Microwave Resonators

Microwave Resonators

CHAPTER 3 Microwave Resonators Robert A. Strangeway I. Resonator Basics One-Port Reflection Resonator G C f ~ Figure I. Parallel resonant circui...

1MB Sizes 0 Downloads 90 Views

CHAPTER

3 Microwave Resonators Robert A. Strangeway

I. Resonator Basics One-Port Reflection Resonator

G

C f

~

Figure I. Parallel resonant circuit.

1

~°°= CLC

= resonant radian frequency

tooC QU --

G

- u n l o a d e d quality factor (.JO o

Y = G 1 + jQu t°o

Handbook of Microwave Technology, Volume I

= circuit a d m i t t a n c e . CO

61

Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.

Robert A. Strangeway

62

T-Line 1 L

G

C f ~

Go

Figure 2. Losslesstransmission line terminated in a resonant circuit.

If to = to o + Ato, then in the vicinity of resonance, Ato << too, the approximate admittance expression is Y = G(1 + jQu 2 Ato/too).

G O = transmission line characteristic conductance /3 =

60 G

= coupling factor

(/3 > 1, o v e r c o u p l e d ; / 3 = 1, critically c o u p l e d ; / 3 < 1, u n d e r c o u p l e d ) 2Ato (/3 - 1) - J Q u ~ too

F =

2Ato ( / 3 + 1) + J a u ~

= reflection coefficient

too

u n l o a d e d Q = Qu external Q = Qe

tooC G too C

60 ~o C

loadedQ=QL=

1

1

QL OH

ae

+

(Go+G)

1

au

=l+fl

au =/3 ae IFol = reflection coefficient m a g n i t u d e at to o

(1 -trot) /3 = (1 +

IFol)

(/3 < 1)

63

3. Microwave Resonators or

(1 +

IFul =

IUol)

r e f l e c t i o n c o e f f i c i e n t m a g n i t u d e for

IFul- ( (/~ - 1)2+ 1 (/~ + 1) ~ + 1 IFel = r e f l e c t i o n c o e f f i c i e n t

QL measurement

m a g n i t u d e for

Qe m e a s u r e m e n t

r e f l e c t i o n c o e f f i c i e n t m a g n i t u d e for

OL m e a s u r e m e n t

/ ( ~ __ 1) 2 + ~2 Irel-- (/3 + 1) 2 "q-~2 IFLI =

]~L]-- ¢

(]~°]22+ 1)

Two-Port Transmission Resonator [23, pp. 240-241]

] T-Line G°l

G

.

I

C

T-Line 2 G°2

"~

Figure 3. Two-port transmission resonatorcoupled to two transmission lines.

oJoC

Ou =

unloaded resonator Q =

ael =

external Q of input circuit =

Oe2 =

e x t e r n a l Q o f o u t p u t circuit -

QL, =

loaded Q without port 2

G

~o C

Q1 oJoC

02

64

Robert A. Strangeway

QL1

O9oC G+Go I

QL2--

loaded Q without port 1

QL2 O,~l,~ =

auQel Qu+Qel

090C

QuQe2

G+Go 2

Qu+Qe2

l o a d e d Q with b o t h p o r t s

oJoC

QLI,~

G + Gol -+-Go2 1

QL1,2

+

1

-F~

Qel

Qu

1

Qe2

/31 = p o r t 1 coupling factor =

Go 1 G

/3 2 = p o r t 2 coupling factor =

=

Qu Qel

Go2 Qu = G Qe2

QU

QLI,2

=

+ ~1 q" ~2

1

S 1 = s t a n d i n g - w a v e ratio of p o r t 1 at r e s o n a n c e with p o r t 2 m a t c h e d

131 3'1-"

1+132

$1 = 3'1 if 3'1 > 1; o t h e r w i s e S 1 = 1/3'1 S 2 = s t a n d i n g - w a v e ratio of p o r t 2 at r e s o n a n c e with p o r t 1 m a t c h e d ~2 Y2

1+/31

$2 -- 72 if 72 >

1;

otherwise S 2 =

1/72

[To[ 2 = p o w e r t r a n s m i s s i o n coefficient at oJo

ITol2 [12, pp. 200-201].

.---

471 (1 + 3'1) 2

,

~1 -- 3'1 ~1

.---

4131132 (1 + fll + f12) 2

3. Microwave Resonators

65

Skin Depth,

w h e r e / z is the permeability and or is the conductivity (SI units for all variables).

2. Two-Wire Line Resonators Resonance occurs when L = h o / 4 (quarter wave) or h o / 2 (half wave) and the line is properly terminated, usually with a short termination (an open termination tends to radiate). Radiation and termination reactances [21, pp. 286-288] will change fo. a = transmission line attenuation constant /3 = transmission line phase constant. The unloaded Q = Qu for a transmission line with low losses is Qu = (/3/ 2 a ) [7, pp. 77-79]. An approximate Qu for a two-wire line resonator is Qu = (Ixd2°~o/8Rwa) [15, p. 150], where /

R w = surface resistance = ~/ Y

T/'f~ or

or = conductivity /x = permeability Loaded Q must incorporate termination losses [21, pp. 288-293]. Terman ([29, p. 1049) determined the Q for nonradiating two-wire copper lines as Q = 0.08877rfbJ, where b = d in Figure 4 and J is read from the graph in Figure 5.

