Models of The Direct Catalytic Partial Oxidation of Light Alkanes

Models of The Direct Catalytic Partial Oxidation of Light Alkanes

G. Centi and F. Trifiro’ (Editors),New Developments in Selective Oxidation 1990 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlan...

564KB Sizes 5 Downloads 87 Views

G. Centi and F. Trifiro’ (Editors),New Developments in Selective Oxidation 1990 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

405

MODELS OF THE DIRECT CATALYTIC PARTIAL OXIDATION OF LIGHT ALKANES J . G . McCARTY, A. B . McEWEN, and M. A. QUINLAN S R I I n t e r n a t i o n a l , 333 Ravenswood Avenue, Menlo P a r k , C a l i f o r n i a , USA 94025

SUMMARY

A p p l i c a t i o n of homogeneous k i n e t i c models t o methane a c t i v a t i o n i n d i c a t e s t h a t t h e h i g h e r hydrocarbon y i e l d may be l i m i t e d by homogeneous o x i d a t i o n of methyl r a d i c a l i n t e r m e d i a t e s . I n t h i s paper, w e d i s c u s s t h e development of a model t h a t d q s c r i b e s t h e homogeneous and heterogeneous c h e m i s t r y i n v o l v e d i n t h e s e l e c t i v e o x i d a t i o n of methane and l i g h t a l k a n e s and t h e impact of t h i s c h e m i s t r y on a l k e n e and h i g h e r a l k a n e y i e l d s . We a l s o p r e s e n t e x p e r i m e n t a l r e s u l t s f o r methane a c t i v a t i o n and e t h a n e dehydrogenation u s i n g s t a b l e n o n - v o l a t i l e c a t a l y s t s composed of a l k a l i n e and r a r e e a r t h c a r b o n a t e s s u p p o r t e d by r e f r a c t o r y complex o x i d e s . INTRODUCTION

There i s ample e v i d e n c e t h a t homogeneous r e a c t i o n s substantially contribute t o the c a t a l y t i c oxidative dimerization

of methane and t h e c a t a l y t i c o x i d a t i v e dehydro-genation t o ethene.

of e t h a n e

The p r o d u c t d i s t r i b u t i o n h a s o f t e n been

as

b e i n g c o n s i s t e n t w i t h homogeneous f r e e r a d i c a l c h e m i s t r y , b u t t h e d e f i n i t i v e e x p e r i m e n t s a r e t h o s e of Lunsford,

e t a 1 . , 4 - 6 who used

m a t r i x i s o l a t e d e l e c t r o n paramagnetic resonance ( M I E P R ) measurements t o d e t e r m i n e t h e d i s t r i b u t i o n of methyl r a d i c a l s downstream of a Li/MgO c a t a l y s t bed.

T h e MIEPR r e s u l t s of

Campbell and Lunsford6 show t h a t product e t h a n e forms downstream of t h e c a t a l y s t bed by homoaeneous methyl r a d i c a l recombination and

v e r i f y , w i t h i n a f a c t o r of two, t h e b i m o l e c u l a r recombination r a t e constant.

I s o t o p i c exchange experiments

7-10

a l s o s u p p o r t t h e view

t h a t t h e methyl r a d i c a l i s t h e primary i n t e r m e d i a t e i n t h e p r o d u c t i o n of e t h a n e .

Various r e c e n t l a b o r a t o r y r e s u l t s i n d i c a t e

t h a t d i r e c t c a t a l y t i c c o n v e r s i o n of premixed oxygen and methane i n t o h i g h e r hydrocarbons approaches a s i n g l e - p a s s

l i m i t of about

2 5 % y i e l d (on a C atom b a s i s ) r e g a r d l e s s of c a t a l y s t and r e a c t i o n c o n d i t i o n s ( F i g u r e 1) microreactors

11-14

.

