Available online at www.sciencedirect.com
ScienceDirect Transportation Research Procedia 2 (2014) 327 – 335
The Pedestrian and and Evacuation Evacuation Dynamics Dynamics 2014 The Conference Conference on in Pedestrian 2014 (PED2014) (PED2014)
Modeling pedestrian dynamics on triangular grids Minjie Chen a,∗, G¨unter B¨arwolff b , Hartmut Schwandt a a MA b MA
6-4, Institut f¨ur Mathematik, Technische Universit¨at Berlin,Straße des 17. Juni 136, 10623 Berlin, Germany 4-5, Institut f¨ur Mathematik, Technische Universit¨at Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
Abstract We study the modeling of pedestrian dynamics on triangular grids. We consider the cases both with and without orientation. The geometry of a path with orientation may be represented by a special triangular grid with a continuously reducing number of grid cells in the inner side. In addition to the path orientation, a fictional path force will be applied to described the position deviation in this system. In the second case, we consider geometry with no clear orientation. We present here a computation model on the general triangular grid for the step configuration on the local operational level. © 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). c 2014 The Authors. Published by Elsevier B.V. Peer-review of Department of Transport & Planning Faculty of Civil Engineering and Geosciences Peer-reviewunder underresponsibility responsibility of PED2014. Delft University of Technology
Keywords: pedestrian dynamics; modeling; path-oriented coordinate system; triangular grid; step calculation
1. Introduction Pedestrian dynamics are often simulated on geometrical settings in two dimensions. The modeling technique of pedestrian dynamics can be either macroscopic or microscopic, discrete or continuous (see Daamen et al. (2002) for an overview). In microscopic modeling, pedestrians will be simulated separately and are thus often called “agent”s, with each of them having independent characteristics, sometimes subject to additional behavioral rules Moussa¨ıd et al. (2011). In discrete modeling, the geometry is usually discretized into a two-dimensional grid. A special category of this is the cellular automaton models in which homogene grids are applied and pedestrians as simulation agents are to obey a set of universal rules. Cellular automaton models have also been defined on rectangular grids (for details see Burstedde et al. (2001) and Schadschneider (2002) and Kirchner et al. (2004)) as a special case of homogene grids. Generally speaking, the state transition (or evolution) of the grid positions can be used to describe the dynamics of the system. The grid is not limited to be rectangular. ∗
Corresponding author. Tel.: +49-30-314-28565. E-mail address:
[email protected]
2352-1465 © 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of Department of Transport & Planning Faculty of Civil Engineering and Geosciences Delft University of Technology doi:10.1016/j.trpro.2014.09.024
328
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335
2. Model 2.1. Path-oriented system Under certain circumstances, rectangular (or homogene) grids prove to be less favourable in the modelling. This is especially the case when pedestrians have only one main moving direction, but this direction cannot be represented or approximated directly by any straight line. This can be often observed when pedestrians walk along a path or corridor. In the current text, this main direction will be referred to as the orientation of the path. Gloor et al. (2004) argued that for the pedestrians walking on a path there is a fictional “path force”, under whose influence the pedestrians will be drawn toward the centre line of the path. Hence, in addition to the fictional axis represented by the orientation, a second axis can be defined by this path force. Consequently, given the orientation of the path and the deviation, a path-oriented coordinate system can be constructed. The position in a path-oriented coordinate system can be decided by the position on the centre line of the path and the deviation from it. Assuming this centre line to be a plane curve S , we can consider the whole area of the path as a tubular neighbourhood of this curve (see Chen et al. (2009) for technical details). In addition, we request that this curve be regular and have unchanged sign of curvature. If the curvature changes the sign, the centre line can be first decomposed into curve segments which meet this requirement, and after discretization, the components of the original curve can be connected to each other to restore the original geometry. 2.1.1. Discretization scheme y (m − 1, m + n − 1) (m + n) · d
x
(m − 1, n − 1) n·d
d
(0, 0)
0
S0 S1
S
Sm
S0 S1
S
Sm
Fig. 1. Discretization in the path-oriented coordinate system and its equivalent representation in the Euclidean coordinate system. The original centre line of the path S may or may not overlap with an equidistant curve.
