Mo study of molecular nitrogen fixation II. Model systems: [N2 + H2], [N2 + H2]+, [N2 + H2]−

Mo study of molecular nitrogen fixation II. Model systems: [N2 + H2], [N2 + H2]+, [N2 + H2]−

Jourcal of Moolecular Cafabsis. 6 (1979) 269 - 2B8 0 ELswier Secpoia SA., Iswxcae - Printed in tic P. PELKiN, M. CEPPAN, Depa.rtment of (Czechoslow...

743KB Sizes 0 Downloads 83 Views

Jourcal of Moolecular Cafabsis. 6 (1979) 269 - 2B8 0 ELswier Secpoia SA., Iswxcae - Printed in tic

P. PELKiN,

M. CEPPAN,

Depa.rtment of (Czechoslowkia)

Physical

M. HARENCChemish-y,

269 Netherhnds

and M. EREZA

Slouak

Tecknicat

U~iuersity,

gg0

37 Bmtis!~ua

TechrGai

Urciuersity.

880

37 Bmfislaua

M. LL%KA Department of Inorga~ic (Czeckoslouakïu) L. TURL

Slouak

NAGY

Irrctifute of Experimental (Czechoslooakïa) (Received

Ckemistry.

Febnnry

Pkarmacology,

Sìooak Acadcmy

of Sciencca.

800 00 Bratrslaua

19,1979)

The model systems of molecullar nitrogen fmation ([Na f Ha], CNa + Hz] +, CNa + Ha] -) were studied usïng the semiempirical INDO method with automatie gradïent geometry optimisation. The analysis of energy and charge distribution characterïstics in ah possible reaction coordinates enabled us to propose the symmetrïes and donor-acceptor properties of suitable catelysts.

1. Introduction The synthesis of genuine molecular nitrogen fjxatïon catalytic systems represents one of the most important problems of chenústry today. Despite the many scientists werking in this field, the enormous complexïty of these systems makes a detailed determination of the active centre biocatalyst structure extremely difficuh. However, model quantum chemi& studies may be &uitful for solving these problems. The model systems IN, f H] -, INz +- H]‘, CN, f- H] - were studîed in a previous paper [ l] _ The present paper deals with the mcdel systems [Na + Ha], [Na + Ha]+, [Na f Ha]-.

2. Method Ah the resuhs present& were obtained using the semiempirical INDO method wïth automatie gradïent geometry optïmisation 121. The Fossible reaction coordinates were determined by a PFX&GI-I~~~ study of the shape of the energy hypersurfaces of the systems studied. The sarne energy and charge

distribution characterïstics as descríbed in the previo-us paper [l] were studied during the detaïled mapping (wïth full geometry optimïsation) of particular reaction coordïnates. The approprïate models of the fint step in molecular nitrogen fïxation were chosen on the basis of weakening of the N-N bond and a simultaneous creation of N-N honds in the reaction products. The reactions were classified as symmetry allowed or forbidden by the application of Woodward-Hoffmann rules arïd frontier orbitals theory, and by the presence of an energy banier in the total energy curve. The symmetñes and donor-acceptor properties of the necessary catalysts were proposed on the basis of a study of the electron dïstribution changes which take place at the extreme points of the reaction coordinates.

3. Results and drscussfon The symmetrïes of the possiblc reactlon coordinates of the systems [N, + H,], [N2 + Hz]+ and [N2 J- H,] ‘, determined by the prelinmrary mapping of their energy hypersurfaces, are shown in Table 1. The abbreviations used for the various geometñcal arrangements are gïven in Fig. 1. Figure 2 illustrates the dependences of total energy on the possible reaction coordinates of al1 the systems considered. The dependences were obtained from a detailed investigation of the chosen reaction coordmates. Geometries and charge distñbutions of the systems in the points correspondmg to the estremes of the energy curves are shown in Table 2. The suitability of particular models characteñzing the first step of molecular nitrogen fixation may be determined from the dependences of Wiberg’s indices on the reaction coordinates. The systems [N2 f Hz], [Na f Hz]+, [N2 + Ha]- (T structure, model A), [N, f H,] (non-planar, C?); [Na A Hz]‘, [Na + Hz]- (cis-configuration, Cz”); [N2 + Hs] * (non-planar, C,,) are promising from this point of view. The triple N-N bond is reduced to an ‘approximately’ double bond and two ‘rather’ single N- N bonds are sïmultaneously created in al1 these cases. However, al1 these reactions are forbidden by symmetry, as can be seen from TABLE

1

The symmetries

of the possible

reaction

System

Symmetrk

INZ -Hz1

Asymmetrie (C,); non-planar (Cz )

INz

+Hzl

[N2+ H21+

Tstructure non-planar

of the reactlon

- model (C,,)

T-structure non-planar

coordinates

T-structure

Llnear configuration (Cz,); (C2[,);

coordina+a

A (Cz,);

(C,,); - model (Cz,)

- model

A (Cti);

cisconfiguration

(C,,).