F i n a l l y , o b s e r v a t i o n s t h a t empty

can s e l e c t i v e l y produce e t h a n e and e t h y l e n e

a f f i r m s t h e s i g n i f i c a n t r o l e of homogeneous k i n e t i c s i n a l l a s p e c t s of t h e r e a c t i o n .

These f i n d i n g s i n d i c a t e t h a t homogeneous

o x i d a t i o n k i n e t i c s p l a y an important r o l e i n t h e s e l e c t i v i t y of alkane p a r t i a l oxidation reactions

406 100

80

$

f

60

? W

rn

+

u" s

40

,a

20

osrco,

0

OCaO

0 MgO

CaO

0 CaO I

0

1

I

20

0

I

I

I

I

60

40

I 80

I

I 100

Ye CHI CONVERSION

rn

This work Aika al al. (Tokyo). J. Cham SOC. Cham. Commun. 1986. 1210. Jones at al. (ARCO). Energy and Fuels 1,12 (1987). A IIo 01 al. (Texas A 6 M), J. Am. Cham. Soc. ~ . 5 0 S Z(1985). Olsuka el PI. (Tokyo), J. Cham. *.. Chom. Cornmun. 1986.586. V Hinsen ei al. (Berlin) 8th Int. Cang. Catal.. 1984. X Otsuka 01 al. (Tokyo), J. Caial. 1pe 353 (1986). Lunsford el al. (Tokyo). Texas A 6 M) (lo k publish& 1987). Lin 01al. (Texas A 6 M). J. Phyr. Cham. 9Q.534 (1986).

0 0

* +

0

KimMe and Kolls (Phillips Per.), Energy Prcgress 6.226 (1986). Lin el PI. (Texas A 6 M).J. Am. Cham. SOC. 1p9.4808 (1987). n Jones and Sofrank (ARCO), J. CaIal. 31 1 (1987).

u

Q

D 0 0 d

m,

lmai and Taaawa ITokvo). J. Cham. Soc. Cham. Commun. 1966.52. Deboy and Hicks Grace), J. Catal. U3,. 51 7 (1988). Gaffnay a1 ill. (ARCO), J. Catal. 422 (1988) Zhang at al. (Texas A 6 M). J. Catal. 366 (1988).

+.d.

m.

Fig.1. Laboratory fixed-bed catalytic oxidalive coupling of methane with premixed oxygen

RA-2614-9C

407

I n t h i s paper, we d e s c r i b e a model of c a t a l y t i c l i g h t alkane p a r t i a l o x i d a t i o n used t o e v a l u a t e t h e r e l a t i v e importance of i n d i v i d u a l homogeneous and heterogeneous r e a c t i o n s over a wide range of r e a c t i o n c o n d i t i o n s . The model i n c o r p o r a t e s key heterogeneous r e a c t i o n s t e p s i n t o a network of known g a s phase alkane f r e e r a d i c a l o x i d a t i o n r e a c t i o n s .

We a l s o r e p o r t t h e

a c t i v i t y and s e l e c t i v i t y of s t a b l e n o n - v o l a t i l e strontium-based complex oxide c a t a l y s t s for t h e d i r e c t o x i d a t i v e conversion of methane i n t o h i g h e r hydrocarbons and t h e d i r e c t o x i d a t i v e dehydrogenation of ethane t o e t h e n e . Comparison of t h e experimental r e s u l t s and model c a l c u l a t i o n s shows t h a t t h e c a t a l y s t s s e l e c t i v e l y o x i d i z e i n t e r m e d i a t e s such a s methanol and carbon monoxide a t r a t e s h i g h e r t h a n expected f o r heterogeneous hydrogen a b s t r a c t i o n r e a c t i o n s . METHODS The premise of our model i s t h a t most of t h e r e a c t i o n chemistry i n c l u d i n g by product formation o c c u r s b y homogeneous r e a c t i o n s i n t h e c a t a l y s t pores, c a t a l y s t bed void space, and p o s t - r e a c t o r volume. Our complete modells c o n s i s t s of 1 4 4 r e a c t i o n s , 134 r e v e r s i b l e homogeneous r e a c t i o n s and 1 0 r e a c t i o n s which i n v o l v e c a t a l y s t s u r f a c e s i t e s .