K

L

I\

/ Short or

d

Open

Figure 4. Basic two-wire line resonator.

66

Robert A. Strangeway 1.0

- ~ ~

0.9

%%

//

0.8 03 0.6 zO.5 0.4

0.3

-

0.2 0.1 0

2

I

5

I0

b/.~

20

50

I00

Figure 5. Terman's J factor (ignore other factors) [29, p. 1049] [© 1934AIEE (now IEEE)].

3. Basic Coaxial Resonators [23, pp. 2 2 5 - 238]

I

I

I

I

I

2zo

b Figure 6. Coaxial resonator [23, p. 227]. Reproducedwith permission of Artech House, Inc.

67

3. Microwave Resonators

TEM mode resonant frequencies are as follows: 2Z o = nAo/2 , where n = 1, 2, 3 , . . . and Ao is the TEM wavelength. (Note. Here, Z o is the half cavity length, not characteristic impendance.) Note that significant losses perturb fo. Q is the unloaded quality factor; when n = 1,

1 b

AO

l+-

2Zo

4-~,

[23, p. 226],

a

In -

a

where 6 is the skin depth (see Section 1). Be warned that coaxial line resonators can support non-TEM modes. An approximate formula for the higher mode cutoff frequency, fc, in coaxial transmission lines is [5, p. 259] ¢

fc

7r(a + b ) '

where c is the free-space velocity of light, ~ is the permeability of the medium, and e is the permittivity of the medium. Foreshortened Coaxial Line Resonators (Reentrant Coaxial Cavity Resonators) 2r °

.]'

d

½

~'--

2 rt

"7"-I

Figure 7. Foreshortened coaxial line resonator dimensions [I 5, p. 143]. [The figure was adapted from

Microwave Engineering, 2nd ed., by T. Koryu Ishii, © 1989 by Harcourt Brace and Company reproduced with permission of the publisher.]

The resonant frequency is fo = (1/27rx/Lc), where /xh r1 L= In 2re ro 2

C=e°

rrr____& d _ 4ro In

(

2d e C h 2 + (r 1 - ro) 2

)]

[10, p. 3491

68

Robert A. Strangeway

and e is the base of natural logarithms. Resonant frequency design charts are also given in Moreno [23, pp. 230-238] and are accurate to within a few percent for gaps that are not too large. For these resonators, the approximate Q is r 1

ln-Q6

2h

,t °



ro

rI 21nm +h ro

1 1 ] m+-ro

[23, p. 229].

r 1

Xi et al. [53] analyze a coaxial reentrant cavity with a dielectric in the gap.

4. R e c t a n g u l a r

t

Waveguide

X,-

Cavities

2

1A±)'. c÷)', c÷ Q

Q~

MODE

TE~mn

TEOmn

(p= + q2)(p2 + q2 + r~)s/2 abe • 4 ,c[p=r 2 + (i)2 + q2)2] + bc (q2r~ + (1=3+ q2)2] + obr ~ (pt + Cl~)

(q2 + r2) s/2

abc T"

q2c (b + 2a) + r~b(c + 2a)

TE¢On

obc (p2 + ,2) ~/= 2 " p2c(a + 2b) + r2a(c + 2b)

TM~..

.bc. (p2 + q=) (!~ + q2+ ,2),/2 4

TM¢~o

i ) l b ( a + c) +q2a (b + c)

obc

(p2 + q2) s/2

2 " p=b(a + 2c) + q2a(b + 2c)

p=

~, a

q.

m b

r--

ii

h e = Resonant Free-Space Wavelength 6 -- Skin Depth Figure 8. Resonant wavelength and Q [28, Vol. I, p. 180]. Reproduced with permission of Artech House, Inc. Note that Bazzy [2] also provides many of the figures in this and the next chapter.

69

3. Microwave Resonators

E:.

l-7~

131,311 I-6

-.4 ~TM 130, T M 3 1 0

~r~

T(O31.TE3OI

221

"rico3

-_

?.2

1.5~

6T[OI2.1T.I02 ~1-5

TM220 1.4-121.211

1'(O21 . T ( 2 0 1 1.3 "-"

m2.o 1.2 - -

D2.1 m "r[Oll. T[IOI

I.I

m2-2

"I "I'M 1 2 0 , T M 2 1 0 --

B

m2.3 i 1.0

el

B2.4

R

EXPLANATION 0-9

-_

L

---2.5

_ 0.8

--

0.7

~

0-6

0.5

B2.6

TMIIO

--2-7

-

o

T(

O

T [ & T M Modes.

Modes

only.

0

T M Mode~ only.

--2-.

--2e

Figure 9. Mode lattice for square waveguide resonators [3, p 834] [© 1947 IRE (now IEEE)]

70

Robe~ A. Strangeway

.--, ..

I

I

¢!" .... ~ I f.;'-q!

