th e sampl e tem peratur e reache s th e glas s transition . Maximu m luminescenc e s i observe d at a temperatur e quit e clos e o t Tg value s reporte d by more common tech niques . For two-phas e blends , tw o distinc t peak s ca n be observe d n i lumin escenc e versu s temperature , correspondin g o t th e respectiv e 7^'s . Resolutio n of th e T% of a mino r phas e (a s lo w a s severa l volume s percent )s i quit e good , thus providin g equa l or superio r sensitivit y o t mechanica l or calorimetri c methods . For a descriptio n of specifi c experimenta l procedure s an d equip ment design , se e Zlatkevic h an d Nikolski i [48 ] an d Bτhm [50] .
3.3
MICROSCOPY
Direc t visua l confirmatio n of th e presenc e of tw o phase s ha s bee n use d more ofte n tha n an y othe r metho d a s a preliminar y indicatio n of th e degre e
3.3. Microscopy
137
of miscibilit y n i a polymer-polyme r system . Many hav e turne d o t microscop y to ai d n i determinin g no t onl y th e presenc e bu t th e connectivitie s of th e phases . Electro n microscopy , wit h 50Β resolution , ha s show n tha t heter ogeneitie s exis t eve n n i miscibl e polyme r systems . Suc h s i th e natur e of solu tion s of 50Β molecules . 3.3.1
Visible, Including Phase Contrast
Both transmitted-ligh t an d phase-contras t microscop y requir e a s a mini mu m a differenc e n i refractiv e inde x betwee n th e phase s fo r contrast . Trans missio n contras ts i bes t obtaine d wit h difference s n i opacit y or color ; how ever , wit h phase-contras t optic s goo d contras ts i obtaine d wit h transparen t material s an d s i therefor e th e preferre d metho d fo r polymer-polyme r sys tems. Stainin g s i anothe r metho d of enhancin g contras t an d a limite d stainin g technolog y ha s bee n develope d fo r polymer s ;however ,t i pale sn i compariso n wit h tha t known o t biologists . Typica l phase-contras t technique s ar e summarize d n i th e paper s of Mars h et ai [51] , Inou e et al [52] , Vasil e an d Schneide r [53] , an d Walter s an d Keyt e [54] . Generally , film s of 5 μΐ η or les s ar e microtome d or cas t fo r observations . Enhancemen t of contras tn i mixture s of crystallin e polymer s ca n be obtaine d by us e of polarize d ligh t [55] . Osmiu m tetroxid e staining , wel l known n i electro n microscopy , ha s als o bee n use d o t enhanc e contras t fo r optica l work [52] . Stain s fo r variou s polymer s ar e liste d by Braue r an d Newman [56, 57] . A sampl e of th e effect s possibl e wit h stain ss i give n n i Tabl e 3.1 . Optica l microscop y on two-phas e mixture s ha s reveale d many type s of structures , includin g interpenetratin g phases . The fineness of th e phase s has bee n relate d o t mixin g intensit y an d viscosit y ratio , bu t no t ofte n [58 ] to degre e of solubility . The us e of scatterin g (dark-field ) optic s fo r th e deductio n of tw o phase s is no t common n i polymer-polyme r studie s eve n thoug h hig h intensit y ligh t at righ t angle s o t th e optica l axi s (ultramicroscopy ) ca n revea l th e presenc e of scatterin g bodie s fa r smalle r tha n th e resolvin g powe r of th e microscope . Miyat a an d Hat a [59 ] hav e describe d th e us e of th e ultramicro scop e on th e syste m poly(methy l methacrylate)-poly(viny l acetate) . 3.3.2
Electron Microscope
Transmissio n electro n microscop y (TEM) ha s bee n widel y use d n i polymer-polyme r studies . The necessar y ste p of microtomin g ca n be facili tate d by cryogeni c or chemica l methods . Electro n opacit y difference s ar e ofte n achieve d by selectiv e chemica l reactio n [58 , 60 ] or by annealin g n i th e electro n bea m [58 , 61] . Treatmen t of solubl e polyme r system s wit h an y
138
3. Method s fo r Determinin g Polymer-Polyme r Miscibilit y TABLE 3. 1 Colors Obtaine d wit h th e Smit h Stain , a Mixtur e o f Methylen e Blu e an d Suda n II I Dyes, Applie d t o Variou s Polymers " Material Colors of Hydrophilic
Color Materials Bright blu e
Cellophane Cotton Paper fibers
Blue Very ligh t t o ver y dee p blu e depending o n typ e o f fibe r and degre e o f hydratio n Blue-green wit h lighte r blu e ski n
Rayon (viscose ) Colors of Hydrophobic Acrylate polymer s Butadiene/acrylonitrile copolymer s Butadiene/styrene copolymer s Ethyl cellulos e Natural rubber , unfille d Natural rubber , wit h hydrophili c filler Polyamide resin s Polyethylene Polyisobutylène (Vistanex ) Vinyl chlorid e polymer s Vinyl pyridin e copolymer s (Gentac )
Materials Orange Orange t o brownis h re d Orange t o brownis h re d Dull re d orang e Orange-yellow Greenish yello w Orange-yellow Pale yello w Pale pin k Pale pin k Orange
Colors of Mixed Hydrophilic-Hydrophobic Cellulose acetat e Cellulose nitrate , unplasticize d Cellulose nitrate , plasticize d A n y hydrophobi c polyme r wit h hydrophilic group s i n th e structur e or wit h hydrophili c additive s
Materials
Green Colorless t o ligh t gree n Colorless t o oliv e gree n Greenish orang e
Materials Unaffected by Either
Dye
Dacron Mylar Nylon
a
Fro m S . B . Newman , in "Analytica l Chemistr y o f Polymers " (Ο. M. Kline, ' éd.), Part III, p. 261, Wiley (Interscience), N e w York, 1962.
chemica l agen t shoul d be regarde d wit h cautio n as t i may caus e phas e separa tion . Heatin g or coolin g ca n hav e simila r effects . The productio n of artifact s durin g microtoming , staining , replication , an d exposur e o t th e bea m ar e well known bu t continu e o t caus e difficulties . Severa l polymer-polyme r system s of reporte d miscibilit y hav e bee n show n
3.3. Microscopy
139
to contai n domain s by usin g th e electro n microscope . Smit h an d Andrie s [58] foun d tha t th e syste m SBR-P B was immiscibl e eve n wit h as littl e as 3% styren e n i th e SBR, bu t tha t th e phas e siz e progressivel y decrease d wit h styren e content . Thi s s in i conflic t wit h th e result s of Mars h et al. [51] , who foun d no evidenc e fo r multipl e phase s n i SBR-P B or n i SBR-(ethylene butadiene ) copolymer . Matsu o et al. [60 ] foun d some (40 0 Β) heterogeneit y in th e syste m PVC-NBR containin g 40 % acrylonitrile , althoug h onl y on e glas s transitio n was observed .
Fig. 3.21. Transmission electron micrograph showing contrast between P M M A (light) and S A N (dark) phases developed during exposure to the electron beam [Reproduced with permission from L. P. McMaster, Adv. Chem. Ser. 142, 43 (1975). Copyright by the American Chemical Society.]
140
3. Methods for Determining Polymer-Polymer Miscibility
McMaster [61 ] foun d tha t TEM was usefu l fo r followin g th e phas e de compositio n of th e miscibl e syste m PMMA-SAN . The geometr y of th e phase s correlate d wel l wit h th e expecte d occurrenc e of spinoda l decomposi tio n nea r th e critica l composition . Excellen t contras t was achieve d by pro longe d exposur e of th e sample s o t th e electro n beam , as ca n be see n n i Fig . 3.21 . Thi s techniqu e ha s bee n studie d n i mor e detai l by Thomas an d Talmo n [62] , who hav e attribute d th e contras t developmen t o t differentia l thinning . The techniqu e of scannin g electro n microscop y (SEM) ha s foun d a nich e in phas e studie s [54] . Contras t depend s n i thi s techniqu e on difference s n i surfac e topograph y or textur e an d thi s ca n be emphasize d by breakin g th e specime n n i it s glass y state . Ifvitrificatio n require s cooling , ther e s i agai n the dange r of phas e changes . Differentia l swellin g [63 ] involve s a simila r hazard .
3.4 SCATTERING METHODS
3.4.1
Cloud-Point Method
By definition , a stabl e homogeneou s mixtur e s i transparent , wherea s an unstabl e nonhomogeneou s mixtur e s i turbi d unles s th e component s of th e mixtur e hav e identica l refractiv e indexe s [64] . Give n a stabl e homogeneou s mixture , th e transitio n fro m th e transparen to t th e turbi d stat e ca n be brough t about by variation s of temperature , pressure , or compositio n of th e mixture . The clou d poin t correspond s o t thi s transitio n point—th e poin t of incipien t phas e separation . I ts i no t necessaril y an equilibriu m event , bu t th e fac t tha t the opalescenc e almos t alway s disappear s on reversa l of th e temperature pressure-compositio n variatio n strongl y indicate s tha t th e drivin g force s ar e thermodynami c n i origin . For polyme r mixtures , th e cloud-poin t curve s ar e usuall y measure d usin g a thi n filmmade fro m a thoroughl y mixe d blend . The film s i observe d throug h a microscop e illuminato r fo r low-angl e bac k or forwar d scatterin g relativ e to th e inciden t light . The specime n s i the n heate d at a ver y lo w rat e suc h tha t the temperatur e increase s at an infinitesimall y slo w rate . The first fain t cloudines s appears , denotin g th e clou d point , an d th e temperatur e s i re corded . A fe w degree s abov e thi s clou d point , th e cycl e s i reversed ; th e sampl e s i graduall y cooled . The temperatur e at whic h th e faintes t opales cenc e jus t disappear s s i als o recorded . Thi s s i repeate d fo r a serie s of com position s an d a temperature-compositio n plo t s i generated . The resul t s i calle d th e cloud-poin t curv e (CPC) . Generally , th e CPCs foun d on heatin g and on coolin g th e sampl e do not agree . The reason s fo r thi s ar e many; the y ste m mostl y fro m kineti c factor s plu s th e fac t tha t a phas e transitio n poin t
141
3.4. Scatterin g Method s
can be observe d onl y afte r bi g enoug h cluster s hav e forme d o t creat e suffi cien t refractiv e inde x difference s fo r scatterin g an observabl e quantit y of light . Thi s shortcomin g n i th e CPC measuremen ts i ofte n correcte d by pre sentin g an averag e of th e tw o CPCs. A numbe r of investigator s [65-67 ] hav e made CPC measurement s fo r severa l binar y high-polyme r mixtures .I n eac h case , th e CPCs ar e measure d above th e system' s glas s transitio n or meltin g point . System s studie d includ e polystyrene-poly(viny l methy l ether ) [65] ; poly(e-caprolactone)-poly(sty rene-co-acrylonitrile ) [66] ; polycarbonate-poly(e-caprolactone ) [67] ; an d mixture s [67 ] of poly(vinyliden e fluoride) wit h poly(methy l methacrylate) , poly(ethy l methacrylate) , poly(methy l acrylate) , an d poly(ethy l acrylate) . All of thes e system s exhibi t th e lowe r critica l solutio n temperatur e (lest ) behavior . Other CPC measurement s [68-72 ] on oligomeri c an d shor t chai n lengt h system s hav e exhibite d uppe r critica l solutio n temperatur e (ucst ) behavio r
Polyisobutene
•Weight fractio n PS T [Polystyrène
0.2 0. 4 0. 6 0. 8 Fig. 3.22 . Cloud-poin t curve s fo r polyisobutene-polystyren e mixture s o f variou s molecula r weights. [Fro m R . Koningsvel d an d L . A . Kleintjens , J. Polym. Sci., Polym. Symp. 6 1 , 22 1 (1977).]
142
3 . Methods for Determining Polymer-Polymer Miscibility
and the y hav e reveale d unusua l asymmetr y an d bimodalit y of th e phas e diagram . The asymmetr y s i foun d n i th e experimenta l CPCs of Allen , Gee , and Nicholso n [68 ] fo r lo w molecula r weigh t mixture s of polyisobutylen e and poly(dimethy l siloxane) . Thi s asymmetr y manifest s itsel f a s a shif t of the maximu m poin t fro m lo w concentration s of th e hig h molecula r weigh t componen t (wit h silicone ) o t hig h concentration s of tha t component . The bimodalit y ha s bee n demonstrate d fo r a lo w molecula r weigh t mixtur e of polystyren e wit h polyisopren e or polyisobuten e [72] . Thi s behavio r ha s als o been observe d by Power s [70 ] fo r a lo w molecula r weigh t a-methylstyrene viny l toluen e copolyme r mixe d wit h a lo w molecula r weigh t polybutene . Aharon i [71 ] observe d a simila r phenomeno n wit h hig h molecula r weigh t epoxy an d copolyeste r comixe d wit h l,1^2,2'-tetrachloroethane . The genera l observatio n fo r thes e system s was tha t th e phenomeno n was no t relate d o t the polydispersit y of th e polymers .I n fact , th e bimodalit y tende d o t increas e as th e polyme r polydispersit y was reduced . Figur e 3.2 2 illustrate s th e bimoda l cloud-poin t curve s fo r polyisobutene polystyren e mixtures . For thes e measurement s Koningsvel d an d Kleintjen s [72] use d a low-spee d analytica l centrifug e whic h allowe d determinatio n of the CPCs on th e polyme r mel t withi n reasonabl e times . Thi s als o remove d the necessit y of makin g tw o CPC measurements , i.e. , on heatin g an d on cooling .
3.4.2
Conventional Light Scattering Method
Light scatterin g ha d it s humbl e beginnin g wit h Lor d Rayleigh' s mathe matica l result s [73 ] advance d n i answerin g a seemingl y innocen t questio n regardin g why th e sk y s i blue . Later , Smoluchowsk i formulate d [74 ] a fluc tuation s theor y whic h extende d Rayleigh' s result so t includ e liqui d solution s; thi s was subsequentl y refine d by Einstei n [75] . Accordin g o t thes e theories , if a ligh t bea m passe s throug h a mediu m whos e volum e element s (containin g the constituen t particles ) ar e smal l compare d o t th e wavelengt h of th e light , the ligh t wil l be scattered . The scattere d ligh t intensit y s i proportiona l o t the mean squar e of th e concentratio n fluctuations n i th e smal l volum e element s and , therefore , inversel y relate d o t th e secon d derivativ e of th e fre e energ y wit h respec to t concentration . For multicomponen t system s [76 ] an d polydispers e polymer s [77] , th e t du e o t densit y an d tha t du e scatterin g s i made up of tw o contribution s :tha to concentratio n fluctuations. At condition s fa r remove d fro m th e spinodal , the forme r ca n be eliminate d merel y by subtractin g th e scatterin g intensit y of th e pur e solven t fro m tha t of th e solution . I n th e regio n of th e spinoda l
143
3.4. Scattering Methods
thi s procedur e break s down. One no w need s o t allo w fo r th e couplin g betwee n th e fluctuations as wel l as th e additiona l energ y require d o t estab lis h th e finite concentratio n gradien t discusse d earlie r n i Sectio n 2.2.4 . Accordin g o t Deby e [78] , thes e furthe r complication s ca n be bypasse d by making severa l measurement s at a serie s of angle s an d extrapolatin g th e scatterin g intensitie s o t zer o angle . Hence ,s o lon g as th e measurement s ar e made prio r o t actua l phas e separation , th e scattere d intensit y depend s on the mean squar e of th e concentratio n fluctuations much th e sam e way as in th e origina l Rayleig h scatterin g [73] . For a multicomponen t system , th e scattere d ligh t extrapolate d o t zer o scatterin g angl eθ s i give n by Zernik e [76 ] a s 22 4π η
v1 Jdndn dcdc y
ij
[IV].« o = kT AV (3.16 ) c where Re, th e Raleig h ratio , denote s th e scattere d intensit y du e o t concen tratio n fluctuation; λ, th e wavelengt h of th e ligh t in vacuo; fe,Boltzmann' s 2e temperature constant ; T, th e absolut ; n, th e refractiv e index ; a deter minant wit h element s ô {AG)/ôCi dcj n i whic h G represent s th e Gibb s fre e energ y of mixin g fo r a volum e elemen t AV; Ci an d cj9 th e concentration s of th e component s i an d j ; an d Bij9 th e cofacto r of th e elemen t ij of th e determinant . In orde r o t determin e th ec element s of it s cofactors , an d henc e an analytica l expressio n fo r [# ]e=o > Scholt e [79 ] mad e us e o f th e Flory e Huggin s [80 , 81 ] fre e energ y functio n which , fo r a binar y mixtur e of poly dispers e polymers , si expresse d n i weigh t fraction s a s [82 ] m 1 1 vv AG pAV (3.17 ) RT j 2,j The Rayleig h ratio , afte r th e necessar y differentiation s an d substitutio n int o Eq. (3.16) , si give n by [79 ] 22 c £-11 4π η 1 /dn 1 [R0]0=o = 2 ΝΑλ p\dw1 w1Mw1 + Τ,1 ( — Λττw1)Mw2 + Sdw1 I (3.18 ) 2 2 s fo Hence, ligh t scatterin g measurement s at a numbe r of concentration r a known binar y polyme r mixtur e enabl e calculatio n of 5Γ/3νν an d th e 1 determination , throug h doubl e integration , of th e polymer-polyme r inter actio n function , Γ. The characte r of Γ yield s informatio n abou t th e leve l of miscibilit y of th e mixture . Alternatively , on e ca n generat e th e spinoda l fi t is i recalle d tha t Gibb' s
144
3. Methods for Determining Polymer-Polymer Miscibility
conditio n fo r th e stabilit y limit , expresse d n i Eq. (2.83 ) of Sectio n 2.4. 3 s i equivalen to t statin g tha t |6| = 0
(3.19 )
c This implie s that , on approachin g th e spinoda l fro m withi n th e stabl e region , th e reciproca l of[Re]e==0 shoul d ten d o t zero . Tha t is , fi on e perform s ligh t scatterin g measurement s at constan t concentratio n bu t cvariou s tem perature s withi n th e homogeneou s stabl e region , a plo t of \/[Re]e=0 versu s temperatur e extrapolate d o t zer o ordinat e yield s th e spinoda l temperatur e for th e give n concentration . Repeate d fo r a serie s of concentrations , on e s i abl e o t describ e th e spinoda l locus . The procedur e ca n be schematicall y represente d a s n i Fig . 3.2 3 wher e th e soli d point s ar e th e scatterin g value s obtaine d fro m measurement s withi n th e stabl e region . Usin g thi s techniqu e for thre e polystyren e sample s wit h M w value s of 51,000,163,000 , an d 520,000 , Scholt e [79 ] successfull y determine d th e spinoda l envelop e fo r polystyrene cyclohexane . Anothe r ligh t scatterin g metho d whic h permit s determinatio n of th e spinoda l curv e s i th e va n Aartse n quenchin g metho d [83] . The metho d relie s on th e fac t tha t a highl y concentrate d solutio n ca n be thrus t directl y int o the unstabl e regio n fi a small , thi n sampl e s i use d n i a quenchin g mediu m of rathe r larg e hea t capacity . Becaus e of th e resultan t rapi d exchang e of heat , phas e separatio n of th e nucleatio n an d growt h typ e doe s no t tak e plac e befor e th e spinoda l mechanis m set s in . Durin g th e quenchin g period , th e scattere d intensit y varie s wit h tim e n i a manne r depicte d n i Fig . 3.24 .n I thi s
TEMPERATURE Fig. 3.23. temperature.