The path spanned by maximum deviation can now be divided into m stripes, which are separated by m + 1 equidistant curves. For simplicity’s sake, these equidistant curves will be named as S 0 , S 1 , . . . , S m with the index 0, . . . , m starting from the inner boundary of the original path. Obviously, in nontrivial cases (with the curvature of the centre line being non-zero), the equidistant curves in the inner side have shorter lengths. We can intuitively divide the equidistant curve S i (i = 0, . . . , m) by arc length further into n + i parts. This is to say, the innermost curve S 0 of the path will be divided into n parts, and for the outermost curve S m , there will be m + n parts. We approximate the curves S 0 , . . . , S m by straight line segments. By this means, the original path can be represented as a set of triangles. This topology can be reorganized in the Euclidean coordinate system, in which the two triangles bounded by two neighbouring equidistant curves sharing a common edge now form a quadrilateral. We will label these quadrilaterals
329
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335
by their x- and y-positions, for x = 0, . . . , m − 1 and y = 0, . . . , n + x. See Fig. 1 for an illustration. In each of these quadrilaterals, if we associate the triangle in the negative direction of x with an additional bit 0, and in the positive direction, an additional bit 1 respectively, the triangles in the path-oriented coordinate system can be easily labelled by 3-tuples. Technically speaking, we may choose m and n independent of each other. However, if we divide the innermost curve S 0 into n segments of equal arc length (written as d), we shall have the choice of a second parameter m that the length m · d can be roughly equal to the width of the original path. In this case, the triangle indexed (x, y, 0) and its neighbour with the index (x, y, 1) or (x, y + 1, 1) can form a quadrilateral which has approximately the shape of a square. The physical length may be further rescaled by the edge length d in the respective axis. In the current text, discrete lengths without unit will be applied. 2.1.2. Position transition in the coordinate system We now consider two types of position transition in the path-oriented coordinate system. These happen in the direction of the orientation of the centre line and in the direction of its deviation. (m + n) · d
(m + n) · d
n·d
(m + n) · d
n·d
(m + n) · d
n·d
n·d
d
d
d
d
0
0
0
0
S0 S1
S
Sm
S0 S1
S
Sm
S0 S1
S
Sm
S0 S1
S
Sm
Fig. 2. Position transition (Fwd) in the primary direction of the path-oriented coordinate system and position transition (Dev+ and Dev− ) in the secondary direction measured as deviation from the centre line of the path. Fwd is expressed in the first two subfigures (counting from the left), the start position has additional bit 1 and 0 respectively; the rest two subfigures refer to Dev+ and Dev− . We notice that Dev− is for (1, 4, 1) and (3, 5, 1) undefined. Concerning (0, 3, 0), (2, 4, 0) and (4, 5, 0) there exist two possibilities for the execution of Dev+ .
Main direction. In this case, the position transition takes place in the same stripe bounded by two neighbouring equidistant curves S i and S i+1 , i = 0, . . . , m − 1. Then obviously we can define the position transition ⎧ ⎪ ⎪ 0), if b = 1, ⎨(x, y, Fwd(x, y, b) = ⎪ (1) ⎪ ⎩(x, y + 1, 1), if b = 0. Alternatively, (1) can be rewritten as ¯ b) ¯ Fwd(x, y, b) = (x, y + b, if we write 1¯ = 0 and 0¯ = 1. See the first two subfigures (from the left) of Fig. 2. The backward position transition can be formulated in an analogous way. Secondary direction. Now we consider the situation that the pedestrian moves exclusively under the influence of the so-called path force, in other words, with deviation only. The third subfigure of Fig. 2 explains the positive deviation from a position with additional bit 1 or the negative deviation from a position with additional bit 0. This can be
330
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335
formulated as Dev+ (x, y, 1) = (x + 1, y, 0), Dev− (x, y, 0) = (x − 1, y, 1).
(2)
This case involves the position transition into a neighbouring stripe. Similarly, the last subfigure of Fig. 2 describes the positive deviation from a position with additional bit 0 or the negative deviation from a position with additional bit 1. The position transition takes place in the same stripe, however, we need to pay additional attention to the centre − n+x−1 of the stripe. If n + x is an even number, we leave Dev− (x, n+x 2 , 1) undefined. If n + x is odd, Dev (x, 2 , 0) may n+x−1 n+x+1 take either (x, 2 , 1) or (x, 2 , 1). Otherwise, we define ⎧ ⎪ ⎪ 1), if y < n+x−1 ⎨(x, y, + 2 , Dev (x, y, 0) = ⎪ ⎪ ⎩(x, y + 1, 1), if y ≥ n+x , 2 ⎧ (3) n+x−1 ⎪ ⎪ (x, y, 0), if y ≤ , ⎨ − 2 Dev (x, y, 1) = ⎪ ⎪ ⎩(x, y − 1, 0), if y ≥ n+x+1 . 2 From a technical perspective, a successful position transition according to (1), (2) and (3) shall request that the new position (x, y) and the additional bit be well-defined in the coordinate system, owing to this consideration, some positions will not be involved in the operations of Fwd, Dev+ and Dev− , cf. Fig. 2. The operations of Fwd and Dev will be later called substeps as well. 2.1.3. Effect of the path force Generally speaking, a navigation module of the system should take care of the step configuration (and possibly routing as well) of the pedestrians in the simulation. In our simplified model, we assume that each pedestrian has an ideal, pre-configured walking speed v obeying a Gaussian distribution. Adequate measurements of empirical data (see for example Plaue et al. (2012)) can be carried out to locate system parameters like v. The operation Fwd will be responsible for the projection of v on the grid. On the other hand, to demonstrate the impact of the path force, a secondary component v x of the pedestrian’s temporary velocity can be defined to be proportional to the pedestrian’s deviation from the centre line of the path (with x¯ addressing the x-position of the centre line) v x = ( x¯ − x) · a
(4)
with a constant parameter a. The Dev-operations are associated with v x , whereas the Fwd-operation leads partially to deviation as well, which influences the next Dev-operation through the update of the x-position. 2.2. Triangular grid Sometimes no moving direction of the pedestrians seems to be dominant or can be identified clearly in a scenario. In this case, triangular grids can be given consideration for the modelling. With (irregular) triangular grids, it will also later become possible for hybrid methods in combination with the continuous model Huth et al. (2014) based on finite volume method. 2.2.1. Substep calculation The geometry settings of the simulation or, as in any real-world scenario, the architectural layout of the environment can be Delaunay-triangulated into a triangular grid. This task can be easily performed by the grid generating tool Gmsh Geuzaine and Remacle (2009). The step choice of the simulation agent (pedestrian) can be understood as a sequence of position transitions from neighbouring grid cells sharing a common edge. This kind of elementary position transition will be called substep as well. The simplest strategy for substep is to choose the neighbouring grid cell in the direction of local moving direction. However, this does not take into consideration of the interaction of the agents in the simulation, so unless the density is at a very low level that the pedestrians may walk in straight lines without disturbance, this strategy will not be much useful. In simulation experiments the agents often block the passage among one another and this can result in unnecessary system-wide deadlocks. For a reasonable substep
331
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335 C
X
D
C
OCBD
E
x O1,x
O2,n
OACE
O1
OABC
O2
B
O O1,n
A
B
O2,x
OBAF
O3,x
O3,n
A O3
n
F
Fig. 3. (a) Four cell positions in a triangular grid, The centroids of the neighbouring triangles (cell positions) are connected. (b) A close-up of the cell position ABC at which a temporary direction x is indicated.