Tstructurc - model x\ B (Cz,); crsconfìguration

Fig. 1. The geometrïcal arraogements and theü 1. linear system (C,,); 2_ Tstructure system -model A (Cz”); 3. T&ructure system -model E (C,,); -I_ crsstructurc system (Cz,); 5. non-planar system (Cz,).

abbreviations.

the crossings in the correlation diagrams (Figs. 3 - 9)+ and from the pr-nee of (at least one) energy barriers on Fig. 1. The other reactïons are ailowed, but they do not affect the reduction of tbe N-N bond or the creation of the (N,)-(Ha) bond. The electron density transfer from the molecular orbital (MO) antibonding wSh respect to the N-X bcmds ztd simulkn-~eously bonding with respect to the N-N bond on the N-N antïbondïng MO takes This is a common feature of all the place at the energy barrier m aximum. appropriate systems. The symmetry restrictions may be removed by the catalytic systems which allow such electron transfer at the start of the reactïon. Our study enabled the symmetry and donor-acceptor properties of these catalysts to be described. The nomenclature in which the donor-acceptor properties are defined with respect to the ligand used is derived fkom ref. 3.

fThc

folloting euampie ill&tcs the nbbreGtio= uzxd I =‘r?4 NbaNH rneans the orbibl, wbicb is of the antibonding TTtype with respect to the N-N bond and of the bocding o type wnith respect to the N-H bond. The symmetry propertïes of a given MO (S = syrometrical, A = antisymmetrïcal) with respect tn the symmetry opzrations (in the order denoted on particular Figures) are plaozd in parenth~. molecule

272

a

i

E

r r dl

(1)

-6l40

1

0-0

Yz) -035 B

0)

(3)

24

Lo

dClö?n]

Fig. 2. The total energy dependence Al CNZ+HZI meti+= Mm

BI

CNz+H?,l

Tstructure

-model

CI DI

:Na+&l IN, +

non-pIa.nar

(C,);

E/

F/

H21CN2 + H21-

cti6tructm (C,,); T’structure -model

IN2 +- H, J- nonMan=

(C2,);

on remtion

cc,);

A (C,,);

A (C,,);

coordinam

s (1

for:

273

4 E

ic

I

G

‘250

-b250

J (1)

-b30.0

(2)

ZO

íM

0,968 0,400 0,000 1,801 1511

maximum

minimum

maxlmum

minlmum

minlmum

Tmmodol A

Wz +H21 non.plonnr

1,213 1,900 1.060 0,778

minimum

maximum

1,782 1,202

mnrdmum

minlmum 1.587

1,844

minimum

P2 *Hz]+ T.modal A

mlnimum

2,170

[NO + Ha]+

0,450

mlnimum

[N2 *H21+ linour_

maximum

minimum

2,260 1.883

minimum maximum

minimum

P42 + H21non.plannr

[N2 + tI21Tmmadel A

1,003

mnximum minimum

mlnimum 1,96G 1,3GO

1.600

mlnimum

[Nz + Hz1

maximum

1,887 1,249

morimum

[N2 + H21cie conf.

2,272

mmimum

[Ne + Hz] (C,)

dWW,)

Extrcmnl point

System

1,745

0,973

1,826

1.126

0.860

0.917

1,669

1,377

2,431

2,380

1,835

o,a32 1.668

1.826 1.830

1.820

1,667

0,861

2.815

3.168

1,826 2.189

1.176

1.198

1.164

1.147

1.143

1.463

1.161 1.411

1.160

1.231

l.i72 l.lGS

1.222

1.201

1.196

1,178

1,170

1,205 1.229

1.198 1,222

1.173 1,222

1 149

0,771

1318

h-N

dH-11

2.660

2.186

2.403

2,837

2.911

0,716

0,920

2.901

2,91G

2,107

2,609 2 442

1.365

2.327 1,402

2,421

2,500

2.061

2,094

2,091

2.326

1.939

2,361

2.069

bl -N

0,808

0 003

0.010

0.694

0.367

0.010

0.000

0.201 0.190

0,001

0,630

l,G74

0.164 1,224

0,495

0,0b6

0.982

0,OSG

0,046

1,170

0,280 0.992

0.011

1.676 1,818

0,920

0 814

0,124

1,884

1.804

1,866

1,414

1,788

1408

0,069

\Y(N,k(II,)