Most of t h e gas phase

r e a c t i o n parameters were o b t a i n e d from t h e review compilations of Frenklach16, Warnatz17, or Tsang

18

.

The primary source of e t h a n e

i n o u r mechanism of methane co-oxidative coupling i s from t h e gas phase recombination of methyl r a d i c a l s , .CH3 + .CH3 ====> C2H6

(1)

while e t h e n e i s produced from e t h a n e by thermal ( 2 ) and o x i d a t i v e ( 3 ) dehydrogenation. + M ====> C2Hq

,C2H5

C2H4

+

*H

+

*OZH

O2 ====> A fundamental q u e s t i o n is t o what degree deep o x i d a t i o n r e s u l t s from g a s phase or s u r f a c e chemistry.19 The presence of '2 H 5

+

premixed oxygen, although necessary t o provide a s i n k f o r hydrogen and t h e thermodynamic d r i v i n g f o r c e f o r t h e coupling p r o c e s s , u n f o r t u n a t e l y l e a d s t o undesired oxygenated by-products, C02,

e . g . CO,

and formaldehyde. The f i r s t s t e p i n t h e c a t a l y t i c c y c l e i n v o l v e s t h e a c t i v a t i o n

of methane by a s u r f a c e oxygen atom.

The heterogeneous H

408 a b s t r a c t i o n s t e p can be g e n e r a l i z e d t o i n c l u d e s c i s s i o n of any C-H bond by an Eley-Rideal

r e a c t i o n with s u r f a c e oxygen (0 ) t o form a

s

gas phase a l k y l r a d i c a l and a hydroxyl s u r f a c e s i t e ( H O S ) , RH

+

OS

>

====

*R

where RH = ( 4 a ) C H 4 ;

CH20.

+

HOs

(4b) C2H6;

( 4 c ) C2H4;

(4n) ( 4 d ) CH30H; and ( 4 e )

The a c t i v a t i o n e n e r g i e s used f o r t h e r e a c t i o n of 0

s

with

o t h e r C-H bonds ( e . g . C 2 H 6 ) r e f l e c t t h e i r bond s t r e n g t h s r e l a t i v e t o methane.

The r a t e d e t e r m i n i n g s t e p i n t h e o x i d a t i v e c o u p l i n g

of methane over Li/MgO was shown by Cant e t a1.''

t o be methane C-H

bond s c i s s i o n , CH4 + Os ====> *CH3 + (4a) based on a l a r g e , p o s i t i v e ( 1 . 5 ) deuterium i s o t o p e e f f e c t .

Amorebieta and Colussi21 showed a t low p r e s s u r e

to

atm)

t h a t methane c o n v e r s i o n over Li/MgO i s h a l f o r d e r i n oxygen and f i r s t o r d e r i n methane.

T h i s r e s u l t s u g g e s t s t h a t methane r e a c t s

w i t h atomic s u r f a c e oxygen.

Labinger e t a l . , 2 2 ' 2 3 r e p o r t t h a t w i t h

t h e Na/Mg/Mn c a t a l y s t , CZH6 c o n v e r t s 1 . 9 t i m e s f a s t e r t h a n CH4

.

We have a d j u s t e d t h e r a t e c o n s t a n t s f o r C 2 H 6 t o g i v e t h i s r a t i o (4b/4a = 1 . 9 ) a t 1 0 0 0 K .