calculation, we shall consider all possible neighbours. As shown in Fig. 3, starting from position ABC, there are three possible direct neighboring positions CBD, ACE and BAF. Let the temporary destination be written as X (and after normalization, x). For the sake of notational simplicity, the neighbouring grid cells CBD, ACE and BAF will be addressed by the subscript 1 , 2 and 3 respectively. In addition, we assume that X is not inside or on any edge of ABC (otherwise the temporary destination would be identical—in discrete sense—with the current grid cell position). The three possible substep choices can be considered as position difference between the centroid of the current grid cell O and the centroids O1 , O2 and O3 of the neighbouring positions respectively, see Fig. 3. These can be expressed as vectorial components in the temporary direction x and its normal direction n: −−−→ −−−−→ −−−−→ OO1 = OO1,x + OO1,n ,
−−−→ −−−−→ −−−−→ OO2 = OO2,x + OO2,n ,
−−−→ −−−−→ −−−−→ OO3 = OO3,x + OO3,n .
(5)
O2
O
O1
x
Δy
X
O3 Δx
Fig. 4. Possible substeps on a square grid. The temporary destination X requests a position transition (Δx, Δy).
For the corresponding position transitions, we now consider the probabilities of the substep choices p1 , p2 , p3 ∈ [0, 1],
(6)
p1 + p2 + p3 = 1.
(7)
Naturally, the deviation from the proposed temporary direction should be avoided or at least reduced whenever possible, so we expect in the normal direction: −−−−→ −−−−→ −−−−→ p1 · OO1,n + p2 · OO2,n + p3 · OO3,n = 0.
(8)
332
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335
Next, we study the main direction toward the destination. In nontrivial cases, among the three possible choices, one of −−−→ them has the least angular difference with vector x. Without loss of generality, let this be OO1 , cf. the right subfigure of Fig. 3. Obviously, this position transition should be preferred. To establish a third relationship for p1 , p2 and p3 , we first consider the situation on a square grid (see Chen et al. (2010) for technical details). There we suggested a −−−→ −−−→ −−−→ balancing mechanism among the three substep choices OO1 , OO2 , OO3 with the corresponding probabilities p1 , p2 and p3 : p1 1 +
(Δx −
1)2
+ (Δy −
1)2
+ p2 1 +
(Δx)2
+ (Δy −
1)2
+ p3 1 +
(Δx −
1)2
+
(Δy)2
=
(Δx)2 + (Δy)2 , (9)
−−−→
cf. Fig. 4. We notice that the rest distance O1 X = (Δx − 1)2 + (Δy − 1)2 is the shortest among the three possible substeps, under certain circumstances—although not always (the reason for this is to form an overall natural trail toward the destination, see the explanation below)—p1 receives more weight. This explains that very often a diagonal −−−→ −−−→ substep choice (in nontrivial cases Δx, Δy 0) should be preferred. Substeps OO2 and OO3 are axis-parallel, by choosing these the agents moves in a more or less “zig-zag” manner on the rectangular grid. The balancing mechanism in Chen et al. (2010) is designed to reduce this unnatural phenomenon, and overall, the individual agent is expected to exhibit a natural trail of all possible position transitions toward a given destination. To achieve this, we need to differ the discrete length of a step choice (that is, the number of the substeps contained in this step in a simulation cycle) from its physical length on the grid. In (9), the term 1 (with three occurrences on the left side of the equation) denotes that all these substeps have a discrete length of 1 (defined in number√of substeps in a simulation cycle). However, we recall that the diagonal substep has an effective physical length of 2 (after being rescaled by the unit length of the grid cells). Hence, the left side of (9) can be rewritten as −−−→ −−−→ −−−→ p1 β OO1 + (Δx − 1)2 + (Δy − 1)2 + p2 OO2 + (Δx)2 + (Δy − 1)2 + p3 OO3 + (Δx − 1)2 + (Δy)2 , √
the multiplicator β = 22 is introduced to compensate the effective physical length of a diagonal position transition. In analogy, we propose now on the triangular grid −−−→ −−−−→ −−→ −−−→ −−−−→ −−−→ −−−−→ p1 · β O1 X + OO1,x + p2 · O2 X + OO2,x + p3 · O3 X + OO3,x = OX
(10)
with β being a compensation multiplicator for choosing the neighbouring position with the least angular difference toward destination, defined as
1 3
hA , (|BC| + |CA| + |AB|)
where hA denotes the altitude in ABC through A in length. β can be even further simplified to be assumption that all grid cells in the triangular grid are of similar shapes and sizes.