0,676

0.039

0,080

0.002

0.016

0,623

0,049

0.032 0 008

0,260

0.028

0.103

0,927

~~tr-lr

Thc gcometricti ond chorgc distributionti In the cxtromul points ol the encrgy cwvcti*

TABLE 2

0,646

0.454

0.532

0.618

0.687

-1.366

-1,202

0,128

0.104

-0,328

-0,642 -0.l77

-0,664 -0.718

-0,274

-0,224

-0.682

-0.096

-0,120

-0.004

OJ96

-0.064

0,lSS

0,018

%N,)

0.464

0.646

0.468

0,481

0.413

0.300

0,202

-1,104 -1.128

-0,672

-0,823

-0,468

-0,436 -0.282

-0,726

-0,776

-0.418

; 0,096

0,120

0,064

-0,OBO

0,064

-0,166

-0,018

QHIJ

-827878

-633,42

-628,04

-629,42

-629,38

-f394,96

-632,1)6

-032,96 -013,06

-040,90

-636869

-636,26

-641.73

-637.60

-038.00

-635.85

-636,40

-644,64

-642.64

-644,84

-634 39

-043.63

-636.62

-641.63

Jp

1.301 1,099 Oh29

maxlmum

minlmum

non planer

*DistancesIn lO_” m; cnerglca in CV.

0.076

mlnlmum

minimum

1.403

mnximum

IN2 * 112 1’

1.4Gl

mlnimum

Wz * H2 1”

cia conf.

TmmadolB

1.696

1.070

0.768

1,890

0.720

0,832

1,176

1,226

1,19tl

1,176

1.190

1.183

l,IB8

1.760

2.676

2,389

2.690

2,047

0.018

0,(326

0,474

0.001

0.480

0,526

0.830

0.700

0.188

1.668

0.960

0.198

O.lGO

0.220

0.900

0,4GO

0,600

0.010

0,840

0.780

0.700

0.660

0.400

0,890

-uao,90

-027,Ol

-027,76

-cl93,Ql

-627.19

-027.11’7

3

cn

276

n,* Fig.

3. Gx-relation

tiiagrarn for t5e reaction

The systems ture

-

model

hl+

R1 -

[Nz

+ Hz]

Tstructure

-r -model

n,sJ A (Cz,).

[N2 + Ha], [N, + Ha3 * and [N, f H21- with the T TrucFig. 1) requïre the followïng electron density transfer:

A (see -

aaNHboNN

boNr-i=NN

-

Four different catalyst geometnc arrangements allowing the necessary donoracceptor interaction may be suggested for these systems (Fig_ 10). Systems A and B represent the monocentric complexwïth the o-type donor interaction dr+’

-

aaNHboN?d

and the n-type acceptor interaction d =Y

-

bmNHanNN

_

The catalytïc effect of these systems may be increased hy the followïng geometrïc -gement M M,-N-N

/

\

M,.

‘H’ The bicentric complex a crdonor interactïon

with bridged molecular nitrogen (system

C) bas

277

Sl#MEIRl

CEOW-

C,

SlnM-ElEF OPLLATta13 : .

C,

aa

:;

$ R

El

n

q

-10

0

_Ft

-200

,-

-___‘yg?____--_____p _f#_L_____--_‘L__-----ft----_-_____ -3l

tt---T’____

s----____---ft

52 l

l6_._ --_ __

--=x-e=--_---------yq

__----

R._‘---____

04

d=-~5xsl

_--

WSJ

-

kc_

rn.IA,!.

EnzSJ

Y.

zo”

\

\

y/ \

\

I

lL,cw aCLW

1’ \\

,’

‘>” ,l

I

\ \

=

\ \

C;

-1oc

$

bh,

u y

lE.W

__----

-----Tg”“=_

bC,&-L!s

n

- 20.(

Fig. 4. CarrektÏon

diagram for the reaction [Nz + Hz]

nonpknar

(Cz).

hc_m

-110

1

Sr ISSQ

+--__ _++_------_

IC8 CsAd

--*=_=___

___------‘==-

.!

--a--

Fig.

5.

