Microwave spectra of the αd3- and 29Si-phenylsilane isotopic species

Microwave spectra of the αd3- and 29Si-phenylsilane isotopic species

Volinic . . 38, number CHEMICAL 2 MICKOWAVE SPECTRA OF THE ad,- PHYSICS I March 1976 LETTEKS AND 2%LPHENYLSILANE ISOTOPIC SPECIES W. CAMINA...

313KB Sizes 0 Downloads 24 Views

Volinic . .

38, number

CHEMICAL

2

MICKOWAVE SPECTRA OF THE ad,-

PHYSICS

I March 1976

LETTEKS

AND 2%LPHENYLSILANE

ISOTOPIC

SPECIES

W. CAMINATI and G. CAZZOLI Laboratorio di Spcttroscopia Afaiccolar~ dcl C.N.K., 40126 Bologna, Italy and Istituto C~~i~nico“G Ciatnician “, U.viwrsity of Bologna, 40126 Bologna. Italy Received

13 October

I!)75

Tbc microwave rotational spcctrn of lydJ-pbcnylsilanc nnd of zgSi-phcnylsilanc of the lowering of the barrier to internal rotation with trideutcration was obtained. used to obtain n partial substitution structure of the top.

The microwave spectrum of the most abundant species of ph2ny:silanc has been reported earlier [ 11 and the potential barrier to internal rotation vh = 17.23 cal/mo!e was obtained. Sevornl low sixfold barriers. in light top molecules, have been studied by microwave spectroscopy [ l--8],

but

Only

in a few cases [2,9,10], Wilerc tllC tOi1 was a

methyl goup, the isotopic species with the trideuterated top have been studied. About a 15% reduction of v6 upon top deutcrritior. was ObScrVcd. The spcctrurn of C6H5-SiD, was aralyzed in order to investigate the effect of deutcration in the case of the silyl group. The matrixelements relevant to this type of low barrier problem (where only one internal dcgrcc of freedom is allowed) have been discussed elsewhere [ 1 I- 131. As Ognta outlined [ 131, passing from a value of the rcduccd barrier heights of0.041 (CII3NO2) to a value ofs = 4.58 (CF3N02) the spectrumcllangcs drasticaily and correspondingly the enerm level calculation bccomcs more complicated because the van Vleck transformation [J 11 is not possible. But although the value of s in the case of CgH5SiD3 is 0.393, the m = 0 spectrum follows an effectively rigid rotor pattern so that we could use the Cll,BF, model [ 111. artis-phcnylsilnnc was prepared in the same way as the norrr& spccics s doscribed in roi. [ 141 but using LiAlD4 instead of LiAIH,. The microwave spectra wcrc obtained with an IL?MRR 8400 C type spectrometer. The cell was coelec!

218

have been mensnred. A confirmation Tbc rotational constants have been

to approximately -50°C. A typical “a” type band spectrum was found, but the intensity of the C6H5-SiD3 bands is larger than

that of the C6H5-SiH3

bands because the nuclear

of the 112f 0,311 lirics arc more favourable in the case ofC6H5-SiD,. On the other hand the

spin weights

m = 0,311 lines arc weaker than those of CGH; -SiH3. In fact the classification of the nuclear spin functions of the tops in the Dstl symmetry group [ 151 leads to the ratio 4 : 2 bctwecn the A nnd B species for SiH3 and to tllc ratio 11 : 8 in the case of SiD3. On the other hand the E and A spin functions can combine with the rn + 0,311 and m = 0,3rz torsional wnvefunc-

tions respectively. In table 1 the cxpcrimental

and the calculated frcquencies for the I?Z= 0 lines of C6H,SiD, are listed. It can be seen that the spectrum follows an effcctively rigid rotor pattern within expcrimcntal accuracy. In table 2 are listed the frequencies of the llnl = 3 lines. The usual discrepancy between the caiculated and experimental frequencies, due to the lack of a quantitative treatment of tile vibration-rotation interaction is observed. In tab!e 3 the molecular constants of ad3-phenylsilane are reported. The inertial defect and the rotationai constant il’ vary upon cz-deutcraiion’in the same BU~SCx for tolucne [6,10].

The decrease in V, with dcuteration parallels the similar dccrcasc observed for other molecules, as shown in table 4. It is probably

due ?o a change in the

Volume 38, number 2

CCIEhiICAL PHYSICS LE?TEKS

values d~t~rrn~ff~d with A’ = 5700.23, Er = 1388.993, C = 1116.559. Conshn‘ts and frcquen-

C’~f15--SiD3 m = 0 tines. Glcukttcd

ties in MHz A_ -.___.__---_

_.._.. - __._-_ - .-__-

- ..-_- --

------_.-.

-

-

._-

-

k,

Frcgucncies -~_.--*

._...._

__

-

- . ._. ._

_..___.

303 -’ 40.1

iOf3S.82

404 -’ ~05 413 -*514

12285.27

%M - 625 6 06 -+ 707 616 -+ 717

16442.57

lG442.53

6f4 -+ 7~~

18068.74

18068.72

625 - 726 I. --_ .__.-. -.-

Transition

17441.91 17441.94 - -. -- ._ __I._ _“._._ . .. - -_ -_ ._ -_ _I..._- _ .- ._ --...