A,I~I / ! II I .~a~.-F~-4

I

.~4-

o

~

IXi ~.24; i !I III ~ , - - ,41,,- - ,~

r 4_

If ~ - 4 - - - - - ,

TMlll

It I/

v

TM~12 (see note)

IY

I TMl13 / (me note) /z

-X

/[ ,-.-_'-_-~

. r_-_2", [,r~.;__IvV 1/':..~_:) 1/' TM121

TM122 (see note)

TM123 (see note)

TM131 (see note)

TM132 (see note)

TMI~ (see note)

Figure10. TM mode field pattern sketches. Solid lines, E; dashed lines, H [I 5, p. 127]. [The figures are adapted from Microwave Engineering, 2nd ed., by T. Koryu Ishii, © 1989 by Harcourt Brace and Company reproduced with permission of the publisher.] Note: this mode is a repetition of the basic mode. Some field lines have been omitted for clarity.

3. Microwave Resonators

71

I

,.~~~:s~,t /

VtS"_----.-----~'V TEIm

TEIu

TEI~

TE lm (see note)

TErn

TEsu

(see note)

(see no~)

TErn (see note)

TE m (see note)

~

x

A, ~ - - - - ' : "IA

/ ~:2-",~/I .

-

-

II / ~.--.~.--Jlll

V ~'-"--"Y

TE~a

Figure II. TE mode field pattern sketches, Solid lines, E; dashed lines, H [15, p. 125]. [The figures are adapted from Microwave Engineering, 2nd ed., by T. Koryu Ishii, © 1989 by Harcourt Brace and Company reproduced with permission of the publisher.] Note: this mode is a repetition of the basic mode. Some field lines have been omitted for clarity.

72

Robert A.

Strangeway

% +0.01

--100

--

- 90

-

- 80

- 70 I.-

z i



U

-60

| v >-

I-

z. u U

o'

Og o.

~

5o ~ i

_>

EXAMPLE -0.03 - . -

%

%

+0.01

.100

_

..40

-

-30

i m

.90 0 80

-0.04

-

-0.01

•70

-0.02

60 50

"

-0.03

-

-0.04 -0.05

-0.05

-0.06

40

30 2O 10 0

NOMOGRAPH IS NORMAUZED RELATIVE TO 25"C AND 60% REL. HUMIDITY. -0.06

-20

-10

0

Figure 12. Humidity-cavity resonant frequency nomograph [28, Vol. I, p. 185]. Reproduced with permission of Artech House, Inc. [MIT RacI Lab Series, Techniqueof Microwave Measurement, Vol. I I 1944, McGraw-Hill; reproduced with permission of McGraw-Hill.]

73

3. Microwave Resonators

5. C i r c u l a r

Cylindrical

Waveguide

Cavities

WAVELENGTH AND Q FOR TEem. OR TMCmn MODES

-tt

~,.=

2

L

I

÷(:),

~,o Resonant Wavelength in Free Space Xc. mth root of J'¢(X) = O for the TE modes Xs.. mth root of J {[ X) = O for the TM modes ,,

,,

MODE

TEcmn

I - (XCm)=]J [X~m+ p'r2] 31'

Xcm

TMcmn

TM~mo

VX2¢m + par:

(n > o)

2r ( l + r )

Xcm (n

:r(2 + r)

5 = Skin Depth

r = D

L

-- o)

p = nf

2

Figure 13. Resonant wavelength and Q [28, Vol. I, p. 180]. Reproduced with permission of Artech House, Inc. Note that the humidity-cavity resonant frequency homograph appears in Figure 12.

74

Robert A. Strangeway

TH~ FIaST TWENTY-FIVE ZEROS OF J . ( x ) AND J . ' ( x ) No.

Value

Mode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1.841 2.405 3.054 3.832 3.832 4.201 5.136 5.318 5.332 5.520 6.380 6.416 6.706 7.016 7.016 7.501 7.588 8.016 8.417 8.536 8.578 8. 654 8.771 9.283 9.647

TE~ TMol TE2x TMll TEol TEsx TM21 TE4x TEl2 TMo2 TM31 TE61 TE22 TM12 TEo2 TE61 TM~t TE82 TM~2 TExs TEn TMo~ TM51 TE~2 TE81

Figure 14. Bessel function zeros [23, p. 222]. Reproduced with permission of Artech House, Inc. Note that Saad [28, Vol. 2, pp. 192-195] has a more extensive listing.

75

3. Hicrowave Resonators

mO

I TMO2--~ r-

1'9 ~-TM022 _~TEI22 -~TF..412 -~-TM021

n

0.5

+TE3~3 -~T[,OI3, TMII3

TMQ~O

=I~TF-121 [411

+Te:2~3

I-0

--~-.TMOI3 -~)-TF..113

4-TE312 -~TF..OI2 ,TM II 2

T(12~ --1"7 T(44

--

"FTM212

1'8

TM211

T M 2 1 - - r"

-~TM023 ,,~ -~-TEI23LT[413 m -I)-TM213

TM210

+T.o,2 +Tu,2

1-6 +TE311

--

1-5 TF.OII, TMII

~

1.4

D

D

L

~

TE,21t

TE3I-- - - 1.3

+TMOI I TMIIO 1"2

1T.OI ,'I'M I1--~

m2.0 +TE III

I X PL AN ATION

~I'I /

[

I'O TE21 m -- O.9

TMOI"

--

0"8 TMOIO

-- 0 " 7 T£11m -- 0 " 6 --'O'5 - - 2-S

Figure 15. Mode lattice for cylindrical resonators [3, p. 832]. [© 1947 IRE (now IEEE)].