Schematic of scattered light intensity at zero scattering angle as a function of
145
3.4. Scattering Methods
Final
0=0 Initial
TIME Fig. 3.24. Schematic of the time dependence of the scattered light intensity during the quenching period in the van Aartsen method.
t
Spinodal Temperature
QUENCHING Fig. 3.25.
Plot of t ,
1/2
TEMPERATURE
as obtained from Fig. 3.24, against temperature, illustrating the
determination of the spinodal temperature.
figure, t1/2 s i define d as th e tim e necessar y o t reac h hal f th e maximu m in tensity . When measurement s ar e made at a serie s of temperatures , t1!2 plotte d agains t th e quenchin g temperatur e ca n be typicall y represente d by Fig. 3.25 . The spinoda l temperatur e s i take n equa l o t tha t quenchin g temperatur e where t i 2/ increase s o t hig h values . For poly(2,6-dimethyl-l,4-phenylen e oxide ) n i caprolactam , va n Aartse n [84 ] determine d th e spinoda l locu s by
146
3. Methods for Determining Polymer-Polymer Miscibility
takin g t1J2 o t be 1 0 min . He als o studie d th e solutio n of ethylene/viny l acetat e copolyme rn i caprolactam . Kratochvi l et al. [85 , 86 ] hav e interprete d ligh t scatterin g fro m ternary mixture s (polyme r 1-polyme r 2-mutua l solvent ) usin g Stockmayer' s theor y to obtai n a paramete r aki n o t th e interactio n paramete r fo r th e tw o polymers . Thei r result s indicat e wit h fai r certaint y tha t thi s paramete r decrease s as th e calculate d interactio n paramete r increases , an unexplaine d result . The value s of th e paramete r di d no t depen d on solvent—a n importan t finding—but th e number of solvent s employe d was limited . 3.4.3
Pulse-Induced Critical Scattering (PICS)
This elegan t variatio n [87 ] of th e conventiona l ligh t scatterin g metho d was develope d at th e Universit y of Esse x by J . M. G. Cowie , M. Gordon , J . Goldsbrough , an d B. W. Ready . The techniqu e s i essentiall y a hybri d of Scholte' s metho d [79 ] of measurin g scattere d ligh tn i th e stabl e regio n an d van Aartsen' s procedur e [83 , 84 ] of scatterin g measurement s n i th e unstabl e region . In th e origina l design , th e sampl e cel l hold s onl y a fe w microliter s of th e solutio n place d n i a mediu m whic h s i capabl e of deliverin g therma l pulses . The tim e scal e of eac h therma l puls e s i shorte r tha n th e tim e scal e of th e nucleatio n an d growt h mechanism ; consequently , th e scatterin g measure ments ca n be made at temperature s withi n th e metastabl e regio n an d th e
Temperature Trace
1—
k
)
1f
1
1
11 Light Intensity
1 1
I
1 ^
Trace
TIME Fig. 3.26. Schematic representation of the principle behind the pulse-induced critical scattering (PICS) technique.
147
3.4. Scattering Methods
solutio n s i stabl e an d homogeneou s durin g th e perio d of th e therma l pulse . A diagrammati c representatio n of th e principl e behin d th e pulse-induce d critica l scatterin g metho d appear s n i Fig . 3.26 . Ligh t scatterin g measure ments ar e performe d at temperature s withi n th e homogeneou s stabl e phas e as n i Scholte' s metho d [79] . However , by coolin g an d heatin g th e sampl e ver y rapidly , th e polyme r mixtur e ca n be maintaine d withi n th e metastabl e regio n and be brough t bac k int o th e stabl e regio n befor e an y phas e separatio n occurs . Figur e 3.2 7 illustrate s th e bloc k diagra m of on e for m of th e apparatu s used fo r pulse-induce d critica l scatterin g measurements . The ligh t sourc e s i a low-powe r helium-neo n lase r an d th e syste m temperatur e s i measure d by a thermistor . The ligh ts i transmitte d by mean s of a ligh t guid e o t th e photo transistor , whic h s i th e light-detectin g system . The sample-cel l chambe r contain s a smal l heate r whic h maintain s th e chamber at a slightl y highe r temperatur e tha n th e surrounding , flowing water . The temperatur e puls e s i produce d by switchin g of f th e smal l heater ; the sampl e cel l an d sampl e coo l down rapidl y (~ 3 sec )o t th e temperatur e of th e flowing water . The scatterin g measuremen ts i made an d th e heate rs i switche d bac k on befor e phas e separatio n eve r begins . Considerabl e versa tilit y s i buil t int o thi s syste m suc h tha t a strea m of temperatur e pulse s ca n be create d fo r shor t period s of tim e at almos t an y bas e temperature . Scholte' s theoretica l developmen t [79 ] is , strictl y speaking , no longe r vali d in thi s region . Accordin g o t Debye' s theor y [78 ] of critica l opalescence , ther e is a conditio n of mathematica l singularit y at th e critica l point . Beyon d th e
Immersion heater
Flow system
Pump
Thermometer Cell
Heater Light guide
\ He-Ne Laser
J
' Refriqeration umt Bath
Heat transfer fluid
Data handling system
Fig. 3.27. Block diagram of one form of the apparatus for pulse-induced critical scattering measurements. [From Κ. E. Derham, J. Goldsbrough, and M. Gordon, Pure Appl. Chem. 38, 97(1974).]
148
3. Methods for Determining Polymer-Polymer Miscibility
immediat e are a of th e singularit y th e theor y predict s th e scattere d intensity , 7, o t obe y th e relatio n 2 / = ΤΡ(θ)/[α(Τ -Tc) + b sinΘ] (3.20 ) where Ρ(θ) s i th e particl e scatterin g factor ; a an d b ar e constants . When th e temperature , T, equal s th e critica l temperature , Tc, th e scattere d intensit y at zer o scatterin g angle , 0, diverges . Onl y at finite angl e woul d th e situatio n 2 be saved . Equatio n (3.20 ) als o indicate s tha t a plo t of 1/ 7 woul d no t be linea r i of th e sam e orde r of magnitud e as b sin0. Thi s agai n limit s if (T — Tc) s how clos e a scatterin g measuremen t ca n be made nea r th e critica l point . 2 Fortunately , however , theoretica l estimatio n indicate s that , fo r θ ~ 30° , b sinθ s i of th e sam e orde r of magnitud e as Τ — Tc < 0.03°C . Tha t is , one coul d stil l go withi n 0.03° C of th e critica l poin t withou t approachin g the nonlinea r region . Thi s ha s bee n essentiall y confirme d by experiment s [87] . The implicatio n of thi s s i clear : Scholte' s extrapolatio n techniqu e [79 ] remain s valid . Moreover , th e spinoda l temperatur e fo r eac h concentratio n is no w locate d by mean s of a much shorte r extrapolation , leadin g o t a mor e accuratel y define d spinoda l locus . A diagrammati c compariso n of th e con ventiona l an d th e pulse-induce d critica l scatterin g s i show n n i Fig . 3.28 . Althoug h th e PIC S metho d ha s bee n applie d o t a serie s of polymer solven t systems , t i ha s onl y recentl y bee n applied , by Koningsvel d an d Kleintjen s [88] ,o t measur e th e spinoda l locu s fo r polyme r mixtures . Figure s 3.2 9 an d 3.3 0 represen t th e spinoda l locu s fo r polyisobutene-polystyrene . They constitut e tw o of th e system s n i Fig . 3.22 , namely , polyisobuten e wit h M w 37 0 an d polystyren e of M w 220 0 an d 2500 . The curve s ar e much bette r Φ
τ
Binodal
C Fig. 3.28. Comparison of the conventional and PICS method, showing points where in tensity measurements are made.
3.4. Scattering Methods
149
define d an d the y exhibi t th e now-familia r bimodalit y n i agreemen t wit h th e cloud-poin t curve s of Fig . 3.22 . Recently , Gordo n et al. [89] , at th e Uni versit y of Essex , develope d a centrifuga l homogenize r tha t allow s smal l sample s of high-polyme r system s o t be homogenize d at elevate d tempera ture s fo r pulse-induce d critica l scatterin g measurements . Thi s ne w develop ment promise s o t giv e a boos t o t th e experimenta l studie s n i polymer polyme r miscibility . 3.4.4
Neutron Scattering Methods
While X-ra y scatterin g s i sensitiv e o t densit y fluctuations, an d ligh t scatterin g o t densit y an d concentratio n fluctuations, neutro n scatterin g
1
1 31
—^Wpst
1
10 16 ι
1
1
PIB(370) °' PST(2200) Fig. 3.29. Cloud-point curve ( Δ ), spinodal by PICS (I), and critical point ( O) for a polyisobutene-polystyrene mixture with molecular weights of 370 and 2200, respectively. [From R. Koningsveld and L. A. Kleintjens, Br. Polym. J. 9, 212 (1977).]
150
3. Methods for Determining Polymer-Polymer Miscibility
Fig. 3.30. Cloud-point curve ( • ) and spinodal ( O) as determined by the PICS method for a polyisobutene-polystyrene mixture with molecular weights of 370 and 2500, respectively. [From R. Koningsveld and L. A. Kleintjens, Br. Polym. J. 9, 212 (1977).]
measure s th e differentia l neutro n scatterin g cros s sectio n of smal l concen tration s of protonate d polyme r (tagge d molecules ) disperse d n i a matri x of deuterate d polymer . Thi s allow s a rathe r precis e determinatio n of th e con formatio n of th e tagge d polymer , eve n n i bulk . The thre e diffractio n method s are analyze d n i th e sam e way. If th e Zernik e relatio n [Eq . (3.16) ] s i writte n fo r a binar y mixture , we have [76 ]: 22 2 θ 0=_ 4π η AV 1(dn/dc 2 2)2 (3.21 ) ~ X\kTy (d G/dc2) From
standar d thermodynamic s [90] , 2 2 1 dG N0AV 2 2 2 + 2A2c2 + 3A3c2 + M kT dc2 " c2 w
2
(3.22 )
Substitutin g Eq. (3.22 ) int o (3.21 ) give s Kc2 [Re% = 0
1
2 + 2A2c2 + 3A,c2 +
(3.23 )
3
151
3.4. Scattering Methods
where th e constan t Κ represent s
n A 22 4π η-ζ~
d
- V
K
·
,3 24)
For a larg e particl e suc h as a polyme r chain , a dissymmetr y correctio n P(0) s i introduce d [90 ]: scattere d intensit y fo r larg e particl e scattere d intensit y withou t interferenc e The genera l expressio n fo r P(0 )n i th e limi t of 0 0 s i 2 2 2 * 1 _ 1 16π ™ = + -TÎ2- < ^ g > z sin - + ··· +
^
^
(3.26 )
and Eq. (3.23 ) ca n be writte n as X c2
_
2
1
+ 2 A2c2 + 3 ^3c2 + ··· (3.27 ) c 2 It s io t be note d tha t a plo t of Kc2/[_Re]e=o versu s sin0/ 2 + fcc, origin all y use d by Zimm [90] , give s tw o type s of limitin g result s (k s i an arbitrar y constan t chose n s o as o t provid e a convenien t sprea d of th e data ): (i ) When0-> O K rC 1 2 + 2yl (3.28 ) 2c2 + 3 ^3c2 + ··· [ 1 V L =0 c one obtain s a plo t of Kc/[Re~]e 0=versu s /cc, whic h give s 1/MW as intercep t and 2A2/K as th e limitin g slope , (ii ) When c -0* Kc
1
+
+
sm
(3.29 ) c 2 2 ~\2 2 s sin0/2 one obtain s a plo t of Kc/[R , whic h agai n give s 1/MW e e=0 versu as th e intercep t an d 16π<Λ 0> ζ/3Α as th e limitin g slope . These ar e th e set s of relation s use d by Kirst e an d co-worker s [1 ] fo r analyzin g th e small-angl e neutro n scatterin g of a mixtur e of ~ 1.5 % styrene / % perdeuteropoly(methy l methacrylate ) acrylonitril e copolyme r n i ~98.5 as wel la s th e blen d of 1.5 % poly(a-methylstyrene )n i 98.5 % perdeuteropoly (methy l methacrylate) . The majo r poin t of departur e s in i th e calculatio n of K, which , fo r small-angl e neutro n scattering ,s i give n by ~3X 2-<*g > *
K=(S2
-v2Sl*)/N1
2
(3.30 )
152
3 . Methods for Determining Polymer-Polymer Miscibility
where S2 an d Sx* ar e th e scatterin g lengt h su m fo r polyme r 2 an d th e deu terate d polyme r 1 ;v2 s i th e partia l specifi c volum e of polyme r 2. Figur e 3.3 1 illustrate s th e Zimm plo t fo r th e mixtur e of perdeuteropoly (methy l methacrylate ) an d styrene/acrylonitril e copolymer . Becaus e of th e linearit y exhibite d by th e limitin g curve s an d th e correc t valu e of M w ob taine d fro m th e diagram , t i was conclude d tha t th e polyme r mixtur e s i
153
3.4. Scattering Methods
miscibl e on a molecula r scale . Conversely , th e skewe d natur e of th e Zimm diagra m fo r th e secon d mixture , Fig . 3.32 , indicate s micell e formatio n an d gros s inhomogeneity . Also calculate d ar e th e secon d viria l coefficient s fo r th e homogeneou s mixtur e of SAN-d-PMMA. Thes e appea r n i Tabl e 3.2 . Two attempt s wer e made at calculatin g A2 directl y fro m Flory-Huggin s theor y throug h th e expressio n fo r th e osmoti c secon d viria l coefficien t 2 A2 = v2V1-^-mlX x2) (3.31 ) The first assume s atherma l mixin g (1 χ2 = 0) ; th e secon d assume s a hea t of mixin g represente d by th e Hildebran d solubilit y parameter . Neithe r of th e calculate d result s gav e a satisfactor y descriptio n of th e experimenta l values , as ca n be verifie d fro m Tabl e 3.2 . An alternativ e metho d of testin g th e con sequence s of Eq. (3.31 ) s i o t calculat e th e Flory-Huggin s interactio n paramete r fro m th e experimenta l A2 data . Thi s was don e by Koningsvel d and Kleintjen s [72] , whos e result s appea r n i Tabl e 3. 2 (secon d colum n fro m the right) . Althoug h th e value s ar e seemingl y n i th e righ t direction , compariso n wit h the χ12 value s calculate d directl y fro m th e Flory-Huggin s theor y (las t column of Tabl e 3.2 ) illustrate s tha t th e orde r of magnitud e of th e χί2 s i no t probable . The erroneou s χ12 valu e obtaine d n i th e cas e of th e SAN sampl e wit h 10 % AN s i a confirmatio n of th e failur e of th e theor y n i correctl y
ι
0
ι
ι
ι
1
5
ι
ι
•
ι
I
10
ι
C ι
ι
ι
I
ι
I
4
15 I0
I
I
I 20
2 2
I
I
I
I
I
32 5
· [ x / A " + 0.1 C/ ( g cm" ) ]
Fig. 3.31. Zimm diagram for the system poly(styrene-co-acrylonitrile) (28.7 wt% acrylonitrile) with deuterated poly(methyl methacrylate), both of approximately 200,000 weight average molecular weight (c = concentration of P S A N ) (A = 25°C, Β = 110°C, C = 130°C). [From W. A. Kruse, R. G. Kirste, J. Haas, B. J. Schmitt, and D . J. Stein, Makromol. Chem. 177, 1145 (1976). Copyright by Huthig and Wepf Verlag, Basel.]
154
3. Methods for Determining Polymer-Polymer Miscibility
4 2
2
l0 .[x /A" tO.IC/(g
3 cm" )]
Fig. 3.32. Zimm diagram for poly(a-methylstyrene) mixed with deuterated poly(methyl methacrylate), both of approximately 250,000 weight average molecular weight [c = concentra tion of poly(a-methylstyrene)]. [From W. A. Kruse, R. G. Kirste, J. Haas, B. J. Schmitt, and D . J. Stein, Makromol. Chem. Ill, 1145 (1976). Copyright by Hiithig and Wepf Verlag, Basel.]