4--s

5-G

6+7 ~__c_----_--

--._.-+-

Frequencies _--_____-.-_ _ _I__ oiilc. cxpti. ._ -. -. _-- __ -- --- --9596.08 95xi.71

-c

10437.79 10476.27

10439.27 10475.23

-_ ++ -F-

ff390.57 12086.70 13041.85

11991.21 12085.40

-+

13124.42

13124.40

-+f f-+

i4381.95 14566.23 15642.48 15719.77

14382.81 r45i53.95 15644.61

-i+

16470.12 16771.17 171390.46 f7086.35 - -..- ._ I__- -_-,____

13043.81

15789.09

zero-point vibration of the top (particularly the sy~umetrica H--Z% -11 tending mode) as suggested in ref. EA. We were able to identify several lines of 29Siphcnylsilsnc in natural abundance (4.7%) by the mi-

-0.02

0.06 0.02 0.00 - 0.02

14125.59

616

Tiiblc 3 C&HS-+S~DJ molecular --_-_

-C&k.

-. --_--_-----.-

-0.16 0.05 0.09 -0.01 0.02 -0.09 -0.03 0.01

15388.16 14977.12 1692 1.08

-+ 624

-

I__ ..----

-_I)____-_.-.---.--_

exptt.-

9898.70

14 125.65

-

523

___.-._ .-_

10335.98 12285.22 13150.26 11795.60 12742.45 12499.97 14621.96 15740.26

15388.18 i4977.12 169 1 I.06

515

mined with A’ = 5700.2.13 = 13(38.993, C: I! 16.55, F * 48377, V6 = 166985. Constants and frequencies in MHz ~.-__-._____----_~.--.-- -._--

_.__.

__-__

-. -_-..-__-_..--..--.-.-.

13150.35 L279.5.59 12742.47 12499.88 1462X.93 157.W.27

Table 2 C6H5--SiI& frnl = 3, fkl = I lines. C~~~~~t~~ivaiucs ckter-

f+J+i ____ 3 -9 4

___C3IC.

9898.68

3213422

414-+5iS 422 - 523 423 - 524 505 -+ 60s 5;u-*615

____ __-.- - -.-.

-

CXpti.

-*Jk_r,q,

.-.-_..-

.._ _ .___ _. ___ ______._..____.. _.__.-_-_.-

.- .-. - - ..-_._ -

‘fkmsition kl,

1 Ma&t976

0.04

0.02 -0.03 -.-.-.-.--.-.-e--

constants

----.--_-

n--.y--.-_-2~

-.

A’ ,: cs700.2 f 0.9) hiffz

B = (1388.993 2 0.005) htltlz C’

= (I 116.559 c WOS)

hftfz

E;r

-0.88 1128 A =I,--f&--Ii= 0.110 amu A* F r: 48377 hffiz (ussumcd) I

v, = 166985 hfil7. = Wi.93 * 0.03) cti/rnoIe _- --. - .-.. - .- “_.__.__._.___~ .._.._-.__--___-___

crowave-radiofreq~tericy double rcsona~ce by pumping some K doublers; afterwards,

tectmique some other

lines could be measured with ihe conventional Stark spectrometer. The corresponding frequencies are reported in tablf: 5. We ffied A’ at the value of tile C6H5SiH3 constant (this is justified by the very small vflriatinn of the A’ constant in the analogous isotopic species of toiuenc) and so we could obtain very precise v;?lues of the rotational constants B and C, which are reported in table 6 together with the Zsi coordinate. Following the method used by Kreiner et al. [IO] who utilized a formula identical to tftat derived. by Chutj&m [ 161 for m&ipfe. substitution in a molecule of overalf C,, symmetry we calculated zR of the silyl 219

Vu!umc 38, nilmbcr :! -

Table4 V, barrier

1 hIarch 1976

CHEMICAL PHYSICS LETTEKS

_ reduction passing from an -XII3 to an -XD3 .__-___._- . ..- _.___..._ -_. -._._--_-....--_

bIoleculc

top ._.-._

. . ._

-...-__- _..------

V, (cul/molc)

-----.

-XHs top -XD3 top __________________ ____ ____._---.--___-._.-..-.----.

-

6.03 CHjBF7_ 13.77 t01ucns 13.94 pllenylsiianc 17.82 ____--_-_--__--_--.----_--._-.

_______

Table 5 C,Hs-2gSiH~

m = 0 lines. Callculatcd

_

_ .__ ___-..__

13.9 12.0 IS.4 10.7

._- .--- _.___ -.__-.._-_-_---_

v:~lucsd~t~~rrnined

ties in hIHz _._.___ _-__. _____ ______--._.-_ .- _._.-___---.--. Transition

--.-.

5.19 12.12 21.79 15.92

nitromethane

with A’ = 5703,

_.

B = 1475.637.

.-_-.-------.-Frequcncius ___ .__._ _..___.__ -__-__-_

tXpU. _-__-._ .

