J. Chem. lkrmodynamics 1976,8,425-430
Molar excess volumes of mixtures picolines with some alcohols BOLESLAW KOWALSKI, STEFAN CZERNIK
ANDRZEJ
ORSZAGH,
of and
Departmentof ChemicalTechnology,University, 02093 Warszawa,Poland (Received13 October 1975) The molar excess volumes of 15 binary mixtures of a picoline were measured at 298.15 and 313.15 K.
+ an aliphatic alcohol
1. rmodIll!tion It is the purpose of this paper to report molar excess volumes YE for 15 mixtures of a methyl pyridine (picoline) + an aliphatic alcohol, which are strongly associated through hydrogen bonding. We used CI-, p-, and y-picolines, and propan-l-01, butan-l-01, pentan-l-01, hexan-l-01, and heptan-l-01.
2. Experimental All alcohols were the same as those used for determinations of VE for pyridine + an alcohol.“) Picolines were dried over potassium hydroxide and purified by fractional distillation. Purities of the final samples were checked by measuring their densities. The results at 298.15 K are: ol-picoline, 0.93939 g cme3 (0.93968 g cmm3); b-picoline, 0.95231 g cme3 (0.95197 g cme3); y-picoline 0.95031 g cme3 (0.95020 g cme3). The values in parentheses are literature data. (‘) Excess volumes were measured indirectly by the pyknometric technique. (I) The precision of VE is estimated to be about 0.003 cm3 mol-l at x = 0.5 where x denotes mole fraction.
3. Results The molar excess volumes of mixing were fitted to the equation: VE/cm3 mol- ’ = X( 1 -
X)
5 Ci( 1-2X)‘-‘, i=l
where x is the mole fraction of picoline. The adjustable coefficients C, calculated by the method of least squares are given in table 1, together with the standard deviationsc3) o( VE) of the results. The experimental molar excess volumes at 298.15 K are given in tables 2 to 4. The results at 313.15 K can be calculated from the coefficients listed in table 1 and equation (1). We have found no previous results with which to compare our results.
B. KOWALSKI,
426
TABLE
A. ORSZAGH,
AND
S. CZERNIK
1. Coefficients C, of equation (1) with the corresponding
Mixture a-Picoline + propanol-l-01 + butan-l-01 + pentan-l-01 + hexan-l-01 + heptan-l-01 &Picoline + propan-l-01 + butan-l-01 + pentan-l-01 -t hexan-l-01 + heptan-l-01 y-P&line f propan-l-01 + butan-l-01 + pentan-l-01 + hexan-l-01 + heptan-l-01
standard deviation cr( VE) CS
4 m cma mol-’
-0.0707 -0.3877 0.0433 0.1669 0.1324 0.1669 0.1055 0.2529 0.1931 0.2650
-0.6895 -0.5048 -0.9355 -0.5495 -0.3519 -0.3312 -0.2531 -0.1809 -0.4622 -0.6848
0.0047 0.0050 0.0067 0.0047 0.0047 0.0036 0.0050 0.0048 0.0030 0.0046
-0.0045 0.0727 0.1328 0.0239 0.2777 0.3125 0.4534 0.4153 0.4828 0.5268
-0.1077 -0.1370 -0.1524 0.0787 0.0609 -0.0081 -0.2508 -0.2569 -0.2699 -0.2316
-0.2294 -0.3324 -0.3274 0.0989 -0.1085 -0.1445 0.0919 0.1489 0.1449 0.1156
0.0043 0.0035 0.0024 0.0032 0.0020 0.0022 0.0018 0.0015 0.0016 0.0018
0.1996 0.5028 0.3355 0.2478 0.2857 0.3322 0.2433 0.1976 0.1668 0.1215
-0.0371 0.0460 -0.1861 -0.2009 -0.1466 -0.0998 -0.0194 -0.0243 0.0462 0.0545
-0.3097 -0.5838 -0.4762 -0.3546 -0.4809 -0.4660 -0.2373 -0.1499 -0.1770 -0.0852