Con-elati~n

diagram

fo c

the

-

[UIn,];

[k- hl-reaction

[N2

+ Hz]-

[h

-___ ----H-•6dA3

[n,ff&

na-> (C,,).

cïsstructure

E [.T

2aa

G-ii%Ad

_/-_------

TG (AS3

5=------__--

__--

6

(ASJ

__--

la0

‘iTm-1&7

(511) _--

fG* ‘6.1

(trd -.________

; \ \\

/

\ ‘\

/

r’ /y

-

Fig. 6.

Corrdation

clïagmm

bS9

U’

lcm

(SAU

~-_-----2--4-.

IC,

(SSP

u-----

foor the reaction

[Nz

/

/

as, bSlsSr)

,k’

’ 1

\

\

\

,--*”

L&&_bG_~hd

/H

lor

101

/

\

/-+

/’

---*---__ __j+--cC

-

_--+t -----Fe

b~u3S5J b%z(AsJl

_---

+ Hn,]-

TQructure

-model

A (Cz,)

279

-300

wig_ 7. tin-elztion

diagram

for the reaction

[N2

2: [cl --:,____

-

c:

l#l

cf=A)

Tstructu~

-

model AICZ~)-

____-----aAd

100

II

E4

Y

+ Hu]’

C.

-200

.

-1OQ

-

Fig. 8_ Gxrdation

l

a

4

diagram

for the reaction

[N2

+ H2 ]* Cisstrudure

-

rnod&l A (C,,).

I diagram for

Fig. 9. Correlation

the

..-q-

-+-

EI.-]:

reection [Nz + Ff2 1’ non-planar (C,,!.

interaction

and a IT acceptor

1d:,

[m,-s]--[

+ d%]

-

b”,,,afl,,

-

T’he cr donor transfer

and the weak 6 acceptor d:,

[d$

-

=NHb’JNN

-

+ d,2,

*d$]

interaction baNHamNN

take place in system D. Only the first reaction step (interaction in the cr;Cconfïguration) is important in the non planar system [N, + H,] of C2 symmetry. The second step represents cnly the cis-tmrzs isomerisatlon which causes no significant change in the -bond charactetitics: N

N-H

H

N-H Three

arrangzments may be suggested for the geometic 11). A represents a monocentric catalyst with G donor electron

different

catalyst

first reaction step (Fig. System transfer

auNH

H-N

bWN

-

dr’_Y’

Fig. lO.C~talytlc eystems for[Nz+ Hz],[Nz+ Hz]"and[Nz+ Hz]-T-structuro -modo1A(cav).

I

d'rv

282

1

~x

u--N

k~._

d zy

d x ~- yZ

A

l~U

B

[d~-v~-d~v] ' [df'-V% d~V]~

[d~-~v~-d~d'-[d~!y~-~v]~

Fig. 11. Catalytic systems for IN 2 + H 2 ] non-planar (C2). arLd ~ a c c e p t o r i n t e r a c t i o n

dxy

> bONHaT¢NN.

T w o 7r b o n d s r e q u i r e t h e d o n o r i n t e r a c t l o n

affNHb~'NN

)

[d~

in t h e b i c e n t r ~ c s y s t e m B

--dy=]

w h i l e t h e a c c e p t o r e l e c t r o n t r a n s f e r is a c h i e v e d w i t h t w o w e a k 8 b o n d s . { d ~ y + d2y]

.

baNHa~rNN

"

T h e l a s t o f t h e s u g g e s t e d c a t a l y s t s ( s y s t e m C) is t h e b i c e n t ~ i c s y s t e m i n which both donor and accepbor interactions

283

require a proper hybrÏdisation of the atunüc orbitals of the tmnsition metals. It is interesting that almost all authors studying biological molecular nikogen transition met& ín the active centers fïxation assume such an arrangement of ferments [4,5]_ An analogous caLMyst geometric arrangement is required for the first reaction step in the system [Nz ’ f Hz] - (Ca, cti). Further, the orbital occupa tion of the transition metals must al!ow the electron transfer

of

aoNHb%N

-

atïNpi

the second reaction step. This electron density transfer may occur in two ways (Fig. 12). Both donor and acceptor interactions are of the n type in system A

in

anNH

bnKN

d YZ

-

d XZ -

arNN_

The u donor interaction d,x_,z

+

aoN_XbnNN

and the weak 6 acceptor ïnteraction d TZ -

axNN

take place in system B. The system [ET2 + Hz]+ aaNHbgNNbaHz+

-

(Cz”, CLS) requires the eiectron density transfer anNN

-

Two different catalyst geometrïc arrangements may be suggested for this system (Fig. 13). Eoth these caklysts are bicentrïc. Two correspondïng monocentric cakalytic systems may be obtained when one of the metal atoms is omitzed. It is obvious that the catiytic influence is amplified in the bicentrïc arrangements. The u donor and 0 acceptor interactions aaNHh%NhugH

-

1dfz + d%

-

d:+Z L

+ d,Zz_,l

=NN

1

1 1 present in system A. The catalyst causes the (T donor interaction rd,‘Z +d$ aGNuboNNb%H 1 and the m aceptor interaction

are

1

in

system B.