√2 , 3
under the
Given (7), (8) and (10), p1 , p2 and p3 can be decided. Obviously in case (6) is not satisfied, the solution should be adjusted. For i = 1, 2, 3, if pi < 0, we set pi := 0 and if pi > 1, p := 1. In extreme cases, there could be two p’s no less than 1, these should be manually corrected again. In addition, we recall that the case under study refers to three accessible neighbouring grid cell positions. If there is only one grid cell position accessible, the substep solution is obvious. If there are two, (10) may not need our attention. If no neighbouring grid cell position can be accessed, a substep execution is not possible at the moment. Whether a substep operation can be carried out successfully plays an important role in the system update of the simulation, this will be explained in the next section. The same applies to the Fwd- and Dev-operations in Section 2.1.
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335
2.3. Update scheme In our model, the step execution in the simulation cycle is composed of a series of substeps. Substeps are constructed to reflect the original intended position change. With multiple substeps as operations for the agents (pedestrians) in the simulation cycle, it is possible for us to simulate pedestrians with heterogeneous characteristics (for example, walking speed). In other words, pedestrians with different speeds cover different distances in the same time interval, it is obvious that pedestrians will undertake different numbers of substeps as elementary operations. A valid update scheme should take care of the execution of all the elementary operations of all the agents in the simulation smoothly. Unlike on the triangular grid in Section 2.2, in the path-oriented system in Section 2.1 two kinds of operations are involved. The agent has, in addition to the usual forward position change (in form of the Fwd-operations) defined by its speed v, also a deviation movement (4) (in form of the Dev-operations). The magnitude of the latter is dependent of the width of the path and the path force constant a. The agent has v + |v x | (rounded as an integer number) substeps to carry out in a simulation cycle. Let vmax denote the maximum speed of all the agents and v xmax the maximum possible deviation in a simulation cycle. We divide the simulation cycle further into u equal subintervals with u ∈ N, u ≥ vmax + v xmax . The agent will now execute its configured v + |v x | operations in the u subintervals. The next code fragment describes how the substep operations of the pedestrians can be executed within a simulation cycle. procedure operate: parameter: a collection of agents mark all agents as “unprocessed”; i ⇐ u; while i ≥ 1 do process all agents marked “unprocessed” by calling procedure operate agent sequentially with parameter i; i ⇐ i − 1; enddo return
The next update scheme processes the agents separately: procedure operate agent: parameter: agent, i if destination reached mark as “processed”; else count (in the current simulation cycle) the successful operations in the main direction s and in the secondary direction s x ; if v−s+vi x −sx ≤ 1; execute an operation in the main direction with probability v−s ; i execute an operation in the secondary direction with probability fi fi
v x −s x ; i
return
The parameter i serves as a time stamp. In the above procedure operate agent, unsuccessful substeps in the current simulation cycle contribute to a higher probability that a substep should be attempted again (since v, v x , s and s x remain unchanged but i is decremented). This reduces the occurrence of conflict notably. In the procedure operate agent, if there is a reason for a pedestrian to apply an operation in a subinterval in the simulation cycle, that is,
333
334
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335 v−s+v x −s x i
≤ 1, we should still decide whether this is to take place in the main or the secondary direction. Therefore, v−s = v−s the operation in the main direction will be carried out with a probability for v−s+vi x −sx · v−s+v i , and naturally x −s x v x −s x for the operation in the secondary direction, i . Since the pedestrians in the simulation are not expected to have a homogeneous velocity, the substep execution in the procedure operate agent varies among the agents substantially. This should be considered as an advantage in the modelling, since the likelihood of a local conflict among pedestrians in their substeps will be clearly reduced. In this sense, our model is completely different from the usual cellular automaton models. The main concern in our model is the execution of the substeps as elementary operations on the lowest simulation level, whereas the step conflict solution must be provided on higher levels of the simulation (in that in every simulation step a well-calculated temporary destination must be provided for every agent). The actual conflict in substep execution helps us to decide how these substeps are to be performed in order that the pre-configured step choices can be most faithfully carried out. 3. Preliminary results
Fig. 5. Simulation examples of path-oriented coordinate system.
In Fig. 5 we present some test results respecting Section 2.1. Pedestrians were simulated to start from the lower border of the grid and moved in the direction of the orientation of the centre line of the path, and finally they left the scenario at the upper-left corner. Counting from the left, the first three subfigures show the cases of low, middle and high entrance rates of the pedestrians, with no path force present. In every case, the pedestrians tend to group into stripes after somehow a stabilization of the system. The other three subfigures combine the entrance rate with path force: 4) low entrance rate, path force in the middle range, 5) middle entrance rate, path force in the low range, 6) high entrance rate, maximum path force (that is, the agent always strove to get to the centre of the path; at the same time, when this was impossible—owing to the high density in the system—agents still moved forward at a slightly reduced average speed). Currently we are still missing real-world empirical data for the calibration of the system parameters. However, in the simulation examples, patterns resembling real-world observation can be roughly identified. Fig. 6 refers to the simulation (respecting Section 2.2) of an experiment carried out during the Lange Nacht der Wissenschaften (German: Long Night of the Sciences) 2010 at Technische Universit¨at Berlin. In the experiment, volunteer visitors of the event were given instructions to demonstrate the intersection of two groups of pedestrians. The left subfigure shows the triangular grid of the location according to architectural plan. The simulated trajectories of the pedestrians in two groups are presented in the right subfigure. Qualitative study of this experiment via for example, the density estimator introduced in Plaue et al. (2011), is currently being prepared. Acknowledgement The authors gratefully acknowledge the support of Federal Ministry for Economic Affairs and Energy of Germany for the project VP2653402RR1 and federal state of Berlin/Investitionsbank Berlin for the project 10153525.