76

Robert A. Strangeway

TM 022 TM 021 3O

TE 122TM 212 28 TE 412, 26

24

ii~ii?i~ 22

20

~

16

u

14

z o

12

0

D

×

~..

e

10

i-~ii.i.!i. M O D E CHART FOR RIGHT CIRCULAR C Y U N D E R

0

I

2

3

4

S

6

7

8

9

(D/L)'

Figure 16. Mode chart for cylindrical resonators [28, Vol. I, p. 181]. Reproduced with permission of Artech House, Inc.

O4

_

t,')

..j

~.t'-

=7 ClOHI3 ~1 9 N I 7 d n 0 3

y

)

rn

w

rn

~I

{3

~ ;?J

~

w

w

m oJ

CD

~r

~< "-

w

-< ~ 3:

N

N

r

JC:

-J

c:o~ ,(

~

~,

9-

I

~l

~< •

~

"<~

"~

~

~1:::11~10 ~ V 7 N : ) ~ I D

~:

'<"

--

-

0

N

d66

~

C

d

_

5

-coo m -

6

~

d

O 0 ~ -

~

r"

o o o

_ ( ~ w w w SINVISNOD

0

m

~

5

(~

d

~"

:3

m "E

w

<

om Z~(M

I~I

~z~

N

toO_

~_5 o

_

m 0

¢)

._c

x ¢)

>--

~-J ~'-~

@m

~'

~

~

c

"~

of-

~g 0

~

~.

~

-

.gm

u

-

}j

E °

,,

I--

Z

IE

o >wz ~I0 w r--

.o

0--

I0

z

U

w

~

I--~

_c:

~.o

~Z

EL

o

~ +-.

~

L2~ .j

w

=

Z

_

~

Ow

~

~w

,,,,,..

uJ

L.

.,

<._

~_ _E

~.

p.~

~

~

o ~__

~:)

z

/J

TMulmode

TMoxI mode

E M . . . . .

TMo~

TMom

~

TMo~

m

I

I TMI~

TMm

TMm

( m note)

( m nora)

%

I

' 1 4&_.

g 5 ~J-.'~-',.' .,:)_;)

TM212 (seenote)

TM:m (seenote)

TM~m (seenote)

Figure 18. TM mode field pattern sketches [15, pp. 134-135]. [The figures are adapted from

Microwave Engineering, 2nd ed., by T. Koryu Ishii, © 1989 by Harcourt Brace and Company reproduced with permission of the publisher.] Note: this mode is a repetition of the basic mode. Some field lines have been omitted for clarity.

I I t

I

t

,,

i

i ~ \

,

! /

.

I1,

I A

~

/t'

/t'

It It

h i

Jl ',

"~-E

(a) TEosxmode

(b) TEsss mode

TEos~

TErns

TEoaz (see note)

TEss2

TErn (see note)

TE~s (see note)

m

TE212

TEmx

TEzsz

(see note)

(see note)

Figure 19. TE mode field pattern sketches [15, pp. 130-131]. [The figures are adapted from Microwave Engineering, 2nd ed., by T. Koryu Ishii, © 1989 by Harcourt Brace and Company reproduced with permission of the publisher.] Note: this mode is a repetition of the basic mode. Some field lines have been omitted for clarity.

79

80

Robert A. Strangeway

6. Spherical Cavities [4, p. 380]

E

H

Figure 20. Field patterns for the lowest order modes in spherical cavities. (a) TE i i0 mode. (b) TM i i0 mode. [From A. B. Bromwell and R. E. Beam, Theory and Applications of Microwaves, © 1947 McGraw-Hill with permission of McGraw-Hill.]

a

=

spherical cavity radius

wavelength

h r --

resonant

/~r =

1.40a for TEll m modes 2.29a for T M l l m modes.

~'r --

7. Dielectric Resonators

l

Z

Figure 21. Dielectric resonator dimensions and magnetic field for the TE0i 8 mode [19, p. 2]. Reproduced with permission of Artech House, Inc.

3. Microwave Resonators

81

The approximate resonant frequency, free space in the TE01 ~ mode is a ~34

fo-

fo, of a

[ aL- +3"45 1

dielectric resonator (DR) in

(GHz)

[19, p. 3],

where a = radius of the DR in millimeters L = length of the DR in millimeters er

relative permittivity of the DR.