0.0024 0.0043 0.0031 0.0030 0.0023 0.0027 0.0010 o.ooo9 0.0011 0.0010
T/K
-Cl
-Cz
G
c-4
298.15 313.15 298.15 313.15 298.15 313.15 298.15 313.15 298.15 313.15
2.7648 2.5887 2.5209 2.3496 2.2895 2.1376 2.0873 1.9426 1.8830 1.7806
0.4850 0.3641 0.4800 0.4258 0.4718 0.4547 0.3827 0.4019 0.3561 0.3479
0.3363 0.4150 0.7922 0.4831 0.4744 0.3700 0.3929 0.3645 0.4941 0.6652
298.15 313.15 298.15 313.15 298.15 313.15 298.15 313.15 298.15 313.15
1.4600 1.3844 1.1104 1.0850 0.8490 0.8103 0.6356 0.6122 0.4804 0.4621
0.6041 0.5684 0.3360 0.3737 0.3642 0.3158 0.2656 0.2588 0.2738 0.2793
298.15 313.15 298.15 313.15 298.15 313.15 298.15 313.15 298.15 313.15
1.4341 1.3614 1.1516 1.1016 0.8807 0.8465 0.6886 0.6461 0.5069 0.4795
0.3779 0.3175 0.2448 0.2147 0.2718 0.2460 0.1437 0.1390 0.1539 0.1449
V” FOR PICOLINE
TABLE
+ ALIPHATIC
ALCOHOL
427
2. Excess volumes VE of mixtures containing mole fraction x of a-picoline at 298.15 K VE
x
P
x
V”
I/E
x
cm3 mol - ’
0.0476 0.0996 0.1467 0.2039 0.2514
-0.149 -0.298 -0.390 -0.494 -0.564
0.3061 0.3533 0.3994 0.4309 0.4714
Propan-l-01 (1) + a-picoline (2) -0.615 0.5035 -0.693 -0.660 0.5523 -0.670 -0.683 0.6025 -0.637 -0.690 0.6552 -0.582 -0.697 0.6998 -0.532
0.7547 0.8017 0.9002 0.9498
-0.455 -0.389 -0.209 -0.125
0.0525 0.1032 0.1544 0.2025 0.2551
-0.126 -0.262 -0.358 -0.425 -0.495
0.3011 0.3531 0.4051 0.4341 0.4716
Butan-l-01 (1) + a-picoline (2) -0.548 0.5054 -0.630 -0.590 0.5589 -0.606 -0.621 0.6037 -0.575 -0.630 0.6518 -0.525 -0.636 0.7042 -0.465
0.7515 0’8507 0.9007 0.9510
-0.397 -0.256 -0.178 -0.108
0.0491 0.1034 0.1506 0.2090 0.2510
-0.116 -0.225 -0.313 -0.400 -0.450
0.3120 0.3580 0.4091 0.4379 0.5061
Pentan-l-01 (1) + a-picoline (2) -0.513 0.5585 -0.550 -0.550 0.6068 -0.519 -0.570 0.6574 -0.464 -0.578 0.7079 -0.414 -0.574 0.7548 -0.372
0.8014 0.8483 0.8984 0.9425
-0.310 -0.240 -0.160 -0.098
0.0517 0.1057 0.1570 0.2082 0.2593
-0.103 -0.210 -0.296 -0.364 -0.423
0.3012 0.3533 0.4055 0.4599 0.5097
Hexan-l-01 (1) + a-picoline (2) -0.457 0.5570 -0.506 -0.492 0.6056 -0.475 -0.518 0.6468 -0.440 -0.527 0.6931 -0.398 -0.523 0.7551 -0.335
0.8139 0.8432 0.9018 0.9305 0.9435
-0.271 -0.235 -0.150 -0.100 -0.089
0.0514 0.1027 0.1458 0.1922 0.2697
-0.090 -0.179 -0.247 -0.300 -0.383
0.3008 0.3545 0.4084 0.4797 0.5336
Heptan-l-01 (1) + a-picoline (2) -0.408 0.5433 - 0.462 -0.443 0.6035 -0.428 -0.464 0.6530 -0.393 -0.474 0.7011 -0.350 -0.465 0.7060 -0.348
0.7558 0.7993 0.8468 0.8934 0.9502
-0.300 -0.255 -0.207 -0.150 -0.073
cm3 mold1
cm3 mol -1
X
cm3 mol-1
428
B. KOWALSKI,
TABLE x
3. Excess volumes VE cm3 mol-’
A. ORSZAGH,
VE of mixtures
x
P Propan-l-01
-0.111 -0.130 -0.207 -0.256 -0.308 -0.338
0.2997 0.3142 0.3562 0.4061 0.4694
0.0492 0.0506 0.1020 0.1509 0.1859 0.2570
-0.080
0.3002 0.3458 0.3607
-0.180 -0.204 -0.243
0.3981
0.0458 0.1007
0.3179
-0.204
0.4061 0.4463 0.4574 0.5028 0.5144
-0.219
0.3091
-0.042 -0.090 -0.111 -0.158 -0.171 -0.202
0.0578 0.1015 0.1540 0.2122 0.2528 0.3000
-0.035 -0.060 -0.086 -0.113 -0.128 -0.143
0.3560 0.4142 0.4563 0.5157 0.5286 0.5606
0.0349 0.1338
-0.014 -0.057 -0.060 -0.082 -0.104 -0.111
0.3090 0.3742 0.4046 0.4736 0.5238 0.5680