Minjie Chen et al. / Transportation Research Procedia 2 (2014) 327 – 335 324 274 583 11 276 280 589 278 603 144 596 2613 2568 1602 629 592 237 2867 2474 0 782 784 641 218219576 292 2644 659 327 643 593 238 2868 1582 2614 2569 1319 630 642 783 785 577 326 347 289 584 2645 788 2475279 604 227 598 595 779 778 346 590 325 348 550 2196 540 578 1591 606 1464 594 541 586 2215 2782 311 1477 2672 2910 1318 2698 2395 1434 26312632 542 605523524191597 14511536 307 1391 1592328 2197 17 549585 2214 2970 27832344 2697 2699 2564 14351465 2706 708 485 714 1535 2671 2909 701 698 7351452 312 15001501 2722 704 330 513 538 192 2704 13891390 25632562 697 520 306 256 293 2968 2724 1537 25592476 514 344 539 190 772771 15342705 486 2969 1605 1601 543 646 233 702 792 2908291 557 707 220 734 2967 770 715 705 1972849 706 284 699 1532 2715 1460 173 1229 791 2349 2803 2477 703 2208 2515 212 490 2723 1530 1 2195 2770 1516 645 644 249 519 223769 226 2307 521 575 101 1531 2209 2465 2514 489 277 656 693 518 515 2348 2350 2955 7 333522 658 1533 2714 1461639 2848 1230 766 777 2347 2361 1517 694 248 2806 2956 287 285 655 2847 2306 475474 464 637 588 2959 8 40240321944042207 717 24662464 754 532 2713 1598 2954 767 684 530 636 718 57 23602362 755 488487666 685686 753 241 657 265 286 337 295 2206 63 764 773 634 282 466 660 661 768 695 696 203 465 143 338 134 239 240 633 62 59 23222323 2958 3000 765 789 752 720 264 161 229 638 254 531 253 281 204 667 507 445 162 275 3001 2998 111 231 316 719 467 2352 207 444 113 443 442 258 635 548257 446 454 107 736 493 756 790 738 12 494 25652567 508 228 479 662 145 632 385 60 668 669 252 315 528 74 447 2759 78 2999 2351 393 392 455 73 480 157 2262 2264 537314 757 709 255 1433 631 1479 209 195 196 529 175176 739 737 81 453 1443 2760 2446 2566 1430 1478 2331 208 12961298 23692368 129 405 86 187 421 2263 536 587 2447 1022 527 172 534 174108 76 386 132 133 146 381 526 460 1431 758 2561 452 497 84 194 448 93 1297 185 296 533 2334535 4762370 1423 2380 1129 44 313498 167 382 1432 1607 483484 406 61 92 10211421 1422 2379 23332332 2560 96 21722173 90 422 75 457 15181519 1608 565 2880 412 184 424 297 509 305 449 80 15621506 267 339 380 243 2881 1504 23 2456 6 2798 2087 166 912 268 740 1594 308 1589 58 516 318 5 911 68 45 425 2086 168 27 510 2309 2991 558 304 2381 130 342 24 242 451 269 741 1595 266 85 418 857 2189 700 2454 2453 1505 2114 420 419 1561 14572378 1315 303 413 137 46 28 2828 2797 456 193 560 2882 120 559 1357 545544 450 118 566 517 20852661 2354 2455 1242 1779 13052734 2054 1412 343 236 1269 2115 793 2660 469 232321 2308 626 28292830 759 2113 2175 319 2480 1424 2382 1314 2002 21872188 2992 2662 2737 35 649 648 2670 1358 1540 23732372 654 653 468 371 1306 794 1778 22362237 389 716 317 1211 1240 1411 2988 95 2873 117 2003 1204 2669 2667 1539 2545 263 2595 2353 2165 2478 2479 1425 407 556 138 26 320 390 477 2993 372 24932495 1937 1248 2176 932 1002 21642546 2053 2735 2005 87 762 12412374 1349 647 478 6521376 2995 760 2814 2668 1472 1473 2445 2594 2174 1126 94 42 1205 1878 2366 2367 2535 1249 2534 1604 567 733 2813 19381270 1387 2736 2004 1109 261 2874727329 2177 1127 746 2006 1568 2443 2120 1426 1570 2529 1877 969 2399 1397 2007 1569 763 24942492 2290 995 726 2994 1597 2435 1225 2068 2233 2444 2865370 1904 224 2596 1027 1097 1456 2291 2762 2997 1603 2675 747 32 761 83 391 82 260 2530 1596 1237 1905 9871108 1848 384 77 2598 1199 23302763 2996 369 15272400 225 2600 1159 1840 28872888 1026 1946 1107 20791499 2403 1236 2147 1544 2761 745 2134 2404 2051 19282234 1903 262 725331332628 1160 1543 1849 976968 2863 2866 41 43 2329 2073 2942 2599 1841 2558 98 988 116 2396 2402 2050 2025 2072 1526 1945 432 2922 2864 2146 2617 2618 1218 188 189 1392 2001 2542 21352136 2401 572 1354 1149 1847 1542 627 50 115 22352232 1522 433 2941 378 909 39 56 473 199 10391393 1394 2547 2511 2462 977 1839 1528 2616 1846 148 1541 1301 2024 1453 127 11981929 1445 351 198 91 573 978 2557 379 14691470 1034 1284 14422597 1150 100 417 25902052 23982397 1912 1404 18591071 1035 374 1446 2740 471 214 1838 948 27012063 1887 1455 1454 383 2041 1153 979 2556 3040 2957149 1795 2548 2254 79 53 431430 472481 482 1866 20202021 1686 1913 1758 1104 1746 1285 1302 439 2588 