Rate c o n s t a n t s f o r t h e o t h e r r e a c t a n t s

(H-C2H3, H-CH OH, and H-CHO) were determined by f i x i n g t h e i r 2 frequency f a c t o r s t o t h a t of e t h a n e and a d j u s t i n g t h e i r a c t i v a t i o n

e n e r g i e s r e l a t i v e t o methane i n p r o p o r t i o n t o t h e d i f f e r e n c e s i n reaction enthalpy. The r e a c t i o n of t h e methyl r a d i c a l with s u r f a c e oxygen can s i g n i f i c a n t l y a l t e r t h e s e l e c t i v i t y p r e d i c t e d by t h e model. Labinger and O t t 2 '

a n a l y z e d t h e i r r e s u l t s and concluded t h a t t h e

o x i d a t i o n of methyl r a d i c a l s w i t h t h e Na/Mg/Mn c a t a l y s t

(without

f e e d g a s oxygen) was 2 7 0 0 t i m e s t h e r a t e of methane a c t i v a t i o n . The r a t i o of heterogeneous o x i d a t i o n t o homogeneous c o u p l i n g of methyl r a d i c a l s i s t h e e s s e n t i a l f a c t o r governing t h e s e l e c t i v i t y a t low c o n v e r s i o n .

T h e r e f o r e , t h e second key premise of o u r model

i s t h a t a l k y l r a d i c a l s i r r e v e r s i b l y react i n a n o n - a c t i v a t e d s t e p with s u r f a c e oxygen t o form adsorbed complexes t h a t a r e p r e c u r s o r s t o oxygenates. .R + Os =====>

ROs (5) The heterogeneous r a t e p a r a m e t e r s i n v o l v i n g s u r f a c e s i t e s

were optimized t o f i t e x p e r i m e n t a l r e s u l t s f o r Na/CaO a t 1 0 7 3 K. The v a r i a b l e , $s,

represents the i n i t i a l active s i t e density

( e s s e n t i a l l y t h e sum of 0

S

and U ) . S

For a s p e c i f i c s i t e d e n s i t y ,

t h e a c t i v a t i o n energy for C-H bond a c t i v a t i o n was t h e n a d j u s t e d t o

409

o b t a i n e x p e r i m e n t a l l y observed conversion r a t e s . Reaction r a t e and product r a t i o s were i n v e s t i g a t e d a s a f u n c t i o n of t h e a c t i v e s i t e d e n s i t y a t 1073 K with a methane t o oxygen r a t i o of 1 0 ( F i g . 2 When t h e Os c o n c e n t r a t i o n and i s high ( i . e . Os = 10- t o methane conversion i s high and o x i d a t i o n t o CO i s t h e dominant p r o c e s s e s . A t lower s u r f a c e s i t e c o n c e n t r a t i o n s (4, < the conversion r a t e i s lower and t h e C2 s e l e c t i v i t y i s h i g h e r . The 2).

h i g h e s t C2 y i e l d was found t o b e @ s = lo-’. These optimized independent parameters t h a t a f f e c t t h e product s e l e c t i v i t y were used for a l l subsequent c a l c u l a t i o n s

(OS

=

lo-’ and an a c t i v a t i o n

energy (E,) for t h e r a t e determining a b s t r a c t i o n s t e p ( r e a c t i o n 4a) of 6 3 . 6 k J mol-l) .

W e used t h e Chemkin k i n e t i c modeling program t o s o l v e t h e s e t of non-linear d i f f e r e n t i a l e q u a t i o n s . I n l i n k i n g t h e heterogeneous r e a c t i o n s t o t h e homogeneous r e a c t i o n network, we used a c o n s t a n t s u r f a c e t o volume r a t i o and c a l c u l a t e d t h e s u r f a c e s i t e concentration.

The f r a c t i o n of a c t i v e c e n t e r s on t h e s u r f a c e

of s u r f a c e oxide c a t i o n s . r e a c t i o n i s not s u r f a c e t r a n s p o r t l i m i t e d i n o u r model calculations. ( @ s ) was normalized t o t h e amount

The

REACTIVE CENTER CONCENTRATION (ML)

Fig. 2. Effect of reactive oxygen center surface concentralion on melhane conversion and higher hydrocarbon selectivity at 1073 K vrilh 0.3 atrn methane and 0.03 atm oxygen.