=

This equation is accurate to approximately 2% under the conditions 0.5 < (a/L) < 2 and 30 < e r < 50. More accurate and mathematically intensive calculation procedures which account for the environment around the resonator, such as a microstrip substrate and metal shields, exist (see, for example, [11, 17, 19, 26]). An example of a mode chart, from Pospieszalski [26, p. 235], is shown in Figure 22. Later literature improves the accuracy, ease of calculations, or both and includes references to several approximate and rigorous techniques [44, 45, 49]. The determination of the length of a DR for a given diameter and frequency can be calculated to within a few percent using Kajfez's procedure ([18]; also shown in [19, pp. 148-149]) for the Itoh and Rudokas

(fo'D)2"erl

i

[GHz cm]2! ~0

4.103

"

L1 SI='E

TE01 1 mode ~

2.1o3

er I> 500 er =10

.~j~" . / ~ I"~

.....-- ..._--'-

......

S1= .

...~

j

. . f

. . . .

:

s~=o.4 . . . . .

1o103

o

0.5 1.0

i

o

i

o

i

i

i

i

o

i

i

i

i

i~

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 22. A DR mode chart [© 1979 IEEE].

112

Robert A. Strangeway

I -

o

L

i ....

. JI

.

Er

E2 .

.

.

.

.

.

1

Ib ID Ill

T L2

t ......... mm

--

Figure 23. DR geometry and dimensions, e 2, is the substrate relative permittivity [18, p. 133] [© by Argus Business, reprinted with permission].

model [17]. Refer to Figure 23 for the geometry and variable definitions. Note the metallic cover at distance L 1 above the resonator. The straightforward calculations are listed below. Specify fo. Select D: 5.4

5.4

ko~r

< D < ~koCe2 ,

where

k o = free-space propagation constant = toV/~oe o Yo=

ko- ~

(e r -

1)-2.4052

2

Yo

h-~

.405+

(

2.43 ) 2.405 1 + ~ + 0.291y o

Yo fl

=

Ck oF, 2 r

--

h2

al= Ch2-k 2 Ot 2

L

=

=

Ch 2

-

_

2 2 koe

/3 t a n - 1 ~/3 coth al L 1 + tan - 1 ~a~2 coth a2L 2 -

.

83

3. Microwave Resonators

See [36, 39, 47] for dielectric ring resonators. See [37, 38, 40, 48, 51] for whispering gallery mode dielectric resonators.

8. L o o p - G a p R e s o n a t o r s One Loop - n Gap Resonator [8, pp. 515 - 517]

c

t

Figure 24. One Ioop-n gap resonator (n = 2 shown). Dimensions and features: a, loop; b, gaps; c, shield' d, inductive coupler; Z, resonator length; r, resonator radius; R, shield radius; t, gap separation; W, gap width [8, p. 516]. Reprinted with permission of Harcourt Brace and Company.

A coarse approximation for resonant frequency e WZ

C=

L=

tn

tZ o'n" r 2

Z

fo =

fo

is 1

2 rrv/LC

To account for the shield and flinging fields in the gap effects on resonant frequency, use the following equation:

r2

1

fo =

--

~/

nt

1~

1

1+

2rr

R 2-

(r + W) 2

7rW~/./,0 r

1 + 2.5

This equation is generally within 10% of measured resonant frequencies between 1 and 10 GHz. 6 = skin depth

Qo = 1

unloaded Q 1

=

Qo

1 +

Q1

Q2 '

84

Robert A. Strangeway

r[

where

01

[

=

1 + - - +r - 1.7

--

R 2 - (r

w R)(

1+

02

r2 ]

-1+ 8

+ W) 2

r2

R 2 -(r+W

r

)2] )2

105t

×

~0~,~,~(~ + ~ ~(~))

Mehdizadeh et al. [22] give corrections to fo and Qo for the finite length of the resonator.

Two Loop- One Gap Resonator, [9, pp. 1096- 1097] GAP

t

rl

ro A

L E ~ • SAMP LOOP

(3,® B-FIELD -,.-- EFIELD --.-- WALL CURRENTS

• L

" RETURNED FLUX LOOP

_1

I- W -I

AreA r:_~-----~ ~,,__-"~_ ,,, ; I:)

h

"

~ t l l l x xx I t (¢,'AI. Ill x x x x r ~ , , { x xxx ' r~.lllxxxxT' x xxx[? r/All.lxxxxl i

I~XXXi '

r,~litll ,

x

x xl

,

I Im I I

!

/

H-" I

~ tH i , r . ~ ,

,

l

l

~

.... B-FIELD X E FIELD J

! t L _ ~ . _ _ / j i /, ~, -_- --~--..~ - ,,

Figure 25. Two loop-one gap resonator. Reproduced with permission from Froncisz et ol. Rev. Sci. Instrum., Vol. 57, pp. 1095- 1099, 1986 and its publisher, American Institute of Physics.