1356 10421144 1383 866 352 2702 3039 3038 1033 947 574 2741 99 954 1860 1551 1114 2042 1486 128470 213 19012256 408 398 20762075 12552118 2589 2230 1759 982 147 416112 441 1829 1747 438 2247 1382885 2738 1552 1776 1143 890 12601254 22572255 1184 1687 1000 178 153 341340 440 20232022 10701865 14871485 52 856 1047 1419 1420 2739 1167 1777 1760 1830 1873 1408 1409 1672 1902 1933 960 1892 179 1183 2872 20901437 3041 3037 182 1217 506 17541755 1554 1971 1036 2015 2703 1366 1972 1206 676 999 1553 22482249 180 1386 270 19691970 3042 388 2871 2091 973 1862 944 210 12351998 15121560 1529 881 829 10961207 501 18931043 177 505 1276 1275 15151578 837 1673 1749 1874 869 492 877 679 11942016 20601359 922 25162504 1508 1761 1031 1030991 23101113 18051106 938 14381513 23152311 840 858 972 1514 2111272 156 678 677 19311932 2654 15071317 1316 1861 24902487 601 387 502 1025 1748 921 1046 876 2870 1685 1900 884 2500 990 1649 2519 25782579 602 183 1117 15491550 1712 867 151115592653 2058 18831216 12712517 2057 16471648 1650 600 13742040 20622061 18 943 1806 181 491 24882489 155 458 2586 29172470 2696 26372636 17961797 1684 2981 913 354355 9351116 2499 1645 27211325 11051899 1884 25052518 367 1675 893 1857 1732 1548 2916 23462345 846 459 1854 22791344 870 151 13241011 1010851 2726 154 795796 290 2984 1024 2695 2150 21022101 18861885 1858 26352055 20391450 17381006 500 2149 933 2469 2498 859 1713 16462983 1733 1215 26941497 27252720 1916 1775 152 37 2109 2 24272688 30063004 1083910 1804 956 1053 20561375 22772278 13451342 1547 2915 1917 1915 2982 868 1674 2313 368 67 2301482 2148 961 1855 2689 499 150 1914 1762 1799 892 2314 2634 934 1268 10511169 1168 1069 1191 29142536 894 1739 1803 17741084 1066 2340 1731 18821045 2137 775 3005 2949 845 2426 25762574 1768 895 1212 1157 907 2098 18151196 1224 2108 20312030 1644 2343 2000 2017 1005 1730 18671868 1798 2139 776 774 2811 1580 1213 1156 2219 823 1715 874 2107 26872690 1581 613 36 1643 2138 1223 962 1789 15731124 1983 955 1763 1881 1816 1982 2013 1192 20282575 985 901 814 171 936 1790 2948 802 28423007 1999 2980 26742812 2791 1052 1044 1722 925 1888 1817 2341 1350 25732410 891 1769 1195 2978 2765 2676 2680 12952646 13261327 849 1737 887 1439 2815 2742 1818 1243 2014 1378 2155 946 1202986 1908 855 1574 11251355 2385 1889 896 1714 1087 1726 27922790 883 2918 2775 2816 27452841 1351 1123 29262925 17922622 2430 2538 25442677 2678 2342 2862 16531666 1735 2239 2154 1909 19972386 927 2977 2764 599 11901294 899 1765 875 1723 2861 26471290 2919 11311791 1670 1330967 1088 1820 1244 22762273 2537 2497 1694 2979 26732619 1814 924 1736 2744 25412540 1727 26232377 14802292 2384 1767 1101 1819 2274 17711028 8012860 27772776 23642297 2649 363 729 2679 2238 966 886 1329 2543 1764 2743 2468 904 1766 1734 2383 2018 1289 2648 1291 1695 728 1827 1671 1667 945 2375 1921 2295 917 13882218 1448 1813 1118 23052304 12001201 21661155 25072508 2223 2363 2298 2854 2496 27712772 1920 882 104 1481 10891619 608 1721 861 854 1247 2286 2275 898 2296 879 926 1610 2467 10011770 1828 807 2853 2229 918 1140 1139 22842283 1447 12261986 11721067 1708 841 16181609 2431 2855 28902891 1523 2224 2293 2294 1246 2288 2287 21682167 1029 10201347 1823 2216 2376 2388 1587 1729 1654 821 1693 19871171 2222 1068 1077 9961090 1824 1348 641524 2549 89 806 1449 2163 813 905 1720 1756 2539 1076 1075 25212472 2217 2389 23901186 14662170 607 1154 2228 1346 1238908 1709 811 1700 958 1655 19401939 1688 2971 29732626 2889 2773 1822 2285 860 88 38 1185 953 16921227 13621363 1701 1586 1471 21622520 1728 843 844 1669 22251399 2774 9591018 1821 14912097 1410 1588 810 1699 878 11791864 1009 1949 1689 2972 24052034 2171 2289 1757 1698 25512550 1826 964 2387 2707 1575 2510 25222226 10781985 888 842 1725 919 1697 1368 2583 10191492 2625 2937 2473 20881377 19061907 20351239 1951 1863 10081950 1696 1802 8721164 1163 2425 889 1657 1704 834 2651 20962169 2935 28501606 1579 423 1668 2432 2526 2471 850 1102 825 18711136 2747 1232 2448 2523 19411942 1122 965 1825 2624 830 1711 2936 1621 22272733 19441943 16561724 25851130 832 1924997 2820 2821 1367 28522851 19521180 1842 1103 11371691 358 2708 20122746 2652 1620 2938 2700 831 1151 1641 2074 2531 826 963 1705 920 1872 2527 