TABLE 3.2 Values for the Second Viral Coefficients from Neutron Scattering (Exp.) and Calculated a and Solubility Parameters (δ) for Random S A N Assuming Athermal Mixing (Athermal) Copolymers Blended with d - P M M A
3 2
% AN in P S A N 19 19 10 28.7
a
5 M
wχ
10"
2.7 4.4 0.7 2.2
A
2
4
(110°C) ( c m g " mole χ 10 ) Xii
from
Exp.
Athermal
δ
^2exp.(FH)
1.15 1.15 -1.00 0.52
0.02 0.01 0.06 0.02
-1.88 -1.89 -0.08 -5.98
-0.0118 -0.0119 + 0.0110 -0.0052
*i2
c .a( F lH )c 0.0007 0.0005 0.0029 0.0010
The last two columns contain Flory-Huggins interaction parameters calculated from experimental neutron scattering results and directly from Flory-Huggins theory. Table from R. Koningsveld and L. A. Kleintjens, J. Polym. Sci., Polym. Symp. 61, 221 (1977).
3.4. Scattering Methods
155
representin g experimenta l evidence . A furthe r attemp t by Koningsvel d an d Kleintjen s [72 ] n i reconcilin g theor y wit h experimen t involve d th e us e of the ne w theor y of Huggins . Wit h prope r choic e of th e associate d physica l parameters , thi s theor y di d provid e a correc t interpretatio n of th e experi menta l data . Anothe r investigatio n of low-angl e neutro n scatterin g fro m a miscibl e polyme r mixtur e was carrie d ou t by Ballard , Rayner , an d Schelte n [91] .I t involve d poly(deutero-a-methylstyrene ) mixe d wit h polydeuterostyren e and/o r polyprotostyrene . The weigh t percen t composition s of th e polyme r mixture s investigate d wer e 90/10/0 , 90/5/5 , 95/5/0 , an d 95/0/5 , eac h wit h respec to t th e thre e polymers . Gunie r plo t procedur e was use d instea d of th e Zimm plot .I t was foun d tha t th e chai n molecule s ar e statisticall y distributed , indicatin g tha t th e mixture s ar e miscible . From th e above ,t is i clea r tha t th e techniqu e of low-angl e neutro n scatter ing wil l continu e o t findconsiderabl e applicatio n n i th e elucidatio n of th e structur e n i miscibl e polyme r mixtures . Particularly ,t i ca n provid e answer s to suc h question s as o t whethe r th e molecule s n i a mixtur e adop t thei r un perturbe d configuratio n or a differen t dimensio n dictate d by th e neighboring , unlik e interaction , an d whethe r th e molecule s ar e randoml y distribute d or clustered . However , ther es i on e poin t whic h conceivabl y may be a drawbac k of thi s technique . The questio n ha s bee n pose d whethe r a deuterate d matri x is thermodynamicall y differen t fro m a protonate d one . In orde r o t answe r thi s question , Koningsvel d [72 ] use d a slightl y refine d lattic e expressio n n i analyzin g th e chai n lengt h miscibilit y dat a of Kirst e and Lehne n [92] . Kirst e an d Lehne n [92 ] performe d low-angl e neutro n scatterin g experiment s on mixture s of a normal , protonate d poly(dimethy l siloxane ) an d a serie s of deuterate d poly(dimethy l siloxanes ) of varyin g chai n lengths . The calculate d secon d viria l coefficien t plotte d a s a functio n of th e chai n lengt h of th e deuterate d PDMS di d no t agre e wit h what s i expecte d fro m a mixtur e of th e sam e polymer . Indeed , th e experimenta l dat a were satisfactoril y represente d by th e expressio n derive d fo r a binar y mix tur e of tw o differen t polymer s [72] . Thi s finding support s th e contentio n tha t a deuterate d matri x s i thermodynamicall y differen t fro m a protonate d one . Furthe r evidenc e n i suppor t of thi s conclusio n ha s bee n foun d n i th e cloud poin t an d ligh t scatterin g measurement s on protonate d an d deuterate d cyclo hexan e an d polystyren e [93] . 3.4.5
X-Ray Scattering and Other Methods
The physica l structur e of polyme r mixture s ca n be characterize d by th e chai n conformation , th e loca l order , an d th e morphology . Small-angl e neutro n scatterin g elucidate s th e chai n conformatio n [2] ; th e loca l orde r can be studie d by mean s of electro n an d Rayleigh-Brilloui n scatterin g [19] ,
156
3 . Methods for Determining Polymer-Polymer Miscibility
wherea s th e morpholog y ca n be studie d by mean s of ligh t scattering , small angl e X-ra y scattering , magneti c birefringence , an d visible , phase-contrast , and electro n microscop y method s [2] . Small-angl e neutro n scatterin g ha s bee n use d n i th e stud y of polyme r miscibilit y (se e Sectio n 3.4.4) . The us e of electro n scatterin g method s usuall y entail s th e derivatio n of pai r distributio n function s fro m th e electro n scatter ing curve s [2] . No experimen t of thi s natur e ha s s o fa r bee n don e on polyme r mixtures . The Rayleigh-Brilloui n scatterin g techniqu e ha s bee n applie d successfull y by Patterso n an d co-worker sn i th e investigatio n of th e miscibil it y of poly(vinyliden e fluoride)-poly(methyl methacrylate ) mixture s [94] . This involve d measurin g th e polarize d an d depolarize d ligh t scatterin g spectr a an d analyzin g the m n i term s of Rayleigh-Brilloui n equations . Probabl y th e most extensiv e quantitativ e stud y of th e morpholog y of polyme r mixture s was th e wor k of Stei n an d co-worker s [95] , who examine d (i n th e soli d state ) th e blend s of poly(e-caprolactone ) (PCL ) wit h poly(viny l chloride ) (PVC) by low-angl e X-ra y an d small-angl e ligh t scattering . Be caus e of th e crystallinit y of PCL, th e author s no t onl y ha d o t describ e th e loca l orde r an d th e molecula r distributio n withi n th e amorphou s modula r structure s bu t als o ha d o t describ e th e spherulit e size , th e repea t perio d of the lamella r substructure , an d th e thicknes s of th e crystallin e n i relatio n o t the amorphou s layers . In th e PVC concentratio n rang e fro m 0o t ~ 60%, low-angl e X-ra y scatter ing measurement s wer e interprete d usin g th e Tsvankin-Buchana n tech niqu e [96 , 97] . Thi s provide d a reasonabl e estimat e of th e repea t perio d of the PCL lamella r substructure , th e thicknes s of th e PCL crystallin e layer , and th e thicknes s of th e amorphou s laye r containin g bot h PCL an d PVC segments . The spherulit e size s wer e measure d by small-angl e ligh t scatter ing and , at ~60 % PVC, no more crystallinit y was observed . I n thi s region , the small-angl e X-ra y scatterin g measuremen t was interprete d n i term s of the Debye-Buech e theor y [98 ] of scatterin g n i heterogeneou s media . The result s wer e consisten t wit h partia l phas e separatio n int o statistica l region s of tw o type s :on e made up of PCL domain s containin g dissolve d PVC an d the othe r made up of PVC domain s containin g dissolve d PCL. The chang e n i the intensit y of scatterin g wit h concentratio n suggest s a transitio n zon e on the orde r of 30 Β betwee n eac h of th e tw o phases . The significanc e of thi s sor t of wor k canno t be overstated . However , t i inherit s a criticis m usuall y levele d at method s use d o t identif y miscibl e polyme r blend s n i th e soli d state . Becaus e change s of stat e too k plac e n i th e preparatio n of th e sample , on e coul d no t make a definit e conclusio n regard ing th e actua l leve l of miscibilit y of th e polymer s involved . Observation s made n i th e nonequilibriu m glass y stat e ar e inadequat e n i rationalizin g th e thermodynami c aspec t of polyme r miscibility .
3.5. Ternary-Solution Methods
3.5
157
TERNARY-SOLUTION METHODS
3.5.1
Mutual-Solvent Method
Probabl y th e oldes t an d most use d metho d of determinin g polymer polyme r miscibilit y s i th e mutual-solven t approach . I t consist s of dissolvin g T A B L E 3.3 Polymers Used for the Ternary Solution Studies of Table 3.4"
Polymer No.
Material
Osmotic molecular weight Unfractionated
1 2 3 4 5 6 7 7a 7b 8
Methyl cellulose Cellulose acetate Nitrocellulose Ethyl cellulose Benzyl cellulose Polystyrene Polyvinyl acetate Rhodopas H Rhodopas H H Polyvinyl acetal
Intrinsic viscosity
160,000 56,000 92,000 35,000
3.80*c 1.70 c 2.60 c 1.10
225,000
2.15
56,000 112,000 38,000
0.60 c 0.85 e 0.75
d
Methyl methacrylate Rubber
10
Polyvinyl alcohol Fraction 1 Fraction 5 Polystyrene Fraction 1 Fraction 2 Polyvinyl acetal Fraction 1 Fraction 3 Cellulose acetate Fraction 1 Fraction 3
> 2,000,000 Undetermined
24% Methoxyl 55.5% Acetic acid 12.35% Nitrogen 47.6% Ethoxyl 46.5% Benzyl
c
e 9 11
Chemical characteristics
Totally acetylated Copolymer of 10% polyvinyl alcohol, 2% polyvinyl acetate, 88% polyvinyl acetal
3.65
Fractionated 10a 10b 12 12a 12b 13 13a 13b 14 14a 14b
a bFrom A. Dobry e In water. dIn acetone. In chloroform.
60,000
700,000 700,000
1.10* 0.35*
d
4.2' 2.8
e
97,000 39,000
1.10 e 0.58
Same product as for polyvinyl acetal above
56,000 16,000
1.70 e 0.39
Commercial diacetate
e
and F. Boyer-Kawenoki, J. Polym. Sci. 2, 90 (1947).
158
3. Methods for Determining Polymer-Polymer Miscibility
TABLE 3.4
fl
Results of Ternary Solution Studies Using Polymers Described in Table 3.3
Mixture No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Mixture of polymers (see Table 3.3) 1 + 10a 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7a 2 + 8 2 + 9 2 + 10 2+11 3 + 4 3 + 5 3 + 6 3 + 7b
3 + 8
3 + 9 3 + 10 3 + 11 4 + 5 4 4 4 4
+ + + +
6 7b 8 9
Solvent Water Acetone Acetic acid Acetone Acetic acid Ethyl acetate Methyl ethyl ketone Acetone Acetone Acetone N o c o m m o n solvent N o c o m m o n solvent Acetone Acetic acid Mesityl oxide Methyl ethyl ketone Acetone Methyl ethyl ketone Acetic acid Ethyl acetate Amyl acetate Acetone Methyl ethyl ketone Mesityl oxide Acetic acid Methyl acetate Ethyl acetate Propyl acetate Butyl acetate Amyl acetate + 10% absolute alcohol Acetone Ethyl acetate N o c o m m o n solvent N o c o m m o n solvent Chloroform Ethyl acetate Benzene Chloroform Chloroform Acetone
Limit of phase separation, dry content, % 3.2 5.5 Miscible 2.8 5.5 2.0 1.2 5.5 2.1 1.5
3.7 >20 3.2 0.85 Miscible Miscible Miscible Miscible Miscible 1.8 2.0 >5 >20 2.6 1.8 2.2 1.8
Observations
Yield, 2:3 = 2:1*
7 a : 2 = 2:1 2:9 = 3:1
Opaque film
Opaque film Opaque film
2.2 Miscible Miscible
20 4.0 1.2 4.5 4.0 2.2
7 b : 4 = 3:1* 4:9 = 3:1" 4:11 = 5:2*
3.5. Ternary-Solution Methods
T A B L E 3.4
Mixture No. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
a
I59
(Continued)
Mixture of polymers (see Table 3.3) 4+10 4+11 5 + 6 5 + 7b 5 + 8 5 + 9 5+10 5 + 11 6 + 7b 6 + 8 6 + 9 6 + 10 6+11 7b + 8
7a + 8
7a + 9
7+10 7b + 11 8 + 9 8 + 10 8+11 9 + 10 9+11 10 + 11 7 + cellulose triacetate
Solvent N o c o m m o n solvent Benzene Chloroform Chloroform Chloroform Dioxane N o c o m m o n solvent N o c o m m o n solvent Chloroform Methyl ethyl ketone Chloroform Benzene N o c o m m o n solvent Benzene Acetone Methyl ethyl ketone Chloroform Acetic acid Mesityl oxide Dioxane Mesityl acetate Ethyl acetate Propyl acetate Butyl acetate Amyl acetate Acetone Ethyl acetate Dioxane Acetic acid N o c o m m o n solvent Benzene Acetone N o c o m m o n solvent Benzene + 5% absolute alcohol N o c o m m o n solvent Benzene N o c o m m o n solvent Chloroform
Limit of phase separation, dry content, %
1.3 Miscible 2.5 10.5 >10
4.0 1.5 3.2 2.6
Observations
5:7b = 1:2' Opaque film
6:9 = 5 : 2 '
2.0 2.0 3.5 6.0 7.2 12.0 7.0 3.8 3.2 3.6 3.9 3.6 4.5 8.5 >10 >10
4:9 = 12:1' 7:9 = 7:1* Opaque film Opaque film
2.8 2.2
7:11 = 5:1* 8:9 = 3:1*
2.0
8:9 = 5 : 2 '
2.0
9:11 = 2 : 3 '
7.5
7: triacetate =
7:8 = 3:1* 7:8 = 2:1*
From A. Dobry and F. Boyer-Kawenoki, J. Polym. Sci. 2, 90 (1947). * Weight ratio of the amount of high polymers for which the limit of separation has been determined. For the other systems this yield is 1:1.
160
3. Methods for Determining Polymer-Polymer Miscibility
and thoroughl y mixin g a 50/5 0 mixtur e of tw o polymer s at lo w o t mediu m concentratio n n i a mutua l solvent . By allowin g th e mixtur e o t stand , usuall y for a fe w days , miscibilit y s i sai d o t prevai l fi phas e separatio n doe s no t occu r; if phas e separatio n doe s occu r th e tw o polymer s ar e sai d o t be immiscibl e wit h eac h other . The metho d was first use d n i th e field of paints , varnishes , and lacquers . A varnis h compositio n whic h on dryin g leave s a turbid , opaque , an d usuall y brittl e films i unacceptable ; th e occurrenc e was als o known o t be due o t th e immiscibilit y of th e constituen t polymers . I t was not , however , unti l 194 6 tha t a thoroug h an d systemati c stud y of polyme r miscibilit y was undertaken . The study , reporte d n i th e classi c pape r by Dobr y an d Boyer Kawenoki [99] , involve d 78 mixture s made up fro m 14 hig h polymer s (cellu lose , vinyl , an d acryli c derivatives ) dissolve d n i 13 solvents . The result s of Dobry an d Boyer-Kawenok i ar e represente d n i Table s 3. 3 an d 3.4 . About a decad e later , Ker n an d Slocomb e [100 ] undertoo k a simila r stud y on 27 othe r mixtures , th e result s of whic h appea r n i Tabl e 3.5 . The si x genera l conclusion s reache d by Dobr y an d Boyer-Kawenok i [99] , confirme d by th e secon d stud y [100 ] stan d o t th e presen t da y almos t withou t contradiction . They deserv e direc t quotatio n n i par t [99 ]: (1) Of th e 35 pair s of hig h polymer s tested , onl y fou r do no t sho w separation . Consequently , compatibilit y (miscibility ) s i th e exception , im miscibility is the rule. (2) When tw o hig h polymer s ar e incompatibl e n i on e solvent , the y ar e generall y als o incompatibl e n i al l othe r solvents . Thi s rul e represent s th e normal situation , bu tt is i no t alway s fulfilled . (3) The limi t of phas e separatio n depend s on th e natur e of th e solvent . (4) The molecula r weigh t of th e polymer s s i of grea t importance . The highe r t i is , th e les s compatibl e (miscible ) ar e th e sample s an d th e mor e s i the limi t of phas e separatio n shifte d towar d smalle r (polymer ) concentration . (5) Theoretica l consideration s make t i probabl e tha t no t onl y th e molecu lar weigh t bu t als o th e shap e of th e dissolve d molecule s influence s thei r com patibilit y (miscibility) . (6) Ther e s i no obviou s relationshi p betwee n th e compatibilit y (miscibil ity ) of tw o polymer s an d th e chemica l natur e of thei r monomers . The simi larit y of th e principa l chai n s i no t sufficien t o t insur e miscibilit y of tw o polymers . Dobry an d Boyer-Kawenoki' s result s [99 ] wer e als o represente d n i tri angula r diagram s whos e genera l natur e s i simila r o t Fig . 3.2 . Such phas e diagram s suppor t th e spiri t of th e study , namely , tha t at rathe r hig h solven t concentratio n t is i possible , by th e mutual-solven t method , o t tel l tha t Px an d P2 ar e immiscibl e eve n thoug h the y ar e eac h completel y miscibl e wit h th e solvent .