A coarse approximation for resonant frequency fo is (c = speed of light):

( 2)

tl+ c

L



r2

=

27rr o

7feW

3. Microwave Resonators

85

The corrections applied depend on the frequency of interest [9, p. 1096]. For a 35-GHz resonator, corrections of magnetic flux in the gap and fringing electric field were used:

L

t(1 + a) 2

C

2.5t )

2rr

E.rW 1 + ---~-

7rr 2 + 7ra2r 2 + ( 1 - a

+ a 2)- 3 -

where tW rrr2 + --~ a

=

tW 7rr ( +

7rr2 +

2

2

(1)Wt(1 5

7rr2a2 +

Oo=-g • 2 r r r o - t + (2rrr I - t ) a

2 +

a + a 2)

2 ) W ( 1 - a + a 2) -~

The reader is referred to Wood et al. [33] for the three loop-two gap resonator. Finally, it is noted that several other loop-gap resonator configurations exist; see, for example, Hyde and Froncisz [14].

9. Microstrip Resonators Microstrip Rectangular Resonators The approximate resonant frequency, fo [15, p. 152] is 2

L

2¢7

where e = permittivity of the microstrip dielectric /x = permeability of the microstrip dielectric Q =

~oo d lx

4Rw

[15, p. 153],

86

Robert A. Strangeway MICROSTRIP RESONATOR

-X

I-

F

20

:

L.--" MICROSTRIP RESONATOR

Ix Figure 26. Micros-triprectangular resonator dimensions [ 16, p. 947] [© 1974 IEEE].

where 1

R w = surface resistance = 1/ Y

q'rf/J, or

and tr = conductivity of the microstrip conductor. An accurate resonant frequency determination is given by Itoh [16], and an example of his results is reproduced in Figure 27. Wolff and Knoppik [32] give a method to calculate resonant frequency to within 1 to 2%. An improvement to 0.5% has been reported by Verma and Rostany [52]. Microstrip transmission line resonators are not covered here but should be treated as standard transmission line resonators, with appropriate end correction factors applied.

Microstrip Circular Resonators a - circular resonator radius.

87

3. Microwave Resonators

o._,,.o~= w = I cm

~' ~700

.-lcm w=2

c~

/~r-



w=--52~c~ 65 (r = 382

5001-

w

300-

i

6

~

,~

,lo

,~,

,~

,h

~lo

~

1

24

2/(cm)

Figure 27. Rectangular resonator resonant frequencies [I 6, p. 950] [© 1974 IEEE].

Note that all other variables are as defined under Microstrip Rectangular Resonators. An approximate resonant frequency and Q are 3.832 f o = 2,rc a v/ la, e

Q -

co o d / z

2R w

[15 pp. 151-152]. ,

Wolff and Knoppik [32] give a method to calculate f o to within approximately 1%. Bahl and Bhartia [1, pp. 79-82] review other calculation methods. Also see Ref. [50].

Microstrip Ring Resonators

W

\

w

I~-w--I

I-- w--I

I Figure 28. Closed and open ring resonators [30, p. 406] [© 1984 IEEE].

88

Robert A. Strangeway

Wu and Rosenbaum [34] present a mode chart for the (closed) ring resonator. Khilla [20] presents a method to calculate fo to within 1.5%. Tripathi and Wolff [30] present closed-form solutions for both the open and the closed ring resonators. Also see Ref. [50].

10. Fabry-Perot Resonators [6, pp. 337- 344]

d Figure 29. Ideal Fabry-Perot resonator [6, p. 338] [Robert Collin, Foundationsfor Microwave Engineering, © 1966 by McGraw- Hill, with permission of McGraw- Hill].

The ideal resonant frequency is fo = ( c n / 2 d ) , where n = 1,2,3,...

(mode)

c = speed of light. The ideal unloaded equation is Q = (,rrnZo/4Rw), where R w = surface resitance of the reflectors R w = ~'rrf~~r

Z o = intrinsic impedance of free space Z o = l.t/Ix___o

V

g o

Practical Fabry-Perot resonators must be coupled. Collin [6, pp. 339-344] describes one way of accomplishing this with circular holes in the endplates. The effects of the coupling holes on fo and Q are derived.

3. Microwave Resonators

89

Also, Fabry-Perot resonators often use spherical reflectors to ensure the confinement of the reflections [27, pp. 570-577]. See Refs. [35, 41, 42, 46] for equivalent circuits, coupling, and resonant frequency calculations of Fabry-Perot (open) resonators.

I I . YIG Resonators

Tv2

.o

. . • ;::'.. ...... ~'..:.. , . . . . :.

• ..'::'"'.~

h~:i

.... :./.!:i.~:~2~:

• o_ " "-. z.];-.:. ~(i~ -., . '_'.',.---~-_..~.:-~'r';,~

Figure 30. A three-stage YIG filter [From J. Helszajn, Passive and Active Microwave Circuits. Copyright © 1978 John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.]

YIG = yttrium iron garnet (Y3Fe9012) fo = resonant frequency

F fo = 2,n- " ( H ° +- Ha),

[25,0.211]

90

Robert A. Strangeway

where MHz F = 0.221~

A/m

[1, p. 112; 25, p. 211]

H 0 = external biasing magnetic field intensity H a = inner anisotropic field of the YIG crystal. Note that the magnitude and sign depend on the orientation of the YIG crystal in the magnetic field. Osbrink [24] examines the Q of YIG spheres. YIG resonators are often used in filters and tuned oscillators. They are tuned linearly with respect to magnetic field bias. Mezak and Vendelin [43] review loop-coupled YIG resonator modeling.