-I’ k’+1 __. -.-.__ - .._.. .._.___ -_- .. .._ -___-_

----

CA. _ __-._------.__-

1x91 16,101 : 11, this work

- -.-.

C=

_.-. -

1172.056.

--*

917

-r ~a10

247413.00

24747.110

945

+

26691.64 29413.40 29368.22 34701.16

2669 1.93 29413.33 29367.94 34701.35

-0.29 0.07 0.28 -0.19

34GV3.38 37487.62

34693.45 37487.7 1

-0.07 -0.09

37417.11

37417.25

1046 1047

1046

-

1147

+

lhl3

125, + 1358 1258 -’ 1359 13410+ 14.-.11 13.58 -* l+!, 1359

-

--------.-.-._.

ia!;10

_- -._---_-_..-._.

_

.--

22057.26 24934.22

37401.57 37401.65 ._ ___._.--_ .-_------.--._

.-._ - _---

uxptl.-AC. --_-..---

826

&!6

and ircqucn-

_-- _- .__.-- -_-.- ._--

909

+

Constants

- __----.-.

-. 22057.39 34934.63

725

._. ---

121

._ .

Jk_,,k+I -Ji

._. ._. -..... ..--

Ref.

fb reduction

.-.

---

----

0.13 0.4 1 0.20

-0.14 -0.08 .____ _._ _____.____ _~____

hydrogen atoms from the following expression Table 6 ChHs- 2gSi113 uz = 0 molecular tion coordinate _______________--

constants _._.__-

and

ZSi

substitu-

-_..---

where y = 3Anr fiI/(hf + 3Am) is the “reduced mass” for tridcutcration and Al, = Iti (SD,) -iLy (SiH3) was calculated assuming 1.39
A’

= 5703. h1f-k (assumed) B = (1475.637 k 0.010) hli-lz C = (1172.056 + !J.OlO) MHz A’

= -0.865996

Zsi =

---

I+ I = [(A& - ; A~,)/P] “* ,

2.3495 * 0.0010 A ________--_.

rncdiate Table 7 Sibyl group geometry

-.-.-.-_

__..._ -

YI I ass (A\) I,(SiDs) (arnu X2) c’H (A) L (II-Si-H) r (Si-H) (A) _-_A-

220

dcrivcd

from Ssi, ~11 andy

,.____ -_-1.39 11.67 2.854 108”58’ 1.479 _-

11 (assunxd)

_--

_._--_1.41 12.01 2.849

109” 25’ 1.496 ..- _-__--

character

if compared

with

the ctlaracters

the corresponding

of

sp and sp3 hybridized bond in SiH3-m-H and SiH3-CH3 respectively. In table 7 the silyl group geometry obtained from these assumption and the r,-located Z&position has been reported. iye wish to express our appreciation to Professor A.M. Mirri for discussions of this work.

Volume 38, number 2

References

[9] 3-E. NoIhb, Kwi

[l] W. Caninati,

G. Cazzoli and A.M. Mirri, Chcm. Phys. Letters 35 (1975) 475. [2] E. Tanncnbaum, R.J. Myers and W.13. i&inn, 5. Chem.

Phys 25 (1956) 42. 13 j R.E. Nayior Jr. and E.B. Wilson Jr., J. Ckcm. Yhys. 26 (19.57) 1057. (41 H.n. Rudolph and fi. Se&r, Z. ~atur~orsci~. 204 (1965) 1682. [Sf GE. ffcrberich, 2. Naturforscb. 22a (1967) 761. [6] 1i.D. Rudolph, Il. Drcider, A. Jncschke and P. Wcndliny. 2. Naturforsch. 223 (1967) 940. 17 ] H.D. Kudoipit, H. Drcizler and if. Scilcr, Z. Naturforsch. 22n (1967) 1738. [SJ W. Caminali, Ci. Carmli and A.M. hiitri, Churn. Pi-tys.

Letters 31(1974)

1 March 1976

CHEMICAL PIIYSICS LETTERS EA. Rinehart,

P.B. Rekdtart

and R.R.

Jr., J. Chcm. Phys. 55 (1971) 1998. Kreiner, H.D. Rudoipb and B.T. ‘fan, J. bioi. Spcc-

flO] W.A. try. 48 (1973) 86. [lil E.B. Wilson Jr., C.C. Lin and EAR: Lidc, J. Cltem. Phys. [12J

23 (1955) 136. CC. Lin and I.D. Swakn.

Rev. Mod. Phys. 31 (1959)

841. [ 131 T. Ogatn, J. Mol. Spcctry. 54 (1975) 275. fl4] Inorg. SynQ. XI !I9681 161. [ISI J.C. Longuct-Higgins, Rloi. Phys. 6 (1963) 445. [I61

A. Chutjian, J. Mol. Spectry. 14 (1964) 361. f17] M.C.L. Gerry and T-M. Sugden, Tcans. tzaraday Sot. 61

(1965) 2091. [ 181 R.W. Kilb and L. Picrcc, 3. CBem. Phys. 27 (13.57) 108.

104.

221