161
3.5. Ternary-Solution Methods
T A B L E 3.5
1
Results of Ternary Solution Studies'
Solvent and solute concentration
System
Volume ratio of upper/lower phase
PMMA/PVAc"
Acetone, 20%
14/5
PMMA/PVAc PMMA/PMA PMA/PVAc PVAc/PMVK PVAc/PMVK PMMA/PS PMMA/PS P M M A / P M A N */ PMMA/PMAN PS/PVAc PpClS/PVAc PpMeS/PVAc PS/PpMeS PS/PVC PS/PpCIS PpMeS/PpCIS PS/PoMeS PS/PmMeS PS/PpMeS PoMeS/PmMeS PoMeS/PpMeS PmMeS/PpMeS PS/PE PS/PMA PEA/PMA PE/PBu
Acetone, 20% Acetone, 20% Acetone, dioxane, benzene Acetone, 20% Ethyl acetate, 20% Chloroform, 20% Methyl ethyl ketone, 15% Acetone, 15% Acetone, 15% Benzene, 20% Benzene, 20% Benzene, 20% Benzene, 20% Tetrahydrofuran, 15% Benzene, 20% Benzene, 20% Chloroform, 20% Chloroform, 20% Chloroform, 20% Chloroform, 20% Chloroform, 20% Chloroform, 20% Xylene, 10% (90°C) Benzene, 20% Acetone, 20% Xylene, 20% (90°C)
14/5 16/9
c
a bFrom R. J. Kern and R. J. Slocombe, c PVAc M ca. 50,000. dP V A c M w c a . 150,000. e N o phasewseparation. / P M A N rç 0.034 0.1% in acetone. sp P M A N rç 0.35 0.1% in acetone. sp
Layer analysis Upper
Lower
56% VAc 60% V A c 71% V A C
12.5% VAc 10.6% VAc 6.3% VAc
14.5% VAc 68% V A c
78% V A c 4.5% VAc
92% M A N 88% M A N
13.7% M A N 1.0% M A N
d
1/1 7/5 2/3 9/13 9/13 9/10 1/1 2/1 15/14 14/15 13/17 2/1 2/1
1.8% CIS
23% V C 0.7% pCIS
96% pCIS
86% V C 99% pCIS
d
5/2 5/2 5/3 3/5 d
25/14 9/7 2/1 4/1
/ . Polym. Sci. 15, 183 (1955).
All thes e experimenta l findings gaine d theoretica l suppor t fro m th e Scott Tompa ternar y solutio n treatmen t of Flory-Huggin s theory . The Scott Tompa developmen t [101 , 102 ] was base d on symmetri c system s (system s where th e Flory-Huggin s polymer-solven t interactio n parameter s ar e equal) , bu tt i was surmise d tha t th e phas e behavio r fo r asymmetri c system s would be similar . The analysi s blame s immiscibilit y on th e unfavorabl e
162
3. Methods for Determining Polymer-Polymer Miscibility
polymer-polyme r interactio n parameter . The solven t effec t was considere d rathe r positive ;t i merel y dilute s th e polymer s s o as o t reduc e th e numbe r of unfavorabl e contact s betwee n th e differen t polymers . Thus ,t i doe s no t reall y matte r what solven t s i used ; fi tw o hig h polymer s ar e immiscibl e n i on e solvent , the y wil l be immiscibl e n i al l solvents . This belie f was hel d fo r a lon g tim e unti l contradictor y experimenta l evi dence bega n o t appear . Hugeli n an d Dondo s [103 ] wer e abl e o t achiev e maximum miscibilit y betwee n polystyren e an d poly(methy l methacrylate ) onl y wit h solvent s havin g comparabl e affinitie s fo r th e polymers ; solvent s of disparat e affinitie s fail , contrar y o t Scott-Tomp a prediction . Ban k et al [40] observe d tha t polystyren e s i miscibl e wit h poly(viny l methy l ether ) n i toluene , benzene , or perchloroethylene , bu t no t n i chloroform , methylen e chloride , an d trichloroethylene , whil e Ker n [104 ] foun d tha t polystyren e s i miscibl e wit h poly(methy l methacrylate ) fi th e mixtur es i prepare d n i benzen e or chlorobenzene , bu t immiscibl e fi th e solven t mediu m s i ethy l acetate . The overridin g conclusio n of thes e experimenta l findings s i tha t solven t effec ts i indee d significan t an d tha t Scott-Tomp a result s must be revised . The first attemp t at reexaminin g th e Scott-Tomp a treatmen t was under take n by Zeman an d Patterso n [5] , who calculate d th e spinodal s fo r a numbe r of ternary , polymer-polymer-solven t systems . Later , Hsu an d Prausnit z [105 ] were abl e o t make th e notoriousl y difficul t calculatio n of th e binodal s vi a numerica l methods . Bot h studie s arrive d at identica l conclusion s: (1)
At lo w polyme r concentratio n th e differenc e betwee n th e tw o poly mer-solven t interactio n parameter s s i directl y responsibl e fo r th e polymer-polyme r immiscibility . (2) At hig h polyme r concentration , th e stat e of miscibilit y s i controlle d by th e magnitud e an d sig n of th e polymer-polyme r interactio n parameter . (3) When th e interactio n betwee n th e polymer s s i lo w or eve n negativ e a close d miscibilit y ga p woul d resul t f i th e tw o polymer-solven t interactio n parameter s ar e different . Even thoug h thes e conclusion s agre e wit h experimenta l observations , the y als o cas t seriou s doub t on th e validit y of th e mutual-solven t metho d n i identifyin g miscibl e polyme r pairs . For instance , asid e fro m th e "normal " diagra m of Fig . 3.2 , thre e othe r type s of ternar y phas e diagram s ar e possible , as show n n i Fig . 3.33 . Based on th e Patterson-Prausnit z [5 , 105 ] ternary-solutio n treatmen t of Flory-Huggin s theory , th e qualitativ e deductio n possibl e fro m mutual solven t experiment s fall s fa r short . For a syste m whos e phas e behavio r s i simila r o t th e "normal " on e n i Fig . 3.2 , th e common solven t metho d say s nothin g abou t th e miscibilit y of polymer s P1 an d P2. As fo r a syste m wit h
3.5. Ternary-Solution Methods
163
s
s
s
Fig. 3.33. Schematics of possible ternary phase diagrams involving two polymers ( P P ) l5 2 and a solvent (S).
a Fig . 3 . 3 3 A phas e diagram , a common solven t experimen t performe d at too hig h a solven t concentratio n woul d conclud e erroneousl y tha tPi s i completel y miscibl e wit h P2. Furthermore , th e metho d migh t indicat e com plet e immiscibilit y fi Fig .3.33B s i representativ e of th e ternar y system , wherea s th e tw o polymer s ar e miscibl e at al l proportions . Example s of close d miscibilit y envelope s ar e foun d n i th e phas e diagram s of benzene-buty l rubber-EPD M rubbe r an d of dipheny l ether-atacti c polypropylene-linea r
Diphenyl ether
1 A
// ; / /,
\
/ / 1 / / 1;v // / 1 // lfV 0.1
linear * Polyethylene
J
Rsv V
\
\
\
\
- - - T=I54 °C T=I55 °C
'\ Λ Ν
• phases//
atactic Polypropylene
Fig. 3.34. Ternary phase diagram for the system polyethylene- polypropylene-diphenyl ether showing closed two-phase region. [From R. Koningsveld, L. A. Kleintjens, and Η. M. Schoffeleers, Pure Appl. Chem. 39, 1 (1974).]
164
3. Methods for Determining Polymer-Polymer Miscibility
polyethylen e [82] . Figur e 3.3 4 illustrate s th e phas e diagra m fo r th e latter . The mor e complicate d miscibilit y ga p illustrate d schematicall y n i Fig . 3.33 C is als o foun d n i nature ; Fig . 3.3 5 illustrate s th e solvent-ric h sectio n of th e phas e diagra m fo r dipheny l ether-isotacti c polypropylene-linea r poly ethylen e [82] . The more fruitfu l us e of th e Scott-Tomp a ternar y solutio n treatmen ts in i calculatin g th e polymer-polyme r interactio n parameter . The basi c interpre tativ e concep t her e s i tha t a larg e positiv e valu e indicate s unfavorabl e inter action , a lo w valu e indicate s littl e interaction , an d a negativ e valu e indicate s a rathe r stron g specifi c interaction . The activit y coefficien t of th e solven tn i a ternar y solutio n s i ( - φγ) + (χ12 n I φ1 + 1 φ φ3)(1 - φ,) - χ'^ΦιΦι (3-32 ) 2 + χ13 where th e subscrip t 1 refer s o t th e solven t an d subscript s 2 an d 3 refe r o t th e two polymers ;a,, th e solven t activity ; φ, th e volum e fraction ; χ , th e binar y interactio n parameter ; χ2',3 th e polymer-polyme r interactio n paramete r In a,
=
Diphenyl ether
linear / Polyethylene
isotactic Polypropylene
Fig. 3.35. Illustration of complex phase behavior, using the system polyethylene-isotactic polypropylene-diphenyl ether. [From R. Koningsveld, L. A. Kleintjens, and Η. M. Schoffeleers, Pure. Appl. Chem. 39, 1 (1974).]
165
3.5. Ternary-Solution Methods
per segmen t of polyme r 2 [ χ23' = χ2' )χί/χ2, wher eχ s i th e numbe r of 3 (Flory segment sn i th e molecule] . Kwei, Nishi , an d Robert s [106 ] use d vapo r sorptio n measurement s of polystyrene , polyviny l methy l ether) , an d thei r blend s o t successivel y cal culat e th e χ1,2 χ1 ,3 an d correspondin g χ2' a s function s o f temperatur e an d 3 composition . The χ2' s appea r n i Tabl e 3.6 . Base d on th e sig n of χ2' 3 value 3 and it s temperatur e dependence , th e author s conclude d tha t th e mixtur e s i miscibl e (stable ) an d tha tt i exhibit s bot h th e lowe r an d uppe r cloud-poin t curves . Thi s latte r conclusio n s i base d on Patterson' s origina l analysi s [107] , which associate s th e occurrenc e of positiv e temperatur e coefficien t of χ ' 23 wit h th e presenc e of an uppe r critica l solutio n temperatur e behavior , an d a TABLE 3.6 Interaction Parameters from Vapor Sorption Studies for Blends of Polystyrene and Polyvinyl methyl ether)" Τ (°C)
Wt% P V M E in the film
30
35.06
Φι 0.0967 0.1388 0.2006
X23 -0.78 -0.73 -0.73 av - 0 . 7 5
30
45.30
0.0478 0.1104 0.1693
-0.67 -0.69 -0.72 av - 0 . 6 9
30 30 50
55.00 65.00 45.30
0.0389 0.0698 0.0367 0.0438 0.0516
65.00
0.0405 0.0498 0.0918
-0.59 -0.17 -0.59 -0.60 -0.61 av - 0 . 6 0
50
a
-0.47 -0.56 -0.36 av - 0 . 4 6
Reprinted with permission from T. K. Kwei, T. Nishi, and R. F. Roberts, Macromolecules 7, 667 (1974). Copyright by the American Chemical Society.
166
3. Methods for Determining Polymer-Polymer Miscibility
negativ e temperatur e coefficien t of χ2' h th e presenc e of a lowe r critica l 3 wit solutio n temperature . The analysi s may wel l be correct , bu t ther e s i stil l some reservatio n regardin g th e validit y of usin g solutio n measurement s as a basi s fo r derivin g informatio n abou t th e stat e of th e solvent-fre e polyme r mixture . Furthermore ,t is i no w wel l establishe d tha t th e stat e of thermody namic stabilit y of a mixtur e s i no t determine d by th e sig n of th e Gibb s fre e energ y of mixing ; rather ,t is i governe d by th e subtl e detail s of th e composi tio n dependenc e of th e fre e energ y [72] . Consequently , th e negativ e value s calculate d fo r th e PS-PVME blend s sa y nothin g abou t th e stabilit y of th e mixture . 3.5.2
Inverse Gas Chromatography Method
In th e recen t past , gas-liqui d chromatograph y (GLC) ha s receive d genera l recognitio n a s an effective , simpl e techniqu e fo r rapi d measuremen t of poly mer interaction s an d solven t activit y coefficient s n i molte n homopolymer s and thei r mixtures . I t ha s bee n use d n i determinin g suc h propertie s a s th e glas s transitio n temperature , crystallinity , adsorptio n isotherms , heat s of adsorption , surfac e area , interfacia l energy , diffusio n coefficients , comple x equilibri a n i solution , an d curin g processe sn i nonvolatil e thermose t system s [108] . For thes e studies , it s majo r advantage s ar e (i ) th e simplicity , speed , and accurac y wit h whic h a larg e numbe r of system s ca n be investigated , (ii ) th e wid e rang e of easil y controllabl e temperatures , an d (iii ) th e abilit y to wor k at a singl e solutio n concentration . In vie w of thi s unconventiona l usag e of GLC, Guille t [109 ] ha s suggeste d the name "invers e ga s chromatography " becaus e traditiona l GLC deter mines th e propert y of an unknow n sampl en i th e movin g phas e wit h a known stationar y phase , whil e th e invers e metho d determine s th e propert y of th e stationar y phas e wit h th e ai d of a known vaporizabl e solut e n i th e movin g phase . He consider s th e latte r as a molecular-prob e experimen t wher e th e vaporizabl e molecule s ar e designate d prob e molecules . A schemati c diagra m of a ga s chromatograp h appear s n i Fig . 3.36 . I n operation , th e polyme r material , on a preferabl y iner t support ,s i place d n i the colum n maintaine d at a temperatur e whic h s i at leas t 50° C abov e th e syste m Tg fo r glass y materia l an d Tm fo r a crystallizabl e system . A strea m of an iner t carrie r ga s continuousl y passe s throug h th e syste m at a known flow rat e an d unde r a predetermine d pressur e head , whil e th e prob e mole cule s ar e introduce d n i a pulse . The basi c fundamenta l quantit y of ga s chromatograph y s i th e specifi c retentio n volume , define d as th e volum e of carrie r ga s pe r gra m of stationar y phas e require d o t elut e th e prob e molecule . Schematically , th e interactio n of th e mobil e prob e solut e wit h th e stationar y solven t phas e (polymer ) s i illustrate d n i Fig . 3.37 . The enterin g prob e rup -
167
3.5. Ternary-Solution Methods
INJECTION BLOCK
DETECTOR
^—|ΤΠιιιιιιι
SAMPLE MICRO SYRINGE
rlh-
if
GAS SATURATOR Y = ^ j J^ J
PRECISION REGULATOR VALVE BUBBLE FLOW METER
CARRIER GAS (Helium)
Fig. 3.36.
CASE I Alkan e solut e int o alkan e solven t Fig. 3.37.
MERCURY MANOMETER
RECORDER
Schematic of a typical gas chromatographic apparatus.
CASE II Alkan e solut e int o pola r solven t
CASE II I Pola r solut e int o pola r solven t
Representation of the interaction of probe (solute) and stationary phase (solvent).
ture s existin g intermolecula r force s an d simultaneousl y form s ne w ones . Considerin g a prob e o fη segment s an d assumin g tha t al l th e segment s ar e randoml y an d completel y absorbe d by th e stationar y phase ,nnp interaction s would b e gaine d b y th e syste m fo r cas e , I2nnp — np fo r cas e II , an d np fo r cas e III . Not e tha t nnp> 2nnp — np; also , nonpola r probe s n i a pola r sta tionar y phas e hav e a smalle r Vg tha n f i th e stationar y phas e wer e nonpolar . It become s apparent , therefore , tha t on e coul d measur e th e polar , nonpolar , and specifi c interaction s of a substrat e by prope r selectio n of th e prob e mole cules . Furthermore , studie s o f tw o homopolymer s an d thei r blend s coul d yiel d vita l informatio n abou t th e polymer-polyme r interaction .