410

RESULTS Once t h e heterogeneous parameters were e s t a b l i s h e d , t h e temporal c o n c e n t r a t i o n s of co-oxidation products were determined f o r various reaction conditions

.

The r e s u l t s o b t a i n e d a t 1 0 7 3 K

with CH4 and O2 c o n c e n t r a t i o n s of 0 . 3 and 0 . 0 3 atm., r e s p e c t i v e l y ( F i g 3 ) , show t h a t ethane i s t h e major carbon c o n t a i n i n g product, followed by CO and e t h y l e n e . Other s i g n i f i c a n t p r o d u c t s a r e methanol and formaldehyde, which d e c r e a s e i n r e l a t i v e importance w i t h increased reaction t i m e .

The r e l a t i v e importance of s e v e r a l

gas phase r e a c t i o n s a t v a r i e s with i n i t i a l p a r t i a l p r e s s u r e s and r e a c t i o n time (Table 1 ) . A t low p r e s s u r e t h e main source of methyl r a d i c a l s i s t h e heterogeneous a c t i v a t i o n s t e p , while a t high p r e s s u r e two a d d i t i o n a l gas phase s o u r c e s of methyl r a d i c a l s a r e r e a c t i o n s i n v o l v i n g t h e hydrogen and hydroxyl r a d i c a l s . Higher hydrocarbon s e l e c t i v i t y i n t h e methane coupling p r o c e s s i s very dependent on oxygen p a r t i a l p r e s s u r e . T h e e f f e c t oxygen p a r t i a l p r e s s u r e on methane conversion and product s e l e c t i v i t y was s y s t e m a t i c a l l y examined ( F i g . 4 ) f o r f i x e d methane

9

.1 L

CONTACTTIME($1

Fig. 3. Calculated product distribution vs. contact time for methane coupling at 1073 K with 0.3 atrn methane and 0.03 atm oxygen.

-

TABLE 1

Reaction Rates for T 1.Oe-5

-

1073 K, PCH4

CH3+02-CH302 CH302=CH3+02 CH4+MEOS-CH3+MEOHS 2.05E-06 MEOHS+MEOHS-H20+MES+MEOS CH3+CH3-C2H6 MES+MES+OZ-MEOStMEOS CH4+OH-CH3+H20 CH3+02-CH20+OH CH3+H02-CH30+OH 9.6E-07 CH30+02-CH20+H02 CH30+CH4-CH3+CH30H CH4+H-CH3+H2 CH3+MEOS-CH3MOS CH3MOStMEOS-CHZO+MEOHS+MES HCO+02-H02+CO CH2O+MEOS-HCWMEOHS CH4+H02-CH3+H202 CH3+H202-H02+CH4 C2H5-C2H4+H CHZO+CH3=HCO+CH4 HCO+M=H+CO+M CZH6+MEOS-C2H5+MEOHS CH302+CH3-CH30+CH30 CH3O+M-CHZO+H+M C2H6+CH3-CZHS+CH4 C2H5+02-C2H4+H02 MEOS+MEOS-MES+MES+02

-

411

- 0.3 atrn, PO2 - 0.03, Phi -

Eak

Bate

2.175E-05 CH4+H-CH3+H2 2.155E-05 CH4+MEOS-CH3+MEOHS 1.964E-05MEOHS+MEOHS-H20+MES+MEOS

3,~ O E - O ~ 3.04E-06

1.04BE-05 C2H5-C2H4+H 9.74E-06 CH3+HZ-CH4+H 5.673-06 CH3+CH3-C2H6 2.84E-06 HCO+M-H+CO+M 1.47E-06 CZH6+H-C2H5+H2 1.46E-06MES+MES+02-MEOS+MEOS