284

ì

a-

b

d TE A

Fig. 12. Catalytio systems for [Nz + Hz]-

‘The Een pknar density uansfer +

aoNHbNN

system

[N,

cisconfiguration

+ Hz; + (C,,)

(C,,).

requires

the following

electron

mNN-

The catiysts can act in three different geometrie axrangements (Fig. 14). The 5rst two cases (A and B) are bicentzïc systems which can be reduced a monocentric syskm as in the previous case. The 0 donor ïnteraction mNH

bil

NN

and the 6 acceptor

-

d&a -d$_,1 [ electron transfer

1

to

285

d’r’

d'.'

in system A. System B ïnvolves both donor and acceptir ïnteractions wïth the R bonds

are present

=NHhNN

d ==

-

d,,

-

=NN

are present in the monocentrïc

system C.

286

C Fig. 14. Ca’dytic

systems

for [N2

+ + @ba n

du

+ Hz]+

non-planar

(C2,).

A fairly complicated reaction mechanism consistïng of two steps is found in the non-planar systzm [N, + H2] - (C,,). In constructing a scheme for the catalytïc t;ystem, there is a requiremerrt for the same symmetry for the catalyst’s geometic arrangement in each of the reaction steps (Fig. 15).

287

,/

Tg

~ -

A

d~z y

~i'... b c i ' ~

- el' xV

-d2ffiy

7*

~

~r..

- d z ~V

E

Qkf~'~ ~-'~,

d']LZ

• ~'.,. b~"..

- d2r.~

d'zz

I~'--

dz i]:

B Fig. 1 5 . C a t a l y t i c s y s t e m s f o r I N 2 ÷ H2 ] - n o n - p l a n a ~ (C2~)_

288

In the first reaction step (scheme taITNH

b~NN~~HH)2

A) the electron transfer

+ (a%Hb~NNb”dl

(aoNtIb~NNbuHH)2

-

+ (arNHbmNNaGHH)’

is realized through the x bonds. The complex system of TFbonds causes the electron (amNH

hNN taTTNN

+ (amNHbGN)l

)’ 1’

+ (~~NN)I

+ (amNN)O + (aUNtsbnNN

+ (aTTNN)’ 1’

transfer

-

+ tarrNHbTTNN

1’

in the second reaction step (scheme B). This mechanism can be supported by the chelate structure of the remruning ligands, which can serve as both donor and acceptor of electron density. It must be pointed out here, that al1 discussion of the suggested catalysts concerns only the geometry and symmetry properties of thc orbitals which act as electron density donors or acceptors. On the other hand, these orbitzk must have the necessary wïth the chosen orbitds

energy

and occupancy

(important

so that they can ïnteract

only

from our point of tiew). These orbital

catalyst properties are maïnly determmed by two factors : (i) the properties of the transition metai used; (ii) the symmetry and strength of the ligand field of ligands which are not direccly involved in the reaction. An optimum requïrement for donor-acceptor properties can therefore be arrived at by mode!ling the ligand sphere in a particular geometrïcal arrangement. Thls IS the aïm of our future work, and first qualitative results may be found in ref. 6.

References 1 P. Pelikán, XI. LXka, hl. Haring, M. &ppan, M Brc~ Und L Turi Nagy, J- Mol. Cxtal., a (1979) 3-$9. 2 J_ Pancíi, Theor. Chim. Acts, 29 (1973) 21. 3 F. D. hfango, Fortschr. Chem. Forsch., $1 (1973) 39. 4 M. M. rnqul Khan and A. E. Martell, in Homogeneous Catalysis by Metal Complexes, Vol. l., Academie PW%. New York, 1974. 5 J Chatt and G. J_ Leigh, Q. Rev_. 26 (1972) 121. 6 L. Turi Nagy, P. Pel:k3n, M. LiEka, M. Haring. M. &ppan and hl. Breza, Int_ J. Quantum Chcm., in prcss.