168
3. Methods for Determining Polymer-Polymer Miscibility
The lin k betwee n invers e chromatographi c measuremen t an d th e inter actio n parameter s o f variou s solutio n theorie ss i th e infinite-dilutio n activit y coefficient , which , fro m analysi s o f th e dynamic s o f invers e chromatography , e n i a polymeri c stationar y is obtainabl e directl y fro m V%data . For a prob phase , th e weight-fractio n infinite-dilutio n activit y coefficien t s i [108 , 109] 0 Ρ {B Vt) (3.33 ) -RT " 0 n n i term s o f ί^ , th e specifi c This equatio n coul d alternativel y be writte retentio n volum e correcte d o t 0°C , wher e VIT = K°/273. 2
(3.34 )
Now , n i statistica l thermodynami c theories , th e prob e activity , au s i generall y writte n a s th e su m of tw o term s :a combinatoria l entrop y an d a noncombinatoria l fre e energ y o f mixin g term . Writte n n i th e Flory-Huggin s approximatio n an d combine d wit h th e chromatographi c expression , Eq. (3.33) , th e interactio n paramete r betwee n th e prob e an d th e stationar y phas e s i give n by [108 , 109 ] Xl2 =
nl RTv 2
M2v2
Pi RT
(3.35 )
In th e newe r equation-of-stat e solutio n theory , th e noncombinatoria l ter m s i furthe r broke n down int o tw o terms : th e equation-of-stat e contribu tio n du e o t th e free-volum e dissimilarit y o f th e prob e an d th e polymer , and th e exchang e energ y ter m whic h reflect s th e energ y involve d when i-i orj - j contact s ar e replace d by i-j contacts .I n th e Flor y approximatio n [110 ] th e newl y define d parameter , χ$2, a counterpar t o f χ 12 base d on condition s o f a hypothetica l liqui d a t 0°K , ca n be writte n n i term s o f Vg [108 , 109 ] : 0 nl RTv * Ρ (Bli )V l 2 (3.36 ) 1Xl2 = ~RT ~ M2v2* g The exchang e energ y paramete r X12 ca n be calculate d fro m χ*2 by usin Flory' s expressio n [109 ]: X*2 —
The developmen t s o fa r concern s th e interactio n o f th e prob e wit h a homopolyme r stationar y phase . The extensio n o t th e cas e o f th e mixe d stationar y phas e consistin g o f tw o hig h polymer s ha s take n tw o forms ,
169
3.5. Ternary-Solution Methods
both arisin g fro m th e Scott-Tomp a ternary-solutio n treatment . The activit y of a solven t (a s φ^-* 0) n i tw o polymer s s i give n by In ax = n I φχ + ^1 - ^ + (χιιΦι
φ
2
+
-
^ φ
3
+ Χ13Φ3 ~ ^ ΧιιΦιΦι^
(3-38 )
In applyin g thi s fo r a mixe d stationar y phas e consistin g of tw o hig h polymer s an d a prob e use d essentiall y at zer o concentration , Patterso n et al. [ I ] l lchos e o t us e th e infinite-dilutio n volume-fractio n activit y coeffi cient . Assumin g tha t rjrj = vjvj9 th e resultin g expressio n s i
(3.39 ) Whe n equate d o t th e correspondin g chromatographi c relation , we hav e Vx = n I
RT(w2v2
+
W3U3 )
-Vx)
(3.40 )
where XiJVt s i symmetrica l an d dependen t onl y on th e natur e of ij regard les s of th e chai n length . The ne w interactio n parameter s χ * ar e similarl y describe d fi th e volum e fraction s ar e replace d by th e segmen t fraction s an d the volume s by th e hard-cor e values . Thes e ar e relate d o t th e exchang e energ y parameter s vi a
where Χη/Si si symmetrica l an d dependen t onl y on th e natur e of ij les s of th e chai n length .
regard
0
TABLE 3.7 Gas Chromatography Results for the Systems Tetracosane-Dioctyl phthalate and Tetracosane-Poly(dimethyl siloxane) Interaction between solute (component 1) and pure stationary phase (component 3) n-• c
DOP
24
Xl2
8
*i2/*i
Solute
60°C
χ 1 0 -2 J cm 60°C
w-Pentane rt-Hexane «-Heptane «-Octane 2-Methylpentane 3-Methylpentane 2,4-Dimethylpentane Cyclohexane Carbon tetrachloride Benzene Toluene
0.32 0.24 0.20 0.17 0.26 0.23 0.26 0.17 0.26 0.51 0.35
4.5 4.6 4.2 3.4 5.0 4.6 5.0 5.4 10.5 23.4 15.5
a
In
8
75°C
χ 10 2 Jem" 75°C
0.32 0.24 0.20 0.17 0.27 0.24 0.26 0.17 0.26 0.48 0.36
4.4 5.0 4.6 3.8 5.9 5.4 5.4 5.9 10.9 23.0 16.3
Interaction between two components (2 and 3) in the stationary phase PDMS
8
8
75°C
χ 10 2 Jem" 75°C
60°C
X 111Sx χ 10 2 Jem" 60° C
0.76 0.67 0.67 0.68 0.69 0.66 0.70 0.48 0.19 0.16
21.2 19.2 18.8 17.6 20.1 19.7 21.3 19.2 6.3 5.4
0.45 0.43 0.45 0.49 0.42 0.41 0.42 0.44 0.42 0.62
12.5 13.4 13.8 13.4 13.0 13.4 13.4 19.2 20.1 31.4
Zl2
2A D O P S 8 va2iiv2 Xl-$I 2 -3 χ 1 0 -2 n-C -
cm 75°C
J cm 75°C
0.86 0.72 0.77 0.87 0.72 0.74 0.77 0.62 0.48 0.43
33.9 25.5 25.5 26.4 26.8 27.6 28.5 28.5 22.2 19.2
PDMS » - c2-4
Va2*iv2
X /s 8 3 χ2321 0 2
cm 60°C
Jem" 60°C
-
1.01 0.48 0.55 0.64 0.57 0.49 0.49 0.42
34.6 11.7 12.1 12.6 15.9 13.0 13.0 10.9
0.37
14.6
Interaction parameters are listed. Reprinted with permission from D . D . Deshpande, D . Patterson, H. P. Schreiber, and C. S. Su, 7, 530 (1974). Copyright by the American Chemical Society.
Macromolecules
171
3.5. Ternary-Solution Methods
Patterso n et al [111 ] applie d thi s formalis m o t th e treatmen t of tw o mixed stationar y phases , namely , tetracosane-diocty l phthalat e an d tetra cosane-poly(dimethy l siloxane) . Tabl e 3. 7 summarize s some of th e results . Withi n th e alkan e series , ver y littl e variatio n s i observe d fo r th e X23 /S2 and Vlx22> /V2 excep t fo r pentane . Thi s si n i lin e wit h theory . However , th e quantitie s ar e significantl y differen t when pola r probe s ar e used , indicatin g tha t th e interaction s involve d migh t no t be correctl y describabl e by th e presen t theory . Suc h variatio n was no t ascribe d o t experimenta l erro r be caus e th e chec k on dat a consistenc y was reasonabl y successful . For instance , /S2 fo r tetracosane-diocty l phthalat e si simila r o t the magnitud e of X23 tha t fo r th e pur e diocty l phthalat e wit h alkan e probes—s o als o fo r tetra cosane-poly(dimethy l siloxane ) a s compare d o t tha t of pur e poly(dimethy l siloxane) . Patterso n [112 ] als o applie d invers e chromatograph y o t th e stud y of thermodynami c interaction s n i polyviny l chloride ) (PVC) plasticize d by di-n-octy l phthalat e (DnOP) . Tabl e 3. 8 contain s V^i2Z jV2 value s fo r PVCDnO P (82:18 ) as affecte d by temperature . The concentratio n dependenc e of thi s quantit y s i represente d n i Fig . 3.3 8 ; eac h dat a poin t si an averag e of the result s fro m fou r rc-alkane probes . Variatio n of th e interactio n param ete r wit h prob e was much mor e eviden t her e tha n n i th e previou s study , and th e author s ascribe d thi s eithe r o t nonrando m mixin g or o t preferentia l solutio n of th e prob e n i on e of th e component s of th e mixe d stationar y phase . Fro m th e compositio n dependenc e of th e interactio n parameter , th e author s conclude d tha t DnOP at lo w concentratio n (<0.25 ) s i miscibl e wit h PVC, bu t immiscibl e when th e volum e fractio n s i highe r tha n 0.55 . Olabisi' s developmen t [113 ] differ s fro m Patterson' s primaril y n i th e TABLE
3.8
Interaction Parameters for the System P V C - D i o c t y l phthalate by Gas Chromatography"
b
y' Λ 23
Probe
110°C
120°C
130°C
H-Heptane «-Octane «-Nonane rc-Decane Toluene Chlorobenzene
-1.20 -1.17 -1.24 -1.63 -0.72 -0.78
-1.04 -1.07 -0.89 -0.66 -0.66 -0.68
-0.81 -0.94 -0.43 -0.14 -0.60 -0.56
α
From C. S. Su, D . Patterson, and H. P. Schreiber, b Polym. Sci. 20, 1025 (1976). J. Appl. Assumes no crystallinity in PVC.
174
3. Methods for Determining Polymer-Polymer Miscibility
1 -2.001 0.0
»-
1 0.2
' 0.6
0.4
1
1
1
0.8
1
1.0
Φ
PVC Fig. 3.38. The concentration dependence of the interaction parameter for the system PVC-dioctyl phthalate as measured by inverse gas chromatography. [From C. S. Su, D . Patter son, and H. P. Schreiber, J. Appl. Polym. Sci. 20, 1025 (1976).]
leve l o f assumption s made . For polymer s wit h rathe r hig h degree s o f poly r asmal l enoug h prob e suc h tha t r ~ 1 [114] , rjr ~ 0 , merizatio n an d fo x 2 and rjr3 ~ 0 2 F ry 1 Ï23 = (*23)Tomp a = ^ ^ ° - ^ O k s Wy (3-42 ) '2 '2 Whe n thes e ar e substitute d int o Eq . (3.36) , th e infinite-dilutio n weight fractio n activit y coefficien t s i [113 ] 1 η Ω ?( )2 3 =\n\yj{w2v2
+ w3i>2)]
+ Xi3 >3) - ΧΙ3Φ2Φ3 (3.43 ) ί22 Whe n equate d o t th e correspondin g chromatographi c expression , we have , afte r rearrangemen t [114] , +
(1. 0 +χ φ
1 Χ12Φ2 + Χ13Ψ3 ~Χ23Φ2Φ3 = in ^
ρ^τ/τ^
- ë ( B u - n )
~
(3.44 )
1
173
3.5. Ternary-Solution Methods
χ12 an d χ13 ar e determine d separatel y fro m th e specifi c retentio n volum e of th e prob e wit h th e homopolymer s as prescribe d by Eq. (3.35 ) an d χ23 s i unambiguousl y determine d fro m th e specifi c retentio n volum e of th e prob e a n y phas ea erusin in th e mixe d stationar g Eq. (3.44) .f I th e hard-cor e quantitie s ar e obtained . Th e exchang e energ y paramete r χ^/ s used , χΐ > X*3> d X*3 2 are calculate d fro m an expressio n simila r o t Eq. (3.41 ) an d estimate d value s of th e segmenta l surfac e are a rati o sjsjf By selectin g prob e molecule s base d on th e relativ e magnitud e of thei r dipol e moments , polarizabilities , an d hydrogen-bondin g capabilities . Olabis i [113 ] investigate d fou r type s of polyme r interactions : (i ) proton-accepto r strengt h wit h chlorofor m an d ethano l a s probe s (ii ) proton-dono r strengt h wit h methy l ethy l keton e an d pyridin e as probe s (iii ) pola r strengt h wit h acetonitril e an d fluorobenzene as probe s (iv ) nonpola r strengt h wit h hexan e an d carbo n tetrachlorid e a s probe s Recognizin g tha t no suc h clear-cu t divisio n exist s an d tha t associatio n complexe s stabilize d by electroni c an d electrostati c force s do exis t eve n fo r nonpola r molecules , χ0, χ* , an d X wer e propose d merel y a s relativ e scale s 0 u of interactio n strength s betwee n polymers . The dat a obtaine d fo r poly(e caprolactone) , polyviny l chloride) , an d th e mixtur e appea r n i Tabl e 3.9 . In calculatin g th e exchang e energ y parameter , th e segmenta l surfac e are a rati o sJsj was compute d fro m th e grou p contributio n forma t of Bond i [16] . Based on th e variou s interactio n quantitie s obtaine d wit h chlorofor m a s a prob e an d th e fac t tha t PCL-PVC mixture s ar e known o t be stabl e ove r th e TABLE 3.9 Interaction Parameters for the System P V C - P C L at 120°C Using Gas Chromatography" PCL
X*2 Solute Ethanol Chloroform Methyl ethyl ketone Pyridine Acetonitrile Fluorobenzene Carbon tetrachloride Hexane
a
PVC X
i2
3
X*2
(cal/cm ) 1.15 -0.20 0.533 0.175 1.11 0.127 0.391 1.24
21.4 -4.20 2.75 0.239 19.3 -1.61 1.06 7.89
P C L - P V C (50:50)
3
*12
X23
X23
2.35 1.38 1.00 0.939 1.85 1.25 1.49 1.76
40.6 16.6 4.41 7.34 29.3 8.82 10.2 8.6
Reprinted with permission from Olabisi, Macromolecules American Chemical Society.
* 2 3
3
(cal/cm )
(cal/cm ) 0.21 0.33 -0.10 -0.17 -0.40 0.24 1.07 1.16
-0.13 -0.09 -0.61 -0.47 -0.98 -0.15 0.63 0.60
-2.8 -2.4 -6.4 -5.4 -9.3 -2.9 3.0 2.8
8, 316 (1975). Copyright by the
174
3. Methods for Determining Polymer-Polymer Miscibility
whole concentratio n range ,t i was note d tha t χ* d χ23 presen t a clea r 23 an pictur e of PCL-PVC miscibilit y an d tha t complementar y dissimilarit y s i responsibl e fo r th e observe d miscibility . Als o observe d s i th e fac t tha t pola r probe s yiel d positiv e interactio n indice s representativ e of noncomplexin g contributions , wherea s specificall y interactin g probe s sometime s giv e lo w or negativ e values . The variatio n of th e polymer-polyme r interactio n wit h the prob e molecule s was ascribe d o t nonrando m absorptio n of th e prob e n i the mixe d stationar y phas e as wel l a s o t preferentia l solutio n of th e probe s in on e of th e constituent s of th e blen d [113] . The foregoin g chromatographi c metho d ha s succeeded , by an d large ,n i describin g th e miscibilit y stat e of solvent-fre e polyme r mixture s by usin g the solven t at essentiall y zer o concentration . I ts i capabl e of providin g th e interactio n paramete r at an y give n conditio n an d may be abl e o t provid e some subtl e detail s of th e compositio n dependenc e of th e fre e energ y s o paramoun t n i definin g th e complet e stat e of thermodynami c stabilit y of polyme r mixtures . The majo r uncertaint y n i th e accurac y of thi s metho d can be foun d n i th e way chromatographi c column s ar e prepared . Becaus e th e polyme r mixtur e must first be dissolve d n i a mutua l solven t prio r o t deposi tio n on th e iner t support , th e metho d woul d fai l wher e th e mutual-solven t method fails . The preparatio n of column s fo r system s wit h th e sor t of close d miscibilit y loo p discusse d earlie r woul d introduc e severa l uncertaintie s n i the result . Furthermore , recen t development s [88 ]n i th e field of polymer polyme r miscibilit y sho w tha t rathe r hig h accurac y s i neede d fo r prope r definitio n of th e stat e of thermodynami c stability , an d t is i doubtfu l tha t the invers e GLC ca n provid e tha t leve l of significance. And, fro m a practica l standpoint , th e column s ar e extremel y tim e consumin g o t prepar e [114] . Nonetheless , th e invers e GLC metho d ha s bee n applie d successfull y o t the descriptio n of polyme r miscibilit y n i th e liqui d state . I t ha s als o bee n used n i studyin g th e concentratio n dependenc e of th e glas s transitio n tem peratur e of polyme r blend s [108] . Becaus e change s of stat e do occu r durin g sampl e preparation , th e applicabilit y of thi s metho d may be limite d o t sys tems whos e miscibilit y ga p s i known beforehand .
3.6
3.6.1
MISCELLANEOUS
Rheological Properties
a. Binary Studies. The determinatio n of polymer-polyme r miscibilit y by rheologica l measurement s on binar y system s s i rar e an d indee d may be difficul t o t justify . But becaus e th e morpholog y of a two-phas e syste m ca n
3.6. Miscellaneous
175
chang e wit h shearin g rate , wherea s th e structur e of a solubl e syste m cannot , it s i expecte d tha t th e shea r viscosit y functio n of solubl e system s wil l chang e monotonicall y wit h composition . Deviatio n fro m monoton y ca n be take n as positiv e evidenc e of tw o phases . Some example s of th e us e of mel t viscosit y as an indicato r of miscibilit y are available . Kongaro v an d Bartene v [115 ] foun d a monotoni e chang e of the viscosit y functio n wit h compositio n fo r th e syste m rβ-l,4-polyisoprenenatura l rubber , bu t completel y unpredictabl e behavio r fo r natura l rubber nitril e rubber . The syste m natura l rubber-polybutadien e responde d n i an intermediat e fashion . Similar , bu t incomplete , result s wer e obtaine d by Giniyatulli n et al. [116 ] for poly(tetrahydrofuran)-base d urethane s mixe d wit h PVC. Linea r poly urethan e wit h PVC yielde d mel t viscositie s whic h varie d n i a mor e regula r fashio n wit h concentratio n tha n thos e of branche d polyurethane s wit h PVC. In no cas e was th e variatio n completel y monotonie , indicatin g limite d solu . bilit y [117] The viscoelasti c propertie s of th e PPO-P S syste m hav e bee n use d o t demonstrat e it s miscibilit y at a leve l correspondin g o t entanglemen t spacin g [118] . Dynami c measurement s at temperature s abov e th e glas s transitio n and extendin g int o th e flowregio n wer e foun d o t chang e more smoothl y wit h compositio n tha n th e sam e measurement s usin g a mixtur e of tw o PS sample s of differen t molecula r weight s [119] . Viscositie s of th e forme r mix tures , correcte d o t th e sam e fre e volum e o t accoun t fo r th e stead y increas e of Tg fo r th e mixtures , wer e foun d o t chang e smoothl y wit h composition . Thi s behavio r was n i accor d wit h tha t predicted , base d on an averagin g of bot h the weigh t averag e molecula r weight s an d entanglemen t molecula r weights . Simila r conclusion s concernin g smoot h change s wit h compositio n wer e reache d by Schmid t [120 ] usin g blend s of PPO wit h high-impac t PS (HIPS) . By measurin g dynami c viscoelasti c propertie s an d steady-shea r propertie s over a wid e rang e of temperature s an d frequencie s fo r HIPS , PPO, an d a 65/3 5 HIPS-PP O blend , t i was conclude d tha t th e blen d was intimatel y mixed on a segmenta l level . A nove l rheologica l techniqu e fo r th e detectio n of tw o phase s n i polyme r . Thi s mixture s ha s recentl y bee n suggeste d by Hubbe l an d Coope r [121] method presume s tha t th e segmenta l orientatio n of th e component s n i a miscibl e syste m wil l be th e same , wherea s th e segmenta l orientatio n of th e component s n i two-phas e mixture s wil l diffe r significantly . Whil e applie d onl y o t solid s by Hubbe l an d Cooper , th e techniqu e shoul d be equall y ap plicabl e n i an y viscoelasti c region . Result s wit h th e miscibl e system s nitro cellulose-PC L an d PVC-PCL confirme d th e presumption s of th e metho d in tha t th e orientatio n function s fo r bot h component s wer e similarl y relate d to th e strai n applie d o t th e sample .