11582047 2885 2883 2582 950 2858 2857 1231 11521048 1081 27092650 2528 12742033 1121 1050 18431004 1642 2693 27321925 19191092 1612 2436 992 1398 11352011 27481930 949 17421743 2755 2756 833 1710 1773 2032 1055 2633 1138 16901611 989 2754 2869 2886 2834 2036 1632 11611162 1040 1219 17451744 12201977 1080 1395 2731 1640 1091 824 998 1918 2856 359 26921832 11191954 1049 1014 2961 49 28992785 1639 1281 1870 1926 852 1936 2962 27582859 2433 1652 800 2822 2835 19601959 1311 1953 1312 1280 2503 1273 1772 1293 1170 2897 1082 1256 2312 1833 19231178 1845 853 863 1703 864 28842434 2960 2418 2691 803 17401741 1651 10231935 1869 1955 20381263 16781679 27842719 9141221 1976 828 19651680 11452026 1120 1037 2974 2819 1073 1934 14051990 2027 13101313 2898 18441112 29112912 1956 1681 2501 1636 1635 865 812 2836 2502 1476 10742253 19271257 1922 1787 902 981 980 27281307 397 1538 18312658 19841086 18761875 2037 1475 1303 1208 1250 1041 1292 2832 2876 952 1794 827 1702 11111966 373 2818 234 971 29762975 1474 11771788 1659 804 396 2900 2817 2875 2580 2581 27812779 2084 20101406 11411978 2730 798 839 19751056 103 1753 1304 1968 20641320 1214 1337 612 614 10591058 1751 923 26592318 1979 27292727 18791017 1682 1683 1793 957 11731174 838 951 28242823 809 970 2009 2157 2156 1441 2083 2070 1967 2065 1958 1440 1625 1385 21302335 1065 2804 27802252 1623 1622 2966 1427 1266 2913 2831 1752 903 1750 2933 1334 1251 2317 1974 1992 19641094 1624 10991911 1142 817 1658 2299 2757 2965 1957 1064 2805 21592338 294629472940 2111 2126 2128 1626 1627 23592077 1321 2092 1571 1133 16771676 2069 1352 1629 1628 2270 2127 1786 1013 2129 1063 1910 1016 937 835 2421 2250 2316 2931816 1490 1381 2268 818 1661 19911963 1095 2665 2125 12991981 2158 836 805 16132932 2963 1785 1572 2100 1565 2078 1333 1328 1811 2251 13362151 1810 1812 915 1834 1353 2089 2067 198023002301 1809 1615 1614 2843 2422 20931428 12672112 19611962 1891994 2939 2934 16601057 2327 2269 1098 799 797 20712339 2945 21102099 1341 1396 1403 1783 928 16621663 1361 1835 21521132 2324 2640 2643 2066 1379 14362663 14292449 2844 1338 2712 2930 26572656 18802964 1993 21821495 819 820 1360 11001890 2326 1012 2681 2801 2664 1245 21051369 1300 1498 13352153 1061 2642 1380 22411309 1265 1262 12881564 1638 815 12581259 1418 993 848 2183 1496 2106 1836983 1784 1994 1947 2044 28452420 822 1634 916 1973 2094 23251462 1707 862 1134 1567 2049 1339 71 1110 1203 2029 2417 16172683 2802 2711 1556 2450 399 200 1633 1718 2242 847 2655 2424 2846 1631 2484 2684 124 2641 1719 21812180 2043 1566 2048 1563 2104 880 1637 2904 1015 1837 2877 24082409 1062 1948 1176 201 2240 1308 2419 2416 929 1616 2686 1340 426 7302486 2485 15551417 1264 1261 1287 1146 2103 2423 17171716 1253 24422441 1463 400 241124392437 26822906 2407 1060 1175 6912210 22122328 984 1782 930 2685 2082 16301706 1780 13642260 1032 732 731 2451 29072905 900 873 26052606 871 2414 1781 2878 2440 366 427 2221 2532 2533 2837 2213 1853 2211 939 1365 2571 2452 51 750 362 2838 2371 1332 2833 2438 615 942 941 2140 1003 2879 70 2610 2220 692 690 940 1593 751 2604 14672266 1577 1546 1503 2261 2406 1852 1093 3010 2577 1520 2840 14151413 2892 931 1502 2839 1488 2141 12102059 897 1808 48 2204 2929 3009 1665 2413 2119 2267 1576 975 974 1286 1590 40 1331 2461 25702572 2893 2894 2258 2259 1323 1148 14831484 72 463 2412 2457 18011054 22051521 2608 2768 14141416 18952611 2769 471322 2019 11471007 1489 2142 2243 361 360 2460 2265 18071800 2184 2186 365 620 1228 2921 1897 21452429 2895 142 2710 3022 3008 1664 5522459 24582133 2198 26121197 1209 616 1370 66 428 2920 27942795 54 808 1166 18961894 2244 410 123 2639 2199 2428 26072609 1128 1182 299 18511282 1372375 2716 377 2638 2603 3020 21851343 671 3021 622 623 2121 1181 1996 1510617 1444 1072 298 1373 429 551 723 724 364 9 2356 27962793 97 409 10 1085 437 415 2615 21792117 1165 2717 2201 1509 650 300 26021850 12831252 1989 2357 621 748 1371 126 640 744 2355 376 722 394395 2124 2122 554 2666 2718 2200 672 2767 3019 2116 2319 1995 357 356 436 246 55 411 414 251 1988 20802081 743 2358 2787 2601 749 580 582 122125 571 569 159 102651 334 1402 2123 16001494 23212320 670 2766 294 2178 2788 2008 2525 688 687 1222 721 503 335 336 106 169 323 555 