0.4492
0.1294 0.2065 0.2362
-0.221 -0.220 -0.212 -0.210 Hexan-l-01 -0.155 -0.163 -0.164
-0.158 -0.156 -0.146 Heptan-l-o1
0.1394 0.2058 0.2741 0.3042
(1) + fl-picoline
S. CZERNIK
fraction
P
x
at
298.15 K P cm3 mol-1
(2) -0.358 -0.350 -0.318 -0.297 -0.263
0.7459 0.7962
-0.223 -0.180
0.8777 0.9032 0.9398
-0.109 -0.090
0 5002 0.5497 0.6061 0.6593 0.7021
-0.277 -0.264 -0.243 -0.220 -0.202
0.7552 0.8007 0.8498 0.9018 0.9443
+ fLpicoline
(2) -0.183 -0.177
0.6912 (1) + &picoline
(I)
x of bpicoline
cm3 molwl
0.5025 0.5456 0.5954 0.6471
-0.260 -0.274 -0.277 -0.286 -0.284 Pentan-l-ol
mole
x
-0.363 -0.366 -0.378 -0.386 -0.370
Butan-l-01
-0.081 -0.135
containing
cm3 molqs
0.0487 0.0606 0.1166 0.1583 0.2137 0.2524
AND
0.5973 0.6133 0.6671
(2)
0.5664 0.5999 0.6637 0.7040 0.7553 0.8056 (1) + fl-picoline
-0.112 -0.122 -0.125 -0.125
0.5970 0.6148 0.6900 0.7344
-0.118
0.7691
-0.108
0.8084
-0.096 -0.066 -0.038 -0.020 -0.013
-0.153
0.6958 0.7506
(1) + B-picoline
-0.055
-0.140 -0.116
(2) -0.145 -0.133 -0.109 -0.087 -0.063 -0.040
0.8504 0.8707 0.8993 0.9303 0.9428 0.9753
(2) -0.095 -0.090 -0.061 -0.040 -0.025 -0.008
0.8422 0.8823 0.9003 0.9253 0.9498 0.9748
0.004
0.018 0.022 0.025 0.024 0.015
V” TABLE
X
0.0449
4. Excess
V” cm3 molsl
volumes
FOR p
X
0.1016 0.1503 0.2137 0.2541
- 0.082 -0.158 -0.219 -0.269 -0.300
0.3102 0.3460 0.4133 0.4501 0.5052
0.0339 0.0916 0.1439 0.1852 0.2479 0.2762
-0.059 -0.121 -0.162 -0.194 -0.230 -0.245
0.3155 0.3680 0.3940 0.4349 0.4511
0.0530 0.1006 0.1513 0.2106 0.2658
-0.062 -0.108 -0.144 -0.171 -0.189
0.3018 0.3539 0.4110 0.4573 0.5008
0.0533 0.1022 0.1364 0.2099 0.2577
-0.041 -0.069 -0.086 -0.120 -0.136
0.3022 0.3654 0.4076 0.4623 0.5037
0.0827 0.1152 0.1858 0.2424 0.2615 0.2988
-0.044 -0.059 -0.083 -0.100 -0.105 -0.114
0.3039 0.3519 0.4100 0.4473 0.5355
PICOLINE
+ ALIPHATIC
of mixtures
VE cm3 mol-’
containing
mole
X
Propan-l-01 -0.334 -0.351 -0.363 -0.364 -0.356
(1) + y-picoline
Butan-l-01
(1) + y-picoline
-0.264 -0.282 -0.288 -0.290 -0.291 Pentan-l-01 -0.203 -0.215 -0.223 -0.225 -0.221 Hexan-l-o1 -0.151 -0.166 -0.171 -0.174 -0.171 Heptan-l-01 -0.115 -0.122 -0.129 -0.131 -0.123
fraction
V* cm3 mol-’
(1) + y-picoline
0.5669 0.6068 0.6605 0.7073 0.7521 (1) + y-picoline 0.5682 0.5996 0.6192 0.6222 0.6860
X
at 298.15
K
VE cm3 mol-l
-0.334 -0.324 - 0.294 -0.261 -0.232
0.7986
-0.190
0.8885 0.9002 0.9487
-0.111 -0.100 -0.051
-0.285 -0.279 -0.260 -0.236 -0.206
0.7472 0.8002 0.8408 0.8937 0.9349
-0.181 -0.143 -0.121 -0.078 -0.049
-0.208 -0.195 -0.167 -0.161 -0.124
0.7860 0.8498 0.8944 0.9459
-0.112 -0.078 -0.056 -0.032
-0.162 -0.154 -0.140 -0.123 -0.107
0.8046 0.8475 0.8900 0.9511
-0.084 -0.066 -0.050 -0.024
0.7561 0.8046 0.8553 0.8808 0.9463
-0.075 -0.063 -0.046 -0.039 -0.018
(2)
(2)
0.5599 0.6067 0.6590 0.6852 0.7603 (1) + y-picoline
x of y-picoline
(2)
0.5542 0.6007 0.6514 0.7014 0.7459
0.4986 0.5314 0.5990 0.6569 0.7089
429
ALCOHOL
(2)
(2) -0.118 -0.112 -0.108 -0.108 -0.093