176
3. Methods for Determining Polymer-Polymer Miscibility
b. Ternary Studies {Polymer-Polymer-Solvent). The dependenc e of in r weigh t ca n be use d o t estimat e th e interac trinsi c viscosit y [η] on molecula a th e Stockmayer-Fixma n relationshi p [122 ] tio n paramete r vi 2 2 [if] = K& M^ + 0.036Φ[(1 - 2 x1 )2M ^ ] M 2/ p2 (3.45 )
2 4k constan s i th e Mark-Houwin t fo r a Θ-solvent , Φs i a universa l where constan t o f abou t 3. 1 χ 1 0 ,M2 s i th e molecula r weigh t o f th e polymer , χ12 s i th e interactio n paramete r fo r solven t 1 wit h polyme r 2, Vx s i th e mola r volume o f solvent , p2 s i th e densit y o f th e polymer , an dΝ s i Avagadro' s number . Thus ,t is i expecte d tha t viscosity , reflectin g th e siz e o f polyme r coil , wil l be influence d by th e thermodynamic s o f thes e systems . Favorabl e inter action s lea d o t highe r intrinsi c viscositie s du e o t expansio n o f th e polyme r coi l wit h solvent . For ternar y systems , t is i no t expecte d tha t [η] wil l chang e much wit h change s n i interaction s betwee n th e tw o polymer s becaus e o f th e hig h dilu tion , bu t thi s doe s no t alway s appea r o t be th e case . Williamso n an d Wrigh t [123 ] foun d larg e positiv e deviation s fro m an y averag e o f th e components ' intrinsi c viscositie s fo r system s o f highl y interactin g polymer s suc h a s PEO-poly(viny l alcohol ) an d poly(acryli c acid)-poly(viny l alcohol) . The behavio r o f th e latte r s i show n n i Fig . 3.39 . Apparentl y thes e system s con sis t o f aggregate s o f severa l molecules . The discrepancie s betwee n averag e and observe d intrinsi c viscosit y fo r most system s ar e ver y smal l [124 , 125] , and th e metho d s i no t recommende d fo r determinin g polymer-polyme r miscibility . A secon d typ e o f experiment , lendin g itsel f o t analysi s b y Eq. (3.45) , ha s been performe d [103] .n I thi s th e intrinsi c viscosit y of polyme r 2s i determine d
1 Οι 0
I 0.2
I
1
1
0.4
0.6
0.8
1.0
1.2
Concentration, g/IOOml Fig. 3.39. Correlations of dilute solution viscosities of poly(vinyl alcohol) (PVA), poly(acrylic acid) ( P A A ) , and their mixture ( χ χ ), showing large deviation of the latter result from an average behavior (---). [From G. R. Williamson and B. Wright, J. Polym. Sci., Part A 3, 3885 (1965).]
1
3.6. Miscellaneous
177
in a solven t containin g aconstant concentratio n of polyme r 3. The valu e thus obtaine d s i relate d o t 23 miscibility . To obtai n χ23 , th e intrinsi c viscosit y of polyme r 2 coul d be determine d n i thi s manne r usin g severa l polyme r 3 solution s of differen t concentrations . Extrapolatio n o t a polyme r 3 concentratio n of 1, followe d by a Stockmayer-Fixma n plot , woul d yiel d χ2.3 Unfortunately , thi s woul d no t be an accurat e metho d becaus e th e secon d ter m of th e Stockmayer-Fixma n relationshi p woul d be small , du e o t th e larg e valu e of Vx a s modifie d by th e presenc e of polyme r 3. Al l of thes e tech nique s depen d heavil y on th e validit y of th e Stockmayer-Fixma n relation ship , whic h s in i conflic t wit h othe r theorie s [122] . A thir d typ e of solutio n viscosit y experimen t ha s bee n more widel y used . In thi s experimen t th e Huggin s constan t Κ as define d by Eq. (3.46 ) belo w 2 Vsjc = [η] + Kc[n] (3.46 ) 2 is examine d [125] . Alternatively , th e grou p b = Κ[η] ca n be use d [124] . Morawet z [122 ] ha s show n tha t interactin g polyme r system s n i thi s experi ment may sho w ver y hig h value s of b compare d wit h th e averag e fo r eac h polymer . Bτhmer et al. [124 ] hav e correlate d directl y th e deviatio n of b fro m the averag e valu e wit h th e polymer-polyme r interactio n parameter . The y conside r thi s more promisin g tha n deviation s n i K, whic h varie s little , fo r determinin g polymer-polyme r interactions . Thi s method , an d othe r adapta tion s [63 , 103 , 123 , 125-129 ] of th e Krigbau m an d Wall treatmen t [130 ] ar e empirica ln i natur e an d shoul d be use d wit h caution . As n i an y ternar y experiment ,t i shoul d be born en i min d tha t a dependenc e on solvent s i likel y an d ther e s i no certai n metho d of eliminatin g thi s de pendence , eve n at hig h solut e concentration . As a minimu m precaution , th e experimen t shoul d be repeate d n i a wid e variet y of solvents . 3.6.2
Volume of Mixing
Blend s of immiscibl e polymer s an d phase-separate d bloc k copolymer s ar e generall y expecte d o t exhibi t no volumetri c deviatio n ove r tha t calculate d utilizin g an additivit y relationshi p [131-133] . Wit h miscibl e polyme r blends , many experimenta l case s exis t showin g tha t th e specifi c volume s ar e no t additiv e [26 , 106 , 134 , 135] . Generally , miscible-blen d densitie s ar e highe r tha n thos e calculate d fro m volumetri c additivit y relationships , especiall y where specifi c interaction s exist . To make vali d comparison s fo r th e actua l stat e n i whic h th e blen d exist s (i.e. , glas s or rubber) , th e calculate d specifi c volum e fo r th e blen d must employ pure-componen t volume s fo r th e sam e state .I n many experimenta l cases , suc h as a rubber y polyme r blende d wit h a glass y polymer , thi s wil l requir e extrapolate d values , as show n n i Fig . 3.40 . Thus , th e specifi c volum e
178
3. Methods for Determining Polymer-Polymer Miscibility
Temperature Fig. 3.40. Generalized volume-temperature response for polymers with different glass transition temperatures, showing extrapolation procedure for blends.
for th e rubber y polyme r A shoul d be th e extrapolate d valu e of th e volume temperatur e dat a fro m th e glass y stat e fi th e blen d s in i th e glass y state . Con versely , fi th e blen d Tg s i belo w th e testin g temperature , extrapolatio n of th e specifi c volum e of th e glass y polyme r Β fro m th e rubber y stat e o t th e tes t temperatur e s i require d fo r determinatio n of th e specifi c volum e o t be em ploye d n i th e calculations . Miscibl e blend s of a rubber y an d a glass y polyme r would be expecte d o t exhibi t nonadditiv e specifi c volume s n i th e regio n betwee n th e Tg value s of th e respectiv e components . Obviously , volum e chang e (i.e. , densification ) shoul d no t be presente d as evidenc e of polymer polyme r miscibilit y or interactio n betwee n th e component s unles s thi s extrapolatio n s i performed . Studie s by Kwei et al. [106 ] wit h polystyrene-poly(viny l methy l ether ) blend s reveale d significan t densification , a s show n n i Tabl e 3.10 . Thes e result s wer e interprete d as bein g additiona l evidenc e fo r extensiv e mixin g of the components . Poly(vinyliden e fluoride)-poly(methy l methacrylate ) blend s exhibite d negativ e volum e change s at hig h PVF2 contents , bu t positiv e value s fo r PMMA-rich blend s [26] . However , extrapolatio n of th e pure-componen t densitie s o t th e actua l stat e of th e blen d was no t attempted , whic h may explai n thes e results . Some wor k ha s bee n directe d towar d applicatio n of th e free-volum e con cept o t immiscibl e polyme r mixtures . Whil e no t directl y relate d o t miscibl e polyme r systems , thes e studie s do indee d relat e o t volum e chang e n i polyme r
3.6. Miscellaneous
179
TABLE 3.10
a
Densities of Mixtures of Polystyrene and Poly(vinyl methyl ether) ρ (calcd)
τ* Wt% P V M E
a
0 10.00 35.06 45.30 70.00 100
Pj22
1.0505 1.0562 1.0661 1.0615 1.0525 1.0404
(°Q 102 80 18 -18 -23 -29
PS and PVME densities at 23°
1.0495 1.0470 1.0459 1.0434
Extrapolated PVME density
Extrapolated PS density
1.0508 1.0654 1.0614 1.0520
Reprinted with permission from T. K. Kwei, T. Nishi, and R. F. Roberts, Macro molecules 7, 667 (1974). Copyright by the American Chemical Society.
mixture s an d may be of importanc e n i understandin g system s of partia l miscibility . Lipato v an d co-worker s [136-139 ] hav e bee n primar y con tributor sn i thi s area . Startin g wit h th e Simha-Boye r relationshi p (AocTg = k) [140] , a verificatio n of th e followin g modificatio n Δα27^2 = k2$2 (3.47 ) was experimentall y attempted . Usin g blend s whic h exhibite d 7^' s of th e respectiv e component s (thu s indicatin g negligibl e phas e mixing) , dynami c dilatometr y an d isotherma l compressio n dat a wer e obtained . Whil e th e pure-componen t Δα Tg dat a agree d reasonabl y wel l wit h th e universa l con stan t of th e Simha-Boye r relationshi p (k = 0.113) , value s of th e expressio n Αοί^/φι wer e consistentl y highe r tha n th e predicte d values . Lipato v an d Vilenski i [138 ] conclude d tha t thi s positiv e deviatio n implie d tha t th e densit y of molecula r packin g n i th e phase-separate d mixtur e was lowe r tha n n i th e pure state , indicatin g highe r molecula r mobilit y or fre e volume . Thi s exces s fre e volum e was propose d o t be associate d wit h th e interphas e region . Simila r investigation s may be of interes t fo r system s exhibitin g partia l miscibility . Δ « ι ^ι = ^ ι 0,ι
3.6.3
Heat of Mixing by Calorimetry
Calorimetr y s i on e of th e most direc t method s of determinin g thermody namic parameters . At constan t pressure , th e hea t release d by a mixin g proces s is proportiona lo t th e enthalp y of mixin g (AH) whil e th e variatio n of enthalp y
180
3. Methods for Determining Polymer-Polymer Miscibility
wit h temperatur e yield s th e fre e energ y (AG) of mixing . The relevan t rela tionshi p s i d(AH/T) d(i/T)
= AG
(3.48 )
|P,JV
For rathe r obviou s reasons , no on e ha s reporte d a calorimetri c experi ment involvin g th e direc t mixin g of tw o polymeri c components , althoug h liqui d oligomer s hav e bee n successfull y employe d [68] . Al l determination s have use d a solven t o t ai d th e mixin g process . The thermodynami c cycl e used o t calculat e AH s i polyme r 1 + polyme r 2
12 mixtur e
AH 2
solutio n 1 + solutio n 2
M
(3.49 )
solutio n 12
AH = AH, + AH2 + AH3 -
AH4
A n equivalent , simplifie d cycl e s i polyme r 1 + polyme r 2 ΔΗ
1 2
12 mixtur e /
(3.50 )
* solutio n 12 AH = AH12 Δ Η4 where AH12 s i determine d usin g a dr y blen d of th e appropriat e rati o of polyme r 1o t polyme r 2. This cycl e was use d as earl y as 195 8 by Struminski i an d Slonimski i [141] , who foun d a genera l agreemen t betwee n ternary-phas e behavio r an d hea t of mixing . The y wer e als o th e first o t recogniz e th e difficultie s involve d wit h calorimetri c measurement s on glass y polymers . Becaus e th e glas s s i no t a thermodynami c state , th e measure d heat s depen d on ho w th e glas s s i prepared . Ichiar a an d co-worker s [142 , 143 ] use d simila r calorimetri c technique s an d reporte d simila r problem s wit h variatio n du e o t preparatio n of glass y samples . Thei r recommendatio n was tha t calorimetri c technique s be con finedo t rubber y samples . Zvere v et al. [144 ] experience d difficultie s wit h crystallinit y difference s betwee n component s an d mixtures . I t s i eviden t tha t crystallinit y change s coul d lea d o t sever e error s n i th e calculate d hea t of mixing . Heat of mixin g of selecte d pola r polymer sn i th e regio n of phas e separatio n
3.6. Miscellaneous
181
can sho w unusua l behavio r wit h concentration , accordin g o t th e result s of Tager an d co-worker s [145 , 146] .I n th e compositio n regio n correspondin g to tw o phases , th e hea t of mixin g was foun d o t chang e signs , a behavio r als o cite d by Patterso n [147 ] fo r hydrocarbons . Novakov et al. [148 ] hav e attempte d o t correlat e "compatibility " wit h th e heat effec t of ste p 4n i Eq. (3.49) . Thi s migh t be possibl e fi extrapolatio n o t 100% solid s wer e performed , bu t otherwis e t i appear s o t be an inadequat e assumptio n becaus e of th e influenc e of solven t on th e process . N o recor d ha s bee n foun d of an attemp t o t measur e th e temperatur e dependenc e of th e hea t of mixin g o t deriv e th e fre e energ y of mixing . Thi ss i not to o surprisin g n i vie w of th e difficult y of th e measurement s an d th e com poundin g of erro r on takin g derivatives . However , th e fre e energ y of mixin g and, o t some extent , it s component s hav e bee n determine d wit h th e ai d of absorptio n studies . Tage r an d co-worker s [145 , 146 ] an d Kwei et al. [106 , 149] hav e use d thi s technique . Kweiet al. di d not attemp to t solv e fo r th e component s of th e fre e energy , the y simpl y solve d fo r th e interactio n paramete r fo r th e tw o polymer s (com ponent s 2 an d 3) usin g th e traditiona l equation s of regula r solutio n theory . The sequenc e of relationship s s i 0 a, = PJP, (3.51 ) Αμ1=ΚΤ\ηα1
2
(3.52 )
= n I φι + φ2 + Χί2φ2 polyme r 2-solven t 1 = n I φί + φ3 + χί3φ3 polyme r 3-solven t 1 = n I φΧ + 1 ( - φ,) + (χ12 φ2 + χί3 φ3)(\ - Φ,) — Ίίι^ΦιΦζ polyme r 2-polyme r 3-solven t 1 where a, s i th e activity , P, s i th e partia l pressur e of th e solvent , P,° s i th e ful l vapo r pressur e of th e solvent , Αμι s i th e partia l mola r fre e energ y (chemica l potential ) of th e solvent ,χί2 an d χ13 ar e th e interactio n parameter s for polyme r wit h solven t (base d on solven t volume) , an d χ23 s i th e interactio n M o base paramete r fo r th e tw o polymer s (als d on solven t volume) . The resul t might be use d o t approximat e AH throug h th e relationshi p M 3 AM /V = ΡΤχ23 φ2φ3/νι (cal/cm ) (3.53 ) where v, s i th e mola r volum e of th e solvent . The approac h of Tage r an d co-worker s [145 ]o t th e analysi s of absorptio n dat a fo r mixe d polyme r system s follow s th e mor e genera l thermodynami c route . The thermodynami c quantitie s ar e give n on a convenien t weigh t basis ,
182
3. Methods for Determining Polymer-Polymer Miscibility
the subscrip t 2 referrin g o t eithe r a polymeri c componen t or th e polyme r mixture . The serie s of equation s use d s i Αμ1 =
(i/M1)RTln(Pl/P1°)
(cal/ g o f solvent )
(3.54 )
(wjw2) ά{Αμγ) — ΟΟ M Ag = vv Αμ1 + w2 Δμ2 xΜ M AG = Δ#/νν 2
(cal/ g o f polymer )
(3.55 )
(cal/ g o f solution )
(3.56 )
(cal/ g o f polymer )
(3.57 )
where Mx s i th e molecula r weigh t of M th e solvent , w1 an d w2 ar e weigh t frac M tion s of solven t an d polymer , an d Ag s i th e averag e fre e energ y of mixing . The limi t ofAg /w2 a sw2 goe so t zer o s i th e fre e energ y of mixin g th e polyme r (or polyme r mixture ) wit h a n infinit e amoun t of solvent . Becaus e th e absorp tio n experimen t canno t easil y approac h thi s limit ,M th e resul ts i ver y dependen t on th e assumptio n concernin g th e shap e oM f th e Ag (w2) relationshi p a t hig h solven t content . The limitin g value s fo rAG , equa lo t AG, fo r bot h polymeri c component s an d aW1\W2 mixtur e of th e component s may be combine d usin g th e relationshi p AG = WXAGY + W2AG2 - AG4 (3.58 ) where th e subscript s refe r o t th e step s of th e thermodynami c cycl e n i Eq. (3.49) . The valu e ofAG3 s i zer o becaus e of th e infinit e dilutio n of th e solutes . The enthalp y of mixin g may be calculate d fro m th e temperatur e variatio n of AG, usin g th e analo g of Eq. (3.48) . Qualitatively , th e absorptio n isotherm s fo r mixture s of lo w miscibilit y fal l n i a regula r fashio n betwee n th e isotherm s fo r th e pur e components , whil e th e isotherm s fo r highl y miscibl e system s fal l belo w thos e of th e com ponents . Thus , a n examinatio n of th e isotherm s ca n provid e a qualitativ e evaluatio n of th e fre e energ y functio n fo r th e tw o components . 3.6.4