12. Traveling-Wave Resonators Secondary microstrip

Primary m icrostrip

r

Input

r

Output

Figure 31. A traveling-wave resonator in a microstrip [15, p. 172]. [The figure was adapted from

Microwave Engineering, 2nd ed., by T. Koryu Ishii, © 1989 by Harcourt Brace and Company, reproduced with permission of the publisher.]

If the length of the secondary line is a multiple of whole wavelengths, a resonance response (absorption)will occur [12, pp. 201-202; 15, pp. 172-173]. Harvey also discusses how the traveling wave may be used to increase the fields' amplitudes in the resonant ring.

3. Microwave Resonators

91

References

[1] I. Bahl and P. Bhartia, Microwave Solid State Circuit Design. New York: John Wiley & Sons, 1988. [2] W. Bazzy, publishers, The Microwave Engineers' Handbook and Buyers' Guide, 1963 ed. Brookline, MA: Horizon House, 1962. [3] R. N. Bracewell, Charts for resonant frequencies of cavities, Proc. IRE, Vol. 35, pp. 830-841, Aug. 1947. [4] A. B. Bronwell and R. E. Beam, Theory and Applications of Microwaves, pp. 377-383. New York: McGraw-Hill, 1947. [5] G. B. Brown, R. A. Sharpe, W. L. Hughes, and R. E. Post, Lines, Waves, and Antennas: The Transmission of Electric Energy, 2nd Ed. New York: John Wiley & Sons, 1973. [6] R. E. Collin, Foundations for Microwave Engineering. New York: McGraw-Hill, 1966. [7] C. W. Davidson, Transmission Lines for Communications with CAD Programs, 2nd Ed. New York: Wiley-Halsted Press, 1989. [8] W. Froncisz and J. S. Hyde, The loop-gap resonator: A new microwave lumped circuit ESR sample structure, J. Magn. Reson., Vol. 47, pp. 515-521, 1982. [9] W. Froncisz, T. Oles and J. S. Hyde, Q-band loop-gap resonator, Reu. Sci. Instrum., Vol. 57, pp. 1095-1099, 1986. [10] K. Fujisawa, General treatment of Klystron resonant cavities, IRE Trans. Microwave Theory Tech., Vol. MTT-6, pp. 344-358, Oct. 1958. [11] W. Geyi and W. Hongshi, Solution of the resonant frequencies of a microwave dielectric resonator using boundary element method, IEE Proc., Part H, Vol. 135, pp. 333-338, Oct. 1988. [12] A. F. Harvey, Microwave Engineering. London: Academic Press, 1963. [13] J. Helszajn, Passive and Active Microwave Circuits. New York: John Wiley & Sons, 1978. [14] J. S. Hyde and W. Froncisz, Loop-gap resonators, in Advanced EPR: Applications in Biology and Biochemistry (A. J. Hoff, ed.), pp. 277-306. Amsterdam: Elsevier, 1989. [15] T. K. Ishii, Microwave Engineering, 2nd Ed. San Diego: Harcourt Brace Jovanovich, 1989. [16] T. Itoh, Analysis of microstrip resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-22, pp. 946-952, Nov. 1974. [17] T. Itoh and R. S. Rudokas, New method for computing the resonant frequencies of dielectric resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-25, pp. 52-54, Jan. 1977. [18] D. Kajfez, Elementary functions procedure simplifies dielectric resonator's design, Microwave Syst. News, Vol. 12, pp. 133-140, June 1982 (© Argus Business). [19] D. Kajfez and P. Guillon, eds., Dielectric Resonators. Norwood, MA: Artech House, 1986. [20] A. M. Khilla, Ring and disk resonator CAD model, Microwave J., pp. 91-105, Nov. 1984. [21] R. W. P. King, H. R. Mimno, and A. H. Wing, Transmission Lines, Antennas, and Wave Guides. New York: Dover, 1965. [22] M. Mehdizadeh, T. K. Ishii, J. S. Hyde, and W. Froncisz, Loop-gap resonator: A lumped mode microwave resonant structure, IEEE Trans. Microwave Theory Tech., Vol. MTT31, pp. 1059-1064, 1983. [23] T. Moreno, Microwave Transmission Design Data. Norwood, MA: Artech House, 1989. [24] N. K. Osbrink, YIG-tuned oscillator fundamentals, Microwave Syst. Designer's Handb., Vol. 13, pp. 207-225, Nov. 1983. [25] E. Pehl, Microwave Technology. Dedham, MA: Artech House, 1985.