4. Discussion The excess volumes for all systems excluding p-picoline + hexan-l-01 and + heptanl-01 are negative at 298.15 K and at 313.15 K. For p-picoline + hexan-l-01 and + heptan-l-01 VE changes sign from negative to positive: VE > 0 when x > 0.88 in the first and when x > 0.84 in the second mixture at 298.15 K. The molar excess volumes in picoline + alcohol mixtures increase when the alkyl group of the alcohol molecule increases in size. The -CH2increment in VE(x = 0.5) is about 0.07 to 0.04 cm3 mol- ‘, becoming smaller as the molar mass of the alcohol increases. The
430
B. KOWALSKI,
A. ORSZAGH,
AND
S. CZERNIK
molar excess volumes in all mixtures increase when the temperature increases, The VE values varies in the sequence: P-picoline 2 y-picoline > cc-picoline in their mixtures with alcohols from propan-l-01 to heptan-l-01. The same dependence is true for methanol + u-, + p-, and + y-picoline which were investigated earlier.c4’ This order shows that the a-CH, group has a specific influence on VE which can be interpreted as a hindrance in self-association of a-picoline molecules.~5~ The values of VE suggest that the picoline + alcohol type mixtures have specific interactions by the N* * *H-O bond. The results show that the N* * *H-O bonding is relatively stronger than are 0. * -H-O and N*. *H-N bonding. The total volume change on mixing is caused by at least two contributions, an increase due to the break-up of the alcohol and picoline structure, and a decrease due to hydrogen bond between picoline and alcohol. For x = 0.5 VE is well expressed by the empirical equations: for a-picoline mixtures : VE(x = 0.5)/cm3 mole1 = 1.5822-1.293, at 298.15 K, (2) VE(x = 0.5)/cm3 mol-’ = 1.2562-1.190, at 315.15 K; (3) for b-picoline mixtures : vE(x = 0.5)/cm3 mol-’ = 1.5202-1.015, at 298.15 K, (4) VE(x = 0.5)/cm3 mol-’ = 1.5002-0.997, at 313.15 K; (5) for y-picoline mixtures : VE(x = 0.5)/cm3 mol-’ = 1.5532 - 1.037, at 298.15 K, (6) VE(x = 0.5)/cm3 mol-’ = 1.447z-0.974, at 313.15 K; (7) where z is the volume fraction of alcohol at x = 0.5. Equations (2) to (7) can be used for predicting VE(x = 0.5) for mixtures of a picoline + an alcohol with more carbon atoms than heptan- l-01. Our earlier experiments c4) show that these equations used for a picoline + methanol give considerable deviations from experiment. Values of VE(x = 0.5) for mixtures of a-picoline + an alcohol from propan-l-01 to heptan-l-01 can be calculated with linear dependence of VE(x = 0.5) against number of carbon atoms Nc in the alcohol. We obtained for such mixtures the expressions: at 298.15 K, VE(x = 0.5)/cm3 mol -’ = O.O56Nc-0.858, (8) VE(x = 0.5)/cm3 mol-’ = 0.050Nc-0.790, at 313.15 K, (9) for which the standard deviations cm3 mol-’ at 313.15 K.
are 0.003 cm3 mol-’
at 298.15 K and 0.006
REFERENCES 1. OrszBgh, A.; KowaIski, B. i?oczniki Chem. 1975,49,653. 2. Biddiscombe, D. P.; CouIson, A. E.; Handley, R.; Herington, E. F. G. J. Chem. Sot. 1957,1954. 3. Myers, D. B.; Scott, R. L. Znd. Eng. Chem. l!W,55,33. 4. Kowalski, B.; Orszhgh, A.; Romiszowski, P. Roczniki Chem. 1975,49, 1159. 5. Kiefer, M.; Becker, F. 27&d International Conference on Chemical Thermodynamics, Section 5, viemla 1973, p. 145.