Melting Point Depression
The additio n of lo w molecula r weigh t solubl e compound s o t crystallin e polymer s result sn i a meltin g poin t depression . The meltin g poin t depressio n in thi s cas e ca n be determine d by th e expressio n 1 2 l K - Φ2) ~ X i (l ~ Φ2) } (3.59 ) 2 m m AM V 2 Y where χί2 s i th e interactio n parameter , Tm th e experimenta l meltin g point , Tm° th e equilibriu m meltin g point ,AH2 th e hea t o f fusio n o f 100 % crystallin e polyme r pe r mol e o f repea t unit , Vx th e mola r volum e o f diluent , V2 th e Τl
-
= ^fV
183
3.6. Miscellaneous
molar volum e of polyme r repea t unit , an d φ2 th e volum e fractio n of crystal lin e polymer . Meltin g poin t depressio n dat a fo r solute-polyme r blend s si an accepte d metho d fo r th e determinatio n of th e hea t of fusio n fo r th e crystal lin e portio n of semicrystallin e polymers . Calorimetri c dat a of th e polyme r yiel d AHf; thus , wit h th e AH2 dat a of th e solute-polyme r blen d fro m Eq. (3.59) , th e degre e of crystallinit y ca n be determined . In polymer-polyme r blend s n i whic h on e componen t s i crystalline , melt ing poin t depression s ar e als o observed . Example s includ e poly(e-capro lactone)-poly(viny l chloride ) [150] , isotacti c polystyrene-PP O [151] , an d poly(vinyliden e fluoride)-poly(methyl methacrylate ) [152 , 153] . The utilit y of th e meltin g poin t depressio n o t calculat e th e interactio n paramete r was demonstrate d by Nish i et al. [152 , 153] . Thi s method , whic h provide s fo r calculatio n of χ1,2 ha s definit e importanc e an d wil l be sum marize d here . The genera l equatio n fo r meltin g poin t depressio n s i 1 1Π 2 1 1 RV7 Φΐ , ( i l , / . . .. , ,2 m m m ^ - - - ( -1 < / > 2 ) + Χ ΐ 2 ( 1- < / > 2 ) Tm Tm° ΑΗ2νγ \ 2 \ m2 (3.60 ) For polyme r mixtures , mr an d m2 (th e degre e of polymerizatio n fo r constit uent s 1 an d 2 ) ar e ver y large , thu s l Ψ m
~ Ψ*
l
= ~
m
6)1 -
^
·
AH
2 Vl Equatio n (3.61 ) indicate s tha t a negativ e χ12 wil l yiel d a meltin g poin t depressio n a s observe d fo r experimenta l system s previousl y cited . Wit h a positiv e interactio n parameter , th e theor y predict s tha t a meltin g poin t elevatio n woul d result ,a s pointe d ou t by Nish i an d Wang [152] . Not e tha t a positiv e χ12 wil l most probabl y resul t n i phas e separatio n du e o t th e un favorabl e thermodynami c situatio n fo r hig h molecula r weigh t polyme r mixtures . In Eq. (3.61) , χ12 an d AH2, presen t as a ratio , canno t be determine d simultaneousl y fro m calorimetri c measurements . n I orde r o t alleviat e thi s experimenta l problem , Nish i an d Wang suggeste d th e followin g approach : The interactio n paramete r χί2 was assume d o t be of th e for m χ12 = BVJRT (3.62 ) where Β si th e polymer-polyme r interactio n energ y density . Equatio n (3.61 ) the n reduce s o t 1 Γ1 Φι \Tm
1 Tm °\
Βν2φ1 ~ AH2Tm
)
184
3. Methods for Determining Polymer-Polymer Miscibility
Recastin g th e dat a n i th e for m of variable s equa l o t (1/T d m - 1/Τ„°)/φ1 an JTm allow sΒ o t be calculate d fro m th e slop e of a plo t of thes e variables ; the n χί2 ca n be determined . Thi s procedur e allow s on e o t averag e experi menta l dat a graphically . Not e tha t calculatio n of χί2 fro m dat a on a singl e blen d s i possibl e (wit h Tm° an d AH2 predetermined) , bu t no t a s accurate . This analysi s indicate s tha t a meltin g poin t depressio n of a crystallin e polyme rn i a polyme r blen d implie s miscibilit y an d allow s fo r th e calculatio n of th e interactio n parameter . Some value s cite d ar e χ12 = —0.29 5 (160°C) for poly(vinyliden e fluoride)-poly(methyl methacrylate ) mixture s [152 ] an d Χα = —0.3 4 (160°C ) fo r poly(vinyliden e fluoride)-poly(ethyl methacrylate ) mixture s [153] .I n usin g th e analysi s fo r meltin g poin t depressio n o t predic t χ1,2 t i must be recognize d tha t a miscibl e polymeri c diluen tn i a crystallin e polyme r ca n alte r th e spherulit e dimensions . As th e meltin g poin t s i in fluenced by th e spherulit e size , correction s fo r thi s variabl e wil l be necessar y to obtai n more accurat e χί2 values . 3.6.5
Nuclear Magnetic Resonance
Proto n nmr experiment s on polymer s ar e generall y confine d o t studyin g the spin-spi n an d spin-lattic e relaxatio n processe s as a functio n of tem peratur e an d compositio n [154] . By convention , th e latte r s i characterize d by a relaxatio n tim e 7i whil e th e spin-spi n relaxatio n tim e s i calle d T2. As wit h mechanica l measurements , simple r result s ar e expecte d wit h one-phas e tha n wit h two-phas e mixtures . But nmr ha s an advantag e ove r mechanica l measurement sn i tha t th e signa l shoul d be independen t of th e shap e an d inter connectivit y (bu t no t th e size ) of th e phase s n i a two-phas e mixture . Thi s allow s on e o t decompos e a multi-tim e relaxatio n proces s an d analyz e th e phase s thereby . The magnitude s of Tx an d T2 ar e influence d by molecula r motions , an d the change s wit h temperatur e ca n be analyze d n i term s of th e onse t of suc h motions . The resultin g Tx versu s temperatur e curv e look s much lik e inverte d mechanica l los s response , whil e th e T2 versu s temperatur e curv e s i quit e reminiscen t of an inverte d modulu s response . Althoug h th e origin s of th e changes wit h temperatur e of bot h mechanica l an d nmr response s ar e th e same, th e strength s or intensit y of th e change s may be quit e differen t wit h 45Also the tw o methods . , th e equivalen t8frequenc y of th e nmr experimen ts i quit e high : ~ 10· Hz fo r T2 an d - 1 0 Hz fo r Τγ. When bot h mechanica l and nmr method s do giv e informatio n on a molecula r motion , th e agree ment s i quit e good . Nuclea r magneti c resonance , as ha s bee n mentioned , ha s a particula r advantag e n i two-phas e systems . Her e tw o time s ar e ofte n resolvable , on e for eac h phase . Thi s techniqu e ha s bee n applie d successfull y o t crystallin e
185
3.6. Miscellaneous
Log
φ'amorphous ζ Time
Fig. 3.41. Schematic of the decay of signal strength after a 90° pulse, showing the extraction of spin-spin relaxation times (7^) for the rigid, crystalline phase and the flexible, amorphous phase.
system s wher e T2 fo r th e proton s n i th e amorphou s phas e s i much greate r tha n tha t fo r th e proton sn i th e crystallin e phase . A doubl e exponentia l deca y of inductio n signal , illustrate d n i Fig . 3.41 ,s i ideall y observed . The relativ e signa l strengt h correspondin g o t thes e tw o processe s reveal s th e crystallinit y of th e sample . The sam e effec t occur s n i glass-rubbe r phas e mixture s fi th e 7^' s ar e sufficientl y fa r apart . The r 2's of a glass-crystallin e mixtur e ar e to o clos e o t be resolved . In quasi-binar y polyme r mixture s th e T2 relaxatio n ha s bee n analyze d in term s of th e tota l proto n conten t of eac h phase . One s i abl e o t determin e the relativ e amount s of eac h phas e f i th e component s hav e abou t th e sam e volume concentratio n of protons . Analyzin g fo r th e compositio n of th e phase s canno t be don e withou t an assumptio n abou t th e additivit y of th e pure components ' relaxatio n times ; however , thi s proble m ha s bee n ap . Figur e 3.4 2 show s th e decompositio n process , usin g linea r proache d [106] additivit y of relaxatio n time s fo r illustration . Perhap s th e most complet e applicatio n of th e nmr metho d o t blend s in volve s th e PS-poly(viny l methy l ether ) (PVME) system . Usin g a 50:5 0 ratio , Kwei et al. [106 ] foun d multipl e Γ/ s aroun d 150°C , th e temperatur e at whic h th e syste m become s opaque , bu t detecte d multipl e T2s at tempera ture s as lo w as 25°C . Thi ss in i accordanc e wit h th e freedo m of T2 fro m spi n diffusion , whic h tend s o t merg e Γ/ s of closel y associate d regions . Thus , T2 detect s region s of relativel y smal l siz e containin g nearl y pur e material . The author s propose d tha t thes e region s ar e th e natura l resul t of geometrica l
186
3 . Methods for Determining Polymer-Polymer Miscibility
Time Fig. 3.42. Illustration of an analysis of the two phases in a binary blend using linear additivity of the r's for each component. The pure components must have different r's, as illus 2 2 trated by the dashed lines. The relative amounts of each phase can be deduced from the jy-intercept of straight-line fit to the long-time decay.
constraint sn i polyme r systems . The reaso n fo r th e disappearanc e of multipl e ^ 's belo w 25° C was no t explained . Using Τγ o t follo w phas e separatio n upo n annealin g th e sam e system , Nishiet al. [149 ] foun d tha t th e volum e portio n of eac h phas e remaine d nearl y constan t whil e th e compositio n change d graduall y wit h time , approachin g tha t of th e pur e components . Thi s behavior , expecte d fo r spinoda l decom positio n (se e Sectio n 2.2.3) ,s i show n n i Fig . 3.43 . Becaus e of th e sensitivit y of T2 o t compositiona l variations , to o much , usin g th e syste m PVCinformatio n may be obtained . Nish i et al. [155] Hytrel , foun d singl e 7\' s fo r eac h mixtur e bu t an unanalyzabl e T2 signal . (Pur e PVC itsel f ha s at leas t tw o T2 component s abov e th e Tg, th e shorte r T2 bein g associate d wit h crystallin e regions. ) A singl e 7\ s i an indicatio n of th e absenc e of aggregate s greate r tha n abou t 30 Β, accordin g o t thes e authors . Usin g th e les s miscibl e syste m PVC-PVAC, Elmqvis t [156 ] detecte d a numbe r of component s of Τγ, th e value s an d intensitie s of whic h depende d upon preparatio n an d annealin g procedures . Nuclea r magneti c resonanc e experiment s othe r tha n relaxatio n ar e pos sibl e on soli d polymer s an d polyme r melts . Elmqvis t an d Svanso n [157 ] showed tha t broad line nmr s i a sensitiv e too l fo r th e detectio n of smal l amount s of a sof t phas e imbedde d n i a har d matrix . The reaso n s i tha t th e resonanc e of proton s n i th e sof t phas e s i relativel y shar p compare d wit h th e resonanc e ban d of th e matri x protons . The intensit y of th e ban d du e o t th e
187
3.6. Miscellaneous
τ,
msec
Fig. 3.43. Spin-lattice relaxation as measured from the signal decay following a 180°-τ-90° pulse sequence. The relative constancy of the intensity due to each phase demonstrates that the system P V M E - P S is decomposing by the spinodal mechanism. [Reprinted with permission from T. Nishi, T. T. Wang, and T. K. Kwei, Macromolecules 8, 227 (1975). Copyright by the American Chemical Society.]
sof t segmen ts i accordingl y ver y hig h an d plainl y evident , eve n at concen tration s as lo w as 1%. High-resolutio n nmr s i possibl e n i polymer-polyme r system s afte r sligh t swellin g wit h a lo w viscosit y solvent . Deuterate d solvent s avoi d unnecessar y complicatio n of th e spectrum . Thi s techniqu e prove d usefu l n i th e stud y of alternatin g bloc k copolymer s of polycarbonat e an d poly(dimethy l siloxane ) [158] . The introductio n of a thir d componen t ca n influenc e th e phas e be havior , however , an d cautio n must be exercise d n i th e interpretatio n of suc h experiments . 3.6.6
Other Spectroscopic Techniques
In th e previou s section , nmr spectroscop y was discusse d as a too l fo r analyzin g th e composition , amounts , an d o t some exten t th e size s of th e phase sn i a polyme r mixture . But spectroscop y ca n als o be use d o t investigat e the solvatio n of molecule s [159] , i.e. , th e interactio n of th e molecul e wit h it s environment . Spectroscop y ha s prove d particularl y valuabl e n i th e inter pretatio n of hydroge n bondin g [160 , 161] , an d t is i natura l o t appl y t i o t polymer-polyme r systems . The reasonin g generall y followe d n i th e applicatio n of spectroscop y s i
188
3. Methods for Determining Polymer-Polymer Miscibility
tha t system s of hig h miscibilit y wil l produc e spectr a showin g stron g devia tion s fro m an averag e of th e spectr a of th e tw o components . The degre e of deviatio n as a functio n of miscibilit y canno t be satisfactoril y predicte d beforehand , however . Thi s technique , therefore , ca n onl y substantiat e th e findings fro m othe r method s fo r demonstratin g miscibility . I t doe s provid e valuabl e insigh t int o th e natur e of th e specifi c interaction s betwee n th e macromolecule s an d ca n ofte n provid e clue s fo r th e improvemen t of miscibil it y (Sectio n 4.5) . Infrare d spectroscop y ha s most ofte n bee n use d n i th e analysi s of polyme r mixtures . Thus , th e solubilit y of har d segment s of aromati c polyurethan e n i sof t segment s of variou s polyester s an d polyether s ha s bee n investigate d by frequenc y shift s du e o t hydroge n bondin g of th e urethan e NH grou p [162 , 163] . Specifi c interaction s n i th e system s poly(acryli c acid)-poly (ethylen e imine ) an d poly(methacryli c acid)-poly(ethylen e imine ) wer e demonstrate d vi a infrare d spectroscop y by Zezi n et al [164] . The syste m PMMA-poly(vinyliden e fluoride) exhibit s specifi c interaction s involvin g the carbony l group , accordin g o t infrare d spectroscop y performe d by Coleman an d co-worker s [165] . Infrare d an d ultraviole t spectroscop y on th e well-know n blen d PS-PP O by Wellinghof f an d co-worker s [166 ] provide d evidenc e fo r th e followin g conclusion s :PPO s i loosel y packe d n i th e glass y stat e an d th e additio n of PS reduce s th e fre e volumes . The chain s of th e tw o component s interpene trat e significantly . The reaso n fo r th e hig h miscibilit y s i a stron g interactio n betwee n th e pheny l grou p of th e PS an d th e phenylen e grou p of th e PPO. Ultraviole t emissio n intensit y ha s bee n suggeste d as a too l fo r quantifyin g the degre e of miscibilit y of tw o polymeri c component s [167 , 168] . To emplo y thi s techniqu e th e component s of th e blen d must contai n chromophori c structure s activ e n i th e ultraviolet , or the y must be modifie d wit h appro priat e group s (e.g. , naphthyl , anthryl) . Thi s s i a possibl e disadvantag e be caus e an y modificatio n of structur e ca n chang e phas e relationship s n i th e regio n of th e modification . In th e techniqu e propose d by Morawet z [167] , tw o different chromophore s are incorporated , on e on eac h polymeri c componen t at a leve l of abou t 1%. These group s ar e selecte d s o tha t a radiationles s transfe r ca n occu r betwee n the two . Thi s transfe r s i assume d o t be mor e efficien t a s th e miscibilit y in crease s becaus e clos e proximit y (e.g. , 4 Β) of th e group s s i critica l o t th e transfe r process . The measure d emissio n reflect s thi s efficiency ; tha t is , les s radiatio n s i emitte d by th e transfe r dono r a s th e probabilit y of a radiationles s transfe r increases . I n on e stud y usin g thi s method , naphthyl - an d anthryl tagge d PMM A an d pol y (methy l methacr y late-co-buty l methacrylate ) wer e foun d o t sho w steadil y decreasin g miscibilit y as th e buty l conten t of th e copolyme r was increase d fro m 0o t 40%.