2.01E-06 1.98E-06 1.94E-06 1.41E-06 1.13E-06

B.4E-07 7.6E-07 7.3E-07 6.73-07 6.7E-07 5.OE-0 7 3.9E-07 3.6E-07 3.2E-07 3. OE-07 2.9E-07 2.6E-07 2.2E-07 2.OE-07 1. CIE-O~ 1.4E-07 1.2E-07 1.1E-07

5,BE-07 5.7E-07 5.5E-07 5.3E-07 4.4E-07 4.2E-07 4.OE-07 3.4E-07 3.1E-07 2.9E-07 2.7E-07 2.4E-07 1.9E-07 1.9E-07 1.9E-07 1.8E-07 1.7E-07 1.5E-07

Fig. 4. Methane coupling conversion and higher hydrocarbon selectivity vs. oxygen partial pressure at 1073 K with 0.3 atm methane.

412

p a r t i a l p r e s s u r e ( 0 . 3 atm) and f i x e d a c t i v e s i t e c o n c e n t r a t i o n ( $ s = The methane conversion i n c r e a s e d , t h e C2+ s e l e c t i v i t y decreased, w h i l e t h e e t h y l e n e t o ethane r a t i o i n c r e a s e d t o a c o n s t a n t l e v e l w i t h i n c r e a s i n g oxygen p a r t i a l p r e s s u r e . S e v e r a l homogeneous methyl r a d i c a l o x i d a t i o n pathways a r e i m p o r t a n t . Under high temperature and low p r e s s u r e c o n d i t i o n s t h e r e a c t i o n of methyl r a d i c a l s w i t h hydrogen peroxy r a d i c a l s i s t h e prominent o x i d a t i o n pathway, *OCH3 + *OH '(6) '02H ====' w h i l e a t high p r e s s u r e and low temperature t h e r e a c t i o n of methyl

+

*CH3

r a d i c a l s w i t h methyl peroxy r a d i c a l s i s prominent. The major s o u r c e s of -O2H a r e hydrogen a b s t r a c t i o n r e a c t i o n s of u n s t a b l e r a d i c a l s such a s -CHO and *C2H5 with diatomic oxygen. Conversion w i t h Although a l k a l i promoted c a t a l y s t s have g r e a t e r s e l e c t i v i t y t h a n unpromoted a l k a l i n e e a r t h and r a r e e a r t h oxides, t h e r e i s some concern about s t a b i l i t y of t h e s e c a t a l y s t s given t h e high vapor p r e s s u r e s of a l k a l i under r e a c t i o n c o n d i t i o n s . The v o l a t i l i t y of a l k a l i under t y p i c a l a l k a n e a c t i v a t i o n c o n d i t i o n s i s due t o t h e high vapor p r e s s u r e of t h e a l k a l i hydroxide molecules i n t h e presence of steam and oxygen, although t h e s o l i d phase i s l i k e l y t o be a l k a l i c a r b o n a t e . Thermochemically s t a b l e c a r b o n a t e s a l t s w i t h t h e low v o l a t i l i t y i n steam are S r C 0 3 and BaC03. Perovskite-supported a l k a l i n e e a r t h c a r b o n a t e s , Sr/SrZrOg and Ba/SrZr03 are s e l e c t i v e and s t a b l e methane a c t i v a t i o n c a t a l y s t s ( F i g u r e 51, comparable or s u p e r i o r i n t h i s r e s p e c t t o Li-promoted MgO and Na-promoted CaO.