2903 2491 227130 570 29872986 568 131247 511 581 250 158 2789 579 170 353 69 1599 25922593 3011 14001401 65 1384 2752 3 2524186 1585 742 160 512 244 665 2786 712 495 2415 546 504 2463 2902 2272 1545 2751 20451898 1038 689 2928 110 109 434 624136 29502985 139 322 496 119 462 31 15 547 14682591 14931584 30121277 2391 781 235 2392105 27502046 202 301 2990 2749 563 682683 710 302 663 245 2989 713 259 461 140141 25 435 288 2365 283 135 609 1234 1856 1193 21932190 1459 1525 2621 2901 13 780 29 22 664 23942393 2246 2555 2809 2927 3013 1279 618 553 14 2506 2951 2952 3003 711 2231 2620 1583 2245 2554 2281 1458 121 681 1233 401 564 114 525 610 2943 2953 164 2630 11881189 25132482 2810 2896 3014 1278 1115 2192 1558 216 2827 3033 30243029 2826 3030 3016 272 20 310 34 2303 345 2552 2808 2778 2587 2132 2161 1187 165 2628 2629 2144 3031 680 350 2336 674 906 2203 2191 2282 2095 222 562 273 3017 3018 1557 217 787 2512 2483 30363035 2799 2825 2944 2924 3002 3023 3028 3026 33 206 19 4 2337 673 611 2202 591 1079 2280 675 221 561 271 21 2302 349 205 2553 2807 2509 2131 619 2160 16 2481 309 786 163 2627 625 2143 3032 3025 3034 2800 2584 2923 2753 3015 1407 215 3027
Fig. 6. A simulation example of two intersecting pedestrian groups.
References Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J., 2001. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525. Chen, M.-J., B¨arwolff, G., Schwandt, H., 2009. Automaton model for the simulation of pedestrian flow implemented in a path-oriented coordinate system. An electronic version can be retrieved at: http://www.math.tu-berlin.de/~chenmin/pub/cbs090714.pdf (accessed July 4, 2014). Chen, M.-J., B¨arwolff, G., Schwandt, H., 2010. A study of step calculations in traffic cellular automaton models. In 13th International IEEE Conference on Intelligent Transportation Systems, pp. 747–752. An electronic version can be retrieved at: http://page.math.tu-berlin. de/~chenmin/pub/cbs100709.pdf (accessed July 4, 2014). Chen, M.-J., B¨arwolff, G., Schwandt, H., 2014. Simulation of pedestrian dynamics with density control on a regular grid. In Weidmann, U., Kirsch, U., Schreckenberg, M., (Eds.). Pedestrian and Evacuation Dynamics 2012. Springer-Verlag Berlin Heidelberg, pp. 949–957. Daamen, W., Bovy, P. H. L., Hoogendoorn, S. P., 2002. Modelling pedestrians in transfer stations. In Schreckenberg, M., Sharma, S. D., (Eds.), Pedestrian and Evacuation Dynamics. Springer-Verlag Berlin Heidelberg, pp. 59–73. Geuzaine, C., Remacle, J. F., 2009. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309–1331. Gloor, C., Stucki, P., Nagel, K., 2004. Hybrid techniques for pedestrian simulations. In Sloot, P. M. A., Chopard, B., Hoekstra, A. G., (Eds.). Proceedings of the 6th International Conference on Cellular Automata for Research and Industry, ACRI 2004, Lecture Notes in Computer Science 3305, pp. 581–590. Huth, F., B¨arwolff, G., Schwandt, H., 2014. A macroscopic multiple species pedestrian flow model based on heuristics implemented with finite volumes. In Weidmann, U., Kirsch, U., Schreckenberg, M., (Eds.), Pedestrian and Evacuation Dynamics 2012. Springer-Verlag Berlin Heidelberg, pp. 585–601. Kirchner, A., Kl¨upfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M., 2004. Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2004(10), P10011. Moussa¨ıd, M., Helbing, D., Theraulaz, G., 2011. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences of the United States of America 108(17), 6884–6888. Plaue, M., Chen, M.-J., B¨arwolff, G., Schwandt, H., 2011. Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings. In Stilla, U., Rottensteiner, F., Mayer, H., Jutzi, B., Butenuth, M., (Eds.). ISPRS Conference on Photogrammetric Image Analysis 2011, Lecture Notes in Computer Science 6952, Springer, Berlin Heidelberg, pp. 285–296. Plaue, M., Chen, M.-J., B¨arwolff, G., Schwandt, H., 2012. Multi-view extraction of dynamic pedestrian density fields. Photogrammetrie, Fernerkundung, Geoinformation 5, 547–555. Schadschneider, A., 2002. Cellular automaton approach to pedestrian dynamics – theory. In Schreckenberg, M., Sharma, S. D., (Eds.), Pedestrian and Evacuation Dynamics. Springer-Verlag Berlin Heidelberg, pages 75–85.
335