References
189
While th e precedin g metho d relie s on differen t group s capabl e of radiation les s transfer , th e metho d propose d by Fran k [168 ] employ s th e emissio n fro m an exime r comple x forme d by tw o identica l groups . Thi s exime r complex , wit h a lifetim e of abou t 10 0 nsec , require s a specifi c geometr y fo r formatio n ; it s concentratio n s i therefor e sensitiv e o t conformationa l aspect s of th e macromolecula r component s as wel l as thei r phas e relationships . Tempera ture , as well , ca n independentl y influenc e th e concentration . n I wor k con ducte d by Fran k usin g a wid e variet y of polymeri c components , th e exime r emissio n intensit y was foun d o t correlat e wit h th e solubilit y paramete r differenc e of th e components . REFERENCES 1. W. A. Kruse, R. G. Kirste, J. Haas, B. J. Schmitt, and D. J. Stein, Makromol. Chem. 177, 1145 (1976). 2. E. W. Fischer, J. H. Wendorff, M. Dettenmaier, G. Lieser, and I. Voigt-Martin, J. Macromol. Sci., Phys. 12,41 (1976). 3. H. Yu, Adv. Chem. Ser. 99, p. 1 (1971). 4. H. Berghmans and N . Overbergh, J. Polym. Sci., Polym. Phys. Ed. 15, 1757 (1977). 5. L. Zeman and D . Patterson, Macromolecules 5, 513 (1972). 6. A. Robard, D . Patterson, and G. Delmas, Macromolecules 10, 706 (1977). 7. Y. Y. Tan and G. Challa, Polymer 17, 739 (1976). 8. G. Rehage and W. Borchard, in "The Physics of Glassy Polymers" (R. N. Haward, ed.), Chapter 1. Appl. Sci. Publ., London, 1973. 9. A. K. Doolittle, J. Appl. Phys. 22, 471 (1951). 10. H. H. Cohen and D . Turnbull, J. Chem. Phys. 31, 1164 (1959). 11. A. A. Miller, J. Phys. Chem. 67, 1031 (1963). 12. M. I. Williams, R. F. Landel, and J. D . Ferry, J. Am. Chem. Soc. 77, 3701 (1955). 13. J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28, 373 (1958). 14. T. Nose, Polym. J. 2, 124, 428, 437, and 445 (1971). 15. R. N. Haward, ed., "The Physics of Glassy Polymers." Appl. Sci. Publ., London, 1973. 16. A. Bondi, "Physical Properties of Molecular Crystals, Liquids, and Glasses." Wiley, N e w York, 1968. 17. R. N. Haward, in "Molecular Behavior and the Development of Polymeric Materials" (A. Ledwith and A. M. North, eds.), Chapter 12. Wiley, New York, 1975. 18. G. D . Wignall, D . G. H. Ballard, and J. Schelter, J. Macromol. Sci., Phys. 12, 75 (1976). 19. G. D . Patterson, J. Macromol. Sci., Phys. 12, 61 (1976). 20. P. Geil, Ind. Eng. Chem., Prod. Res. Dev. 14, 59 (1975). 21. D . S. Kaplan, J. Appl. Polym. Sci. 20, 2615 (1976). 22. J. Gillham, AIChEJ. 20, 1066 (1974). 23. L. E. Nielsen, "Mechanical Properties of Polymers." Van Nostrand-Reinhold, Princeton, New Jersey, 1962. 24. I. M. Ward, "Mechanical Properties of Solid Polymers." Wiley, N e w York, 1971. 25. M. Takayanagi, H. Harima, and Y. Iwata, Mem. Fac. Eng., Kyushu Univ. 23, 1 (1963). 26. D. R. Paul and J. O. Altamirano, Adv. Chem. Ser. 142 371 (1975). 9 27. M. Matzner, D . L. Schober, and J. E. McGrath, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 13, 754 (1972).
190
3. Methods for Determining Polymer-Polymer Miscibility
28. 29. 30. 31.
M. T. Shaw, J. Appl. Polym. Sci. 18, 449 (1974). W. J. MacKnight, J. Stoelting, and F. E. Karasz, Adv. Chem. Ser. 99, 26 (1971). S. Akiyama, Y. Komatsu, and R. Kaneko, Polym. J. 7, 172 (1975). N . G. McCrum, Β. E. Read, and G. Williams, "Anelastic and Dielectric Effects in Polymer Solids." Wiley, N e w York, 1967. 32. T. G. Parker, in "Polymer Science" (A. D. Jenkins, ed.), Vol. 2, Chap. 19. Elsevier, New York, 1972. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69.
N . Bekkedahl, J. Res. Natl. Bur. Stand. 43, 145 (1949). R. E. Gibson and Ο. H. Loeffler, J. Am. Chem. Soc. 61, 2515 (1939). S. Krause, J. Polym. Sci., Part A 3, 1631 (1965). E. P. Manche and B. Carroll, in "Physical Methods in Macromolecular Chemistry" (B. Carroll, ed.), Vol. 2, Chap. 4. Dekker, N e w York, 1972. B. Ke, "Newer Methods of Polymer Characterization." Wiley, N e w York, 1964. J. Stoelting, F. E. Karasz, and W. J. MacKnight, Polym. Eng. Sci. 10, 133 (1970). G. A. Zabrzewski, Polymer 14, 347 (1973). M. Bank, J. Leffingwell, and C. Thies, Macromolecules 4, 32 (1971). J. S. Noland, N. N.-C. Hsu, R. Saxon, and J. M. Schmitt, Adv. Chem. Ser. 99, 15 (1971). J. J. Hickman and R. M. Ikeda, J. Polym. Sci., Polym. Phys. Ed. 11, 1713 (1973). V. R. Landi, Appl. Polym. Symp. 25, 223 (1974). A. R. Shultz and Β. M. Gendron, J. Appl. Polym. Sci. 16, 461 (1972). A. R. Shultz and Β. M. Beach, J. Appl. Polym. Sci. 21, 2305 (1977). A. R. Shultz and Β. M. Beach, Macromolecules 7, 902 (1974). A. R. Shultz and Β. M. Gendron, J. Polym. Sci., Polym. Symp. 43, 89 (1973). L. Y. Zlatkevich and V. G. Nikolskii, Rubber Chem. Technol. 46, 1210 (1973). G. G. A. Bôhm, Κ. R. Lucas, and W. G. Mayes, Rubber Chem. Technol. 50, 714 (1977). G. G. A. Bôhm, J. Polym. Sci., Polym. Phys. Ed. 14, 437 (1976). P. A. Marsh, A. Voet, L. D . Price, and T. J. Mullens, Rubber Chem. Technol. 41, 344 (1968). T. Inoue, T. Soen, T. Hashimoto, and H. Kawai, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 10, 538 (1969). C. Vasile and L. A. Schneider, Eur. Polym. J. 7, 1205 (1965). M. H. Walters and D . N. Keyte, Rubber Chem. Technol. 38, 62 (1965). M. Kryszewski, A. Galeski, T. Pakula, and J. Grebowicz, J. Colloid Interface Sci. 44, 85 (1973). G. M. Brauer and S. B. Newman, in "Analytical Chemistry of Polymers" (G. M. Kline, ed.), Vol. 3, p. 141. Wiley, N e w York, 1962. S. B. Newman, in "Analytical Chemistry of Polymers" (G. M. Kline, ed.), Vol. 3, p. 261. Wiley, N e w York, 1962. R. W. Smith and J. C. Andries, Rubber Chem. Technol. 47, 64 (1974). S. Miyata and T. Hata, Proc. Int. Congr. Rheol., 5th, 1968 Vol. 3, p. 71 (1970). M. Matsuo, C. Nozaki, and Y. Jyo, Polym. Eng. Sci. 9, 197 (1969). L. P. McMaster, Adv. Chem. Ser. 142, 43 (1975). E. L. Thomas and Y. Talmon, Polymer 19, 225 (1978). K. D i m o v and Ye. Dimova, Polym. Sci. USSR (Engl. Transi.) 16, 1476 (1974). J. W. Gibbs, "Collected Works," Vol. 1. Longmans, Green, N e w York, 1928. M. Bank, J. Leffingwell, and C. Thies, / . Polym. Sci., Part A-2 10, 1097 (1972). L. P. McMaster, Macromolecules 6, 760 (1973). R. E. Bernstein, C. A. Cruz, D . R. Paul, and J. W. Barlow, Macromolecules 10, 681 (1977). G. Allen, G. Gee, and J. P. Nicholson, Polymer 2, 8 (1961). D . Mclntyre, N. Rounds, and E. Campos-Lopez, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 10, 531 (1969).
References
70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84.
191
P. Ο. Powers, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 15, 528 (1974). S. M. Aharoni, Macromolecules 11, 277 (1978). R. Roningsveid and L. A. Kleintjens, J. Polym. Sci., Polym. Symp. 61, 221 (1977). J. W. Strutt (Lord Rayleigh), Philos. Mag. [4], 41, 107 (1871); [4], 4 1 , 447 (1871). M. Smoluchowski, Ann. Phys. (Leipzig) [4] 25, 205 (1908). A. Einstein, Ann. Phys. (Leipzig) [4] 33, 1275 (1910). F. Zernike, Arch. Neerl. Sci. Exactos Nat., Ser. 3A 4 , 7 4 (1918). H. C. Brinkman and J. J. Hermans, J. Chem. Phys. 17, 574 (1949). P. Debye, J. Chem. Phys. 3 1 , 680 (1959). T. G. Scholte, / . Polym. Sci., Part C 3 9 , 281 (1972). P. J. Flory, J. Chem. Phys. 10, 51 (1942). M. L. Huggins, Ann. Ν. Y. Acad. Sci. 43, 1 (1942). R. Koningsveld, L. A. Kleintjens, and H. M. Schoffeleers, Pure Appl. Chem. 39, 1 (1974). J. J. van Aartsen, Eur. Polym. J. 6, 919 (1970). C. A. Smolders, J. J. van Aartsen, and A. Steenbergen, Kolloid Ζ. & Z. Polym. 243, 14 (1971). 85. P. Kratochvil, J. Vorlicek, D . Strakova, and Z. Tuzar, J. Polym. Sci., Polym. Phys. Ed. 13, 2321 (1975). 86. P. Kratochvil, D . Strakova, and Z. Tuzar, Br. Polym. J. 9, 217 (1977). 87. K. E. Derham, J. Goldsbrough, and M. Gordon, Pure Appl. Chem. 38, 97 (1974). 88. R. Koningsveld and L. A. Kleintjens, Br. Polym. J. 9, 212 (1977). 89. M. Gordon, L. A. Kleintjens, B. W. Ready, and J. A. Torkington, Brit. Polym. J. 10, 170 (1978). 90. Β. H. Zimm, Chem. Phys. 16, 1099 (1948). 91. D . G. H. Ballard, M. G. Rayner, and J. Schelten, Polymer 17, 640 (1976). 92. K. G. Kirste and B. R. Lehnen, Makromol. Chem. 177, 1137 (1976). 93. C. Strazielle and H. Benoit, Macromolecules 8, 203 (1975). 94. G. D . Patterson, T. Nishi, and T. T. Wang, Macromolecules 9, 603 (1976). 95. F. .B. Khambatta, F. Warner, T. Russell, and R. S. Stein, J. Polym. Sci., Polym. Phys. Ed. 14, 1391 (1976). 96. D . Ya. Tsvankin, Polym. Sci. USSR (Engl. Transi.) 6, 2304 and 2310 (1964). 97. D . R. Buchanan, / . Polym. Sci., Part A-2 9, 645 (1971). 98. P. Debye and A. Bueche, J. Appl. Phys. 20, 518 (1944). 99. A. Dobry and F. Boyer-Kawenoki, J. Polym. Sci. 2, 90 (1947). 100. R. J. Kern and R. J. Slocombe, J. Polym. Sci. 15, 183 (1955). 101. R. L. Scott, J. Chem. Phys. 17, 279 (1949). 102. H. Tompa, Trans. Faraday Soc. 45, 1142 (1949). 103. C. Hugelin and A. D o n d o s , Makromol. Chem. 126, 206 (1969). 104. R. J. Kern, J. Polym. Sci. 2 1 , 19 (1956). 105. C. C. Hsu and J. M. Prausnitz, Macromolecules 7, 320 (1974). 106. T. K. Kwei, T. Nishi, and R. F. Roberts, Macromolecules 7, 667 (1974). 107. G. Delmas and D . Patterson, J. Paint Technol. 34, 677 (1962). 108. J. M. Braun and J. E. Guillet, in "Progress in Gas Chromatography" (J. H. Purnell, ed.), p. 107. Wiley (Interscience), N e w York, 1976. 109. J. E. Guillet, in "Progress in Gas Chromatography" (J. H. Purnell, ed.), p. 187. Wiley (Interscience), N e w York, 1973. 110. P. J. Flory, J. Am. Chem. Soc. 87, 1833 (1965). 111. D . D . Deshpande, D . Patterson, H. P. Schreiber, and C. S. Su, Macromolecules 7, 530 (1974). 112. C. S. Su, D . Patterson, and H. P. Schreiber, J. Appl. Polym. Sci. 20, 1025 (1976).
192 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158.
3. Methods for Determining Polymer-Polymer Miscibility
O. Olabisi, Macromolecules 8, 316 (1975). A. B. Littlewood, "Gas Chromatography." Academic Press, New York, 1970. G. S. Kongarov and G. M. Bartenev, Rubber Chem. Technol. 47, 1188 (1974). M. Kh. Giniyatullin, R. G. Timergaleev, M. Kh. Khasanov, and V. A. Voskresenskii, Sov. Plast. (Engl. Transi.) N o . 6, p. 8 (1973). E. R. Galimov, G. G. Ushakova, R. G. Timergaleev, and V. A. Voskresenskii, Int. Polym. Sci. Technol. 2 (5), T.7 (1975). W. M. Prest, Jr. and R. S. Porter, J. Polym. Sci., Part A-2 10, 1639 (1972). W. M. Prest, Jr. and R. S. Porter, Polym. J. 4, 154 (1973). L. R. Schmidt, J. Appl. Polym. Sci. 23, 2463 (1979). D . S. Hubbell and S. L. Cooper, J. Polym. Sci., Polym. Phys. Ed. 15, 1143 (1977). H. Morawetz, "Macromolecules in Solution." Wiley (Interscience), N e w York, 1965. G. R. Williamson and B. Wright, J. Polym. Sci., Part A 3 , 3885 (1965). B. Bohmer, D . Berek, and S. Florian, Eur. Polym. J. 6, 471 (1970). A. Rudin, H. L. W. Hoegy, and H. K. Johnston, J. Appl. Polym. Sci. 16, 1281 (1972). V. I. Aleksieyenko and I. U. Misrustin, Polym. Sci. USSR (Engl. Transi.) 2, 63 (1961). V. Ν. Kuleznev and L. S. Krokhina, Polym. Sci. USSR (Engl. Transi.) 15, 1019 (1973). C. Vasile and I. A. Schneider, Makromol. Chem. 141, 127 (1971). S. M. Liguori, M. D e Santis Savino, and M. D'Alagni, Polym. Lett. 4, 943 (1966). W. R. Krigbaum and F. T. Wall, J. Polym. Sci. 5, 505 (1950). Y. J. Shur and B. Ranby, J. Appl. Polym. Sci. 20, 3121 (1976). Y. J. Shur and B. Ranby, J. Appl. Polym. Sci. 20, 3105 (1976). Y. J. Shur and B. Ranby, J. Appl. Polym. Sci. 19, 1337 (1975). B. G. Ranby, J. Polym. Sci., Polym. Symp. 5 1 , 89 (1975). J. J. Hickman and R. M. Ikeda, J. Polym. Sci., Polym. Phys. Ed. 11, 1713 (1973). Y. S. Lipatov, J. Polym. Sci., Polym. Symp. 42, 855 (1973). Y. S. Lipatov, Polym. Sci. USSR (Engl. Transi.) 17, 2717 (1975). Y. S. Lipatov and V. A. Vilenskii, Polym. Sci. USSR (Engl. Transi.) 17, 2389 (1975). Y. S. Lipatov, V. F. Babich, and V. F. Rosovizky, J. Appl. Polym. Sci. 18, 1213 (1974). R. Simha and R. F. Boyer, J. Chem. Phys. 37, 1003 (1962). G. V. Struminskii and G. L. Slonimskii, Rubber Chem. Technol. 3 1 , 250 (1958). S. Ichihara and T. Hata, Kobunshi Kagaku 26, 249 (1969). S. Ichihara, A. Komatsu, and T. Hata, Polym. J. 2, 640 (1971). M. P. Zverev, L. A. Polovikhina, A. N. Barash, L. P. Mal'kova, and G. D . Litovchenko, Polym. Sci. USSR (Engl. Transi.) 16, 2098 (1974). A. A. Tager, T. I. Scholokhovich, and Yu. S. Bessenov, Eur. Polym. J. 11, 321 (1975). A. A. Tager and Yu. S. Bessonov, Polym. Sci. USSR (Engl. Transi.) 17, 2741 (1975). D . Patterson, J. Polym. Sci., Part C 16, 3379 (1968). P. Novakov, Ch. Konstantinov, and P. Mitanov, J. Appl. Polym. Sci. 16, 1827 (1972). T. Nishi, T. T. Wang, and T. K. Kwei, Macromolecules 8, 227 (1975). C. J. Ong, Ph.D. Thesis, University of Massachusetts, Amherst (1974). W. Wenig, F. E. Karasz, and W. J. MacKnight, J. Appl. Phys. 46, 4194 (1975). T. Nishi and T. T. Wang, Macromolecules 8, 909 (1975). T. K. Kwei, G. D . Patterson, and T. Wang, Macromolecules 9, 780 (1976). D . W. McCall, Acc. Chem. Res. 4, 223 (1971). T. Nishi, T. K. Kwei, and T. T. Wang, J. Appl. Phys. 46, 4157 (1975). C. Elmqvist, Eur. Polym. J. 13, 95 (1977). C. Elmqvist and S. E. Svanson, Eur. Polym. J. 11, 789 (1975). D. G. LeGrand, Trans. Soc. Rheol. 15, 541 (1971).
References
193
159. J. R. Dyer, "Applications of Absorption Spectroscopy of Organic Compounds." PrenticeHall, Englewood Cliffs, N e w Jersey, 1965. 160. G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond." Freeman, San Francisco, California, 1960. 161. J. D . Crowley, G. S. Teague, Jr., and J. W. Lowe, Jr., J. Paint Technol. 38, 269 (1966). 162. R. W. Seymour, G. M. Estes, and S. L. Cooper, Macromolecules 3 , 579 (1970). 163. C. S. P. Sung and N . S. Schneider, Macromolecules 8, 68 (1975). 164. A. B. Zezin, V. B. Rogacheva, V. S. Komarov, and Ye. F. Razvodovskii, Polym. Sci. USSR (Engl. Transi.) 1 7 , 3032 (1975). 165. M. M. Coleman, J. Zarian, D . F. Varnell, and P. C. Painter, J. Polym. Sci., Polym. Lett. Ed. 1 5 , 745 (1977). 166. S. T. Wellinghoft, J. L. Koenig, and E. Baer, Jr, / . Polym. Sci., Polym. Phys. Ed. 1 5 , 1913 (1977). 167. H. Morawetz and F. Amrani, Macromolecules 1 1 , 281 (1978). 168. C. Frank, private communication.