Good ethene s e l e c t i v i t y was a l s o shown

f o r co-oxidative dehydrogenation of e t h a n e (Figure 6 ) . Unlike t h e alkali-promoted a l k a l i n e e a r t h c a t a l y s t s , SrZrO o p e r a t e d 20 hours 3 a t 1 1 7 3 K with no evidence of evaporation o r c o r r o s i v e a t t a c k on our q u a r t z r e a c t o r s . These c a t a l y s t s appear t o achieve hydrocarbon s e l e c t i v i t y approaching t h e o r e t i c a l y i e l d s based on l a b o r a t o r y r e a c t i o n c o n d i t i o n s and p r e d i c t e d homogeneous o x i d a t i o n rates. DISCUSSION As a r e s u l t of o u r a n a l y s i s with t h e heterogeneoushomogeneous model, we conclude t h a t methane co-ox coupling p r o c e s s e s with premixed oxygen and methane may be l i m i t e d t o a

413

Fig. 5. Methane conversion and Cp selectivity for SrZQ versus reaction temperature. Conditions: 0.29atm CH4, 0.029-atm Q,3.3 mL s-1 (NTP) flow at 1-atm pressure.

60

-

Elhene Selectlvlty

/ 40-

20

-

0,

L

800

900

TEMPERATURE (K)

Fig. 6. Ethane partial oxidation on SrZrO3 with 0.03 atm oxygen.

1000

414

maximum h i g h e r hydrocarbon y i e l d of about 30 mol% (carbon b a s i s ) and a maximum ethene/ethane r a t i o of about 2 . C a t a l y s t s t h a t can f a v o r a b l y i n f l u e n c e t h e s e l e c t i v i t y by combining high t u r n o v e r r a t e s f o r a l k y l r a d i c a l g e n e r a t i o n p e r r e a c t i v e s i t e with a very low s u r f a c e c o n c e n t r a t i o n of r e a c t i v e c e n t e r s ( o p t i m a l l y one p a r t p e r l o 5 s i t e s ) . Formation of a s u r f a c e o r bulk b a s e metal carbonate l a y e r s may be one way of reducing t h e d e n s i t y of r e a c t i v e oxygen c e n t e r s t o l e v e l s t h a t avoid t h e r a p i d o x i d a t i o n of a l k y l r a d i c a l s a t t h e c a t a l y s t s u r f a c e , and indeed o u r temperature programmed d e s o r p t i o n experiments show t h a t t h e s u r f a c e s of t h o s e s o l i d - s t a t e b a s i c oxide c a t a l y s t s h i g h l y s e l e c t i v e f o r l i g h t alkane dehydrogenation and methane coupling a r e c o n s i s t e n t l y covered with a t l e a s t one monolayer of c a r b o n a t e . Homogeneous r e a c t i o n s can f u l l y account f o r t h e p r o d u c t i o n of hydrocarbon p r o d u c t s and t h e s e l e c t i v i t y between coupling p r o d u c t s and COX, b u t p r e d i c t h i g h e r y i e l d s of CH30H, CH20, and H 2 , and g r e a t e r CO/C02 product r a t i o s t h a n observed e x p e r i m e n t a l l y . Heterogeneous o x i d a t i o n r e a c t i o n s a r e e v i d e n t l y r e s p o n s i b l e f o r s i g n i f i c a n t o x i d a t i o n of oxygenate products, t h e s u b s t a n t i a l conversion of product hydrocarbons o r r a d i c a l s , and p o s s i b l y d i r e c t o x i d a t i o n of e t h y l e n e t o COP and H 2 0 i n co-oxidation p r o c e s s e s by c a t a l y s t s with poor i n h e r e n t s e l e c t i v i t y . ACKNOWLEDGEMENT

The a u t h o r s g r a t e f u l l y acknowledge t h e support of t h e Methane Reaction Science Program d i r e c t e d by Dr. Daniel A . S c a r p i e l l o f o r t h e Gas Research I n s t i t u t e and a s s o c i a t e d I n d u s t r i a l A f f i l i a t e cosponsors. REFERENCES 1. I t o , T., Wang, J . - X . ,

2. 3. 4.

5. 6.

7.