92

Robert A. Strangeway

[26] M. W. Pospieszalski, Cylindrical dielectric resonators and their applications in TEM line microwave circuits, IEEE Trans. Microwave Theory Tech., Vol. MTT-27, pp. 233-238, Mar. 1979). [27] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics. New York: John Wiley & Sons, 1965. [28] T. S. Saad, ed., Microwave Engineers' Handbook, Vols. 1 and 2. Dedham, MA: Artech House, 1971. [29] F. E. Terman, Resonant lines in radio circuits, Electr. Eng. (Am. Inst. Electr. Eng.), Vol. 53, pp. 1046-1053, July 1934. [30] V. K. Tripathi and I. Wolff, Perturbation analysis and design equations for open- and closed-ring microstrip resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-32, pp. 405-409, Apr. 1984. [31] I. G. Wilson, C. W. Schramm, and J. P. Kinzer, High Q resonant cavities for microwave testing, Bell Syst. Tech. Vol. 25, pp. 408-434, July 1946. [32] I. Wolff, and N. Knoppik, Rectangular and circular microstrip disk capacitors and resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-22, pp. 857-864, Oct. 1974. [33] R. L. Wood, W. Froncisz, and J. S. Hyde, The loop-gap resonator. II. Controlled return flux three-loop, two-gap microwave resonators for ENDOR and ESR spectroscopy, J. Magn. Reson., Vol. 58, pp. 243-253, 1984. [34] Y. S. Wu and F. J. Rosenbaum, Mode chart for microstrip ring resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-21, pp. 487-489, July 1973. [35] H. Cam, S. Toutain, P. Gelin, and G. Landrac, Study of a Fabry-Perot cavity in the microwave frequency range by the boundary element method, IEEE Trans. Microwave Theory Tech., Vol. MTT-40, pp. 298-304, Feb. 1992. [36] S.-W. Chen, and K. A. Zaki, Dielectric ring resonators loaded in waveguide and on substrate, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 2069-2076, Dec. 1991. [37] D. Cros and P. Guillon, Author's reply, IEEE Trans. Microwave Theory Tech., Vol. MTT-40, pp. 1036-1038, May 1992. [38] D. Cros and P. Guillon, Whispering gallery dielectric resonator modes for W-band devices, IEEE Trans. Microwave Theory Tech., Vol. MTT-38, pp. 1667-1674, Nov. 1990. [39] W. K. Hui, and I. Wolff, Dielectric ring-gap resonator for application in MMIC's, IEEE Trans. Microwave Theory Tech., Vol. MTT-39, pp. 2061-2068, Nov. 1991. [40] E. N. Ivanov, D. G. Blair, and V. I. Kalinichev, Approximate approach to the design of shielded dielectric disk resonators with whispering-gallery modes, IEEE Trans. Microwave Theory Tech., Vol. MTT-41, pp. 632-638, Apr. 1993. [41] T. Matsui, K. Araki, and M. Kiyokawa, Gaussian-beam open resonator with highly reflective circular coupling regions, IEEE Trans. Microwave Theory Tech., Vol. MTT-41, pp. 1710-1714, Oct. 1993. [42] J. McCleary, M-y. Li, and K. Chang, Slot-fed higher order mode Fabry-Perot filters, IEEE Trans. Microwave Theory Tech., Vol. MTT-41, pp. 1703-1709, Oct. 1993. [43] J. A. Mezak, and G. D. Vendelin, CAD design of YIG tuned oscillators, Microwave J., pp. 92-98, Dec. 1992. [44] R. K. Mongia, On the accuracy of approximate methods for analyzing cylindrical dielectric resonators, Microwave J., pp. 146-150, Oct. 1991. [45] R. K. Mongia, Resonant frequency of cylindrical dielectric resonator placed in an MIC environment, IEEE Trans. Microwave Theory Tech., Vol. MTI'-38, pp. 802-804, June 1990.

3. Microwave Resonators

93

[46] R. K. Mongia and R. K. Arora, Equivalent circuit parameters of an aperture coupled open resonator cavity, IEEE Trans. Microwave Theory Tech., Vol. MTT-41, pp. 1245-1250, Aug. 1993. [47] R. K. Mongia and P. Bhartia, Easy resonant frequency computations for ring resonators, Microwave J., p. 105-108, Nov. 1992. [48] M. J. Niman, Comments on "Whispering galley dielectric resonator modes for W-band devices," IEEE Trans. Microwave Theory Tech., Vol. MTT-40, pp. 1035-1036, May 1992. [49] J.-S. Sun and C.-C. Wei, Iterative method provides accurate resonator analysis, Microwaves & RF, Vol. 30, pp. 70-79, Dec. 1991. [50] F. Tefiku and E. Yamashita, An efficient method for the determination of resonant frequencies of shielded circular disk and ring resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-41, pp. 343-346, Feb. 1993. [51] C. Vedrenne and J. Arnaud, Whispering-gallery modes of dielectric resonators, lEE Proc., Part H, Vol. 129, pp. 183-187, Aug. 1982. [52] A. K. Verma and Z. Rostamy, Resonant frequency of uncovered and covered rectangular microstrip patch using modified Wolff model, IEEE Trans. Microwave Theory Tech., Vol. MTT-41, pp. 109-116, Jan. 1993. [53] W. Xi, W. R. Tinga, W. A. G. Voss, and B. Q. Tian, New results for coaxial re-entrant cavity with partially dielectric filled gap, IEEE Trans. Microwave Theory Tech., Vol. MTT-40, pp. 747-753, Apr. 1992.