L i n t C.-H, and Lunsford, J. H . , J . Am. Chem. SOC. (1985) 107, 5062. Sofranko, J . A . , Leonard, J . L.., and Jones, C. A . , J . C a t a l . (1987) 103, 302. Kimble, J . B.,and Kolts, J. H . , Energy P r o g r e s s (1986) 6 ( 4 ) , 226. D r i s c o l l , D . J . , M a r t i r , W . , Wang, J . - X . , and Lunsford, J . H . , J . Am. Chem. SOC. (1985) 107, 58. Campbell, K . D . , Morales, E., and Lunsford, J . H . , J . Amer. Chem. SOC. (1987) 109, 7900. Campbell, K.,and Lunsford, J . H . , J. Phys. Chem. (1988) 92, 5792. Nelson, P . F., Lukey, C . A . , and Cant, N.W., J. Phys. Chem. (1988) 92, 6176.

415 8. 9. 10.

C . , ( t o be p u b l i s h e d ) . Mirodatos, C . , ( t o be p u b l i s h e d ) . ( a ) E k s t r o m , A . a n d L a p s z e w i c z , J . A . , J . Am. Chem. SOC. ( 1 9 8 8 ) 110, 5 2 2 6 . ( b ) Ekstrom, A . a n d Lapszewicz, J. A., J. Mims,

Chem. SOC., Chem. Commun. ( 1 9 8 8 ) 7 9 7 . 11. v a n K a s t e r e n , W . M . H . , Geerts, W . M . H . , a n d v a n der Wiele, K . , Proceedinas of t h e -, 2, p . 930, P h i l l i p s , M . J . , a n d T e r n a n , M . , e d s . , T h e Chemical I n s t i t u t e of C a n a d a ( 1 9 8 8 ) . 1 2 . Lo, M . - Y . , Agarwal, S. K., a n d M a r c e l i n , G . , J . C a t a l . ( 1 9 8 8 ) 112, 1 6 8 . 13. L a n e , G. S . , a n d W o l f , E . E . , J . C a t a l . ( 1 9 8 8 ) 113, 1 4 4 . 1 4 . A s a m i , K., O m a t a , K . , F u j i m o t o , K . , a n d Tominaga, H . , E n e r g y a n d F u e l s (1988) 2, 574. 1 5 . McEwen, A . , B . , Q u i n l a n , M. A . , a n d McCarty, J . G . , ( t o be published, 1989). 1 6 . F r e n k l a c h , M. , ( p r i v a t e c o m m u n i c a t i o n ) 17. Warnatz, J., i n , G a r d i n e r , W. C . , J r . , e d . , Chpt. 5, p . 1 9 7 , S p r i n g e r - V e r l a g , (1984) 1 8 . T s a n g , W., J . P h y s . a n d Chem. R e f . Data ( 1 9 8 6 ) 15, 1 0 8 7 . 1 9 . D r i s c o l l , D . J . , Campbell, K. D . , a n d L u n s f o r d , J . H . , Adv. C a t a l . ( 1 9 8 7 ) 35, 1 3 9 . Lukey, C . A . , N e l s o n , P . F . , a n d T y l e r , R . J . , J . 20. Cant, N.W., C h e m . SOC. C h e m . Commun. ( 1 9 8 8 ) 7 6 6 . 2 1 . Amorebieta, V. T . , a n d C o l u s s i , A . J . , J . P h y s . C h e m . ( 1 9 8 8 ) , 92, 4 5 7 6 . 2 2 . L a b i n g e r , J. A . , a n d O t t , K. C . , J . P h y s . Chem. ( 1 9 8 7 ) 91, 2682, 2 3 . L a b i n g e r , J. A . , Mehta, S., O t t , K . C . , R o c k s t a d , H . K . , a n d Zoumalan, S., i n W s i s 1 9 8 7 , Ward, J . W . , e d . , p . 513, E l s e v i e r (1988).

:

.

.